
Pivoting Object Tracking System
[CSEE 4840 Project Final Report - May 2009]

Damian Ancukiewicz

Applied Physics and Applied Mathematics
Department

da2260@columbia.edu

Arjun Roy

Computer Science Department
ar2409@columbia.edu

Jinglin Shen

Electrical Engineering Department
js3478@columbia.edu

Baolin Shao

Computer Science Department
bs2530@columbia.edu

Abstract

This project implements an object recognition system,
where a camera tracks the position of an object. The camera
is mounted on an iRobot Create two-wheeled robot, which
rotates according to the control signal generated by our ob-
ject tracking algorithm. Meanwhile, it displays 320× 200
color video on a VGA display. We use a simple object recog-
nition algorithm based on color information of the image
coming from the camera. In our tests, the system is able track
objects of single colors such as white, red, orange or blue
if there is sufficient contrast between the object and back-
ground.

1. System Overview

In Figure 1, we give an overview of all hardware compo-
nents in our system, which are all hooked up to the Avalon
bus. Our system works as following: a video camera is con-
nected to the Altera DE2 and sends NTSC analog signals
to the board. An Analog Devices ADV7181 converts ana-
log video signals from a camera to digital signals in YUV
format. The converter has an I2C interface, which allows for
the output format and other parameters to be configured. The
ADV7181 decoder controller takes digital video input from
the ADV each pixel from YUV to 16-bit RGB. A double line
buffer in the FPGA’s block RAM is used used for data trans-
fer between the 27 MHz frequency domain of the video con-
troller and the 50 MHz frequency domain of the Avalon bus.
Each line of the image data is sent to a buffer in the SDRAM
using DMA (direct memory access) controller. The Nios II
then performs processing on the buffer in SDRAM in order
to find the center of the object we are tracking and to mark
up the image. Additionally, the Nios II uses a serial interface
to command the iRobot Create to turn in the appropriate di-
rection if necessary. Subsequently, the buffer in SDRAM is
sent to the VGA controller again by using DMA, which in

turn transfers the buffer to SRAM. This buffer in SRAM is
used to display the marked-up image on a VGA screen.

2. Sensing the Environment

2.1 ADV7181 Controller Design

In figure 2, we describe the design of the ADV7181
controller. The ADV7181 works on a 27 MHz clock and
outputs data in the YUV format on an 8-bit parallel bus.
The order used for transferring the information is YUYV,
where each Y represents the luma (brightness) component
of a pixel, while the U and V components represent chroma
(color) and are shared between the two pixels. Using the
recommended settings, each line of video takes up 1716
clock cycles, or 858 pixels, although the first 276 cycles
consist of the horizontal blanking interval, in which no video
information is sent. In the first two cycles, the HS signal is
pulled low. A frame of video consists of 525 such lines, and
is output in interlaced form. The first 20 lines consist of the
vertical blanking interval, followed by 242 lines of active
video which represent alternating lines of the frame. This is
followed by another blanking interval of 21 lines, followed
by 242 more lines of active video, representing the other set
of alternating lines of the frame. The VS signal is pulled low
for three lines in both vertical blanking intervals. Thus, the
resolution that the ADV7181 outputs is (1716− 276)/2×
242× 2 = 720× 484 pixels. This is later downscaled to
320×200 pixels due to the limitations imposed by the timing
of the VGA framebuffer, as elaborated in the next section.

The ADV7181 is highly configurable and has an I2C
interface for that purpose. To configure the ADV7181 to
output data in the correct format, an I2C controller, written
in Verilog, was imported from a lab assignment previously
given to us. The controller, when started, sends a set of
recommended settings to the ADV7181.

The ADV7181 interface module is clocked at the same
speed as the ADV7181 itself. It reads the ADV7181’s paral-

CSEE 4840 Embedded System Design, Spring 2009 1 2009/5/16

Figure 1. System design

Figure 2. Design of the ADV7181 controller

lel bus on the rising edge of each clock cycle and increments
its horizontal counter to keep track of the clock count. Every
four cycles, 32 bits of information, representing two pixels,
are output by the interface module. The module also reads
the state of the HS and VS signals. When it detects that HS
is pulled low, it resets the horizontal counter and increments
the vertical counter. When it detects that VS is pulled low, it
resets the vertical counter and changes the state of its field
signal. Thus, at all times the decoder interface knows the
horizontal position, line and field of the raster.

The YUV to RGB conversion module takes as input the
32 bits in YUYV format representing two pixels from the
decoder interface and outputs a single 16-bit pixel in RGB
format. The first 5 bits represent the green component, the
middle 6 bits are the blue component, and the last 5 bits
are the green component. Since two pixels are converted
into one, this effectively halves the horizontal resolution.
Because there are two Y components for one output pixel,
only the first Y component is used. The conversion is done

using the following formula: R
G
B

=

 298 0 409
298 −100 −208
298 516 0

 Y −16
U−128
V −128

+

 128
128
128

The R, G and B values are then divided by 256, clipped to
a range of between 0 and 255, and packed into the 16-bit
5:6:5 format. Because this algorithm can be done entirely
using integer multiplication and bit shifting, it was easily
implemented in VHDL.

The RGB data then needs to be transferred through the
Avalon bus to a buffer on the SDRAM so that the Nios II
can perform object recognition. This task is made tricky by
two complications. First of all, the ADV7181 interface and
Nios system operate in different clock domains: the former
runs off of the same 27 MHz clock as the ADV7181, while
the latter runs off of the 50 MHz system clock. Second
of all, the SDRAM has latencies that are inherent to its
design, and thus it is not guaranteed that a write will occur
during a given system clock cycle. Because of these two
problems, some form of buffering is needed. A FIFO buffer
was first implemented for this task. A buffer was created in

CSEE 4840 Embedded System Design, Spring 2009 2 2009/5/16

address[10..9] Output
00 Line buffer (memory-mapped)
01 Current field (0 or 1)
10 Horizontal clock count
11 Line count

Table 1. The output of the ADV7181 interface module with
different address bit settings

the FPGA’s block RAM, a write pointer would increment
when the buffer was written to by the ADV7181 interface
and a read pointer would increment when the buffer was
read by the the Avalon bus respectively. Avalon flow control
was implemented using the dataavailable signal, in
order to stop the buffer from being read from when empty.
However, because the ADV7181 and Avalon bus work in
different clock domains, the design of the FIFO became very
complex. Gray counters were used for the pointers so that
consecutive addresses would only differ by one bit in order
to minimize the effects of collision errors. Despite this, the
FIFO buffer proved problematic, and pixels were lost from
each line.

The second and current implementation is a double line
buffer. Two buffers were created with enough space to hold a
line of pixels. At any given time, the line buffer writes to one
line while the other line is memory-mapped to the Avalon
bus. This prevents clock collisions from occurring since the
write and read processes are separated.

The ADV7181 interface presents a line of video data
to the Avalon bus. The address is 11 bits wide, while the
bus itself is 16 bits wide, and thus each word represents an
RGB pixel. In order to allow the software to synchronize
with the hardware, the horizontal clock count, line number
and current field are also sent through the Avalon bus and
accessed by changing the state of the upper two address bits.
Table 1 describes the output produced by the module with
different address bit settings.

2.2 VGA Framebuffer
Our vision for the POTS system would be to use it as a

remote sentry that can be programmed to automatically track
objects of a certain color to the best of its ability, and relay a
camera feed to a human observer. To that end, a video output
was required. Since the Altera DE2 supports VGA output,
and since the VGA standard is fairly simple to implement,
we decided to use it as our output.

The VGA standard accepts a stream of pixel data, syn-
chronized on a horizontal blank period after every line and a
vertical blank period after every complete frame. This gives
us a choice of either streaming video data to the controller
or using a framebuffer.

Since we have to perform image processing on a frame
by frame basis, we designed our video output system to use
a framebuffer. The Altera DE2 board allows us to choose

between SDRAM and SRAM memory. Since the SDRAM
is slower and more complicated than the SRAM, we based
our buffer within the SRAM alone.

One issue with the choice of SRAM is that it is single
ported; only one device can either read from or write to it
at a time. Thus the VGA output section of the device would
have exclusive active during the output of a frame, and the
Nios II CPU would only be allowed to write to it during the
vertical blank section.

In order to implement this behavior, we made the frame-
buffer an Avalon peripheral that used flow control. The pe-
ripheral asserts a readyfordata signal during the vertical
blank portion between frames, ensuring the Nios II can only
write data when the SRAM wasn’t tied up outputting its con-
tents to the VGA module. To prevent frame tearing, a typi-
cal solution is to use double buffering so that the integrity of
each frame is assured. However, since we were performing
transfers to the high performance SRAM, we assumed that
the DMA transfer would push two bytes of data per clock
cycle (the width of the SRAM data port and consequently,
the width of each individual DMA transfer). Since we have
a resolution of 320× 200 pixels worth of image data, with
each pixel requiring two bytes, we estimated needing 64000
clock cycles (50 MHz system clock) to transfer a frame.

