
CSEE4840 Project Design Document

Battle City

March 18, 2011

Group memebers:

Tian Chu (tc2531)

Liuxun Zhu (lz2275)

Tianchen Li (tl2445)

Quan Yuan (qy2129)

Yuanzhao Huangfu (yh2453)

Introduction:

Our project is to design a video game Battle City which was originally developed by Namco in

1985. The player, controlling a tank, must destroy enemy tanks in each level, which enter the

playfield from the top of the screen. The enemy tanks attempt to destroy the player's base

(represented on the map as a bird, eagle or Phoenix), as well as the human tank itself. A level is

completed when the player destroys all 20 enemy Tanks, but the game ends if the player's base is

destroyed or the player loses all available lives. The general appearance of the game Battle City

looks like this:

Challenges:

To implement this project on the DE2 board, we need to integrate the software algorithms with

the hardware drivers. The hardware drives the keyboard, VGA monitor and audio decoder. The

keyboard receives the user’s inputs, like arrow keys to control the moving direction of the tank.

The VGA monitor displays the scenario with user ’s tank, enemies and even the bullet. The audio

decoder plays the sound appropriately, like bombing sound when an enemy is destroyed. The

real-time video display will be the most challenging part, because the scenario changes all the

time and all changes should be synchronized with the software.

The software receives the game player’s inputs and translates them into actions of the tank, like

moving and fire. At the start of the game, a scenario parser loads the predefined scenario setup

and translates it into something that the hardware can understand and displayed properly. During

the game playing, the algorithm should control the tanks’ movement according to the current

scenario setup, and detect the destroying of the enemies. Therefore the multi-tasking may be the

most difficult thing the software should handle.

Architecture:

The following is the basic block diagrams of the whole design architecture, and it shows the

connection between the different modules and the interaction between the CPU and hardware

drivers.

A brief description of each module is given below:

 CPU: loads instructions stored in the SRAM and executes them one by one.

 SRAM_Controller: sends and receives data and instructions between the BUS and SRAM.

 Audio_Controller: receives audio commands from the BUS and translates it to Audio_Driver.

 SRAM: stores data and instructions of the NIOS II needs.

 Audio_Driver: drives the audio decoder with the preloaded sounds.

 Keyboard_Controller: receives keyboard inputs and puts them on the BUS.

 VGA_Controller: receives display data from the BUS and feeds them to the driver.

 VGA_Driver: drives the VGA monitor with the preloaded images.

In the next few sections, we will discuss the keyboard, VGA display, audio play and software

algorithm in detail.

Keyboard:

The keyboard is one of the most important modules in this design, because it provides the only

way for the DE2 board to get users’ inputs. In this design, we use following keys and their

functions are described below:

Keys Functions

A, D, W, S Player1’s tank moves left, right, up and down respectively

←, ↑, ↓, → Player2’s tank moves left, right, up and down respectively

Space Player1’s tank fires

Enter Player2’s tank fires

Note: all the functions will be performed repeatedly when the keys are pressed continuously.

VGA:

The VGA display is the most challenging part of this project, dues to the real-time changes of the

scenario, like destruction of the walls and hostile tanks. The whole screen is separated into 13X13

squares and each of them is formed by 36X36 pixels. Since all the background items like bricks,

river, and concrete are all symmetric in their shapes, we can just store 1/4 of the square’s size and

repeat them when displaying. The tanks and the bullet are considered as sprites and their images

are stored individually in RAMs. In short, the VGA display part of this project should have

following functions:

 Loads the scenario setup from the bus sequentially and put the correct images on the screen

at proper positions.

 Adjust the tanks and bullets’ positions on the screen when positions’ update commands

received from the bus.

 Handle the overlapping in the game video by using different layers.

 Display animations at proper time and positions when commands are received from the bus,

by using image flips.

