
Digital Design with
Synthesizable VHDL

Prof. Stephen A. Edwards

sedwards@cs.columbia.edu

Columbia University

Spring 2008

Digital Design with Synthesizable VHDL – p. 1

Why HDLs?

Y

B

A

Vdd

Vss

B

A

Y

1970s: SPICE transistor-level netlists

An XOR built from four NAND gates

.MODEL P PMOS

.MODEL N NMOS

.SUBCKT NAND A B Y Vdd Vss

M1 Y A Vdd Vdd P

M2 Y B Vdd Vdd P

M3 Y A X Vss N

M4 X B Vss Vss N

.ENDS

X1 A B I1 Vdd 0 NAND

X2 A I1 I2 Vdd 0 NAND

X3 B I1 I3 Vdd 0 NAND

X4 I2 I3 Y Vdd 0 NAND

Digital Design with Synthesizable VHDL – p. 2

Why HDLs?

1980s: Graphical schematic capture programs

Digital Design with Synthesizable VHDL – p. 3

Why HDLs?

1990s: HDLs and Logic Synthesis
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity ALU is

port(A: in unsigned(1 downto 0);

B: in unsigned(1 downto 0);

Sel: in unsigned(1 downto 0);

Res: out unsigned(1 downto 0));

end ALU;

architecture behv of ALU is begin

process (A,B,Sel) begin

case Sel is

when "00" => Res <= A + B;

when "01" => Res <= A + (not B) + 1;

when "10" => Res <= A and B;

when "11" => Res <= A or B;

when others => Res <= "XX";

end case;

end process;

end behv;

Digital Design with Synthesizable VHDL – p. 4

Two Separate but Equal Languages

Verilog and VHDL
Verilog: More succinct, less flexible, really messy
VHDL: Verbose, very (too?) flexible, fairly messy
Part of languages people actually use identical.
Every synthesis system supports both.

Digital Design with Synthesizable VHDL – p. 5

Basic Lexical Rules of VHDL

Free-form: space only separates tokens.

Case-insensitive: “VHDL,” “vHdL,” and “vhdl”
are equivalent.

Comments: from “” to the end of the line.

Identifiers: [azAZ](_?[azAZ09])*

Examples: X X_or_Y ADDR addr

Illegal: 14M CLK__4 FOO_

Digital Design with Synthesizable VHDL – p. 6

Literals in VHDL

Decimal integers∗: 1 42 153_1203

Based integers∗: 2#1_0010# 16#F001D#

Characters: ’0’ ’1’ ’X’

Strings: "101011" "XXXXXX"

Bit string literals∗: B"1001_0101" X"95"

mean "10010101"

∗Underscores added for readability are ignored

Digital Design with Synthesizable VHDL – p. 7

Combinational Logic in a
Dataflow Style

Digital Design with Synthesizable VHDL – p. 8

Bits

Logical True False

Binary 1 0

Voltage 1.65–3.3V 0–1.65V

Timing Diagram HHH LLL

VHDL ’1’ ’0’

In VHDL, zeros and ones on wires are members
of an enumerated type. They are not Boolean.

Digital Design with Synthesizable VHDL – p. 9

The std_logic_1164 package

package std_logic_1164 is

type std_ulogic is

(’U’, Uninitialized

’X’, Forcing Unknown

’0’, Forcing 0

’1’, Forcing 1

’Z’, High Impedance

’W’, Weak Unknown

’L’, Weak 0

’H’, Weak 1

’’ Don’t care

);

 The std_logic type allows tristate drivers (preferred)

subtype std_logic is resolved std_ulogic;

 Lots more...
Digital Design with Synthesizable VHDL – p. 10

Boolean Operators

The basic ones in VHDL:

a b a and b a or b not a

’0’ ’0’ ’0’ ’0’ ’1’

’0’ ’1’ ’0’ ’1’ ’1’

’1’ ’0’ ’0’ ’1’ ’0’

’1’ ’1’ ’1’ ’1’ ’0’

a b a nand b a nor b a xor b

’0’ ’0’ ’1’ ’1’ ’0’

’0’ ’1’ ’1’ ’0’ ’1’

’1’ ’0’ ’1’ ’0’ ’1’

’1’ ’1’ ’0’ ’0’ ’0’
Digital Design with Synthesizable VHDL – p. 11

Rules of Boolean Algebra (1)

 Precedence

not a or b and c = (not a) or (b and c)

 Basic relationships

not not a = a

a and ’1’ = a

a and ’0’ = ’0’

a or ’1’ = ’1’

a or ’0’ = a

a and a = a

a and not a = ’0’

a or a = a

a or not a = ’1’

a nand b = not (a and b)

a nor b = not (a or b)

a xor ’0’ = a

a xor ’1’ = not a

a xor b = (not a and b) or (a and not b)
Digital Design with Synthesizable VHDL – p. 12

Rules of Boolean Algebra (2)

