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Overview

The original inspiration for this project came when Peter and Thomas, stepping out of their favorite 
burrito joint into a chilly October evening, witnessed a Nitro RC Car blazing down Amsterdam Avenue. 
The initial idea was to take one of these cars, override its original hardware, and to interface a truly 
remote control via the 3G network; they had imagined attaching a camera and driving an RC car from 
New York to Atlantic City via the cell network from the comfort of their dorm room.

Of course, the feasibility of doing this within a semester reduced the project to developing a car 
controlled by FPGA and sensors. The new goal is to have a car that drives quickly at an obstacle and 
halts just in time to prevent a collision.

An RC car was purchased from the Radio Shack. The ultrasonic sensor, which samples every 50 
milliseconds and returns the distance to an object in inches, is used by the FPGA in its calculations that 
control the car hardware. We hacked the car hardware in order to use the Altera board rather than the 
original RF controller; the board is connected via Ethernet cable to a breadboard on the car.

We used an oscilloscope and discovered that the car used PWM to manage both steering and throttle at 
a frequency of 50 Hz. As the FPGA is capable of 50 MHz, we could supply a PWM signal to the car by 
converting a PWM width with a hardware counter. 

With this module in place, having proven that the board can control the car hardware, the next step was 
to program the car to slow down as it approaches an object, preventing a collision. We integrated sensor 
output into a software algorithm that computes a new throttle level with each sensor reading. The 
resulting feedback loop accounts for distance and speed in order to regulate the engine output.

Design

Hardware

Needless to say, the hardware system consists of a NIOSII processor, memory, jtag uart 
(for debugging), and custom peripherals to interface with the sensor and the car 
hardware. We needed two custom SOPC components:

PWM 
The system has two servos which control the steering and the direction in which the range sensor is 
pointing to and one throttle control. To enable control over these subsystems, we used PWM signals.
The PWM units are VHDL components that are connected to the Avalon bus independently from the 
sensor unit. 

The module uses a counter that increments on every “PWM Clock” cycle which is a signal that is 
derived from the main system’s 50mhz clock. When the clock reaches a count that corresponds to the 
end of the PWM period of one cycle, it resets. A register representing the width of the pulse is 
compared to the counter value and if the counter is less than the register the system generates a logic 
high signal. The duty cycle can be varied in discrete steps representing less than .1 % and is directly 
related to the counters resolution. 

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


-- Create a PWM clock. 500,000HZ. 
 Counter : process (clk)
  begin
    if rising_edge(clk) then      
      if reset_n = '0' then 
               count <=  0;
               pwm_clk <= '0';
       elsif count = 49 then 
               count <= 0;
               pwm_clk <= not pwm_clk;     
       else
               count <= count + 1;
      end if;      
    end if;
  end process Counter;  
  
--Count 10000 steps for each clock cycle. for 0.01% increments of duty cycle.  
  pwm_clock : process (clk)
      begin
          if rising_edge(clk) then 

if pwm_clk = '1' then
              if reset_n = '0' then
                  pwm_count <= 0;
               elsif pwm_count = 9999 then -- should be 9999 to generate 50Hz PWM. 
                  pwm_count <= 0;
               else
                  pwm_count <= pwm_count + 1;
               end if;  

end if;
  end if ;

   end process ;          
--Based in the Duty cycle register (RAM(0)) create a wave for the steering controls.
 steering_pwm_generate : process (clk)
      begin

if pwm_clk = '1' then
if pwm_count < RAM(0)  then -- duty cycle : 0 - 9999, so can control .01 of a % 

  steering_pwm <= '1';
else 

  steering_pwm <= '0';
end if;   

end if;
 end process ;        
the module contains two additional processes to create PWM signals for throttle and servo controlling the direction the 
range finder points to. 

Sensor 
The peripheral for the sensor is implemented as a SOPC component in VHDL. The sensor provides 
distance measures every 50ms and it does so in three ways. 1) analog 2) UART serial 3) pulse width 
modulation. We used the third way. At the beginning of each 50ms sensor cycle, the sensor pulls the 
signal high. While high, and every 147us duration correspond to 1 inch measured. Once the until the 
sensor pulls the signal down, the distance can be determined by counting these 147us time periods.. 
The furthest detectable distance is about 250 inches which corresponds to about 37 ms of high pulse. 
During the rest of the cycle the pulse is guaranteed to be low and the sensor uses the remaining time to 
send the readings via UART and adjust the voltage levels for the analog output. 

