
  

DruL

A language to encourage laziness 
among drummers



  

Motivation

• Make Rob’s life easier when he’s writing 
new drum loops…

• Make it easy to write long drum parts via 
algorithmic composition

• Simpler than alternatives e.g. Haskore - no 
pitch or note durations.  



  

Basic appearance:

• C-style identifiers
• Semicolons, Braces, Parentheses
• Commas
• Double-slash comments à la C++ (no multi-line 

comments)
• In short, looks a lot like a C/Java descendent, with 

one very important exception: map



  

Appearances can be deceptive

• Typing: strict, but dynamic
• Scoping: dynamic
• Side-effects: tightly controlled

– Limited to four kinds of statement: assignment, mapper 
definition, instrument definition, and return 

– NOT possible in an expression

• Small set of available types
• Small set of built-in functions, mostly constructors 

and basic utilities
• Java-style method calls for some objects



  

Types

• Assignable: integer, clip, pattern
 only possible values for user-defined variables

• Literal: string, boolean 
mostly available for debugging purposes

• Special: beat, mapper, instrument-name
– beat objects exist only within mappers

– mappers are created like functions (but no forward 
declaration)

– instruments are definitions are special “function”



  

Wait, what were those?

• pattern: a sequence of boolean values (notes 
and rests)

• instruments: a global list of instrument 
names 

• clip: a collection of patterns, mapped to 
instruments for output



  

Finally, mappers

• The core distinction between DruL and micro-C: 
mappers

• Allow creation of new patterns from existing ones 
according to pre-defined transformations

• DruL has mappers instead of user-defined 
functions

• Essentially, an iterator, but with special language 
support for examining the current (musical) 
context
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Demonstration Code
a = 3;
b = 5;

if (a > 0 && b > a)
{ 

print(“hello, world!”); 
} 
elseif (a >= 0)
{

print(“Well, that was unexpected”);
} 
else
{

print(false);
}



  

Interesting Demonstration Code

p = pattern("10101111");
q = pattern("11110000");
r = concat(p, q);

if (r.length() < q.length())
{ 

print(q.repeat(3)); 
} 
else
{

print (r.length());
}



  

And now, that mapper stuff…

p = pattern("10101111");
q = pattern("11110000");

r = map(p, q)
{

if ($1.note() && $2.note())
{ 

return pattern("11");
}
else { return $1; }

};

// prints "1101101111"



  

Named Mappers

mapper filterMap (pat, filter)
{ 

if (filter.rest()) { return pattern(""); }
else               { return pat;         }

}

filtered = map (p, q) filterMap;

// results in the pattern "1010"



  

The Superstructure

instruments("snare", "hihat", "kick");

c = clip(p, q, r);

c.outputText("sample.txt");

// midi needs a tempo (beats per minute)
c.outputMidi("sample.midi",120);

// Lilypond needs a title to typeset
c.outputLilypond("sample.ly", "Typeset Sample");



  

The proof of the pudding

p1 = pattern("1").repeat(352);
p2 = pattern("1").repeat(40);
…
mapper gcd(a, b) {

if ( !a.prev(1).note() && !a.prev(1).rest()
 && !b.prev(1).note() && !b.prev(1).rest() ) {

    tmp = map (p1, p2) subtract;
    if (tmp.length() == 0) { return p1; }
    elseif ((map(tmp) squishrests).length() > 0) { p1 = tmp; }
    else { p2 = tmp;}
    return map(p1, p2) gcd;
}
return pattern("");

}



  

Interpreter

• DruL is an interpreted language
• Not compiled since there isn't much 

concern about performance
• Complex calculations are possible in DruL, 

but not an intended use of language



  

Dynamic Language

• Variables are dynamically typed
• Hence, few possible static checks
• We didn’t do them (due to time constraints)
• DruL types map easily to Ocaml types



  

DruL Types

type drul_t =
Void
| Int          of int
| Str          of string
| Bool       of bool
| Pattern    of pattern
| Clip        of pattern array
| Mapper   of (string * string list * statement list)
| PatternAlias of pattern_alias
| Beat of pattern_alias * int
| Instruments of string list
| InstrumentAssignment of string * pattern



  

Syntax Tree

• Distinct boolean, integer and comparison 
operator-types in AST, used in expressions

• Expressions tagged with line number, to 
report errors in drul code

• A drul program is just a list of statements



  

Keywords, Functions and Methods

• Not all keywords are tokens (e.g. 
functions)

• Built in functions are keywords
• Built in methods specific to DruL types 

are not keywords
• Thus, method names can be used as 

identifiers (variables, named mappers)



  

Statements

• Types: Expression, Assignment, Selection, 
Mapper definitions, Return

• Blocks are not statements



  

Lessons Learned

• Standards are there for a reason
• Comma-separated lists

• Dynamic scoping is easy

• if/else implemented as a tree, not a list

• Tests are good
• Build test suite early, many tests
• Found us a bug on precedence for method calls



  

Lessons Learned

• Catching errors early is hard
• Move errors from scanner and parser down to the interpreter
• Less efficient for the user, may run half of the code before an error

• Ocaml's inference is great
• When it guesses what you want it to guess
• We one thaught we could do type inference ourselves...!

• Pair programming works well
• One by itslef, hard to take decision
• More than 2 around a computer is useless



  

Lines of code

main program test suite
40 drul_ast.mli

219 drul_helpers.ml
42 drul_interpreter.ml 26 tests (parser)

471 drul_main.ml 285
87 drul_output.ml

119 drul_parser.mly 79 test (drul)
66 drul_printer.ml 422

106 drul_scanner.mll
59 drul_types.ml 2 'test' functions
61 Makefile 399

8 test.ml
5 treedump.ml

 1283 total 1106 total
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