
CSEE W4840 Embedded System Design Lab 1

Stephen A. Edwards

Due February 3, 2011

Abstract

Learn to use the Altera Quartus development envrionment
and the DE2 boards by implementing a small hardware design
that displays and modifies the contents of a small memory.

1 Introduction

Use the Altera DE2 board to implement a simple hardware de-
sign. Describe its behavior using the VHDL language and use
Altera’s Quartus tools to synthesize and program the FPGA de-
vice. Use a VHDL simulator to verify and debug the design.

The circuit you program into the FPGA will display and
modify the contents of a 16× 8 bit RAM. Although there are
dedicated RAM chips on the DE2 board, for simplicity use a
RAM inside the FPGA. Use four pushbuttons as inputs and
three seven-segment LED displays as outputs. Two push but-
tons should step up and down through the sixteen RAM loca-
tions; the other two should increment and decrement the con-
tents of the currently-displayed memory location. One seven-
segment display should show the current address (0–F), two
others should display the contents of that location in hexadec-
imal (00–FF).

You will learn to set up a project in the Altera Quartus tool,
run a VHDL simulation, and compile and download your de-
sign to the FPGA. VHDL is a hardware description language,
and the process of using it is very different than developing
programs in C++ or Java. You will need these skills in later labs
and while you are developing your project.

Below, we introduce the DE2 board, show how to start a new
project from a template, add VHDL code to a project, simulate
it, and compile and download a design to the FPGA.

2 The DE2 Board

Figure 1 shows the Altera DE2 board. It consists of an Altera
Cyclone II FPGA connected to a variety of peripherals includ-
ing 512K of SRAM, 4 MB of Flash, 8 MB of SDRAM, VGA out-
put, Ethernet, audio input and output, and USB ports. For this
lab, we will use four of the eight seven-segment LEDs and the
four blue pushbuttons. There are three USB connectors on the
top of the board. The leftmost one—the one nearest the 9V DC
connector—is for connecting the Altera “Blaster” cable to the
workstation. It is through this connection that the FPGA will
be programmed, that debugging information flows, etc. The
other two USB ports can be used in projects.

The DE2 board holds two quartz crystal oscillators (clock
sources: little silver boxes labeled with their frequencies). We
will use the 50 MHz clock for this lab; there is also a 27 MHz
clock designed for video timing.

The DE2 board has built-in configuration for testing and
demonstration purpose. You can verify the board is working

properly by observing this default behavior. Use the following
procedure to power up the DE2 board.

First, connect the USB blaster cable from the USB port
on the workstation to the USB Blaster connector on the DE2
board. Next, connect the 9 V adapter to the DE2’s power con-
nector at the top left corner. Third, verify the RUN/PROG
switch on the left edge of the DE2 board (just to the left of the
LCD display) is in the RUN position.

Power on the DE2 board by pressing the red ON/OFF switch
in the upper left corner. The LEDs should flash, the LCD
should display “Welcome to the Altera DE2 Board,” and the
VGA output should display an Altera/Terasic logo page.

To download our design and override the default configu-
ration of the FPGA, we use a JTAG port (JTAG is a ubiquitous
standard that stands for the IEEE Joint Test Action Group).
The Altera Quartus tool running on the workstation sends the
configuration bit stream through the USB cable to the Cy-
clone II FPGA. Once programmed, the FPGA retains its con-
figuration as long as power is applied to the board; it is lost
when the power is turned off. We cover the details of this pro-
cess below.

3 Getting Started with Quartus

Quartus is Altera’s development environment for FPGAs. It
consists of an IDE and a “compiler” that can translate circuits
described in VHDL into configuration data for the FPGA. Start
the Quartus IDE by running the quartus command. This re-
quires the PATH and LM_LICENSE_FILE environment vari-
ables to be set.

Altera provides a variety of reference designs for the DE2.
For lab 1, we modified the DE2_Top design, which contains
information about what each pin on the FPGA is connected to
and a top-level VHDL module with a port for each pin.

Download the lab1.tar.gz file from the class website and ex-
tract it with “tar zxf lab1.tar.gz” This will place the project files,
listed in Table 1, in the current directory.

DE2_TOP.qpf is the top Quartus project file. To open the
project file, use File→Open Project and select DE2_TOP. Once
the project is opened, you can see and change I/O pin assign-
ments with Assignment→Pins. Figure 2 shows this dialog.