Our sensor peripheral counts how long the pulse described above is high and converts this count to 
inches. As soon as the pulse goes low, i.e. we have a new reading, the peripheral dumps the new 
distance reading into a register and raises an interrupt to be serviced by the NIOSII processor. At this 
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point, the processor can go and fetch the most recent distance reading from the register and once done 
it clears the interrupt signal. In terms of timing, the worst case occurs when the sensor holds its pulse 
high for the maximum allowed duration in one 50ms cycle – 37ms. The remaining 13ms are more than 
enough to carry out any reasonable processing in the interrupt handler without missing further readings 
from the sensor.

Physical Hardware of Car and Board Interface  

Besides the FPGA setup, we needed a lot of low-level hardware interfacing. Since the car is intended to 
move around, we thought of sending the control signals and receiving the sensor readings wirelessly, 
but doing so would require another processor on the cars end. Thus, we used an Ethernet cable with 4 
twisted pairs to transmit the two pwm signals for steering and throttle, the power for the sensor (3.3 v 
from the FPGA), the pulse generated by the sensor, and the common ground. The GPIO ports from the 
FPGA were taken to a bread board via a ribbon cable to preserver the pins. The wiring on the car itself 
used a small breadboard too (We cut a piece from a regular bread board with a saw. Yes we did!). 

The schematic below presents an illustration.

Software

We can define two layers in the software: data filtering and feedback control.

Data Filtering

Sensor data filtering for the projects took a few generations of code to develop. Initially, we did not 
suspect the sensor to be too faulty nor did we suspect that many reading would be distorted based on 
the conditions of the environment around the sensor.  We spent time looking at printouts of sensor 
readings on the screen and tried to build a filtering mechanism based on our assumptions of the types of 
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errors that were occurring. One of the problems in this technique is that patterns are very difficult to 
notice just by inspecting the raw data. In addition, as the project developed, we used three different 
wiring schemes and two different power supplies. In all but the last wiring/power configurations, the 
sensor readings were affected by interference. This made the process very difficult. Another issue rises 
from the testing conditions of the sensor: Initially, the sensor was tested away from the car, and from 
the environment it would be used in, which in hind sight was a mistake. The sensors behavior changed 
once it was attached to the car and signaled to the FPGA which was 15ft of Ethernet cable away. 

We started by writing sensor and control module in VHDL which ran independently from the NIOS 2
processor. The system was controlled form the DE2 keys much like the first lab in the class and 
displayed the distance reading and a speed derived from the last two readings on the 7 segment
displays. We then wrote a module to communicate with the nios II processor and 

finally decided the best way to proceed was to record large amounts of readings while driving the car 
continuously back and forth. Since we had access to an embedded system running UcLinux, we wrote a 
module and software to communicate with it and dumped the reading into a file. We used the files 
generated to create a filter. 

Once we eliminated the condition which generated bad readings such as sensor location on the car, 
wiring and powering schemes, the reading errors could be dealt with easily. We either had really big 
readings, or one single bad reading between two good readings and finally, many consecutive similar 
readings in a row, which can either mean the car is not moving or moving too slow. 

Elimination of similar readings: 
while(!flag)
// there is a problem that two consecutive readings are the same if car is not moving fast. so, lets eliminate some of those.
// from inspecting the graph and experimenting with the car, the difference between movement and slow speed is the //number of similar 
readings. above 6 readings, the car is stationary for certain.
{

readSensor();
if (prevReading == distReading){

similar_count++;
no_movement_flag = 1;

}
else
{

flag = 1;
similar_count = 0;
similar_counter_threshhold = 5;
no_movement_flag = 0;

}
if (similar_count > 0) // maintain notion of time for speed calculations

timeDeltaReading += timeReading;
else

timeDeltaReading = timeReading; 

if (similar_count > similar_counter_threshhold) 
{

flag = 1;
//report speed every 6 readings even if car not moving, 
//otherwise the algorithm will not be able to detect the car has stopped. 
similar_counter_threshhold+=5;