VGA uses a 25 MHz clock. We calculated that the vertical
blank interval lasts for 200,000 cycles of the 50 MHz system
clock. There are 800 horizontal pixels per line, and 125 lines
of video where there is no active video. 800×125 = 100,000
clocks at 25 MHz, or 200,000 cycles at 50 MHz.

However, we found out during testing that the visible
frame tearing did occur. The most apparent example is when
filling the entire screen with the same color, and then switch-
ing immediately to another one. We hypothesize that even
though a transfer should fit within a vertical blank interval,
it is possible that a transfer could start close to the end of
an interval and be only be partially complete when the next
frame is sent to the VGA output, resulting in tearing. When
the screen displays video from the camera, however, tearing
is not very noticeable.

The implementation in VHDL for the framebuffer device
is simple; to the processor it appears just as a buffer with
flow control. During the active interval of the VGA signal,
it tracks which column and row on the VGA output it is
supposed to be displaying and queries the SRAM memory
for the appropriate pixel data. The SDRAM stores each pixel
as a 16 bit 5-6-5 RGB value The most significant 5 bits store
the most significant bits of red, and the following 6 and 5
bits store the most significant 6 and 5 bits of green and blue.
A simple transformation converts it back to 24 bits of RGB
data destined for the VGA output.

CSEE 4840 Embedded System Design, Spring 2009 3 2009/5/16

3. Reacting to the Environment

3.1 DMA

To transfer data from the ADV7181 decoder to the
SDRAM, and from the SDRAM to the VGA Framebuffer,
we used a single DMA controller in order to bypass the Nios
II.

In addition, the DMA works with Avalon flow control
which enables us to write to the VGA framebuffer only when
it is ready for data - when the VGA output is not polling
it for pixel data. With flow control, the slave device (the
ADV7181 decoder or VGA framebuffer) can assert a signal
that it is ready for reading and/or writing. Thus, any data
transfer can occur at the speed and timing that the slave
requires. A slave peripheral can drive the readyfordata signal
high to indicate that it is ready to begin a transfer, and it can
drive the dataavailable signal high to indicate that it
is ready to be written to. With this, we can let the decoder
alert the DMA controller when a new video frame has begun
so the SDRAM can be written to, and we can let the VGA
controller alert the when the visible part of the VGA frame
has ended so that the SDRAM can be read.

In addition to having Avalon master ports to facilitate the
data transfer, the DMA controller also has an Avalon slave
port which is used by the Nios II to initiate the transfer and
set the memory locations to be transferred and the length of
the transferred data.

While the DMA controller is easy to instantiate and con-
figure, we ran into a strange video corruption problem.
Specifically, whenever we modified the image buffer read
into SDRAM, it did not show up in a predictable spot when
displayed on screen. However, we were able to identify the
reason of this as being a race condition between the Nios
II data cache updating the SDRAM with the modified value
and the DMA transfer between the SDRAM and the frame-
buffer, and fixed it by using the IO macros to directly force
a write to SDRAM.

3.2 Robot

The platform we use to mount our camera is the popular
iRobot Create, a simple robot that is capable of moving in
a 2-dimensional plane using differential drive. However, we
leave it tethered by serial cable to the FPGA board and only
use its rotational capabilities about the vertical axis to track
targets.

Commanding the robot is accomplished using an RS-232
interface and a custom cable that comes with the robot. The
robot provides operation codes to basic commands, such as
rotating in a given direction at a given speed till the given
angle has been spanned. Since a serial device is a ready made
peripheral for the Nios II processor, we use it and treat it as
a black box that we drop into our system architecture. The
opcodes themselves are simply byte values transmitted in a
certain order.

Our image processing software analyzes an image and
determines the orientation of the target compared to the
center of the screen, and then issues a command to turn
either right or left to the robot until the tracked object is in
the center of the camera’s field of view.

The only complication we ran into with the robot was
with the physical RS-232 port. Both the robot cable and the
FPGA board have female interfaces, requiring us to imple-
ment a null modem ourselves.

4. Hardware-Software Integration

4.1 Nios II Software
Figure 3 shows the software structure of the system. The

software polls the status of the ADV7181 controller until it
encounters the beginning of a frame of video in the correct
field. It then transfers a line of video at a time, using the
DMA controller, to a buffer in SDRAM. For each line, it
waits for the proper horizontal clock in order to copy the
line at the appropriate time. By changing the number of lines
copied and the number of bytes to copy from the line buffer
to the SDRAM for each line, the resolution of the image can
be tuned; currently it is set to 320×200. Only the first field
of video is copied, since it already contains every alternating
line and only 200 out of every 484 lines of video are needed.
After copying the frame of video to the buffer, the object
tracking algorithm is used to find the center of the object.
The details of the tracking algorithm are described in the
next section. The center of the object is then marked up with
a crosshair, and the UART is used to move the robot either
left or right, with the speed of the robot increasing with
increasing distance from the object center to the center of
the frame. Finally, the marked-up image is copied using the
DMA controller to the SRAM buffer in the VGA controller.

4.2 Recognition Algorithm
Our object tracking algorithm is designed to recognize

objects according to their colors which differentiate them
from the background. The input of the algorithm is the 320×
200 buffer of RGB 6:5:6 format image data we store in
SDRAM. The return value of the algorithm is the approx-
imate center of the object, which is used to command the
robot to turn and track the object. Due to the limitations
of the Nios II and timing constraints imposed by real-time
video display, we use a very simple object tracking algo-
rithm, which only works under certain assumptions:

• The object has a pre-defined color

• The object has regular shape

• Background is simple and has a much different color than
the target object

For each input frame, we first divided the whole frame
into small blocks (16× 16 in our final implementation).
Then we calculate how many pixels have the color of the
target object, which is the color the center of the object we

CSEE 4840 Embedded System Design, Spring 2009 4 2009/5/16

Figure 3. Software design

Algorithm 1 track_object(image, center_row, center_col)
1: top = image’s last row, bottom = image’s first row
2: left = image’s last column, right = image’s first column
3: for image’s each 16×16 block, bi do
4: for each pixel p in bi do
5: let (r,g,b) = p
6: if Target_R−10≤ r ≥ Target_R+10 then
7: sumr++
8: end if
9: if Target_G−10≤ g≥ Target_G+10 then

10: sumg++
11: end if
12: if Target_B−10≤ b≥ Target_B+10 then
13: sumb++
14: end if
15: end for
16: if (sumr ≥ Block_T hreshold)&&(sumg ≥

Block_T hreshold)&&(sumb ≥ Block_T hreshold)
then

17: let (bx,by) = bi’s center
18: if bx ≤ top then
19: top = bx
20: end if
21: if bx ≥ bottom then
22: bottom = bx
23: end if
24: if by ≤ le f t then
25: left = by
26: end if
27: if by ≥ right then
28: right = by
29: end if
30: end if
31: end for
32: new_row = (top+bottom)/2
33: new_col = (le f t + right)/2
34: return (new_row,new_col)

get from last frame For the first frame, we simply use the
center of the screen as the object center. To decide whether a
pixel has the same color as the object, we separately compare
each pixel’s R,G, and B with the target’s value within a pre-
defined threshold. Afterwards, we judge if this block belongs
to the target object based on if the majority of its pixels are
of the same color as the object. This is done for every block,
and so we know which blocks belong to the object. After
that, we average the positions of the highest, lowest, leftmost
and rightmost blocks to calculate the center of the object.
The center value is saved and used for finding blocks of the
object in next frame.

By processing the image block by block, we reduce the
number of membership decisions from one pixel a time to
one block a time. This technique also has a reasonable ability
to tolerate noise in the image. However, due to the Nios II’s
limited computational power, we cannot do multiplication
for each pixel in each frame as fast as we need. Thus, we
turn every possible integer multiplication into integer shifts
and additions. For example, x×320 = (x� 8)+(x� 6). In
addition, we implement division in terms of multiplication
and addition:

x
5 = x

4+1 =
x
4

1+ 1
4

= x
4 × (1− 1

4 + 1
16 −

1
64 + 1

256 · · ·)

5. Conclusion

Over the course of a semester, we designed and imple-
mented an object tracking system, configurable to track reg-
ular shaped objects of various colors, from a collection of
disparate hardware peripherals and software components.
Over the course of the semester, we learned several lessons
that apply to designing and programming embedded systems
and to project management in general.