 Commutativity

a and b = b and a

a or b = b or a

 Associativity

a and (b and c) = (a and b) and c

a or (b or c) = (a or b) or c

 Distributivity

a and (b or c) = a and b or a and c

a or (b and c) = (a or b) and (a or c)

 De Morgan’s Law

not (a and b) = not a or not b

not (a or b) = not a and not b

Digital Design with Synthesizable VHDL – p. 13

A Full Adder: Truth Table

a b c carry sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

carry <=

(not a and b and c) or

(a and not b and c) or

(a and b and not c) or

(a and b and c);

sum <=

(not a and not b and c) or

(not a and b and not c) or

(a and not b and not c) or

(a and b and c);

Each row represents a minterm

Sum-of-products form: sum of each minterm in
which output is true

Digital Design with Synthesizable VHDL – p. 14

Simplifying Using Boolean Rules

carry <= (not a and b and c) or (a and not b and c) or

(a and b and not c) or (a and b and c);

<= (a and b and not c) or (a and b and c) or

(not a and b and c) or (a and b and c) or

(a and not b and c) or (a and b and c);

<= (a and b) or (b and c) or (a and c);

sum <= (not a and not b and c) or (not a and b and not c) or

(a and not b and not c) or (a and b and c);

<= (not a) and ((not b and c) or (b and not c)) or

a and ((not b and not c) or (b and c));

<= a xor b xor c;

Digital Design with Synthesizable VHDL – p. 15

Structure of a VHDL Module

Ports

in

in

out

out

inout

Component

Component

X <= ’1’ when Y = ’1’ and X = "110" else ’0’

Dataflow Expression

Process
process (clk)

begin

if rising_edge(clk) then

count <= count + 1;

end if;

end process;

Signal

Digital Design with Synthesizable VHDL – p. 16

A Full Adder in VHDL

a
b
c

sum
carry

library ieee; always needed

use ieee.std_logic_1164.all; std_logic, et al.

entity full_adder is the interface

port(a, b, c : in std_logic;

sum, carry : out std_logic);

end full_adder;

architecture imp of full_adder is the implementation

begin

sum <= (a xor b) xor c; combinational logic

carry <= (a and b) or (a and c) or (b and c);

end imp;

Digital Design with Synthesizable VHDL – p. 17

...After Logic Synthesis

sum~1

carry~0

carry~1

carry~4
a

b
c

sum

carry

carry~3

Digital Design with Synthesizable VHDL – p. 18

Vectors of Bits

Three standard synthesizable bit vector types:

Type Library Logic Arith. Neg.

std_logic_vector ieee_std_1164
√

unsigned numeric_std
√ √

signed numeric_std
√ √ √

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity vectors is

port(vect : in std_logic_vector(1 downto 0);

unsi : in unsigned(7 downto 0);

sign : out unsigned(15 downto 0));

end entity; Digital Design with Synthesizable VHDL – p. 19

Endianness

The perpetual battle: Is “0” most or least
significant?

Little Endian 3 2 1 0 unsigned(3 downto 0)

Big Endian 0 1 2 3 unsigned(0 to 3)

Arguments on both sides will continue forever.

I suggest using Little Endian for vectors.

Digital Design with Synthesizable VHDL – p. 20

Binary and Hexadecimal in VHDL

Decimal Binary Hex
0 "0" x"0"

1 "1" x"1"

2 "10" x"2"

3 "11" x"3"

4 "100" x"4"

5 "101" x"5"

6 "110" x"6"

7 "111" x"7"

8 "1000" x"8"

9 "1001" x"9"

10 "1010" x"A"

11 "1011" x"B"

12 "1100" x"C"

13 "1101" x"D"

14 "1110" x"E"

15 "1111" x"F"

16 "10000" x"10"

17 "10001" x"11"

18 "10010" x"12"

19 "10011" x"13"

Vector types are arrays of
std_logic

Literals are therefore strings
of 0’s and 1’s
 from std_logic_1164

type std_logic_vector is

array (natural range <>) of std_logic;

 from numeric_std

type unsigned is

array (natural range <>) of std_logic;

type signed is

array (natural range <>) of std_logic;

Digital Design with Synthesizable VHDL – p. 21

Two’s Complement

Decimal Binary Hex
8 "1000" x"8"

7 "1001" x"9"

6 "1010" x"A"

5 "1011" x"B"

4 "1100" x"C"

3 "1101" x"D"

2 "1110" x"E"

1 "1111" x"F"

0 "0000" x"0"

1 "0001" x"1"

2 "0010" x"2"

3 "0011" x"3"

4 "0100" x"4"

5 "0101" x"5"

6 "0110" x"6"

7 "0111" x"7"

How do you represent negative
numbers?

Two’s complement produces
simpler logic than sign bit alone.

Idea: Add constant 2n to
negative numbers. Simply
discard overflow after addition
or subtraction.

An n-bit number represents
−2n−1 to 2n−1−1.

