CSEE W3827
Fundamentals of Computer Systems

Homework Assignment 6
Solutions

Prof. Stephen A. Edwards
Columbia University
Due December 6th, 2011 at 10:35 AM

Show your work for each problem; we are more interested in how you
get your answer than whether you get the right answer.

[

CLK CLK CLK
RegWiteD RegWiteE RegWiteM RegWiiteW
Control| | \iemtoRegD MemtoRegE MemtoRegM MemtoRegW
Unit MemWriteD MemWiriteE MemWriteM
ALUControD,, ALUConNtrokE.
a1z
— Op ALUSIcD ALUSKE
2 Funct RegDstD RegDstE
BranchD | |
CLK CLK EquaD PCSICD| ok
| = - |
WE3 = WE
insiD = A1 rD1 [0
A RDH |— "—' ALUOutM A RD ReadDataW|
Instruction 2016) pp RD2 H—15 — T1 I
Memory Data
] 53 Regist B WriteDataE WriteDataM Memory
WD3 egille er riteDatal WD
2521 RsD RsE ALUOUtW
RID RIE
o ol WriteRegEco WriteRoges WrteRegWeo
1511 RdD RraE[] =
1]
SignimmD SignimmE
10 [Sign | 29 9
Extend|
<<2
+
PCPIusdF | |l PCPlus4D
o) 15|
PCBranchD
ResulW
BB HE g2 z F]
] ERH - ERE 218 € <
2 o s 2 |2 B = (2 205 E E
B £ Ed s @ % S | 8 |3 g g
5 5 &l S |5 m il ulltil H =
Hazard Unit

—)

The fully bypassed five-stage (F, D, E, M, W) MIPS pipeline with stall logic

1. (30 pts.) For the five-stage MIPS pipeline with full bypass and stall
logic discussed in class, in the book, and included in this
assignment, explain the hazard, if any, in each sequence of code
below and explain how the processor will resolve it, e.g., “stall two
cycles,” “bypass W to E,” “bypass M to D.” The stages are
abbreviated F, D, E, M, and W (Fetch, Decode, Execute, Memory,
and Writeback). For one example from the slides,

w $s0, 40(%$0) The and must stall a cycle then use a
and $t0, $s0, $s1 W-to-E bypass to get $s0.

or $tl, $s4, $s0 The oris already in the pipeline when the
sub $t2, $s0, $s5 and stalls, so it, too, must stall.

Hazard lllustrated Resolution of Hazard

w $t1, 42($t1) The add must stall a cycle before
(a) add $t2, $tl, $t3 using a W-to-E bypass to get $t1.
sub $t4, $tl, $t3 The sub must also stall.

Iw F D E M lW

add F D D E M w
sub F F D E M w
?
Stall

lw $tl1, 42(%$tl)
(b) add $t4, $t2, $t3 No hazard; $t1 and $t4 not used here
sub $t5, $t2, $t3

add $t1, $t2, $t3 The second and third adds each use
(c) add $t1, $t1, $t4 the M-to-E bypass to get $t1; no
add $tl1, $tl, $t5 stallingis necessary.

lw F D E lM W
add F D E lM w
sub F D E M W

lw $tl, 42($tl) The sub needs to use a W-to-E bypass
(d) add $t3, $t2, $t3 for $t1l from the Iw and a M-to-E for
sub $t4, $t1, $t3 $t3 from the add. No stalling needed.

Iw F D E M w
add F D E &&M w
sub F D E M W

2. (30 pts.) Consider the following fragment of MIPS code:

1i $t0, 64
loop: 1w $tl1, 0($t2)
Sw $tl, 0($t3)
addiu $t2, $t2, 4
addiu $t3, $t3, 4
subu $t0, $to6, 1
bnez $t0, loop

(a) When this code fragment is run, how many instructions will be
executed total?
1+64-6=385

(b) How many cycles will it take to execute on the fully bypassed
MIPS processor?

1234546 7 8 9 1011 12 13 14
1i $t0, 64 w FDEMW
1: lw $t1, 0(%$t2) sw FD'EMW
sw $t1, 0($t3) addiu FDEMW
addiu $t2, $t2, 4 addiu FDEMW
addiu $t3, $t3, 4 subu FDEMW
subu §t0. $t0. 1 bnez F DLE M W

bnez $t0, 1 Iw F DE MW

The sw will have to stall a cycle because the data from the /w is only
available at the beginning of the 5th cycle, but there is no bypass from
the W stage to the M stage, but there is one from W to E. The result of
the subu is needed by the bnez instruction, and although there’s an
M-to-D bypass, a single cycle stall is needed. Furthermore, the
instruction after the bnez is always fetched but flushed for all but the
last iteration, causing another cycle of delay. Thus,
1+63:(6+3)+1:-(64+2)=576.

Now, consider this fragment of code:

1i $t0, 64
loop: subu $t0, $t0, 1
lw $tl, 0(%$t2)
addiu $t2, $t2, 4
sw $t1, ($t3)
addiu $t3, $t3, 4
bnez $t0, loop

(c) When this code fragment is run, how many instructions will be
executed total?

1+64-6=385

(d) How many cycles will it take to execute on the fully bypassed
MIPS processor?

Instruction have been arranged to avoid most stalls; the one exception
is the bnez, which still takes two cycles. 1+ 64 -7 = 449.

3. (25 pts.) Consider a computer with a direct mapped cache
of 64 16-byte blocks backed by 224 bytes of main memory.

(a) How many blocks does main memory contain?
224216 =220

(b) How are memory addresses interpreted, i.e., how many bits
each are the tag, set, and byte offset fields?

24 bits total: 4 for byte offset; 6 for set number; remaining 14 for tag

(c) To which cache set will the address OXDECADE map?

OxDECADE =110111101100101011011110;
Set number = bits 4-9 = 101101 = 4549

(d) Assuming the cache starts empty, what sequence of events
would be produced by reading bytes in the following
sequences of addresses? Classify each event as a compulsory
miss, a conflict miss, a spatial locality hit, or a temporal

locality hit.
Address Event
OXDECADE Compulsory Miss
OxDECAD8 Spatial locality hit (same block as above)
OxDECAE8 Compulsory Miss (different block)
OxBECADE Compulsory Miss
OxXDECADE Conflict Miss (same block; different tag)

4. (15 pts.) Consider a computer with a fully associative cache
of 32 64-byte blocks backed by 21© bytes of main memory.

(a) How many blocks does main memory contain?
216+ 64 =210=1024

(b) How are memory addresses interpreted, i.e., how many bits
each are the tag, set, and byte offset fields?

16 bits total: 6 byte offset; 0 set number; remaining 10 tag

(c) To which cache set will the address OxFOOD map?

Fully associative caches have exactly one set: everything maps to it

