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MIDI-Controlled Synthesizer 

I. Introduction 

This paper documents the basic design of our MIDI-controlled synthesizer, which will 

take input stimuli from a MIDI controller (a keyboard) and produce synthesized tones.  

Our system will also have the capability to further manipulate the synthesized notes by 

sending the signals through a digital signal processor (DSP). This design essentially has 

three main components: decoding of the MIDI input according to the MIDI 1.0 protocol, 

designing hardware to synthesize the notes, and creating a sufficient DSP to manipulate 

the synthesized signals. The final system will be constructed using a combination of C 

programming on a NIOS II processor and specialized hardware built using VHDL. 

II. MIDI Input Basics and Decoding 

Traditionally, MIDI control signals are passed through a specialized MIDI connector. 

However, since we are implementing our design on the Altera DE-2 board, we will be 

using a MIDI to RS-232 converter to receive the signals on the board. The MIDI 1.0 

Specification lists a recommended circuit for conversion of a MIDI output to a TTL 

signal through the use of an opto-isolator. This circuitry is necessary because MIDI-

signals are transmitted through current loops as opposed to voltage levels. An opto-

isolator is used because MIDI currents are provided without a ground reference. In 

addition, we found the TerrorMouse project used a MAX232 IC to convert the TTL 

levels into RS-232 levels (see figure 1). 

 

 

 

 

 

 

 

Figure 1. MIDI-in to RS-232 Conversion circuit 



 

The portion of the circuit in the top left corner of 

figure 1 provides a regulated 5V supply for the 

MAX232 chip. The bottom left corner displays the 

circuit suggested by the MIDI 1.0 protocol for the 

current loop to voltage level conversion. Finally the 

MAX232 chip itself converts the input voltages to 

an RS-232 signal for use on the DE-2 board. 

The last piece of the MIDI interface is a MIDI 

UART, which is responsible for serial to parallel 

conversion. As each data bit is serially transmitted 

via RS-232, it will be stored in a shift register, 

which will finally be read by the processor after an 

entire 8-bit MIDI message is received. Figure 2 

shows a block diagram for the overall MIDI input 

interface. 

 

 

 

 

 

 

The basic MIDI 1.0 protocol says that a MIDI 

message begins with a status signal. This 8-bit 

signal indicates whether the controller wants to turn 

a note on, off, change control, change the program 

(change the instrumental sound), and so on. The 

upper nibble of a status signal indicates the 

operation, and the lower nibble indicates the 

channel to perform the operation on. We will be 

ignoring the lower nibble of the input, thereby 

enabling only a single channel. 

In order to play a note, the note-on status signal Figure 3. MIDI signal to note chart 
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Figure 2. Block diagram for the MIDI input interface 



(with its corresponding channel) is transmitted, followed by two more bytes. The first 

byte is the note itself (where the upper nibble is a number from 0-127, and the lower 

nibble is the channel) and the second is the velocity (or how long the note is held out). 

Each number between 0 and 127 is mapped to one note according to the MIDI protocol 

(see figure 2). 

The rest of the different statuses operate along a similar principle. For the purposes of our 

synthesizer, we will only be implementing note on, note off, and change of program 

events. A note on event will generate a signal. A note off event will stop the sound. 

Finally, the change of program will signal the DSP to manipulate the sound of the signal. 

Because of this, the features that are not implemented will be ignored by the system. The 

MIDI-decoding will take place on the NIOS-II processor and be programmed in C. It will 

then send output control signals to either the FM-synthesizer logic (to turn the note on or 

off), or to the DSP for sound manipulation. 

 

III. FM Synthesis 

Our synthesizer will use the FM synthesis method for producing tones as introduced by 

John Chowing.  Given a digitally encoded pitch (from the MIDI port), our FM 

synthesizer will be capable of producing a large variety of timbres by combining carriers, 

modulators, and envelopes.  Carriers are simply digital signals that oscillate at some 

desired frequency, which produces a tone when fed to a DAC and a speaker.  Carriers can 

be thought of as signals which oscillate at the fundamental frequency of the desired pitch 

or at a harmonic of the fundamental, though this is not necessarily required.  Modulators 

refer to oscillating signals which are added to carriers to produce more interesting 

timbres, adding harmonics to the carrier frequency.  The combination of these two signals 

is the essence of FM synthesis.  Figure 1 illustrates the effect of frequency modulation.  

Envelopes are functions of time which control the volume of a modulated frequency.  

Envelopes are used to create, for example, the attack and release (i.e., the loud start and 

decaying finish) of a note that is often 

characteristic of real instruments.  Following the 

terminology found in the user manual of an early 

digital synthesizer, the Yamaha DX7, we can 

define a basic FM operator which will serve as a 

building block for different tones our synthesizer 

will make. 

Figure 4.  Example of adding two frequencies (e.g., a modulator to a carrier). 

FM Operator.  An FM operator consists of an FM signal adder and an amplifier.  The 

operator takes as input pitch data (frequency of the carrier), modulation data (digital 



modulator signal), and envelope data (an envelope “program”), and outputs a synthesized 

tone.  The FM signal adder combines the pitch data and modulation data according to the 

function: 

 ( )     (         (   )) 

where x(t) is the resulting amplitude at time t (generating a digital signal of the desired 

tone), ωc is the frequency of the carrier, ωm is the frequency of the modulator, and I is the 

modulation “depth.”  The output timbre can be varied by changing the modulation depth.  