The signed type in
numeric_std uses this

Digital Design with Synthesizable VHDL – p. 22

A Hex-to-seven-segment Decoder

a

b

c

d

e

f

g

Digital Design with Synthesizable VHDL – p. 23

VHDL: Hex-to-7-segment Decoder

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all; Provides the unsigned type

entity hex7seg is

port (input : in unsigned(3 downto 0); A number

output : out std_logic_vector(6 downto 0)); Just bits

end hex7seg;

architecture combinational of hex7seg is

begin

with input select output <=

"0111111" when x"0", "0000110" when x"1", Bad style

"1011011" when x"2", "1001111" when x"3", one case

"1100110" when x"4", "1101101" when x"5", per line

"1111101" when x"6", "0000111" when x"7", preferred

"1111111" when x"8", "1101111" when x"9",

"1110111" when x"A", "1111100" when x"B",

"0111001" when x"C", "1011110" when x"D",

"1111001" when x"E", "1110001" when x"F",

"XXXXXXX" when others;

end combinational; Digital Design with Synthesizable VHDL – p. 24

Four-to-one mux: when .. else

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity multiplexer_4_1 is

port(in0, in1, in2, in3 : in unsigned(15 downto 0);

s : in unsigned(1 downto 0);

z : out unsigned(15 downto 0));

end multiplexer_4_1;

architecture comb of multiplexer_4_1 is

begin

z <= in0 when s = "00" else

in1 when s = "01" else

in2 when s = "10" else

in3 when s = "11" else

(others => ’X’); Shorthand for "all X’s"

end comb;

Digital Design with Synthesizable VHDL – p. 25

Four-to-one mux: with...select

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity multiplexer_4_1 is

port(in0, in1, in2, in3 : in unsigned(15 downto 0);

s0, s1 : in std_logic;

z : out unsigned(15 downto 0));

end multiplexer_4_1;

architecture comb of multiplexer_4_1 is

signal sels : unsigned(1 downto 0);

begin

sels <= s1 & s0; "&" is vector concatenation

with sels select would not resolve type if "s1 & s0" here

z <= in0 when "00",

in1 when "01",

in2 when "10",

in3 when "11",

(others => ’X’) when others;

end comb;

Digital Design with Synthesizable VHDL – p. 26

Three-to-eight Decoder

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity dec1_8 is

port (

sel : in unsigned(2 downto 0);

res : out unsigned(7 downto 0));

end dec1_8;

architecture comb of dec1_8 is

begin

res <= "00000001" when sel = "000" else

"00000010" when sel = "001" else

"00000100" when sel = "010" else

"00001000" when sel = "011" else

"00010000" when sel = "100" else

"00100000" when sel = "101" else

"01000000" when sel = "110" else

"10000000";

end comb; Digital Design with Synthesizable VHDL – p. 27

Priority Encoder
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity priority is

port (

sel : in std_logic_vector(7 downto 0);

code : out unsigned(2 downto 0));

end priority;

architecture imp of priority is

begin

code <= "000" when sel(0) = ’1’ else

"001" when sel(1) = ’1’ else

"010" when sel(2) = ’1’ else

"011" when sel(3) = ’1’ else

"100" when sel(4) = ’1’ else

"101" when sel(5) = ’1’ else

"110" when sel(6) = ’1’ else

"111";

end imp;

Digital Design with Synthesizable VHDL – p. 28

Integer Arithmetic

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity adder is

port (

A, B : in unsigned(7 downto 0);

CI : in std_logic;

SUM : out unsigned(7 downto 0);

CO : out std_logic);

end adder;

architecture imp of adder is

signal tmp : unsigned(8 downto 0);

begin

tmp <= A + B + ("0" & ci); trick to promote ci to unsigned

SUM <= tmp(7 downto 0);

CO <= tmp(8);

end imp;
Digital Design with Synthesizable VHDL – p. 29

A Very Simple ALU

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity alu is

port (

A, B : in unsigned(7 downto 0);

ADD : in std_logic;

RES : out unsigned(7 downto 0));

end alu;

architecture imp of alu is

begin

RES <= A + B when ADD = ’1’ else

A B;

end imp;

Digital Design with Synthesizable VHDL – p. 30

Arithmetic Comparison

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity comparator is

port (

A, B : in unsigned(7 downto 0);

GE : out std_logic);

end comparator;

architecture imp of comparator is

begin

GE <= ’1’ when A >= B else ’0’;

end imp;

Digital Design with Synthesizable VHDL – p. 31

Tri-state drivers
How to use a pin as both an input and output.
Not for internal FPGA signals.
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity tri_demo is

port(addr : out unsigned(15 downto 0); output only

data : inout unsigned(7 downto 0)); bidirectional

end tri_demo;

architecture rtl of tri_demo is

signal oe : std_logic; output enable: control direction of data

signal d_out : unsigned(7 downto 0);

begin

data <= d_out when oe = ’1’ else Drive data to chip

(others => ’Z’); Read data from external chip

end rtl;
Digital Design with Synthesizable VHDL – p. 32

Syntax of Expressions

Logical operators: and or xor nand nor

Relational operators: = /= < <= > >=

Additive operators: + & (concatenation)

