

DruL

A language to encourage laziness
among drummers

Motivation

• Make Rob’s life easier when he’s writing
new drum loops…

• Make it easy to write long drum parts via
algorithmic composition

• Simpler than alternatives e.g. Haskore - no
pitch or note durations.

Basic appearance:

• C-style identifiers
• Semicolons, Braces, Parentheses
• Commas
• Double-slash comments à la C++ (no multi-line

comments)
• In short, looks a lot like a C/Java descendent, with

one very important exception: map

Appearances can be deceptive

• Typing: strict, but dynamic
• Scoping: dynamic
• Side-effects: tightly controlled

– Limited to four kinds of statement: assignment, mapper
definition, instrument definition, and return

– NOT possible in an expression

• Small set of available types
• Small set of built-in functions, mostly constructors

and basic utilities
• Java-style method calls for some objects

Types

• Assignable: integer, clip, pattern
 only possible values for user-defined variables

• Literal: string, boolean
mostly available for debugging purposes

• Special: beat, mapper, instrument-name
– beat objects exist only within mappers

– mappers are created like functions (but no forward
declaration)

– instruments are definitions are special “function”

Wait, what were those?

• pattern: a sequence of boolean values (notes
and rests)

• instruments: a global list of instrument
names

• clip: a collection of patterns, mapped to
instruments for output

Finally, mappers

• The core distinction between DruL and micro-C:
mappers

• Allow creation of new patterns from existing ones
according to pre-defined transformations

• DruL has mappers instead of user-defined
functions

• Essentially, an iterator, but with special language
support for examining the current (musical)
context

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr

$1 -> 0
$2 -> 1
$3 -> 1

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr

$1 -> 0
$2 -> 1
$3 -> 1

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr

$1 -> 1
$2 -> 1
$3 -> 0

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr

$1 -> 0
$2 -> 1
$3 -> 0

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr next
(1)

prev
(1)

$1 -> 0
$2 -> 1
$3 -> 0

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr next
(2)

prev
(2)

$1 -> 0
$2 -> 1
$3 -> 0

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr next
(3)

prev
(3)

$1 -> 0
$2 -> 1
$3 -> 0

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr next
(4)

prev
(4)

$1 -> 0
$2 -> 1
$3 -> 0

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr

$1 -> 0
$2 -> 1
$3 -> 1

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr

$1 ->
$2 -> 1
$3 -> 1

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr

$1 ->
$2 -> 1
$3 -> 0

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr

$1 ->
$2 -> 1
$3 ->

0 0 1 0 0

1 1 1 1 1 1 1 1 0

1 1 0 0 1 1 0

curr

$1 ->
$2 -> 0
$3 ->

Demonstration Code
a = 3;
b = 5;

if (a > 0 && b > a)
{

print(“hello, world!”);
}
elseif (a >= 0)
{

print(“Well, that was unexpected”);
}
else
{

print(false);
}

Interesting Demonstration Code

p = pattern("10101111");
q = pattern("11110000");
r = concat(p, q);

if (r.length() < q.length())
{

print(q.repeat(3));
}
else
{

print (r.length());
}

And now, that mapper stuff…

p = pattern("10101111");
q = pattern("11110000");

r = map(p, q)
{

if ($1.note() && $2.note())
{

return pattern("11");
}
else { return $1; }

};

// prints "1101101111"

Named Mappers

mapper filterMap (pat, filter)
{

if (filter.rest()) { return pattern(""); }
else { return pat; }

}

filtered = map (p, q) filterMap;

// results in the pattern "1010"

The Superstructure

instruments("snare", "hihat", "kick");

c = clip(p, q, r);

c.outputText("sample.txt");

// midi needs a tempo (beats per minute)
c.outputMidi("sample.midi",120);

// Lilypond needs a title to typeset
c.outputLilypond("sample.ly", "Typeset Sample");

The proof of the pudding

p1 = pattern("1").repeat(352);
p2 = pattern("1").repeat(40);
…
mapper gcd(a, b) {

if (!a.prev(1).note() && !a.prev(1).rest()
 && !b.prev(1).note() && !b.prev(1).rest()) {

 tmp = map (p1, p2) subtract;
 if (tmp.length() == 0) { return p1; }
 elseif ((map(tmp) squishrests).length() > 0) { p1 = tmp; }
 else { p2 = tmp;}
 return map(p1, p2) gcd;
}
return pattern("");

}

Interpreter

• DruL is an interpreted language
• Not compiled since there isn't much

concern about performance
• Complex calculations are possible in DruL,

but not an intended use of language

Dynamic Language

• Variables are dynamically typed
• Hence, few possible static checks
• We didn’t do them (due to time constraints)
• DruL types map easily to Ocaml types

DruL Types

type drul_t =
Void
| Int of int
| Str of string
| Bool of bool
| Pattern of pattern
| Clip of pattern array
| Mapper of (string * string list * statement list)
| PatternAlias of pattern_alias
| Beat of pattern_alias * int
| Instruments of string list
| InstrumentAssignment of string * pattern

Syntax Tree

• Distinct boolean, integer and comparison
operator-types in AST, used in expressions

• Expressions tagged with line number, to
report errors in drul code

• A drul program is just a list of statements

Keywords, Functions and Methods

• Not all keywords are tokens (e.g.
functions)

• Built in functions are keywords
• Built in methods specific to DruL types

are not keywords
• Thus, method names can be used as

identifiers (variables, named mappers)

Statements

• Types: Expression, Assignment, Selection,
Mapper definitions, Return

• Blocks are not statements

Lessons Learned

• Standards are there for a reason
• Comma-separated lists

• Dynamic scoping is easy

• if/else implemented as a tree, not a list

• Tests are good
• Build test suite early, many tests
• Found us a bug on precedence for method calls

Lessons Learned

• Catching errors early is hard
• Move errors from scanner and parser down to the interpreter
• Less efficient for the user, may run half of the code before an error

• Ocaml's inference is great
• When it guesses what you want it to guess
• We one thaught we could do type inference ourselves...!

• Pair programming works well
• One by itslef, hard to take decision
• More than 2 around a computer is useless

Lines of code

main program test suite
40 drul_ast.mli

219 drul_helpers.ml
42 drul_interpreter.ml 26 tests (parser)

471 drul_main.ml 285
87 drul_output.ml

119 drul_parser.mly 79 test (drul)
66 drul_printer.ml 422

106 drul_scanner.mll
59 drul_types.ml 2 'test' functions
61 Makefile 399

8 test.ml
5 treedump.ml

 1283 total 1106 total

	DruL
	Motivation
	Basic appearance:
	Appearances can be deceptive
	Types
	Wait, what were those?
	Finally, mappers
	PowerPoint Presentation
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Demonstration Code
	Interesting Demonstration Code
	And now, that mapper stuff…
	Named Mappers
	The Superstructure
	The proof of the pudding
	Interpreter
	Dynamic Language
	DruL Types
	Syntax Tree
	Keywords, Functions and Methods
	Statements
	Lessons Learned
	Slide 34
	Lines of code