Table 1: Files in the DE2_TOP project

Name Role

DE2_TOP.qpf Quartus Project File
DE2_TOP.qsf Pin assignments, etc.
DE2_TOP.vhd Top-level VHDL file

1



Figure 1: The Altera DE2 board

Figure 2: Assigning Pins Textually

For Quartus to configure an FPGA, it must know which pins
on the FPGA perform what roles (i.e., what each is named).
This information is board-specific since the pins on the FPGA
can be wired to arbitrary peripherals. The DE2_TOP.qsf file
contains this information for the DE2 board.

DE2_TOP.vhd is the top-level VHDL module for the project,
which mostly lists the top-level ports, i.e., the VHDL names for
the pins. It also sets the state of the LEDs.

Although you do not need to modify I/O pin settings for this
lab, you may need to do so in the future. Assignment→Pin
Planner, shown in Figure 3, opens a display that shows the
physical location the pins on the FPGA and their assignments.

4 Compiling for the FPGA

The supplied project can be compiled and downloaded to the
board, altough it does not do much. First, make sure all the
source files are included in the project. From the Project navi-

Figure 3: Assigning Pins Graphically

gator window, click on the Files tab. This will display the VHDL
files that will be compiled into the FPGA. To add a file, select
Project→Add/Remove Files in Project. This opens the window
in Figure 4.

Select VHDL files from the pop up window. If you have writ-
ten multiple VHDL files, add each of them. Do not add any test
benches (used for simulation) to the list of device design files
since they cannot be compiled into hardware.

Now we are ready to compile. Select Processing→Start
Compilation to start the compilation process (Figure 5). The
window on the left reports progress.

A pop-up appears when compilation completes. If there are
errors, use the Messages window to locate them (Figure 6). As
usual, the first error listed is most trustworthy; any others may
be due to earlier errors. A compilation process usually gener-
ates some warnings. Most are harmless, but it is worth fixing
them them to avoid masking a genuine problem.

2



Figure 4: Adding files to a project

Figure 5: Compiling a design

Figure 6: Diagnosing errors

Figure 7: Programming the FPGA

Figure 8: Creating a new VHDL file

Figure 9: Editing a VHDL file

Double clicking on an error message will highlight the sus-
pect VHDL in the editor window. The compiler may also dis-
play warning messages, which can be explored in the same
way. You can obtain more information about a specific error
or warning by selecting it and pressing the F1 key.

4.1 Programming the FPGA

Once your design has been compiled, it can be downloaded to
the FPGA. Select Tools→Programmer, which will display the
window in Figure 7. It should list the DE2_TOP.sof file to be
programmed into the EP2C35F672 device (Altera’s charming
name for the FPGA on the DE2).

You may have to click on the “Hardware Setup...” button
and select the USB-Blaster cable. Make sure the board’s USB
cable is plugged into the port marked “blaster” (i.e., nearest
the power connector).

Click the check box under Program/Configure for the
DE2_TOP.sof file destined for the FPGA and then click Start to
download your design to the FPGA. If all goes well, the design
should spring to life.

5 Editing VHDL

The next step is to code your circuit in VHDL. Quartus pro-
vides a good VHDL text editor, which provides syntax high-
lighting, language templates, and other aspects of a good IDE.
To create a new VHDL file in your project, select File→New.
This will bring up the dialog in Figure 8.

Select the VHDL file option and click OK. This brings up a
window where you can enter VHDL code (Figure 9).

The verbose syntax of VHDL is probably unfamiliar to you.
To help, the Quartus tool provides a collection of VHDL tem-
plates, which provide examples of various types of VHDL con-

3



Figure 10: Inserting a VHDL template

KEY(0)
KEY(1)
KEY(2)
KEY(3)

clk

Ctrl.
16×8
RAM

a
di
we

clk

do

Hex
Decode

Hex
Decode

Hex
Decode

HEX6

HEX5

HEX4

Figure 11: The block diagram of lab 1

structs, such as an entity declaration, a process statement,
and an assignment statement.

To use a VHDL template, select Edit→Insert Template. This
will open a window such as Figure 10.

Select “VHDL” and the type of template you want. The OK
button inserts the template in the active source file. Then fill
in the details in the template, such as the name of an entity.

6 The Lab 1 Design

Your goal is to implement a memory display/modification cir-
cuit whose block diagram is shown in Figure 11. Input ports
are on the left; output ports are on the right.