Chief among these is managing time. Verifying a design
by compiling it on an FPGA board takes far longer than
testing out a software algorithm, so one has to be careful to
avoid mistakes. In addition, designing hardware that needs
to process video requires that one pay attention to timing
requirements, since video is real time and image quality is
very sensitive to pulling data at the right time.

CSEE 4840 Embedded System Design, Spring 2009 5 2009/5/16

In order to make development easier, we learned that di-
viding the system into smaller, faster compiling, and more
easily testable blocks turned a complicated project into a far
more manageable one. It also provided a natural breakdown
of responsibilities so everyone could contribute to the final
project, allowing us to use our available manpower as effi-
ciently as possible.

We also acquired an appreciation for the differences in-
herent in doing computation in hardware and on a general
purpose processor. On hardware we are guaranteed that a
given design will finish a computation in a predictable fash-
ion, while software timing is very soft. For that reason, it is
difficult to integrate software components with a hardware
design.

Future directions for this project would involve tweaking
our image recognition, and building a better interface for our
system.

CSEE 4840 Embedded System Design, Spring 2009 6 2009/5/16

6. File Listings

6.1 tv_controller.vhd

library IEEE;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tv_controller is
port (

clk : in std_logic; -- 50 MHz clock (system)
reset_n : in std_logic;
read : in std_logic;
write : in std_logic;
chipselect : in std_logic;
address : in unsigned(10 downto 0);
readdata : out unsigned(15 downto 0);
writedata : in unsigned(15 downto 0);
clk27 : in std_logic; -- 27 MHz clock (video)
td_data : in unsigned(7 downto 0);
td_hs : in std_logic;
td_vs : in std_logic

);

end tv_controller;

architecture rtl of tv_controller is

component adv_interface is
port (

clk27 : in std_logic;
reset : in std_logic;
out_data : out unsigned(31 downto 0);
data_good : out std_logic;
field_out : out std_logic;
hcount : out unsigned(10 downto 0);
vcount : out unsigned(9 downto 0);
td_data : in unsigned(7 downto 0);
td_hs : in std_logic;
td_vs : in std_logic

);
end component;

component yuv2rgb is
port (

yuv : in unsigned (31 downto 0);
rgb : out unsigned (15 downto 0)
);

end component;

component line_buffer is
port (

reset : in std_logic;
wclk : in std_logic;
rclk : in std_logic;

CSEE 4840 Embedded System Design, Spring 2009 7 2009/5/16

write_enable : in std_logic;
write_data : in unsigned(15 downto 0);
write_address : in unsigned(8 downto 0);
read_data : out unsigned(15 downto 0);
read_address : in unsigned(8 downto 0);
page : in std_logic

);
end component;

-- the 32 bits at a time (in YUV format) that the interface sends out
signal yuv : unsigned(31 downto 0);
-- the converted 16 RGB bits
signal rgb : unsigned(15 downto 0);
-- tells the line buffer when to accept the data from the video interface
signal data_good : std_logic;

signal hcount : unsigned(15 downto 0);
signal vcount : unsigned(15 downto 0);

signal buffer_out : unsigned(15 downto 0);
signal field_out : unsigned(15 downto 0);

begin

adv_interface0 : adv_interface port map (
clk27 => clk27,
reset => not reset_n,
out_data => yuv,
data_good => data_good,
field_out => field_out(0),
hcount => hcount(10 downto 0),
vcount => vcount(9 downto 0),
td_data => td_data,
td_hs => td_hs,
td_vs => td_vs

);

yuv2rgb0 : yuv2rgb port map (
yuv => yuv,
rgb => rgb

);

line_buffer0 : line_buffer port map (
reset => not reset_n,
wclk => clk27,
rclk => clk,
write_enable => data_good,
write_data => rgb,
write_address => hcount(10 downto 2),
read_data => buffer_out,
read_address => address(8 downto 0),
page => vcount(0) -- flip the buffers in each

-- vertical line
);

CSEE 4840 Embedded System Design, Spring 2009 8 2009/5/16

readdata <= buffer_out when address(10 downto 9) = "00" else
field_out when address(10 downto 9) = "01" else
hcount when address(10 downto 9) = "10" else
vcount;

end rtl;

CSEE 4840 Embedded System Design, Spring 2009 9 2009/5/16

6.2 adv_interface.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity adv_interface is

port (
clk27 : in std_logic;
reset : in std_logic;

-- data is output two pixels (= 32 bits) at a time
out_data : out unsigned(31 downto 0);
-- this signal is asserted to indicate that the data in
-- out_data will be valid two rising edges of td_clk27 later
data_good : out std_logic;
field_out : out std_logic;
hcount : out unsigned(10 downto 0);
vcount: out unsigned(9 downto 0);
-- ADV7181 decoder signals
td_data : in unsigned(7 downto 0);
td_hs : in std_logic;
td_vs : in std_logic

);

end adv_interface;

architecture rtl of adv_interface is

-- data is temporarily put here before being copied to out_data
signal data_buffer : unsigned(31 downto 0) := (others => ’0’);

-- keeps track of the horizontal raster position
signal h_counter : unsigned(10 downto 0);
-- keeps track of the current line
signal v_counter : unsigned(9 downto 0);

-- 0 if this is the first interlaced field, 1 if this is the second
signal field : std_logic := ’0’;

-- high whenever horizontal/vertical sync is pulled low; low whenever
-- horizontal/vertical sync is pulled high again. Ensures that certain
-- actions are done only once on the falling edge of horiz/vertical sync.
signal hit_hsync : std_logic := ’0’;
signal hit_vsync : std_logic := ’0’;

begin

-- continually copy data from ADV7181 into buffer and output it;
-- also, update the horizontal and vertical counters as well as
-- the current field
GetData : process (clk27)
begin

if rising_edge(clk27) then
if reset = ’1’ then

CSEE 4840 Embedded System Design, Spring 2009 10 2009/5/16

data_buffer <= (others => ’0’);
out_data <= (others => ’0’);
data_good <= ’0’;
h_counter <= (others => ’0’);
v_counter <= (others => ’0’);
hit_hsync <= ’0’;
hit_vsync <= ’0’;
field <= ’0’;

else
if h_counter(1 downto 0) = "00" then

data_buffer(31 downto 24) <= td_data;
data_good <= ’1’;

elsif h_counter(1 downto 0) = "01" then
data_buffer(23 downto 16) <= td_data;

elsif h_counter(1 downto 0) = "10" then
data_buffer(15 downto 8) <= td_data;
data_good <= ’0’;

else
data_buffer(7 downto 0) <= td_data;
out_data <= data_buffer;

end if;
h_counter <= h_counter + "00000000001";
-- Hit hsync? Record that it happened, reset horizontal
-- counter and increment vertical counter
if td_hs = ’0’ and hit_hsync = ’0’ then

hit_hsync <= ’1’;
h_counter <= "00000000000";
v_counter <= v_counter + "0000000001";

elsif td_hs = ’1’ then
hit_hsync <= ’0’;

end if;
-- Hit vsync? Record that it happened, reset vertical counter,
-- and change the field
if td_vs = ’0’ and hit_vsync = ’0’ then

hit_vsync <= ’1’;
v_counter <= (others => ’0’);
field <= not field;

end if;
if td_vs = ’1’ then

hit_vsync <= ’0’;
end if;

end if;
end if;

end process GetData;

hcount <= h_counter;
vcount <= v_counter;
field_out <= field;

end rtl;

CSEE 4840 Embedded System Design, Spring 2009 11 2009/5/16

6.3 yuv2rgb.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity yuv2rgb is
port (

-- 31 0
-- y u y v
yuv : in unsigned (31 downto 0):=x"00000000";
-- r:5 g:6 b:5
rgb : out unsigned (15 downto 0):=x"0000"

);
end yuv2rgb;

architecture y2r of yuv2rgb is
signal y: integer := 0;
signal u: integer := 0;
signal v: integer := 0;
signal r: integer := 0;
signal g: integer := 0;
signal b: integer := 0;

begin
r <= y*298+v*409+128;
g <= y*298-u*100-v*208+128;
b <= y*298+u*516+128;

y <= to_integer(yuv(31 downto 24))-16;
u <= to_integer(yuv(7 downto 0))-128;
v <= to_integer(yuv(23 downto 16))-128;

rgb(15 downto 11) <= "11111" when r > 65535 else
"00000" when r < 0 else
to_unsigned(r/2048, 5);

rgb(10 downto 5) <= "111111" when g > 65535 else
"000000" when g < 0 else
to_unsigned(g/1024, 6);

rgb(4 downto 0) <= "11111" when b > 65535 else
"00000" when b < 0 else
to_unsigned(b/2048, 5);

end y2r;