}
}

the second filtering eliminates small spikes in the graph,  :
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//why use the present? lets use the future.
latest_results[0][3] = latest_results[0][2];
latest_results[0][2] = latest_results[0][1];
latest_results[0][1] = latest_results[0][0];
latest_results[0][0] = distReading;

latest_results[1][3] = latest_results[1][2];
latest_results[1][2] = latest_results[1][1];
latest_results[1][1] = latest_results[1][0];
latest_results[1][0] = elapsedtime;

// latest_results[0][3] assumed to be clean.
/*

if (latest_results[0][3] - latest_results[0][2] > 0 ) //moving forward.
{

if (latest_results[0][2] - latest_results[0][2] > 6 ) // too big of a delta! 
latest_results[0][2] = latest_results[0][3];

}
else if  (latest_results[0][3] - latest_results[0][2] < 0 )

{
if (latest_results[0][2] -latest_results[0][2] -  > 6 ) // too big of a delta! 
latest_results[0][2] = latest_results[0][3];

}
// Removed for final demo, most bad reading NOW are single, and this method  interferes more in that case*/

// simplelest way is to get rid of parabula peaks i.e. the point is bigger than previous and next by a big factor. 

//this reading //next reading //this reading //previous reading
if (  ((latest_results[0][2] > latest_results[0][1]) && (latest_results[0][2] > latest_results[0][3]))  ||
      ((latest_results[0][2] < latest_results[0][1]) && (latest_results[0][2] < latest_results[0][]))  )
//then

{
flag_raised =1;
latest_results[0][2] = (latest_results[0][3] + latest_results[0][1]) / 2;

}
else if (  ((latest_results[0][2] > latest_results[0][0]) && (latest_results[0][2] > latest_results[0][3]))  ||
      ((latest_results[0][2] < latest_results[0][0]) && (latest_results[0][2] < latest_results[0][3]))  )
{

flag_raised =1;
latest_results[0][2] = (latest_results[0][3] + latest_results[0][0]) / 2;

}

Graph 1: unfiltered results. 
Notice the distance (pink) curve which represents forward and backward motion. It contains spikes and 
non-continues data which affects the “distance delta”(blue) and the speed(yellow).
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Graph 2:
The resulting graph obtained from over 700 readings. about 20% of all reading do not represent change 
from their previous readings and are filtered out of the graph.
The blue dots signal locations of reading that were dropped from the original graph.
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FeedBack Control:

PID theory

One approach to controlling a physical system is via dead reckoning which means that you control the 
system without verifying that the controls result in the desired results. If you know all aspects of the 
system, in theory, you can predict the behavior for any input. However, most systems are way too 
complex to fully describe. Thus, if we try to control such systems, the results will differ from our 
intentions and unless we monitor those deviations and act to correct them, dead reckoning is not a good
option.

Another approach is to monitor the aspects we are trying to control and take corrective action if the 
results differ from our expectations. Thus, the way we control the system in the future depends on
observed errors in the past which creates a feedback loop. In general, you have a process variable and a 
control variable. The corrective action is taken on the control variable and the monitoring of the 
system is done via the process variable. The purpose is to update the correct the control variable in a 
way that gives the system the desired behavior.

The heart of our algorithm employs feedback approach since the physical system of the car is very
complicated to predict how it will behave for certain inputs (e.g. throttle and steering). More 
specifically, we are using the PID model of feedback control. It stands for proportional-integral-
derivative because the feedback is determined by three independent equations, e.g. three degrees of 
freedom. Each of the equations is sensitive to the error in a different way and suggests corrective action 
independent of the others. The sum of those is the total corrective action.

The three equations are generally referred to as the GAIN, the DERIVATIVE, and the INTEGRATOR.
The GAIN equation always tries to correct the control variable in proportion to the error in the process 
variable. The DIFFERENTIATOR corrects the control variable proportionally to the rate of change of 
the process variable and usually opposes the GAIN (corrects in the opposite direction). The 
INTEGRATOR provides a bias to the control variable based on the persistence of deviations in the 
process variable throughout time. So the three equations fight and help each other in correcting the 
control variable. 

