
CSEE W3827

Fundamentals of Computer Systems

Homework Assignment 6

Solutions

Prof. Stephen A. Edwards

Columbia University

Due December 6th, 2011 at 10:35 AM

Show your work for each problem; we are more interested in how you
get your answer than whether you get the right answer.

EqualD

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign

Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE

1

0

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD
2:0

ALUSrcD

RegWriteD

Op

Funct

Control

Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

ALU

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

0

1

0

1

=

SignImmD

20:16 RtE

RsD

RdD

RtD

Hazard Unit

S
ta

llF

S
ta

llD

F
o

rw
a

rd
A

E

F
o

rw
a

rd
B

E

F
o

rw
a

rd
A

D

F
o

rw
a

rd
B

D

R
e

g
W

rite
E

R
e

g
W

rite
M

R
e

g
W

rite
W

M
e

m
to

R
e

g
E

B
ra

n
c
h

D

F
lu

s
h

E

EN

CLREN
CLR

The fully bypassed five-stage (F, D, E, M, W) MIPS pipeline with stall logic

1. (30 pts.) For the five-stage MIPS pipeline with full bypass and stall
logic discussed in class, in the book, and included in this
assignment, explain the hazard, if any, in each sequence of code
below and explain how the processor will resolve it, e.g., “stall two
cycles,” “bypass W to E,” “bypass M to D.” The stages are
abbreviated F, D, E, M, and W (Fetch, Decode, Execute, Memory,
and Writeback). For one example from the slides,

lw $s0, 40($0)
and $t0, $s0, $s1
or $t1, $s4, $s0
sub $t2, $s0, $s5

The and must stall a cycle then use a
W-to-E bypass to get $s0.
The or is already in the pipeline when the
and stalls, so it, too, must stall.

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

Trouble!

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

9

RF $s1

$s0

IM or

Stall

Hazard Illustrated Resolution of Hazard

(a)
lw $t1, 42($t1)
add $t2, $t1, $t3
sub $t4, $t1, $t3

The add must stall a cycle before
using a W-to-E bypass to get $t1.
The sub must also stall.

lw F D E M W

add F D D E M W

sub F F D E M W

Stall

(b)
lw $t1, 42($t1)
add $t4, $t2, $t3
sub $t5, $t2, $t3

No hazard; $t1 and $t4 not used here

(c)
add $t1, $t2, $t3
add $t1, $t1, $t4
add $t1, $t1, $t5

The second and third adds each use
the M-to-E bypass to get $t1; no
stalling is necessary.

lw F D E M W

add F D E M W

sub F D E M W

(d)
lw $t1, 42($t1)
add $t3, $t2, $t3
sub $t4, $t1, $t3

The sub needs to use a W-to-E bypass
for $t1 from the lw and a M-to-E for
$t3 from the add. No stalling needed.

lw F D E M W

add F D E M W

sub F D E M W

2. (30 pts.) Consider the following fragment of MIPS code:

li $t0, 64
loop: lw $t1, 0($t2)

sw $t1, 0($t3)
addiu $t2, $t2, 4
addiu $t3, $t3, 4
subu $t0, $t0, 1
bnez $t0, loop

(a) When this code fragment is run, how many instructions will be
executed total?

1+ 64 · 6 = 385

(b) How many cycles will it take to execute on the fully bypassed
MIPS processor?

li $t0, 64
l: lw $t1, 0($t2)

sw $t1, 0($t3)
addiu $t2, $t2, 4
addiu $t3, $t3, 4
subu $t0, $t0, 1
bnez $t0, l

1 2 3 4 5 6 7 8 9 10 11 12 13 14

lw F D E M W
sw F D E M W

addiu F D E M W

addiu F D E M W

subu F D E M W

bnez F D E M W

lw F D E M W

The sw will have to stall a cycle because the data from the lw is only
available at the beginning of the 5th cycle, but there is no bypass from
the W stage to the M stage, but there is one from W to E. The result of
the subu is needed by the bnez instruction, and although there’s an
M-to-D bypass, a single cycle stall is needed. Furthermore, the
instruction after the bnez is always fetched but flushed for all but the
last iteration, causing another cycle of delay. Thus,
1+ 63 · (6+ 3) + 1 · (6+ 2) = 576.

Now, consider this fragment of code:

li $t0, 64
loop: subu $t0, $t0, 1

lw $t1, 0($t2)
addiu $t2, $t2, 4
sw $t1, ($t3)
addiu $t3, $t3, 4
bnez $t0, loop

(c) When this code fragment is run, how many instructions will be
executed total?

1+ 64 · 6 = 385

(d) How many cycles will it take to execute on the fully bypassed
MIPS processor?

Instruction have been arranged to avoid most stalls; the one exception
is the bnez, which still takes two cycles. 1+ 64 · 7 = 449.

3. (25 pts.) Consider a computer with a direct mapped cache
of 64 16-byte blocks backed by 224 bytes of main memory.

(a) How many blocks does main memory contain?

224 ÷ 16 = 220

(b) How are memory addresses interpreted, i.e., how many bits
each are the tag, set, and byte offset fields?

24 bits total: 4 for byte offset; 6 for set number; remaining 14 for tag

(c) To which cache set will the address 0xDECADE map?

0xDECADE = 1101 1110 1100 1010 1101 11102
Set number = bits 4–9 = 101101 = 4510

(d) Assuming the cache starts empty, what sequence of events
would be produced by reading bytes in the following
sequences of addresses? Classify each event as a compulsory
miss, a conflict miss, a spatial locality hit, or a temporal
locality hit.

Address Event

0xDECADE Compulsory Miss

0xDECAD8 Spatial locality hit (same block as above)

0xDECAE8 Compulsory Miss (different block)

0xBECADE Compulsory Miss

0xDECADE Conflict Miss (same block; different tag)

4. (15 pts.) Consider a computer with a fully associative cache
of 32 64-byte blocks backed by 216 bytes of main memory.

(a) How many blocks does main memory contain?

216 ÷ 64 = 210 = 1024

(b) How are memory addresses interpreted, i.e., how many bits
each are the tag, set, and byte offset fields?

16 bits total: 6 byte offset; 0 set number; remaining 10 tag

(c) To which cache set will the address 0xF00D map?

Fully associative caches have exactly one set: everything maps to it