CSEE 4840 Embedded System Design, Spring 2009 12 2009/5/16

6.4 line_buffer.vhd

library IEEE;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity line_buffer is
port (

reset : in std_logic;
wclk : in std_logic;
rclk : in std_logic;
write_enable : in std_logic;
write_data : in unsigned(15 downto 0);
write_address : in unsigned(8 downto 0);
read_data : out unsigned(15 downto 0);
read_address : in unsigned(8 downto 0);
-- page = 0: write to line1, read from line2
-- page = 1: write to line2, read from line1
page : in std_logic

);
end line_buffer;

architecture RTL of line_buffer is

type ram_type is array(0 to 450) of unsigned(15 downto 0);

signal line1: ram_type;
signal line2: ram_type;

begin

WriteLine : process (wclk)
begin

if rising_edge(wclk) then
if reset = ’1’ then

line1 <= (others => x"0000");
line2 <= (others => x"0000");

elsif write_enable = ’1’ then
if page = ’0’ then

line1(to_integer(write_address)) <= write_data;
else

line2(to_integer(write_address)) <= write_data;
end if;

end if;
end if;

end process;

ReadLine : process (rclk)
begin

if rising_edge(rclk) then
if page = ’0’ then

read_data <= line2(to_integer(read_address));
else

read_data <= line1(to_integer(read_address));
end if;

CSEE 4840 Embedded System Design, Spring 2009 13 2009/5/16

end if;
end process;

end RTL;

CSEE 4840 Embedded System Design, Spring 2009 14 2009/5/16

6.5 vga_fb.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

-- During vblank, we transfer image to SRAM using DMA and Avalon Flow Control
-- During vactive, display whatever is in SRAM to VGA screen

entity vga_fb is

port (
reset_n : in std_logic;
clk : in std_logic; -- 50 Mhz; we downscale to 25 MHz ourselves

-- Avalon Bus signals
signal chipselect : in std_logic;
signal write, read : in std_logic;
signal address : in std_logic_vector(17 downto 0);
signal readdata : out std_logic_vector(15 downto 0);
signal writedata : in std_logic_vector(15 downto 0);
signal byteenable : in std_logic_vector(1 downto 0);
signal readyfordata : out std_logic;

-- Signals for the framebuffer in SRAM
signal SRAM_DQ : inout std_logic_vector(15 downto 0);
signal SRAM_ADDR : out std_logic_vector(17 downto 0);
signal SRAM_UB_N, SRAM_LB_N : out std_logic;
signal SRAM_WE_N, SRAM_CE_N : out std_logic;
signal SRAM_OE_N : out std_logic;

-- VGA Output signals
VGA_CLK, -- Clock
VGA_HS, -- H_SYNC
VGA_VS, -- V_SYNC
VGA_BLANK, -- BLANK
VGA_SYNC : out std_logic; -- SYNC
VGA_R, -- Red[9:0]
VGA_G, -- Green[9:0]
VGA_B : out unsigned(9 downto 0) -- Blue[9:0]

);

end vga_fb;

architecture dp of vga_fb is

-- Video parameters
constant HRES : integer := 320;
constant VRES : integer := 200;

constant HTOTAL : integer := 800;
constant HSYNC : integer := 96;
constant HBACK_PORCH : integer := 48;
constant HACTIVE : integer := 640;

CSEE 4840 Embedded System Design, Spring 2009 15 2009/5/16

constant HFRONT_PORCH : integer := 16;

constant VTOTAL : integer := 525;
constant VSYNC : integer := 2;
constant VBACK_PORCH : integer := 33;
constant VACTIVE : integer := 480;
constant VFRONT_PORCH : integer := 10;

constant FB_MIN_ROW : integer := 0;
constant FB_MAX_ROW : integer := VRES - 1;
constant FB_MIN_COL : integer := 0;
constant FB_MAX_COL : integer := HRES - 1;

-- Signals for the video controller
signal Hcount : unsigned(9 downto 0); -- Horizontal position (0-800)
signal Vcount : unsigned(9 downto 0); -- Vertical position (0-524)
signal EndOfLine, EndOfField : std_logic;

-- Sync. signals
signal vga_hblank, vga_hsync, vga_vblank, vga_vsync : std_logic;

-- 25 MHz clock for all video signal control
signal video_clk : std_logic;

signal reset : std_logic;

signal row, col : unsigned(17 downto 0);
signal FB_Addr : unsigned (17 downto 0);

signal flowready : std_logic := ’0’;

begin

reset <= not reset_n;

-- Get address of SRAM for current pixel
FB_Addr <= to_unsigned(((to_integer(ROW) * HRES) + to_integer(COL)) , 18);

-- downscale 50 MHz clock to 25 MHz video clock
VideoClock: process (clk)
begin

if rising_edge(clk) then
video_clk <= not video_clk;

end if;
end process VideoClock;

SRAM_DQ <= writedata when flowready = ’1’ and write = ’1’
else (others => ’Z’);

readdata <= SRAM_DQ;
SRAM_ADDR <= address when flowready = ’1’

else std_logic_vector(FB_Addr);
SRAM_UB_N <= not byteenable(1) when flowready = ’1’ else ’0’;
SRAM_LB_N <= not byteenable(0) when flowready = ’1’ else ’0’ ;
SRAM_WE_N <= not write when flowready = ’1’ else ’1’;

CSEE 4840 Embedded System Design, Spring 2009 16 2009/5/16

SRAM_CE_N <= not chipselect when flowready = ’1’ else ’0’;
SRAM_OE_N <= not read when flowready = ’1’ else ’0’;

-- AvalonValid lets avalon know when we are ready for data transfer
AvalonValid : process (clk)
begin
if rising_edge(clk) then
if Vcount = VSYNC + VBACK_PORCH + VACTIVE - 1 then
flowready <= ’1’;
readyfordata <= ’1’;
elsif Vcount = VSYNC + VBACK_PORCH - 1 then
flowready <= ’0’;
readyfordata <= ’0’;
end if;
end if;
end process AvalonValid;

-- Horizontal and vertical counters

HCounter : process (video_clk)
variable c : integer;

begin
if rising_edge(video_clk) then

if reset = ’1’ then
Hcount <= (others => ’0’);

COL <= (others => ’0’);
elsif EndOfLine = ’1’ then

Hcount <= (others => ’0’);
else

Hcount <= Hcount + 1;
end if;
c := (to_integer(Hcount) - (HSYNC + HBACK_PORCH)) / 2;
if c > FB_MAX_COL then

c := FB_MAX_COL;
elsif c < FB_MIN_COL then

c := FB_MIN_COL;
end if;
COL <= to_unsigned(c, 18);

end if;
end process HCounter;

EndOfLine <= ’1’ when Hcount = HTOTAL - 1 else ’0’;

VCounter: process (video_clk)
variable r : integer;

begin
if rising_edge(video_clk) then

if reset = ’1’ then
Vcount <= (others => ’0’);

ROW <= (others => ’0’);
elsif EndOfLine = ’1’ then

if EndOfField = ’1’ then
Vcount <= (others => ’0’);

else

CSEE 4840 Embedded System Design, Spring 2009 17 2009/5/16

Vcount <= Vcount + 1;
end if;

r := ((to_integer(Vcount) - (VSYNC + VBACK_PORCH) -
(VACTIVE/2 - VRES)) / 2);

if r > FB_MAX_ROW then
r := FB_MAX_ROW;

elsif r < FB_MIN_ROW then
r := FB_MIN_ROW;

end if;
ROW <= to_unsigned(r, 18);

end if;
end if;
end process VCounter;

EndOfField <= ’1’ when Vcount = VTOTAL - 1 else ’0’;

-- State machines to generate HSYNC, VSYNC, HBLANK, and VBLANK

HSyncGen : process (video_clk)
begin

if rising_edge(video_clk) then
if reset = ’1’ or EndOfLine = ’1’ then

vga_hsync <= ’1’;
elsif Hcount = HSYNC - 1 then

vga_hsync <= ’0’;
end if;

end if;
end process HSyncGen;

HBlankGen : process (video_clk)
begin

if rising_edge(video_clk) then
if reset = ’1’ then

vga_hblank <= ’1’;
elsif Hcount = HSYNC + HBACK_PORCH then

vga_hblank <= ’0’;
elsif Hcount = HSYNC + HBACK_PORCH + HACTIVE then

vga_hblank <= ’1’;
end if;

end if;
end process HBlankGen;

VSyncGen : process (video_clk)
begin

if rising_edge(video_clk) then
if reset = ’1’ then

vga_vsync <= ’1’;
elsif EndOfLine =’1’ then

if EndOfField = ’1’ then
vga_vsync <= ’1’;

elsif Vcount = VSYNC - 1 then
vga_vsync <= ’0’;

end if;
end if;