Another important aspect is frequency of the feedback loop – how often you measure the process 
variable and correct the control variable. The control system slow can be described best by the 
following diagram: 
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PID Specific to our case

In our system, we control the throttle and observe the distance to the wall. All other variables are 
ultimately derived from these two. So the process variable is the sensor distance and the control 
variable is the throttle. The error = distance – desired_distance_from _wall.

The schematic below describes the functionality of our feedback loop. 
The GAIN uses filtered distance and the rate taker for the DIFFERENTIATOR uses a moving average 
on the differences in the filtered distance readings to produce the rate of approach, which is then used 
by the DIFFERENTIATOR itself. The INTEGRATOR is not applicable to this system. 

As noted above, the PID equations are best suited for a linear system. However, ours is highly non-
linear mainly because of the throttle. The duty cycle of this signal doesn’t map to the torque produced 
by the engine in a linear way. Thus, small changes in throttle have almost no effect on the engine, and 
at certain values they produce dramatic effects. In essence, we have a 5 level speed control: neutral, 
steady forward, steady reverse, fast forward, fast backward. The PID equations cannot adjust the 
system smoothly in a timely manner. Therefore we introduced non-linearity in the DIFFERENTIATOR 
by making it inversely proportional to the error. 

In general, a system controlled by PID will have an oscillatory behavior as noted above. We want 
critical damping, e.g. stop at the desired distance from the wall without overshooting and without being 
conservative. An approximation to this behavior was achieved by experimentally changing the 
parameters under our control. These were:
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a) frequency of feedback loop – every 250ms
b) maximum increments and decrements in throttle
c) maximum and minimum values of throttle
d) scale factor of the GAIN equation
e) scale factor of the DIFFERENTIATOR
f) normalization and mapping from to pwm units (duty cycle)

All of the above are degrees of freedom and had to be determined experimentally to enable the 
equations to react quickly enough without being over conservative. 

In its final version the algorithm uses the two PID equations as described above with the introduced 
non-linearity in the second one. The above parameters, we determined by trial and error. Since we 
logged data to file over jtag, we were able to analyze the data after each run of the experiment and 
examine which parameters need to be adjusted to get the behavior closest to the desired one. 

The graph below shows the flow of control with the above parameters absorbed in the blocks.

The following are the graphs produced for a few car runs: 
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The yellow series is the measured distance from the wall and the orange series is the filtered distance.
The green series represents the speed of approach. The desired distance was set to 20 inches (second 
horizontal line on the graph from the bottom. The graph above shows the results for a certain choice of 
the parameters. What can be seen is that the equations did not respond to stopping fast enough and the 
car overshot the target and then over corrected itself before halting.
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The speed is scaled in the graph above for better display. Here, the ringing effect from the previous 
graph is reduced. The car still overshot but this is within a reasonable margin of error having in mind 
the highly non-linear nature of the system.
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The following graph shows the best set of parameters we could find. 
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The following graph demonstrates the performance of the algorithm with the same set of parameters as
the previous graph but in the presence of very dirty sensor data.

As illustrated the PID equations, the non-linear modifications, and a set of parameters determined by 
experiment were combined to produce accurate feedback control without overshooting the target while 
maintaining conservative behavior in a highly non-linear environment and unreliable measurements. 

The data filtering and smoothing provided a reliable underlying for the feedback control.
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Difficulties

The biggest difficulty in this experiment and also a fundamental limitation to the accuracy is the non-
linearity of the throttle. This makes it very hard to get the car to the desired distance without 
overshooting and being over conservative.

Another difficulty linked, to the first one, is mapping the corrective action suggested by PID to the 
right duty cycle for the throttle. The equations use distance and speed as inputs and it is almost 
impossible to translate duty cycle into real speed because of the severe non-linearity in the throttle. 
This non-linearity changes according to the battery charge level. since the engine is current intensive 
,even if the battery discharges slightly the same duty cycle produces different torques. 

Our project had an extra dimension – degree of freedom for mistakes – in the wiring and low level 
interfacing. At some point we tried to run power over the Ethernet cable or beside it to avoid the 
dependence on the battery condition. However, when the car is moving slower, the engine switches 
between on and off too quickly and draws huge amounts of current for short periods of time which 
introduces significant emf and contaminates the other signals in the Ethernet cable.