Multiplicative operators: * / mod rem

Others: abs not ** (exponentiation)

Primaries: identifier
literal
name(expr to expr)
name(expr downto expr)
(choice (| choice)∗ => expr)

Digital Design with Synthesizable VHDL – p. 33

Summary of Dataflow Modeling

Conditional signal assignment (when...else)
target <=

(expr when expr else)∗

expr ;

Selected signal assignment (with...select)
with expr select

target <=
(expr when choice (| choice)∗,)∗

expr when choice (| choice)∗ ;
A choice is a simple expression (i.e., not
logical or comparison) or others.

Note: when does not nest (i.e., it’s not an expr).
Digital Design with Synthesizable VHDL – p. 34

Hierarchy: Instantiating
components (entities)

Digital Design with Synthesizable VHDL – p. 35

Hierarchy: port map positional style

aA(0)
bB(0)
c

’0’
sumC(0)

carry

aA(1)
bB(1)
c

sumC(1)

carry
C(2)

carry

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity add2 is

port (A, B : in unsigned(1 downto 0);

C : out unsigned(2 downto 0));

end add2;

architecture imp of add2 is

component full_adder

port (a, b, c : in std_logic;

sum, carry : out std_logic);

end component;

signal carry : std_logic;

begin

bit0 : full_adder port map (A(0), B(0), ’0’, C(0), carry);

bit1 : full_adder port map (A(1), B(1), carry, C(1), C(2));

end imp;
Digital Design with Synthesizable VHDL – p. 36

Hierarchy: port map by-name style

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity add2n is

port (A, B : in unsigned(1 downto 0);

C : out unsigned(2 downto 0));

end add2n;

architecture imp of add2n is

component full_adder

port (a, b, c : in std_logic;

sum, carry : out std_logic);

end component;

signal carry : std_logic;

begin

bit0 : full_adder port map (a => A(0), b => B(0), c => ’0’,

sum => C(0), carry => carry);

bit1 : full_adder port map (a => A(1), b => B(1), c => carry,

sum => C(1), carry => C(2));

end imp; Digital Design with Synthesizable VHDL – p. 37

Direct Instantiation (no component)

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity add2 is

port (A, B : in unsigned(1 downto 0);

C : out unsigned(2 downto 0));

end add2;

architecture imp of add2 is

signal carry : std_logic;

begin

bit0 : entity work.full_adder everything in "work" project

port map (A(0), B(0), ’0’, C(0), carry);

bit1 : entity work.full_adder

port map (A(1), B(1), carry, C(1), C(2));

end imp;

Must be compiled after full_adder.vhd! Digital Design with Synthesizable VHDL – p. 38

Generate: Ripple-carry adder
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity rippleadder is

port (a, b : in unsigned(3 downto 0);

cin : in std_logic;

sum : out unsigned(3 downto 0);

cout : out std_logic);

end rippleadder;

architecture imp of rippleadder is

signal c : unsigned(4 downto 0);

begin

c(0) <= cin;

G1: for m in 0 to 3 generate expanded at compile time

sum(m) <= a(m) xor b(m) xor c(m);

c(m+1) <= (a(m) and b(m)) or (b(m) and c(m)) or

(a(m) and c(m));

end generate G1;

cout <= c(4);

end imp;
Digital Design with Synthesizable VHDL – p. 39

Combinational Logic in a
Procedural Style

Digital Design with Synthesizable VHDL – p. 40

Processes

Process: sequential code fragment invoked when
signal in sensitivity list changes.
A correct, but dumb way to model an inverter:
library ieee;

use ieee.std_logic_1164.all;

entity dumb_inv is

port(a: in std_logic; y : out std_logic);

end dumb_inv;

architecture comb of dumb_inv is

begin

process (a) invoked when signal a changes

begin

if a = ’1’ then y <= ’0’; else y <= ’1’; end if;

end process;

end comb;
Digital Design with Synthesizable VHDL – p. 41

A 4-to-1 mux in the procedural style

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity pmultiplexer_4_1 is

port(in0, in1, in2, in3 : in unsigned(15 downto 0);

s : in unsigned(1 downto 0);

z : out unsigned(15 downto 0));

end pmultiplexer_4_1;

architecture comb of pmultiplexer_4_1 is

begin

process (in0, in1, in2, in3, s)

begin

z <= (others => ’X’); default

if s = "00" then z <= in0; assignment overrides default

elsif s = "01" then z <= in1;

elsif s = "10" then z <= in2;

elsif s = "11" then z <= in3;

end if;

end process;

end comb;