CSEE 4840 Embedded System Design, Spring 2009 18 2009/5/16

end if;
end process VSyncGen;

VBlankGen : process (video_clk)
begin

if rising_edge(video_clk) then
if reset = ’1’ then

vga_vblank <= ’1’;
elsif EndOfLine = ’1’ then

if Vcount = VSYNC + VBACK_PORCH - 1 then
vga_vblank <= ’0’;

elsif Vcount = VSYNC + VBACK_PORCH + VACTIVE - 1 then
vga_vblank <= ’1’;

end if;
end if;

end if;
end process VBlankGen;

-- Registered video signals going to the video DAC

VideoOut: process (video_clk, reset)
variable r, b : std_logic_vector(4 downto 0);
variable g : std_logic_vector(5 downto 0);
begin

if reset = ’1’ then
VGA_R <= "0000000000";
VGA_G <= "0000000000";
VGA_B <= "0000000000";

elsif video_clk’event and video_clk = ’1’ then
if vga_hblank = ’0’ and vga_vblank =’0’ then

if vcount > vsync + vback_porch + ((vactive/2) - vres) and
vcount < vsync + vback_porch +

((vactive/2) - vres) + (vres * 2) - 1 then
r := SRAM_DQ(15 downto 11);
g := SRAM_DQ(10 downto 5);
b := SRAM_DQ(4 downto 0);

VGA_R(9 downto 5) <= unsigned(r);
VGA_G(9 downto 4) <= unsigned(g);
VGA_B(9 downto 5) <= unsigned(b);

VGA_R(4 downto 0) <= "00000";
VGA_G(3 downto 0) <= "0000";
VGA_B(4 downto 0) <= "00000";
else

VGA_R <= "0000000000";
VGA_G <= "0000000000";
VGA_B <= "0000000000";
end if;

else
VGA_R <= "0000000000";
VGA_G <= "0000000000";
VGA_B <= "0000000000";

end if;

CSEE 4840 Embedded System Design, Spring 2009 19 2009/5/16

end if;
end process VideoOut;

VGA_CLK <= video_clk;
VGA_HS <= not vga_hsync;
VGA_VS <= not vga_vsync;
VGA_SYNC <= ’0’;
VGA_BLANK <= not (vga_hsync or vga_vsync);

end dp;

CSEE 4840 Embedded System Design, Spring 2009 20 2009/5/16

6.6 pots.vhd

-- Top-level entity for the POTS project. Note: KEY(0) resets the
-- ADV7181, while KEY(2) resets the I2C controller. When first starting
-- the board, it is necessary to press KEY(0) and then KEY(2) to reset both.
-- This sometimes needs to be done multiple times before the ADV7181
-- produces valid data.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity pots is
port (

-- Clocks

CLOCK_27, -- 27 MHz
CLOCK_50 : in std_logic; -- 50 MHz

-- SDRAM

DRAM_DQ : inout std_logic_vector(15 downto 0); -- Data Bus
DRAM_ADDR : out std_logic_vector(11 downto 0); -- Address Bus
DRAM_LDQM, -- Low-byte Data Mask
DRAM_UDQM, -- High-byte Data Mask
DRAM_WE_N, -- Write Enable
DRAM_CAS_N, -- Column Address Strobe
DRAM_RAS_N, -- Row Address Strobe
DRAM_CS_N, -- Chip Select
DRAM_BA_0, -- Bank Address 0
DRAM_BA_1, -- Bank Address 0
DRAM_CLK, -- Clock
DRAM_CKE : out std_logic; -- Clock Enable

-- SRAM

SRAM_DQ : inout std_logic_vector(15 downto 0); -- Data bus
SRAM_ADDR : out std_logic_vector(17 downto 0); -- Address bus
SRAM_UB_N, -- High-byte Data Mask
SRAM_LB_N, -- Low-byte Data Mask
SRAM_WE_N, -- Write Enable
SRAM_CE_N, -- Chip Enable
SRAM_OE_N : out std_logic; -- Output Enable

-- VGA output

VGA_CLK, -- Clock
VGA_HS, -- H_SYNC
VGA_VS, -- V_SYNC
VGA_BLANK, -- BLANK
VGA_SYNC : out std_logic; -- SYNC
VGA_R, -- Red[9:0]
VGA_G, -- Green[9:0]
VGA_B : out std_logic_vector(9 downto 0); -- Blue[9:0]

CSEE 4840 Embedded System Design, Spring 2009 21 2009/5/16

-- TV input

TD_DATA : in unsigned(7 downto 0); -- Data bus
TD_HS, -- H_SYNC
TD_VS : in std_logic; -- V_SYNC
TD_RESET : out std_logic; -- Reset

-- Buttons and switches

KEY : in std_logic_vector(3 downto 0); -- Push buttons
SW : in std_logic_vector(17 downto 0); -- DPDT switches

-- I2C bus

I2C_SDAT : inout std_logic; -- I2C Data
I2C_SCLK : out std_logic; -- I2C Clock

-- UART

UART_TXD : out std_logic;
UART_RXD : in std_logic

);
end pots;

architecture datapath of pots is

component nios_system is
port (

-- global signals
signal clk : in std_logic;

signal reset_n : in std_logic;

-- SDRAM
signal zs_addr_from_the_sdram : out std_logic_vector(11 downto 0);
signal zs_ba_from_the_sdram : out std_logic_vector (1 downto 0);
signal zs_cas_n_from_the_sdram : out std_logic;
signal zs_cke_from_the_sdram : out std_logic;
signal zs_cs_n_from_the_sdram : out std_logic;
signal zs_dq_to_and_from_the_sdram : inout std_logic_vector(15 downto 0);
signal zs_dqm_from_the_sdram : out std_logic_vector (1 downto 0);
signal zs_ras_n_from_the_sdram : out std_logic;
signal zs_we_n_from_the_sdram : out std_logic;

-- VGA framebuffer
signal sram_addr_from_the_vga : out std_logic_vector (17 downto 0);
signal sram_ce_n_from_the_vga : out std_logic;
signal sram_dq_to_and_from_the_vga : inout std_logic_vector (15 downto 0);
signal sram_lb_n_from_the_vga : out std_logic;
signal sram_oe_n_from_the_vga : out std_logic;
signal sram_ub_n_from_the_vga : out std_logic;
signal sram_we_n_from_the_vga : out std_logic;
signal vga_blank_from_the_vga : out std_logic;
signal vga_b_from_the_vga : out std_logic_vector (9 downto 0);
signal vga_clk_from_the_vga : out std_logic;

CSEE 4840 Embedded System Design, Spring 2009 22 2009/5/16

signal vga_g_from_the_vga : out std_logic_vector (9 downto 0);
signal vga_hs_from_the_vga : out std_logic;
signal vga_r_from_the_vga : out std_logic_vector (9 downto 0);
signal vga_sync_from_the_vga : out std_logic;
signal vga_vs_from_the_vga : out std_logic;

-- TV input
signal clk27_to_the_tv_in : in std_logic;
signal td_data_to_the_tv_in : in unsigned(7 downto 0);
signal td_hs_to_the_tv_in : in std_logic;
signal td_vs_to_the_tv_in : in std_logic;

-- UART
signal rxd_to_the_uart : in std_logic;
signal txd_from_the_uart : out std_logic

);
end component;

component sdram_pll
port (

inclk0 : in std_logic;
c0 : out std_logic;
c1 : out std_logic

);
end component;

component de2_i2c_av_config is
port (

iCLK : in std_logic;
iRST_N : in std_logic;
I2C_SCLK : out std_logic;
I2C_SDAT : inout std_logic

);
end component;

signal ba : std_logic_vector(1 downto 0);
signal dqm : std_logic_vector(1 downto 0);

signal pll_c1 : std_logic;

signal sram_addr_conv : std_logic_vector(17 downto 0);
signal sram_dq_conv : std_logic_vector(15 downto 0);

signal vga_r_conv : std_logic_vector(9 downto 0);
signal vga_g_conv : std_logic_vector(9 downto 0);
signal vga_b_conv : std_logic_vector(9 downto 0);

begin
TD_RESET <= KEY(0);

dram_ba_1 <= ba(1);
dram_ba_0 <= ba(0);
dram_udqm <= dqm(1);
dram_ldqm <= dqm(0);