The hardest bug we had was a short circuit in the Ethernet cable which probably occurred from twisting 
and pressing by nearby chairs. The problem didn’t prevent things from working and only exhibited 
itself under certain conditions.

At the beginning we did not have a safe way of changing the throttle and as a result we burned the 
transistors of the H-bridge. We replaced it, but unfortunately it defaulted again the night before the 
demo although the software framework enforced smooth and gradual throttle change. We know this
because we did not see smoke, excessive heat or unusual behavior prior to the failure.

Finally, debugging our project was rather tedious due to the many layers. The software has to assume a 
trustworthy hardware, but we had to often go all along the debug chain down to the wires. As time 
passed and hardware stopped failing us, shortly, it had a come back with some very nasty bugs since 
they do not exhibit themselves at all the time, are not consistent and do not prevent the car from 
working. For example a series of bad reading at the initial acceleration phase of the test will not cause 
the car to hit the wall but would either make it miss the target or create an extreme breaking situation, 
which is dangerous for the throttle control. 

MISCELLANEOUS

Manual Override
There is also a manual override mode. Another piece of functionality built into the software is the 
ability to drive the car via keyboard input; we decided to use the conventional computer gaming 
controls (keys WASD) for forward, left, back, right). Pressing the keys will increment the PWM levels 
in the appropriate direction. The function that writes to the PWM duty cycle register is designed to 
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prevent the user from changing the throttle too drastically, possibly damaging the engine or hardware. 
This mode was developed first in order to collect data on engine performance; we wanted to see what 
PWM settings corresponded to which engine outputs. This experimental data was later used to help 
engineer our throttling function.

Throttle Control
Since the throttle control unit plays with big currents, changing throttle by big amounts is destructive to 
the transistors of the H-bridge (which controls the motor). Therefore, whenever we corrected the 
throttle in the feedback loop, the new change was placed in small increments over a reasonable time 
interval in the time until the next feedback loop iteration.

Results

The results for the original challenge were shown in the graphs under the Software section. The 
evening before the demo, we lost the reverse throttle of the engine. Probably, one of the transistors in 
the H-bridge deteriorated. Without this capability, our algorithm cannot perform its feedback task 
properly since it can no longer issue corrective action.

However, we modified the challenge by using the PID theory for the steering and having the car 
approach the wall and converge in a movement parallel to the wall a certain distance from it. This has 
its own challenges and required a new algorithm which we crafted overnight. This is also what we 
demoed. 
First of all, we had to keep the car far from the wall because if it is approaching at an angle, the sensor 
will face the wall at an angle and the readings will be incorrect due to partial reflection. Ultrasonic 
sensors work best with spherical surfaces or when facing a wall straight. This was easily fixed by 
having the car converge to a line 40 inches away from the wall.

The main difficulty was in turning the wheels in motion since it takes time to physically turn them and 
the lowest possible forward throttle we have is somewhat fast. Thus, we used the notion of a cycle. 
When we make a turn, the wheels move in the desired direction and stay like that for a certain number 
of cycles. The duration of the cycle is 50ms, Therefore, the sharpness of the turn is determined by the 
number of cycles over which it is executed. This approach makes the turning more predictable.

Although it is bad for the engine, we had to stifle the throttle – switch it on and off every few cycles so 
that the car doesn’t gain speed too quickly.

The error is taken to be the distance to the line of convergence (this line is parallel to the wall). The car 
makes turns towards the line proportional to the distance from it. It monitors the rate of approach of the 
line to make sure that the turns resulted in the desired action (e.g. that we really turned towards the line 
sharply enough). If not it makes the car turn more. If no corrective action is required, the car maintains 
straight trajectory.

We can see the elements of PID feedback in this implementation. The GAIN equation looks at the error 
and makes the car turn proportional to this error. The DIFFERENTIATOR kicks in if the rate of 
approach towards the line is not satisfactory.
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Responsibilities

PM module – Ben
Sensor module – Peter
Data filtering and smoothing – Ben
PID control – Peter
Software implementation – Thomas, Peter, Ben
Hardware interfacing and wiring – Thomas, Peter, Ben
Steering challenge – Peter and Ben
Debugging – Thomas, Peter, Ben
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