VGA Architecture:

VGA display is to draw the game scenario, user interfaces and implement real_time control. The

data and instruction communication is completed via Avlon bus. The VGA display function mainly

contains 4 modules: VGA_Controller, VGA_Driver, Preloaded Images and Required Positions.

 VGA_Controller: Receive the CPU instructions into the newly created RAM in FPGA.

 VGA_Driver: Generate scenario and effects required by CPU, such as move, burst, and

disappear.

 Preloaded Images: RAM. Store all the images that may need to display in the game.

 Required Positions: RAM. Store the required position of each image in current scenario.

VGA_Controller get the CPU instructions of preloaded images and requried positions then store

them into the RAMs. VGA driver reads the memory and implement the real time control to the

screen.

Interfaces:

PortMaps :

The portmaps are roughly defined below:

 VGA_Controller(need modification)

 clk : in std_logic;

 reset_n : in std_logic;

 write : in std_logic;

 chipselect : in std_logic;

 writedata : in unsigned(31 downto 0);

 hcenter : out unsigned(9 downto 0);

 vcenter : out unsigned(9 downto 0)

 VGA_Driver(need modification)

reset : in std_logic;

clk : in std_logic; -- Should be 25.125 MHz

TANK_HCENTER : unsigned(9 downto 0); -- Horizontal position (0-800)

TANK_VCENTER : unsigned(9 downto 0); -- Vertical position (0-524)

VGA_CLK, -- Clock

VGA_HS, -- H_SYNC

VGA_VS, -- V_SYNC

VGA_BLANK, -- BLANK

VGA_SYNC : out std_logic; -- SYNC

VGA_R, -- Red[9:0]

VGA_G, -- Green[9:0]

VGA_B : out unsigned(9 downto 0) -- Blue[9:0]

 RAMs

Created automatically by Quartus, during the detail programming progress, the RAMs

will be instantiated and utilized by VGA_Driver.

Instruction Formats
To achieve correct communication, instructions must be aligned between hardware and software.

Instruction sets are defined in “data structure”. For detail, please refer to Software chapter.

Image Process:

 User Screen:

The user screen is divided into 169 squares, each column or row contains 13 squares as

indicated below:

The game scenario is constructed by 169 different images that loaded from RAM.

VGA_Controller will determine each image and its position.

The sub-image is formed by 36X36 pixels. The image below is our first tank image.

 Image type:

Two types of images need to be considered for real-time control: static scenario and sprites.

Static Scenario: This type of images are those background images that cannot be moved by

player, but may disappear or burst according to events. There are five basic static scenario

images:

Static scenario could be constructed by simply replicating ¼ of itself in order to reduce

memory size. The VGA_Driver only need the information of its position and type from RAM.

Sprites: Sprites are dynamic images that will change position with time on the screen. Sprites

include tanks and bullets, they are fully stored in RAM. A different instruction will be defined

for the sprites. VGA_Driver needs to get the postion, sprite ID and color information to locate

and change it over time.

 Image processing:

The images are stored in RAM as a pixel matrix.

First draw an image and save it as a 24-bit bmp. In bitmap image file on a disk or bitmap

image in memory, the pixels can be defined by varying number of bits. The 24-bit pixel

(24bpp) format stores 1 pixel value per 3 bytes. Each pixel value defines the Red, Green and

Blue samples of the pixel. Specifically in the order (Blue, Green and Red, 8-bits per each

sample). Read the bmp file in Hex code, the pixel array (bitmap data) starts from the 0x36 th

byte. Then store pixel array into local disk.

Due to the memory constrain, each RGB channel is assigned 3 bits. Therefore, only store the

highest 3 bits of each color in the RAM according to the original pixel array. However, the

monitor requires 1 color value per 10 bits. To solve it, simply put the stored value into the

highest 3 bits of each channel and add 0s to the lower bits.