To add the lab1 component to the project, instantiate it in
the top-level architecture in DE2_TOP.vhd.

architecture datapath of DE2_TOP is

begin

U1: entity work.lab1 port map (
clock => clock_50,
key => key,
hex6 => hex6,
hex5 => hex5,
hex4 => hex4

);

Here, the ports on your lab1 entity are mapped to top level
ports. The naming of these top level ports, such as CLOCK_50,
SW, KEY and HEX6 4, are all defined in the Quartus .qsf
file. The ports named in the DE2_TOP.vhd and QSF file must
match.

Remember to disable the constant assignments to HEX4,

HEX5, and HEX6 in the DE2_TOP.vhd file when you add your
lab1 component.

6.1 RAM

Your design should include a 16× 8 bit RAM, but what kind
of RAM? The DE2 board contains an SRAM chip, an SDRAM
chip, and RAM within the FPGA itself. The SDRAM chip pro-
vides the highest capacity but requires a complicated con-
troller. The SRAM chip is smaller, much simpler to use, and
provides more storage than RAM on the FPGA. However, RAM
internal to the FPGA, so-called “block RAM,” is the smallest,
fastest, and easiest to use. Use it for this lab.

The FPGA block RAM can be configured many different
ways, e.g., as one big memory, as many small regions, and as
bits, bytes, or words. The easiest way to ask for a particular
type of RAM is to is to allow the Quartus tool to infer it from
the use of an array in VHDL. Below is code from which Quar-
tus will infer a small RAM block.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
a : in unsigned(3 downto 0);
di : in unsigned(7 downto 0);
do : out unsigned(7 downto 0)

);
end raminfr;

architecture rtl of raminfr is
type ram_type is array (0 to 15) of unsigned(7 downto 0);
signal RAM : ram_type;
signal read_a : unsigned(3 downto 0);

begin

process (clk)
begin

if rising_edge(clk) then
if we = ’1’ then

RAM(to_integer(a)) <= di;
end if;
read_a <= a;

end if;
end process;

do <= RAM(to_integer(read_a));

end rtl;

Here, the to_integer function converts an input in the form
unsigned to an integer index for accessing the array.

6.2 Seven-Segment LEDs

The block diagram in Figure 11 includes three seven-segment
LED output decoders. Each segment of each LED is connected

4



a

b

c

d

e

f

g
Figure 12: A seven-segment
LED display. E.g., hex0(0) is a;
hex0(6) is g

(a)

(b)

Figure 13: Keybounce illus-
trated. (a) The ideal response.
(b) What actually happens.

to a pin on the FPGA. Driving a pin low (to 0) lights the cor-
responding segment. Figure 12 shows how the segments are
arranged. Thus, to display a “1,” drive the port to “1111001.”

6.3 Keybounce

Like most switches, the buttons on the DE2 are a bunch of
plastic designed to bring two pieces of metal together. When
a button is depressed, the piece of metal shorts a wire to
ground; otherwise, a resistor “pulls” the wire to a “1” voltage.
So a “0” means the button is depressed and a “1” means it is
not, so looking for when a button has just been pushed should
amount to looking for a 1-to-0 transition.

Keybounce complicates this. Despite careful mechanical
design, most buttons “bounce,” meaning that they quickly
connect and disconnect a few times before staying connected
for a while. Thus, if you look for a 1-to-0 transition to indicate
a button press, you can easily find many of them in a short
time. Figure 13 illustrates the problem.

The solution comes from noting fingers are much slower
than electronics; once a transition has occurred, the next gen-
uine change can only occur, say, at least 10 ms later, so ignore
any that come before then.

7 VHDL Simulation

For many reasons, hardware is tricker to design than software.
For example, the usual edit-compile-debug cycle is longer be-
cause the hardware compiler has more details to consider. An-
other reason is that the behavior of hardware is harder to ob-
serve. It is difficult to put a print statement in hardware, but
not impossible: designers often use LEDs as one-bit debug-
ging outputs. It is even harder to probe a wire inside a chip.

One way out of this conundrum is to simulate VHDL before
compiling it onto the FPGA. This is faster than compilation
and makes it easy to observe everything going on inside your
design, but can be thousands of times slower than running the
actual hardware.

7.1 Testbenches and the Synthesizable Subset

There are actually two dialects of VHDL: the complete lan-
guage, which the simulator accepts, and the synthesizable

subset—what can be translated into hardware. The non-
synthesizable part of the language is mostly useful for writing
testbenches.