Digital Design with Synthesizable VHDL – p. 42

A 4-to-1 mux using case

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity cmultiplexer_4_1 is

port(in0, in1, in2, in3 : in unsigned(15 downto 0);

s : in unsigned(1 downto 0);

z : out unsigned(15 downto 0));

end cmultiplexer_4_1;

architecture comb of cmultiplexer_4_1 is

begin

process (in0, in1, in2, in3, s)

begin

case s is

when "00" => z <= in0;

when "01" => z <= in1;

when "10" => z <= in2;

when "11" => z <= in3;

when others => z <= (others => ’X’);

end case;

end process;

end comb;

Digital Design with Synthesizable VHDL – p. 43

An Address Decoder

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity adecoder is

port(a : in unsigned(15 downto 0);

ram, rom, video, io : out std_logic);

end adecoder;

architecture proc of adecoder is

begin

process (a)

begin

ram <= ’0’; rom <= ’0’; video <= ’0’; io <= ’0’;

if a(15) = ’0’ then ram <= ’1’; 00007FFF

elsif a(14 downto 13) = "00" then video <= ’1’; 80009FFF

elsif a(14 downto 12) = "101" then io <= ’1’; D000DFFF

elsif a(14 downto 13) = "11" then rom <= ’1’; E000FFFF

end if;

end process;

end proc; Digital Design with Synthesizable VHDL – p. 44

Summary of Procedural Modeling

null

signal <= expr ;

variable := expr ;

if expr then stmts
(elsif expr then stmts)∗

(else stmts)?
end if;

case expr is
(when choices => stmts)∗

end case;

Note: when...else and with...select not allowed

Digital Design with Synthesizable VHDL – p. 45

Sequential Logic

Digital Design with Synthesizable VHDL – p. 46

Basic D Flip-Flop

D

Clk

Q

library ieee;

use ieee.std_logic_1164.all;

entity flipflop is

port (Clk, D : in std_logic;

Q : out std_logic);

end flipflop;

architecture imp of flipflop is

begin

process (Clk) Sensitive only to Clk

begin

if rising_edge(Clk) then Only on the rising edge of Clk

Q <= D;

end if;

end process;

end imp;
Digital Design with Synthesizable VHDL – p. 47

Flip-Flop with Latch Enable

1

0
D

Clk

Q

EN

library ieee;

use ieee.std_logic_1164.all;

entity flipflop_enable is

port (Clk, Reset, D, EN : in std_logic;

Q : out std_logic);

end flipflop_enable;

architecture imp of flipflop_enable is

begin

process (Clk)

begin

if rising_edge(Clk) then

if EN = ’1’ then

Q <= D;

end if;

end if;

end process;

end imp;

Digital Design with Synthesizable VHDL – p. 48

Flip-Flop with Synchronous Reset

library ieee;

use ieee.std_logic_1164.all;

entity flipflop_reset is

port (Clk, Reset, D : in std_logic;

Q : out std_logic);

end flipflop_reset;

architecture imp of flipflop_reset is

begin

process (Clk)

begin

if rising_edge(Clk) then

if Reset = ’1’ then

Q <= ’0’;

else

Q <= D;

end if;

end if;

end process;

end imp; Digital Design with Synthesizable VHDL – p. 49

Four-bit binary counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity counter is

port(Clk, Reset : in std_logic;

Q : out unsigned(3 downto 0));

end counter;

architecture imp of counter is

signal count : unsigned(3 downto 0);

begin

process (Clk)

begin

if rising_edge(Clk) then

if Reset = ’1’ then count <= (others => ’0’);

else count <= count + 1;

end if;

end if;

end process;

Q <= count; copy count to output

end imp;
Digital Design with Synthesizable VHDL – p. 50

Eight-bit serial in/out shift register

library ieee;

use ieee.std_logic_1164.all;

entity shifter is

port (Clk, SI : in std_logic;

SO : out std_logic);

end shifter;

architecture impl of shifter is

signal tmp : std_logic_vector(7 downto 0);

begin

process (Clk)

begin

if rising_edge(Clk) then

tmp <= tmp(6 downto 0) & SI; & is concatenation

end if;

end process;

SO <= tmp(7); Copy to output

end impl; Digital Design with Synthesizable VHDL – p. 51

Synchronous RAM
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity ram_32_4 is

port (

Clk, WE : in std_logic; Clock and write enable

addr : in unsigned(4 downto 0);

di : in unsigned(3 downto 0); Data in

do : out unsigned(3 downto 0)); Data out

end ram_32_4;

architecture imp of ram_32_4 is

type ram_type is array(0 to 31) of unsigned(3 downto 0);

signal RAM : ram_type;

begin

process (Clk) begin

if rising_edge(Clk) then

if we = ’1’ then RAM(TO_INTEGER(addr)) <= di;

do <= di; writethrough

else do <= RAM(TO_INTEGER(addr));

end if; end if;

end process;

end imp;