Audio:

In our game, we want to play the sounds at proper times, like playing bombing sound when a

tank is destroyed or “ding” when the bullet hit the concrete walls. Each of the sound is preloaded

http://en.wikipedia.org/wiki/Sample_(graphics)
http://en.wikipedia.org/wiki/Sample_(graphics)

in the individual RAMs, and being played when the CPU gives the audio controller commands.

In this game, 8 kinds of sound are used, hence, we plan to use 8-bit control command, whose

each bit indicates one kind of sound and ‘1’ means on, ‘0’ means off. Sound and commands are

showed in the following table.

Name Description Command

Stage Start welcome music of every stage 10000000

Background the background sound effect 01000000

Fire sound of tank firing 00100000

Hit bullet hits wall or enemy tank 00010000

Movement sound of tank’s moving 00001000

Blast tank blast or base is destroyed 00000100

get treasure tank get a treasure 00000010

treasure emerge treasures appears in the battle field 00000001

We use the following steps to realize the audio function:

 Record 8 kinds of sound from the original game as .wav file.

 Converter wave file to mif file which can be used as a memory initialized file in Quartus.

 Save 8 mif files in rom and the audio driver will read the data from rom when receive

commands.

 The audio driver sequential output the data which stored in ROM to DA converter.

 DA converter will output the sound finally.

The block diagram is showed as following:

Avalon Bus

Audio_Controller

C
o

m
m

en
d Audio

Preloaded
sound,ROMAudio_Driver

WM8731

d
at

a

Output

Some notes:

 Considering the memory space, we may use relatively low sample rate. If the memory

space on DE2 board is not enough, we will consider using SDRAM.

 When several sounds are requested to play at same time, the output data will be the sum of

the data of each sound effect.

Software:

Software is definitely the most significant part of this design, since all hardware components are

functioning according to the commands received from the software program. To make the game

work, the software should have following functions:

 Handles the keyboard input interrupt and translates the make codes and break codes into

the corresponding actions of the players’ tanks.

 Loads the scenario setup from the SRAM and put them on the bus sequentially for the VGA

display module.

 Adjusts and records all tanks’ positions and their directions. Due to the existence of the

obstacles, some movements should be prevented.

 Adjusts and records all bullets’ positions and their directions. When the bullet hits the wall,

the background scenario should be updated both in the program and VGA display.

 Generates the enemies at a certain time rate and controls their actions with a random

algorithm. The difficulty of the game can be set to different level, and the enemies may be

“smarter” in the higher level.

Data structure:

The whole game includes two kinds of objects—obstacles and sprites. Brick and concrete walls

are typical obstacles while the tanks and bullets are sprites. Sprites ’ positions change with time

while the obstacles’ don’t. To store the obstacles, we use simple integer variables. A 13X13

integer (16-bit) array will be used to store these obstacles, and they will have following format:

X Y Blocks Type

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X: this four-bit field is used to store the obstacle’s horizontal position (0-12 in decimal)

Y: this four-bit field is used to store the obstacle’s vertical position (0-12 in decimal)

Blocks: each obstacle (or square in the screen) is formed by four blocks, and this four-bit field is

used to indicate these blocks’ existence

Type: this four-bit field is used to store the type of the obstacle

This figure illustrates the relationship between an obstacle and its blocks:

Block

Square

The following table illustrates the Type value of each kind of obstacles:

Brick Walls
Type = 0001, Bricks stop tanks and bullets, but they can be slowly

chipped away by shooting at them

Steel Walls
Type = 0010, Steel walls completely stop tanks and bullets. They cannot

be destroyed, unless player's tank has collected three stars.

Trees
Type = 0011, Trees allow tanks and bullets to pass through unchecked.

But they partially obscure the view beneath the tree tops.

Water
Type = 0100, Tanks cannot traverse water, but bullets can safely fly

across.

Ice
Type = 0101, When your tank drives over ice, it will slide a little bit in

the direction that it was traveling in when you let go of the button.