CSEE 4840 Embedded System Design, Spring 2009 23 2009/5/16

nios: nios_system port map (
clk => pll_c1,
reset_n => KEY(1),

zs_addr_from_the_sdram => DRAM_ADDR,
zs_ba_from_the_sdram => BA,
zs_cas_n_from_the_sdram => DRAM_CAS_N,
zs_cke_from_the_sdram => DRAM_CKE,
zs_cs_n_from_the_sdram => DRAM_CS_N,
zs_dq_to_and_from_the_sdram => DRAM_DQ,
zs_dqm_from_the_sdram => DQM,
zs_ras_n_from_the_sdram => DRAM_RAS_N,
zs_we_n_from_the_sdram => DRAM_WE_N,

sram_addr_from_the_vga => SRAM_ADDR,
sram_ce_n_from_the_vga => SRAM_CE_N,
sram_dq_to_and_from_the_vga => SRAM_DQ,
sram_lb_n_from_the_vga => SRAM_LB_N,
sram_oe_n_from_the_vga => SRAM_OE_N,
sram_ub_n_from_the_vga => SRAM_UB_N,
sram_we_n_from_the_vga => SRAM_WE_N,

vga_blank_from_the_vga => VGA_BLANK,
vga_b_from_the_vga => VGA_B,
vga_clk_from_the_vga => VGA_CLK,
vga_g_from_the_vga => VGA_G,
vga_hs_from_the_vga => VGA_HS,
vga_r_from_the_vga => VGA_R,
vga_sync_from_the_vga => VGA_SYNC,
vga_vs_from_the_vga => VGA_VS,

clk27_to_the_tv_in => CLOCK_27,
td_data_to_the_tv_in => TD_DATA,
td_hs_to_the_tv_in => TD_HS,
td_vs_to_the_tv_in => TD_VS,

rxd_to_the_uart => uart_rxd,
txd_from_the_uart => uart_txd

);

neg_3ns : sdram_pll port map (CLOCK_50, DRAM_CLK, pll_c1);

i2c: de2_i2c_av_config port map (
iCLK => CLOCK_50,
iRST_N => KEY(2),
I2C_SCLK => I2C_SCLK,
I2C_SDAT => I2C_SDAT

);
end datapath;

CSEE 4840 Embedded System Design, Spring 2009 24 2009/5/16

6.7 pots.c

#include <stdio.h>
#include <stdlib.h>
#include <system.h>
#include <sys/alt_dma.h>
#include <io.h>
#include "img_tracking.h"

#define VMAX 400 // maximum velocity allowed by the robot

#define CROSSCOLOR 0x0000

#define IORD_TV_IN_FIELD(base) \
IORD_16DIRECT(base, 1024)

#define IORD_TV_IN_HCOUNT(base) \
IORD_16DIRECT(base, 2048)

#define IORD_TV_IN_VCOUNT(base) \
IORD_16DIRECT(base, 3072)

#define HRES 320
#define VRES 200

static volatile int rx_done = 0;
static volatile int tx_done = 0;

FILE *serial;

static void snd_done(void *handle)
{

tx_done = 1;
}

static void rcv_done(void *handle, void *data)
{

rx_done = 1;
}

static void draw_crosshair(short *buf, int x, int y) {
IOWR_SDRAM(buf+y*HRES+x, 0xffff);
if (y < VRES-1) {

IOWR_SDRAM(buf+(y+1)*HRES+x, CROSSCOLOR);
}
if (y > 1) {
IOWR_SDRAM(buf+(y-1)*HRES+x, CROSSCOLOR);

}
if (x < HRES-1) {
IOWR_SDRAM(buf+y*HRES+(x+1), CROSSCOLOR);

}
if (x > 1) {

IOWR_SDRAM(buf+y*HRES+(x-1), CROSSCOLOR);
}

}

CSEE 4840 Embedded System Design, Spring 2009 25 2009/5/16

static inline void initSerial()
{

serial = fopen("/dev/uart", "r+");
if (!serial) {

perror("fopen");
exit(1);

}
printf("Serial is opened!\n");

}

static inline void writeSerial(unsigned char *buf, int bytes)
{

int written;

if (!serial) {
printf("Serial port not opened, returning...\n");
return;

}

written = fwrite(buf, 1, bytes, serial);
if (written == -1) {

perror("write");
}

}

static inline void startRobot()
{

unsigned char data[2];
data[0] = (unsigned char) 128;
data[1] = (unsigned char) 131;
writeSerial(data, 2);

}

static inline void turnRight(int speed)
{

unsigned char data[5];

if (speed < 1 || speed > VMAX)
return;

data[0] = 145; //Direct Drive command
data[1] = (unsigned char) ((-speed) >> 8 & 0x00FF); //[Right velocity high byte]
data[2] = (unsigned char) ((-speed) & 0x00FF); //[Right velocity low byte]
data[3] = (unsigned char) ((speed) >> 8 & 0x00FF); //[Left velocity high byte]
data[4] = (unsigned char) ((speed) & 0x00FF); //[Left velocity low byte]

writeSerial(data, 5);
}

static inline void turnLeft(int speed)
{

unsigned char data[5];

CSEE 4840 Embedded System Design, Spring 2009 26 2009/5/16

if (speed < 1 || speed > VMAX)
return;

data[0] = 145; //Direct Drive command
data[1] = (unsigned char) ((speed) >> 8 & 0x00FF); //[Right velocity high byte]
data[2] = (unsigned char) ((speed) & 0x00FF); //[Right velocity low byte]
data[3] = (unsigned char) ((-speed) >> 8 & 0x00FF); //[Left velocity high byte]
data[4] = (unsigned char) ((-speed) & 0x00FF); //[Left velocity low byte]

writeSerial(data, 5);
}

static inline void stopRobot()
{

unsigned char data[5];

data[0] = 145; //Direct Drive command
data[1] = (unsigned char) 0; //[Right velocity high byte]
data[2] = (unsigned char) 0; //[Right velocity low byte]
data[3] = (unsigned char) 0; //[Left velocity high byte]
data[4] = (unsigned char) 0; //[Left velocity low byte]

writeSerial(data, 5);
}

int main()
{
int i, j = 0, rc, ret, speed;
unsigned short hc, vc, vc2;

int row=-1, col=-1;

alt_dma_txchan txchan;
alt_dma_rxchan rxchan;

printf("started running!\n");

initSerial();
startRobot();

printf("Initialized robot!\n");

short *buf = malloc(sizeof(short) * (HRES*VRES));
if (buf == NULL) {

printf("Could not alloc!\n");
exit(1);

}

// clear buffer at first
for (i=0; i < HRES*VRES; ++i) {

IOWR_SDRAM(buf + i, 0);
}

// set up DMA

CSEE 4840 Embedded System Design, Spring 2009 27 2009/5/16

if ((txchan = alt_dma_txchan_open("/dev/dma")) == NULL) {
printf("Failed to open transmit channel.\n");
exit(1);

}

if ((rxchan = alt_dma_rxchan_open("/dev/dma")) == NULL) {
printf("Failed to open receive channel.\n");
exit(1);

}

ret = alt_dma_txchan_ioctl(txchan, ALT_DMA_SET_MODE_16, NULL);
if (ret < 0) {

printf("IOCTL failed, could not set mode 16.\n");
exit(1);

}

ret = alt_dma_rxchan_ioctl(rxchan, ALT_DMA_SET_MODE_16, NULL);
if (ret < 0) {

printf("IOCTL failed, could not set mode 16.\n");
exit(1);

}

ret = alt_dma_rxchan_ioctl(rxchan, ALT_DMA_RX_ONLY_OFF, NULL);

if (ret < 0) {
printf("IOCTL failed, could not set default mode.\n");
exit(1);

}
ret = alt_dma_txchan_ioctl(txchan, ALT_DMA_TX_ONLY_OFF, NULL);
if (ret < 0) {

printf("IOCTL failed, could not set default mode.\n");
exit(1);

}

// main program loop
while(1) {
rx_done = 0;

// transfer one dummy line so that the next transfer doesn’t
// result in a delay
alt_dma_txchan_send(txchan, (void *)(TV_IN_BASE + 176),

HRES*2, snd_done, NULL);
alt_dma_rxchan_prepare(rxchan, buf, HRES*2, rcv_done, NULL);
while (rx_done == 0);
rx_done = 0;
// wait for vsync
while (IORD_TV_IN_HCOUNT(TV_IN_BASE) > 100 ||

(IORD_TV_IN_FIELD(TV_IN_BASE) & 0x0004) == 1 ||
IORD_TV_IN_VCOUNT(TV_IN_BASE) != 0);

for(i = 0; i < VRES; i++)
{

// wait for hsync
do {
hc = IORD_TV_IN_HCOUNT(TV_IN_BASE);

CSEE 4840 Embedded System Design, Spring 2009 28 2009/5/16

}
while (hc < 200 || hc > 300);

alt_dma_txchan_send(txchan, (void *)(TV_IN_BASE + 176),
HRES*2, snd_done, NULL);

alt_dma_rxchan_prepare(rxchan, buf+HRES*i, HRES*2, rcv_done, NULL);

while (rx_done == 0);
rx_done = 0;

}
rx_done = 0;

track_obj4(buf, row, col, &row, &col);
draw_crosshair(buf, col, row);

// set the speed of the robot based on how far the center of the
// object is from the center of the image
speed = col - 160;
if (speed < 0)

speed = -speed;
speed += 40;
if (speed > 80) speed = 80;

// turn the robot
if (col < 145) {

turnLeft(speed);
}
else if (col > 175) {

turnRight(speed);
}
else {

stopRobot();
}

// transfer from buffer to video buffer in SRAM
alt_dma_txchan_send(txchan, buf, HRES*VRES*2, snd_done, NULL);
alt_dma_rxchan_prepare(rxchan, (void*)(VGA_BASE), HRES*VRES*2,
rcv_done, NULL);
while (!tx_done);
tx_done = 0;

}

free(buf);
return 0;

}

CSEE 4840 Embedded System Design, Spring 2009 29 2009/5/16

6.8 img_tracking.c

/******************** img_tracking.c ***
/* Author: Baolin Shao

* Date: 2009 04 10

* Description: This file has a very simple object tracking algorithm.