An amplifier is placed on the output of this function to control its volume.  The amplifier 

can be programmed with envelope data to create effects over time such as vibrato or 

decay.  Figures 2 and 3 illustrate the basic layout of an FM operator and an example 

output signal given a decay envelope. 

 

Figure 5.  Diagram of FM operator. 

 

Figure 6.  Example output signal of FM operator: the output of figure 1 with a decaying envelope which 

decreases the amplitude of the signal over time. 

Constructing Synthesis Algorithms.  To produce complex timbres with many harmonics, 

we can do three things: 

1. Cascade FM operators, so that one operator’s output becomes the modulation 

signal for the next 

2. Sum the outputs of parallel FM operators 

3. Feedback the output of operators into themselves (or other operators above them 

in the cascade) 



Figure 7 illustrates the degrees 

of freedom we have when 

arranging FM operators.  We can 

call the bottom “row” of 

operators carriers, since they 

provide the last (and most likely 

the most influential) pitch before 

the final signal is synthesized.  

Not shown in this figure is the 

envelope input to each FM 

operator.  

 

 

 

ADSR Envelopes.  In our synthesizer, each FM operator will be able to dynamically 

change the volume of its output.  When applied to a carrier operator, the envelope can be 

used to emulate the plucking of a string, or the slowly decaying reverberations of a drum 

after it has been hit.  When applied to a modulator operator, can dynamically change the 

amount of modulation which is applied to the carrier, providing yet another way to 

develop different tones.  A common envelope function is called an ADSR envelope, and 

has four parameters:  attack time, decay time, sustain time, and release time, as illustrated 

below.  Additionally, we may also parameterize the amplitude of the attack, decay, 

sustain, and release in more detail.  We will use this type of envelope in our FM 

operators. 

Figure 8 shows a picture 

of an example envelope.  

Here, when the note 

begins it has a quick 

burst of loudness (like 

plucking a string on a 

guitar), then sustains for 

a while (as in a string 

resonating), and then a 

decaying release (like the 

guitar body resonating 

for a while after the 

string stops). 

 



IV. Vocoder 

Background 

Instead of recreating instruments and plucked strings like in the spring 2004 

TerrorMouse project, we decided to try recreating a vocoder using the Altera DE2 board. A 

vocoder basically is a device which distorts a human speech input which can make it sound 

very metallic or robotic. It was originally used to encrypt speech for telecommunications, 

but now used popularly as a musical instrument. Basically the two signals that are required 

for vocoder operation is a carrier signal which usually comes from a harmonically rich 

source such as an organ or synthesizer and a modulating signal which the input that comes 

from a microphone.  The way it works it that it decomposes human speech into a number of 

frequency bands which is later passed through a series of band pass filters. These band pass 

filters have the ability to suppress some frequencies of human speech while accentuating 

others. Afterwards, these signals are multiplied by the corresponding frequency bands from 

a carrier source whose output is summed with other outputs representing other frequency 

bands.  

 

Figure 9 – A diagram representing how a channel vocoder works. 

 

General Design Implementation of Vocoder 

 In our design we intend on taking in a microphone input handled by the line in jack 

of the 24 bit audio codec on the DE2 board. Since the sound produced by a human can go as 

high as 7 kHz, we have decided to set the sampling frequency of the audio codec to be 14 



kHz in order to fulfill the Nyquist sampling theorem. This, however, may be too 

conservative of an estimate and perhaps we may decide to lower the sampling rate later on. 

The ADC of the codec should produce serial data which is then decomposed into its 

frequency components using the fast Fourier transform. We intend on implementing the 

FFT in software and plan on storing the FFT data for a fixed period in SRAM memory. 

Implementing the FFT in hardware is a possibility, but we are still not quite certain if the 

pros of this method necessarily outweigh the cons. We might get some sort of improvement 

in speed, but we’re going to have a lot of digital data flowing through our system from the 

FFT and we might not have enough flip flips to use as buffers. Doing it in software appears 

to be a “cleaner” approach. Digital band pass filters can also then be implemented in C in 

order to separate the different bands of spectral components into different channels. 

Multiplication of the carriers signal components with the modulating voice signals 

components can easily be accomplished in code by multiplying the corresponding registers 

that hold the respective data and store the data into a new output register. Each spectral 

band corresponding to one of the several channels in the vocoder would have an output 

register which would be summed and stored in another register. We would then need to 

write a piece of code in software that carries out the inverse FFT in order to recover the 

modulated signal. This digital time-domain output would then be ideally fed back to the 

audio codec to be converted into an audio signal and outputted through the line out jack on 

the board.  

 Before we actually begin designing our FM synthesizer which will generate 

waveforms such as a sawtooth wave that will serve as our carrier signal, we will robustly 

test the effect of a certain carrier on a modulating sound signal in order to determine which 

carrier will help us to yield the best sounding robotic voices. We will accomplish this by 

rigorously testing the FM synthesis algorithm as well as its corresponding vocoder result. 

 

 