Sprites of the game are specified by their positions, types and colors. We will use a 32-bit integer

to store a sprite in the Nios program, and it has following format:

X Y Types Color

23-15 14-6 5-2 1-0

X: specify the horizontal position of this sprite (0-467 in pixels)

Y: specify the vertical position of this sprite (0-467 in pixels)

Types: specify the types of the sprites; details are given in the following table

Color: specify the color of the sprite, grey = 00, yellow = 01, red = 10 and green = 11

Player1’s tank Type = 0001

Player2’s tank Type = 0010

http://strategywiki.org/wiki/File:Battle_City_bricks.png
http://strategywiki.org/wiki/File:Battle_City_wall.png
http://strategywiki.org/wiki/File:Battle_City_trees.png
http://strategywiki.org/wiki/File:Battle_City_water.png
http://strategywiki.org/wiki/File:Battle_City_ice.png
http://strategywiki.org/wiki/File:Battle_City_bricks.png
http://strategywiki.org/wiki/File:Battle_City_wall.png
http://strategywiki.org/wiki/File:Battle_City_trees.png
http://strategywiki.org/wiki/File:Battle_City_water.png
http://strategywiki.org/wiki/File:Battle_City_ice.png
http://strategywiki.org/wiki/File:Battle_City_bricks.png
http://strategywiki.org/wiki/File:Battle_City_wall.png
http://strategywiki.org/wiki/File:Battle_City_trees.png
http://strategywiki.org/wiki/File:Battle_City_water.png
http://strategywiki.org/wiki/File:Battle_City_ice.png
http://strategywiki.org/wiki/File:Battle_City_bricks.png
http://strategywiki.org/wiki/File:Battle_City_wall.png
http://strategywiki.org/wiki/File:Battle_City_trees.png
http://strategywiki.org/wiki/File:Battle_City_water.png
http://strategywiki.org/wiki/File:Battle_City_ice.png
http://strategywiki.org/wiki/File:Battle_City_bricks.png
http://strategywiki.org/wiki/File:Battle_City_wall.png
http://strategywiki.org/wiki/File:Battle_City_trees.png
http://strategywiki.org/wiki/File:Battle_City_water.png
http://strategywiki.org/wiki/File:Battle_City_ice.png
http://strategywiki.org/wiki/File:Battle_City_bricks.png
http://strategywiki.org/wiki/File:Battle_City_wall.png
http://strategywiki.org/wiki/File:Battle_City_trees.png
http://strategywiki.org/wiki/File:Battle_City_water.png
http://strategywiki.org/wiki/File:Battle_City_ice.png
http://strategywiki.org/wiki/File:Battle_City_bricks.png
http://strategywiki.org/wiki/File:Battle_City_wall.png
http://strategywiki.org/wiki/File:Battle_City_trees.png
http://strategywiki.org/wiki/File:Battle_City_water.png
http://strategywiki.org/wiki/File:Battle_City_ice.png

Basic Tank Type = 0011

Fast Tank Type = 0100

Power Tank Type = 0101

Armor Tank Type = 0110

Grenade Type = 0111

Helmet Type = 1000

Shovel Type = 1001

Star Type = 1010

Tank Type = 1011

Timer Type = 1100

Algorithm:

The algorithm of this game is mainly formed by three parts: scenario initialization, bullets trace

and keyboard actions. The scenario initialization is executed at the start of the game. The bullets

trace is always executed in the main loop, since it has to trace the positions’ of bullets and detect

the destruction of obstacles, like brick walls, when the bullet hits them. The keyboard action part

is executed when a key is pushed, then the player ’s tank will move in a certain direction for a

small step or the player ’s tank will fire a bullet.

The basic flow-char of the algorithm is plotted in the following figure:

Start

Scenario initialization

Any key pushed?

Update the bullets’
positions

Any objects hit?
Update the players’

tanks’ positions

Function of the Key?

Fire a bullet

Update the objects and
display animation

yesno

firemove

yes

no