Digital Design with Synthesizable VHDL – p. 52

A small ROM
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity rom_32_4 is

port (Clk, en : in std_logic;

addr : in unsigned(3 downto 0);

data : out unsigned(3 downto 0));

end rom_32_4;

architecture imp of rom_32_4 is

type rom_type is array (0 to 15) of unsigned(3 downto 0);

constant ROM : rom_type :=

(X"1", X"2", X"3", X"4", X"5", X"6", X"7", X"8",

X"9", X"A", X"B", X"C", X"D", X"E", X"F", X"1");

begin

process (Clk)

begin

if rising_edge(Clk) then

if en = ’1’ then data <= ROM(TO_INTEGER(addr)); end if;

end if;

end process;

end imp;
Digital Design with Synthesizable VHDL – p. 53

Variables and Signals
library ieee; use ieee.std_logic_1164.all;

entity twoshiftreg is

port(clk, si1, si2 : in std_logic; so1, so2 : out std_logic);

end twoshiftreg;

architecture imp of twoshiftreg is

signal sr1 : std_logic_vector(1 downto 0); visible globally

begin

process (clk)

variable sr2 : std_logic_vector(1 downto 0); processonly

begin

if rising_edge(clk) then

sr1(1) <= si1; Effect seen only after next clk

sr1(0) <= sr1(1); Any order works

so1 <= sr1(0);

so2 <= sr2(0);

sr2(0) := sr2(1); Effect seen immediately

sr2(1) := si2; Must be in this order

end if;

end process;

end imp;
Digital Design with Synthesizable VHDL – p. 54

Variables vs. Signals

Property Variables Signals
Scope Local to process Visible throughout

architecture

Assignment Felt immediately
(e.g., in next
statement)

Only visible after
clock rises (i.e., pro-
cess terminates)

Lesson: use variables to hold temporary results
and state to be hidden within a process.
Otherwise, use signals.

Digital Design with Synthesizable VHDL – p. 55

Constants: A VGA sync generator
library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all;

entity sync_gen is

port (clk : in std_logic; hs, vs : out std_logic);

end sync_gen;

architecture rtl of sync_gen is

constant HTOTAL : integer := 800; constant HSYNC : integer := 96;

constant VTOTAL : integer := 525; constant VSYNC : integer := 2;

signal hcount, vcount : unsigned(9 downto 0);

begin

process (clk)

begin

if rising_edge(clk) then

if hcount = HTOTAL 1 then

hcount <= (others => ’0’); hs <= ’1’;

if vcount = VTOTAL 1 then

vcount <= (others => ’0’); vs <= ’1’;

else

if vcount = VSYNC then vs <= ’0’; end if;

vcount <= vcount + 1;

end if;

else

if hcount = HSYNC then hs <= ’0’; end if;

hcount <= hcount + 1;

end if;

end if;

end process;

end rtl;

Digital Design with Synthesizable VHDL – p. 56

Rocket Science: FSMs

State

Combinational
Logic

Clock

Next StatePresent State

Inputs Outputs

This is a Mealy FSM: outputs may depend
directly on inputs.

Digital Design with Synthesizable VHDL – p. 57

Moore FSMs

State

Combinational
Logic

Clock

Next StatePresent State

Inputs

Outputs

This is a Moore FSM: outputs come from state
bits.

Digital Design with Synthesizable VHDL – p. 58

Coding Moore State Machines
library ieee; use ieee.std_logic_1164.all;

entity threecount is

port(clk, reset, count : in std_logic; at0 : out std_logic);

end threecount;

architecture moore of threecount is

type states is (ZERO, ONE, TWO); States encoded automatically

begin

process (clk)

variable state : states;

begin

if rising_edge(clk) then

if reset = ’1’ then state := ZERO;

else case state is

when ZERO => if count = ’1’ then state := ONE; end if;

when ONE => if count = ’1’ then state := TWO; end if;

when TWO => if count = ’1’ then state := ZERO; end if;

end case;

end if;

if state = ZERO then at0 <= ’1’; else at0 <= ’0’; end if;

end if;

end process; end moore;
Digital Design with Synthesizable VHDL – p. 59

Coding Mealy State Machines
architecture mealy of ... is

type states is (IDLE, STATE1, ...);

signal state, next_state : states;

begin

process (clk) Sequential process

begin

if rising_edge(clk) then state <= next_state; end if;

end process;

process (reset, state, i1, i2, ...) Combinational process

begin

next_state <= state; Default: hold

if reset = ’1’ then

next_state <= IDLE;

else

case state is

when IDLE =>

if i1 = ’1’ then

next_state <= STATE1;

end if;

when STATE1 =>
Digital Design with Synthesizable VHDL – p. 60

The Traffic Light Controller

cars
cars This controls a traffic light at

the intersection of a busy highway
and a farm road. Normally,
the highway light is green but if
a sensor detects a car on the farm

road, the highway light turns yellow then red. The
farm road light then turns green until there are no
cars or after a long timeout. Then, the farm road light
turns yellow then red, and the highway light returns to
green. The inputs to the machine are the car sensor,
a short timeout signal, and a long timeout signal. The
outputs are a timer start signal and the colors of the
highway and farm road lights.
Source: Mead and Conway, Introduction to VLSI Systems, 1980, p. 85.