* The algoirthm "tracks" an object based on the object’s

* position. Given the object’s previuos centroid, this

* algorithm calcutes the object’s current centroid.

* This algorithm works based on the following assumption:

* 1. The object’s initial position is in the center of image

* 2. The object does not move dramatically between two

* succesive images

* 3. The object’s color is reasonably different from its

* background

***/
#include "stdlib.h"
#include "stdio.h"
#include "img_tracking.h"

inline void comp(int *pt_r,int *pt_c)
{

if(*pt_r<0) *pt_r = 0;
if(*pt_r>ROW) *pt_r = ROW-1;
if(*pt_c<0) *pt_r = 0;
if(*pt_c>COL) *pt_r = COL-1;

}

void get_obj_def(short *buf,
int center_row,int center_col,
unsigned char *val_r,
unsigned char *val_g, unsigned char *val_b)

{
int c_offset;
int i;
c_offset = OFFSET(center_row,center_col);
short v = IORD_SDRAM(buf+c_offset);

*val_r = GET_R(v);

*val_g = GET_G(v);

*val_b = GET_B(v);

}
void get_obj_val_rgb(short *buf,
int center_row,int center_col,
unsigned char *val_r,
unsigned char *val_g, unsigned char *val_b)
{
unsigned short val =0;
int i;

int sumr,sumg,sumb;
sumr=sumg=sumb=0;

*val_r=0;

*val_g=0;

CSEE 4840 Embedded System Design, Spring 2009 30 2009/5/16

*val_b=0;
int c_offset;
/**/
/* b b 1 b b */
/* b 2 x 3 b */
/* 4 x c x 5 */
/* b 6 x 7 b */
/* b b 8 b b */
/**/
int p_r[8];
int p_c[8];
p_r[0] = center_row-2;
p_c[0] = center_col;

p_r[1] = center_row-1;
p_c[1] = center_col-1;

p_r[2] = center_row-1;
p_c[2] = center_col+1;

p_r[3] = center_row;
p_c[3] = center_col-2;

p_r[4] = center_row;
p_c[4] = center_col+2;

p_r[5] = center_row+1;
p_c[5] = center_col-1;

p_r[6] = center_row+1;
p_c[6] = center_col+1;

p_r[7] = center_row+2;
p_c[7] = center_col;

for(i=0;i<8;i++)
{

comp(p_r+i,p_c+i);
c_offset = OFFSET(p_r[i],p_c[i]);
val=IORD_SDRAM(buf+c_offset);
sumr+=GET_R(val);
sumg+=GET_G(val);
sumb+=GET_B(val);

}

*val_r = (unsigned char)(sumr>>3);

*val_g = (unsigned char)(sumg>>3);

*val_b = (unsigned char)(sumb>>3);
int of = OFFSET(center_row,center_col);
unsigned short cv = IORD_SDRAM(buf+of);
unsigned char cvr = GET_R(cv);
unsigned char cvg = GET_G(cv);
unsigned char cvb = GET_B(cv);

CSEE 4840 Embedded System Design, Spring 2009 31 2009/5/16

}

void get_obj_val(short *buf,
int center_row,int center_col,
unsigned char *cval)

{
unsigned short val;
unsigned char v_r,v_g,v_b;
val=0;
v_r=v_g=v_b=0;
int i,j;
int c_offset;
int left,right,top,bottom;
left = center_col - 2;
right = center_col + 1;
top = center_row - 2;
bottom = center_row + 1;
if(left < 0) left =0;
if(right > COL) right = COL;
if(top < 0) top =0;
if(bottom > ROW) bottom = ROW;
for(i=top;i<=bottom;i++)

for (j=left;j<=right;j++)
{

c_offset = OFFSET(i,j);
val=IORD_SDRAM(buf+c_offset);
v_r=GET_R(val);
v_g=GET_G(val);
v_b=GET_B(val);
val = CONVERT(v_r,v_g,v_b);

*cval = *cval + val;
}

*cval= (*cval)>>4;
}

static int closeto(int val, int target) {
if (val < target + PIC_THRESHOLD && val > target - PIC_THRESHOLD)

return 1;
return 0;

}

/******************************* track_obj **********************************
Function: track_obj
Parameter:
input:

short * buf:image data, every pixel constitutes two bytes (1 short).
int center_row, center_col: previous centroid of object.

output:
int *new_center_row, +*new_center_col:newly calculated centroid

**/

void track_obj (short *buf, int center_row, int center_col,
int *new_center_row, int *new_center_col)

CSEE 4840 Embedded System Design, Spring 2009 32 2009/5/16

{
int left=COL-1;
int right=0;
int top=ROW-1;
int bottom=16;
unsigned short center_val=0;
unsigned char center_val_r=0;
unsigned char center_val_g=0;
unsigned char center_val_b=0;
if(center_row==-1 && center_col==-1)

{
center_row=ROW>>1;
center_col=COL>>1;

}
center_val_r=220;
center_val_g=0;
center_val_b=220;

int i,j,k1,k2;
i=j=k1=k2=0;
for(i=0;i<ROW;i=i+BLOCK_SIZE)

{
for(j=0;j<COL;j=j+BLOCK_SIZE)

{
unsigned short sum_r,sum_g,sum_b;
sum_r=sum_g=sum_b=0;
for(k1=i;k1<i+BLOCK_SIZE;k1++)

{
for(k2=j;k2<j+BLOCK_SIZE;k2++)

{
int offset=OFFSET(k1,k2);
unsigned short val=IORD_SDRAM(buf+offset);
unsigned char val_r=0;
unsigned char val_g=0;
unsigned char val_b=0;
val_r=GET_R(val);
val_g=GET_G(val);
val_b=GET_B(val);
if(val_r>center_val_r-PIC_THRESHOLD &&

val_r<center_val_r+PIC_THRESHOLD)
sum_r++;

}
}

if(closeto(sum_r, center_val_r) && closeto(sum_b, center_val_b))
{

if(i<top)
{

top=i;
}

if(i>bottom)
{

if(i+BLOCK_SIZE>ROW)
bottom = ROW-1;

CSEE 4840 Embedded System Design, Spring 2009 33 2009/5/16

else
bottom=i+BLOCK_SIZE-1;

}
if(j<left)

{
left = j;

}
if(j>right)

{
if(j+BLOCK_SIZE>COL)

right = COL-1;
else

right = j+BLOCK_SIZE-1;
}

}
}

}

*new_center_row = (top+bottom)>>1;

*new_center_col = (left+right)>>1;

}

void track_obj2 (short *buf, int center_row, int center_col,
int *new_center_row, int *new_center_col)

{
int left=COL-1;
int right=0;
int top=ROW-1;
int bottom=16;

unsigned char center_val_r=0;
unsigned char center_val_g=0;
unsigned char center_val_b=0;
unsigned char cval=0;
if(center_row==-1 && center_col==-1)
{

center_row=ROW>>1;
center_col=COL>>1;

}
get_obj_def(buf,center_row,center_col,

¢er_val_r,¢er_val_g,¢er_val_b);
cval = CONVERT(center_val_r,center_val_g,center_val_b);
int i,j,k1,k2;
i=j=k1=k2=0;
int cnt=0;
for(i=16;i<ROW;i=i+BLOCK_SIZE)
{

for(j=0;j<COL;j=j+BLOCK_SIZE)
{

unsigned short sum=0;

for(k1=i;k1<i+BLOCK_SIZE;k1++)
{

CSEE 4840 Embedded System Design, Spring 2009 34 2009/5/16

for(k2=j;k2<j+BLOCK_SIZE;k2++)
{

int offset=OFFSET(k1,k2);
unsigned short val=IORD_SDRAM(buf+offset);
unsigned char val_r=0;
unsigned char val_g=0;
unsigned char val_b=0;
unsigned char v=0;
val_r=GET_R(val);
val_g=GET_G(val);
val_b=GET_B(val);
v = CONVERT(val_r,val_g,val_b);
if(v>200 &&

v<255)
sum++;