You need two things to run an interesting simulation of a
system: a description of the system itself and some input for it.
This latter component is known as a testbench and you need
to write VHDL for your testbench when you simulate a design.
A testbench instantiates the desing you are testing, stimulates
the design, e.g., by applying clocks and inputs, and monitors
its response. A test bench can be thought of as a signal gener-
ator and oscilloscope.

A testbench can use non-synthesizable VHDL statements.
The wait statement, which can delay a precise amount of
time, is typical. It is not possible to build hardware that does
this, although you can build something that delays a precise
number of clock cycles, but it is easily done in simulation. For
example, wait can be used to provide a reset signal that goes
low for 200 ns:

process
begin

resetn <= ’0’;
wait for 200 ns;
resetn <= ’1’;
wait;

end process;

The final wait stops the process so it does not automatically
repeat and generate multiple resets.

Wait is also useful for modeling clocks. Here is a way to gen-
erate a clock with a 40 ns period.

process
begin

clock <= ’0’;
wait for 20 ns;

loop
clock <= ’1’;
wait for 20 ns;
clock <= ’0’;
wait for 20 ns;

end loop;
end process;

The loop statement tells the simulation to generate clock
pulses forever.

Wait can also be used to separate assignment statements to
generate specific input stimulus.

process
begin

wait for 100 ns;
a <= ’0’;
b <= ’0’;
cin <= ’0’;
wait for 20 ns;
a <= ’1’;
b <= ’0’;
cin <= ’0’;
wait for 20 ns;

5



Figure 14: Telling
Quartus about a new
test bench

Figure 15: Selecting
ModelSim-Altera as
the simulator and
telling it about a
testbench

a <= ’1’;
b <= ’0’;
cin <= ’1’;
wait;

end process;

You can test this lab by using this style of code to emulate
buttons being pressed.

7.2 Simulating your design

Quartus can run an external VHDL simulator. We will use a
version of Mentor Graphics’s ModelSim. It is a hassle to run
the simulator the first time, but it is much easier the second.

First, you probably need to tell Quartus where the
simulator is. Go to Tools→Options, select “EDA Tool

Figure 16: Running ModelSim and observing simulation re-
sults

Figure 17: Viewing your design as a schematic

Options,” double-click on the ModelSim-Altera line and
enter the name of the directory in which the “vsim”
executable resides. On our machines, this is /op-
t/e4840/altera7.2/modelsim_ae/linuxaloem.

Now, tell Quartus that you want to use ModelSim-Altera
as the “EDA simulator.” With the project open, select
Assignments→EDA tool settings and click on “Simulation.”
Set “Tool name” to “ModelSim-Altera.”

The Assignments→EDA tool settings dialog is also where
you must tell the simulator which testbench to use. Again un-
der EDA Tool Settings→Simulation, specify a testbench in the
“NativeLink settings” area by selecting “Compile test bench”
and clicking on Test Benches.

In the Test Benches dialog, click New to create a new test
bench. The name is arbitrary, but the entity name must match
that in your VHDL test bench file and the instance should be
the name of the instance of the design you are testing (e.g.,
“uut”). You must also specify an execution time for your test-
bench. This may be a number of µs. Finally, add the VHDL
file for your testbench by selecting it and clicking “Add.” See
Figure 14.

Once you have created a new test bench, you can select it
in the pulldown menu to the right of “Compile test bench.”
Figure 15 illustrates all of these settings.

Finally, you should be able to select Tools→EDA Simulation
Tool→Run EDA RTL Simulation to start ModelSim. You need
to have compiled your design before you start the simulation.

If all goes well, you should see the ModelSim window ap-
pear and a waveform viewer display the results of the simula-
tion: Figure 16. Use the zoom tools to zoom in and out on this
display and the scrollbars to move. By default, the display will
show all the signals external to the unit under test (i.e., on the
entity in your VHDL test bench file you specified earlier).

7.3 The RTL Viewer

We are designing a circuit but have been writing textual VHDL.
Quartus includes an RTL viewer that displays your design
as a schematic. Bring this up by selecting Tools→Netlist
Viewers→RTL Viewer (Figure 17). Note that this is informa-
tive but not necessary for compilation.

8 What to turn in

Find an unsuspecting TA or instructor, show him/er your
working memory reader/editor, your running simulation, and
email your .vhd file to sedwards@cs.columbia.edu.

6