Digital Design with Synthesizable VHDL – p. 61

FSM for the Traffic Light Controller

HG HY

FGFY

C + L

CL/T

S

S/T

CL

C + L/T

S

S/T

C: Car sensor
S: Short timeout
L: Long timeout

T: Start timer

St Hwy Farm
HG G R
HY Y R
FG R G
FY R Y

Digital Design with Synthesizable VHDL – p. 62

Traffic Light Controller in VHDL

library ieee;

use ieee.std_logic_1164.all;

entity tlc is

port (clk, reset : in std_logic;

cars, short, long : in std_logic;

highway_yellow, highway_red : out std_logic;

farm_yellow, farm_red : out std_logic;

start_timer : out std_logic);

end tlc;

architecture imp of tlc is

type states is (HG, HY, FY, FG);

signal state, next_state : states;

begin

process (clk) Sequential process

begin

if rising_edge(clk) then

state <= next_state;

end if;

end process; Digital Design with Synthesizable VHDL – p. 63

TLC in VHDL, continued

process (state, reset, cars, short, long)

begin

if reset = ’1’ then

start_timer <= ’1’; next_state <= HG;

else

case state is

when HG =>

highway_yellow <= ’0’; highway_red <= ’0’;

farm_yellow <= ’0’; farm_red <= ’1’;

if cars = ’1’ and long = ’1’ then

start_timer <= ’1’; next_state <= HY;

else start_timer <= ’0’; next_state <= HG;

end if;

when HY =>

highway_yellow <= ’1’; highway_red <= ’0’;

farm_yellow <= ’0’; farm_red <= ’1’;

if short = ’1’ then

start_timer <= ’1’; next_state <= FG;

else start_timer <= ’0’; next_state <= HY;

end if; Digital Design with Synthesizable VHDL – p. 64

TLC in VHDL, concluded

when FG =>

highway_yellow <= ’0’; highway_red <= ’1’;

farm_yellow <= ’0’; farm_red <= ’0’;

if cars = ’0’ or long = ’1’ then

start_timer <= ’1’; next_state <= FY;

else start_timer <= ’0’; next_state <= FG;

end if;

when FY =>

highway_yellow <= ’0’; highway_red <= ’1’;

farm_yellow <= ’1’; farm_red <= ’0’;

if short = ’1’ then

start_timer <= ’1’; next_state <= HG;

else start_timer <= ’0’; next_state <= FY;

end if;

end case;

end if;

end process;

end imp;

Digital Design with Synthesizable VHDL – p. 65

Summary of the Three
Modeling Styles

Digital Design with Synthesizable VHDL – p. 66

Three Modeling Styles: Dataflow (1)

Combinational logic described by expressions
 Simple case

a <= x and y;

 When...else selector

b <= ’1’ when x = y else

’0’;

 With..select selector

with x select

c <=

’1’ when ’0’,

’0’ when ’1’,

’X’ when others;

Digital Design with Synthesizable VHDL – p. 67

Procedural Combinational (2)

Combinational logic described by statements and
expressions
process (x, y) Should be sensitive to every signal it reads

begin

a <= x and y;

if x = y then

b <= ’1’;

else

b <= ’0’;

end if;

case x of

’0’ => c <= ’1’;

’1’ => c <= ’0’;

others => c <= ’X’;

end case;

end process;

Digital Design with Synthesizable VHDL – p. 68

Three Styles: Procedural Sequential (3)

Combinational logic driving flip-flops described by
statements and expressions.
process (clk) Sensitive only to the clock

begin

if rising_edge(clk) then Always check for rising edge

a <= x and y;

if x = y then

b <= ’1’;

else

b <= ’0’;

end if;

case x of

’0’ => c <= ’1’;

’1’ => c <= ’0’;

others => c <= ’X’;

end case;

end if;

end process; Digital Design with Synthesizable VHDL – p. 69

Ten Commandments of VHDL

Digital Design with Synthesizable VHDL – p. 70

I: Thou Shalt Design Before Coding

Know the structure of what you are
designing first.

Draw a block diagram of the datapath

Understand the timing (draw diagrams)

Draw bubble-and-arc diagrams for FSMs

Only once you have a design should you
start coding in VHDL

VHDL is only a way to ask for component

Digital Design with Synthesizable VHDL – p. 71

Block Diagram of a Character Gen.

