
Tutorial: Creating Peripherals with Interrupts in Altera’s SoPC Builder

Shangru Li and Stephen A. Edwards, April 2012

1. Open SoPC Builder

2. Create a new component

3. Select the component VHDL file to add: irComp.vhd for
this tutorial.

4. Move to the Signals tab and change the following things:

Signal Interface Signal Type

clk clock clk
reset_n clock reset_n
irq new interrupt sender irq

5. Move to Interfaces and look at the “interrupt_sender”
section. Change the associated addressable interface to
be avalon_slave_0.

Next, add the CPU, SRAM, JTAG, and the component you
just created. Name it irqsource. Auto assign the address.
You also need to assign the IRQ priorities for the components
because both JTAG and your component can generate inter-
rupts. You can change the number in the IRQ column (0 has
the highest priority), or you can also use “auto assign IRQ.”

The irComp.vhd file

This component is just a counter that gives an interrupt (set
IRQ to be 1) every 0.7 seconds. The CPU writing to this com-
ponent resets IRQ to 0. You can ignore the other processes in
this component since only these two are related to interrupts.

process (clk)
begin

if rising_edge(clk) then
if reset_n = ’0’ then

counter <= (others => ’0’);
else

counter <= counter +1 ;
end if; end if;

end process;

process (clk)
begin

if rising_edge(clk) then
if reset_n = ’0’ then

irq <= ’0’;
else

if counter = "00000000000000000000000001" then
irq <= ’1’;

elsif write = ’1’ and chipselect = ’1’ then
irq <= ’0’; −− important: reset the irq

end if; end if; end if;
end process;

The irq-main.c file

After enabling the interrupt, the main function sits in an in-
finte loop. When the interrupt comes, the irqhandler function
will be called and print a message on the console.

#include <stdio.h>
#include "system.h"
#include <sys/alt_irq.h> // the irq functions
#include <io.h>
#include <alt_types.h>

static void irqhandler (void * context, alt_u32 id)
{

printf ("interrupt occurred\n");
IOWR_16DIRECT(IRQSOURCE_BASE, 0, 0); // reset request

}

int main()
{

printf("main() started\n");
alt_irq_register(IRQSOURCE_IRQ, NULL,

(void*)irqhandler); // register the irq

for (;;) {} // Do nothing forever

return 0; // Never executed
}

Notes

1. If you didn’t name the component irqsource, you can re-
fer to the system.h file to discover the name of the IRQ
and use it as a parameter to the alt_irq_register function.
The system.h file is in syslib/debug/system_description.
It define the addresses and IRQ, if any, for all your com-
ponents.

2. It is important to use the IRQ for VGA control. In
vga_raster, when vcount reaches the bottom of the
screen, there will be hundreds of cycles (the back- and
front-porch periods) that can be used to change the
image on the screen (for instance, the position of the
sprites). This cures the glitches many of you were expe-
riencing with the ball in lab 3. A good strategy is to have
vga_raster interrupt the CPU and the end of the frame so
the CPU can update the contents of the screen.