}
}
if(sum>BLOCK_THRESHOLD)
{

cnt++;
if(i<top)
{

top=i;
}
if(i>bottom)
{

if(i+BLOCK_SIZE>ROW)
bottom = ROW-1;

else
bottom=i+BLOCK_SIZE-1;

}
if(j<left)
{

left = j;
}
if(j>right)
{

if(j+BLOCK_SIZE>COL)
right = COL-1;

else
right = j+BLOCK_SIZE-1;

}
}

}
}

*new_center_row = (top+bottom)>>1;

*new_center_col = (left+right)>>1;

}
void track_obj3 (short *buf, int center_row, int center_col,

int *new_center_row, int *new_center_col, short *color)
{

int left=COL-1;

CSEE 4840 Embedded System Design, Spring 2009 35 2009/5/16

int right=0;
int top=ROW-1;
int bottom=16;
int c_offset=0;
unsigned char center_val_r=0;
unsigned char center_val_g=0;
unsigned char center_val_b=0;
unsigned char cval=0;
if(center_row==-1 && center_col==-1)
{

center_row=ROW>>1;
center_col=COL>>1;
c_offset = OFFSET(center_row,center_col);

*color = IORD_SDRAM(buf+c_offset);
}
c_offset = OFFSET(center_row,center_col);

*color = IORD_SDRAM(buf+c_offset);
center_val_r = GET_R(*color);
center_val_g = GET_G(*color);
center_val_b = GET_B(*color);
cval = CONVERT(center_val_r,center_val_g,center_val_b);
int i,j,k1,k2;
i=j=k1=k2=0;
int cnt=0;
for(i=16;i<ROW;i=i+BLOCK_SIZE)
{

for(j=0;j<COL;j=j+BLOCK_SIZE)
{

unsigned short sum=0;

for(k1=i;k1<i+BLOCK_SIZE;k1++)
{

for(k2=j;k2<j+BLOCK_SIZE;k2++)
{

int offset=OFFSET(k1,k2);
unsigned short val=IORD_SDRAM(buf+offset);
unsigned char val_r=0;
unsigned char val_g=0;
unsigned char val_b=0;
unsigned char v=0;
val_r=GET_R(val);
val_g=GET_G(val);
val_b=GET_B(val);
v = CONVERT(val_r,val_g,val_b);
if(v>cval-PIC_THRESHOLD &&

v<cval+PIC_THRESHOLD)
sum++;

}
}
if(sum>BLOCK_THRESHOLD)
{

CSEE 4840 Embedded System Design, Spring 2009 36 2009/5/16

cnt++;
if(i<top)
{

top=i;
}
if((i+BLOCK_SIZE)>bottom)
{

if(i+BLOCK_SIZE>ROW)
bottom = ROW-1;

else
bottom=i+BLOCK_SIZE-1;

}
if(j<left)
{

left = j;
}
if((j+BLOCK_SIZE)>right)
{

if(j+BLOCK_SIZE>COL)
right = COL-1;

else
right = j+BLOCK_SIZE-1;

}
}

}

}

*new_center_row = (top+bottom)>>1;

*new_center_col = (left+right)>>1;

*color= IORD_SDRAM(buf+ OFFSET(*new_center_row,*new_center_col));

}

void track_obj4 (short *buf, int center_row, int center_col,
int *new_center_row, int *new_center_col)

{
int left=COL-1;
int right=0;
int top=ROW-1;
int bottom=16;
unsigned short center_val=0;
unsigned char center_val_r=0;
unsigned char center_val_g=0;
unsigned char center_val_b=0;
if(center_row==-1 && center_col==-1)
{

center_row=ROW>>1;
center_col=COL>>1;

}

int i,j,k1,k2;

CSEE 4840 Embedded System Design, Spring 2009 37 2009/5/16

i=j=k1=k2=0;
for(i=0;i<ROW;i=i+BLOCK_SIZE)
{

for(j=0;j<COL;j=j+BLOCK_SIZE)
{

unsigned short sum_r,sum_g,sum_b;
sum_r=sum_g=sum_b=0;
for(k1=i;k1<i+BLOCK_SIZE;k1++)
{

for(k2=j;k2<j+BLOCK_SIZE;k2++)
{

int offset=OFFSET(k1,k2);
unsigned short val=IORD_SDRAM(buf+offset);
unsigned char val_r=0;
unsigned char val_g=0;
unsigned char val_b=0;
val_r=GET_R(val);
val_g=GET_G(val);
val_b=GET_B(val);
if(closeto(val_r, TARGET_R))

sum_r++;

if(closeto(val_g, TARGET_G))
sum_g++;

if(closeto(val_b, TARGET_B))
sum_b++;

}
}

if(sum_r >= BLOCK_THRESHOLD && sum_g >= BLOCK_THRESHOLD &&
sum_b >=BLOCK_THRESHOLD)

{
if(i<top)
{

top=i;
}
if(i>bottom)
{

if(i+BLOCK_SIZE>ROW)
bottom = ROW-1;

else
bottom=i+BLOCK_SIZE-1;

}
if(j<left)
{

left = j;
}
if(j>right)
{

if(j+BLOCK_SIZE>COL)
right = COL-1;

else
right = j+BLOCK_SIZE-1;

CSEE 4840 Embedded System Design, Spring 2009 38 2009/5/16

}
}

}
}

*new_center_row = (top+bottom)>>1;

*new_center_col = (left+right)>>1;

}

CSEE 4840 Embedded System Design, Spring 2009 39 2009/5/16

6.9 img_tracking.h

#include <stdio.h>
#include <stdlib.h>
#include <system.h>
#include <sys/alt_dma.h>
#include <io.h>
#define ROW 200
#define COL 320

#define TARGET_R 200
#define TARGET_G 100
#define TARGET_B 70

#define BLOCK_SIZE 16
#define PIC_THRESHOLD 30
#define BLOCK_THRESHOLD 180

#define OFFSET(i,j) ((i<<8)+(i<<6))+j // i*COL+j

//get most significant 5 bits, and return a byte
#define GET_R(color) (unsigned char)((color&0xF800)>>8)
//get least significant 5 bits, and return a byte
#define GET_B(color) (unsigned char)((color&0x001F)<<3)
//get the middle 6 bits,5-6-5,from color, and return a byte
#define GET_G(color) (unsigned char)((color&0x07E0)>>3)
//X / 5 = X/(4+1) = (X/4) /(1+1/4)= (X/4) * (1 - 1/4 + 1/16 - 1/64 + 1/256 ...)
// = X/4 - X/16 + X/64 - X/256 + X/1024 - X/4096 ...
#define DIV(x) (unsigned char)((x>>2)-(x>>4)+(x>>6)-(x>>8))
#define CONVERT(r,g,b) (unsigned char)(DIV(((r>>2)+(g<<4))-(b)))
#define IOWR_SDRAM(base, data) IOWR_16DIRECT(base, 0, data)
#define IORD_SDRAM(base) IORD_16DIRECT(base, 0)

inline void comp(int *pt_r,int *pt_c);

void get_obj_def(short *buf,
int center_row,int center_col,
unsigned char *val_r,
unsigned char *val_g, unsigned char *val_b);

void get_obj_val_rgb(short *buf,
int center_row,int center_col,
unsigned char *val_r,
unsigned char *val_g, unsigned char *val_b);

void get_obj_val(short *buf,
int center_row,int center_col,
unsigned char *cval);
void track_obj (short *buf, int center_row, int center_col,

int *new_center_row, int *new_center_col);

void track_obj2 (short *buf, int center_row, int center_col,
int *new_center_row, int *new_center_col);

CSEE 4840 Embedded System Design, Spring 2009 40 2009/5/16

void track_obj3 (short *buf, int center_row, int center_col,
int *new_center_row, int *new_center_col, short *color);

void track_obj4 (short *buf, int center_row, int center_col,
int *new_center_row, int *new_center_col);

CSEE 4840 Embedded System Design, Spring 2009 41 2009/5/16

	System Overview
	Sensing the Environment
	ADV7181 Controller Design
	VGA Framebuffer

	Reacting to the Environment
	DMA
	Robot

	Hardware-Software Integration
	Nios II Software
	Recognition Algorithm

	Conclusion
	File Listings
	tv_controller.vhd
	adv_interface.vhd
	yuv2rgb.vhd
	line_buffer.vhd
	vga_fb.vhd
	pots.vhd
	pots.c
	img_tracking.c
	img_tracking.h