Char.
RAM
2.5K

Font
RAM
1.5K

Controller

Shift Register

Dout

Din

Addr

VSYNC

HSYNC

Video

B
LA

N
K

Load/S
hift

Digital Design with Synthesizable VHDL – p. 72

Pixel-Level Timing

Clk ��������������������������

CharAddr VVVV�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVVVVVVVVVVi−1 i i+1

LoadChar LLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LLLLLLLLLL

CharData VVVVVVVV�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVVVVVVi−1 i

FontLoad LLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LLLLLL

PixelData VVVVVVVVVVVV�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVVi−1 i

Load/Shift LLLLLLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LL

Bit �VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV3 2 1 0 7 6 5 4 3 2 1Digital Design with Synthesizable VHDL – p. 73

Start-of-line Detail

140 141 142 143 144 145 146 147 148 149 150

Clk ��������������������������

Hcount �VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV

Column UUUU�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVVVVVVVVVV0 1

LoadChar LLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LLLLLLLLLL

CharData UUUUUUUU�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVVVVVV0

FontLoad LLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LLLLLL

PixelData UUUUUUUUUUUU�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVV0

Load/Shift LLLLLLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LL

HBLANK LLLLLLLLLLLLLLLL�HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

Pixel UUUUUUUUUUUUUUUU�VV�VV�VV�VV�VV�VV�VV�VV�VV0 1 2 3 4 5 6

Digital Design with Synthesizable VHDL – p. 74

End-of-line detail

772 773 774 775 776 777 778 779 780 781 782

Clk ��������������������������

Hcount �VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV

Column VVVV�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�UUUUUUUUUUUUUU78 79

LoadChar LLLL�HH�LL

CharData VVVVVVVV�VV78 79

FontLoad LLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

PixelData VVVVVVVVVVVV�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV78 79

Load/Shift LLLLLLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

HBLANK HH�LL

Pixel �VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�UU628 629 630 631 632 633 634 635 636 637 638

Digital Design with Synthesizable VHDL – p. 75

II: Thou Shalt be Synchronous

One global clock

Flip-flops generate inputs to combinational
logic, which computes inputs to flip-flops

Exactly one value per signal per clock cycle

Do not generate asynchronous reset signals;
only use them if they are external

Edge-triggered flip-flops only. Do not use
level-sensitive logic.

Do not generate clock signals. Use
multiplexers to create “load enable” signals
on flip-flops.

Digital Design with Synthesizable VHDL – p. 76

III: Thou Shalt Be Sensitive

Combinational processes: list all process inputs

process (state, long)

begin

if reset = ’1’ then

next_state <= HG;

start_timer <= ’1’;

else

case state is

when HG =>

farm_yellow <= ’0’;

if cars = ’1’ and long = ’1’ then

next_state <= HY;

else

next_state <= HG;

end if;

when HY =>

farm_yellow <= ’0’;

if short = ’1’ then

next_state <= FG;

else

next_state <= HY;

end if;

process (state, reset, cars, short, long)

begin

if reset = ’1’ then

next_state <= HG;

start_timer <= ’1’;

else

case state is

when HG =>

farm_yellow <= ’0’;

if cars = ’1’ and long = ’1’ then

next_state <= HY;

else

next_state <= HG;

end if;

when HY =>

farm_yellow <= ’0’;

if short = ’1’ then

next_state <= FG;

else

next_state <= HY;

end if;
Digital Design with Synthesizable VHDL – p. 77

III: Thou Shalt Be Sensitive

Sequential processes: always include the clock.
Include reset if asynchronous, and nothing else.

process (Clk, D)

begin

if rising_edge(Clk) then

Q <= D;

end if;

end process;

process (Clk, D)

begin

if reset = ’1’ then

Q <= ’0’;

else

if rising_edge(Clk) then

Q <= D;

end if;

end if;

end process;

process (Clk)

begin

if rising_edge(Clk) then

Q <= D;

end if;

end process;

process (Clk, reset)

begin

if reset = ’1’ then

Q <= ’0’;

else

if rising_edge(Clk) then

Q <= D;

end if;

end if;

end process;

Digital Design with Synthesizable VHDL – p. 78

IV: Thou Shalt Assign All Outputs

Synthesis infers level-sensitive latches if
sometimes you do not assign an output.

process (state, input)

begin

case state is

when S1 =>

if input = ’1’ then

output <= ’0’;

end if;

when S2 =>

output <= ’1’;

end case;

end process;

process (state, input)

begin

case state is

when S1 =>

if input = ’1’ then

output <= ’0’;

else

output <= ’1’;

end if;

when S2 =>

output <= ’1’;

end case;

end process;

Digital Design with Synthesizable VHDL – p. 79

“Default” values are convenient

 OK

process (state, input)

begin

case state is

when S1 =>

if input = ’1’ then

output <= ’0’;

else

output <= ’1’;

end if;

when S2 =>

output <= ’1’;

end case;

end process;

 Better

process (state, input)

begin

output <= ’1’;

case state is

when S1 =>

if input = ’1’ then

output <= ’0’;

end if;

end case;

end process;

Digital Design with Synthesizable VHDL – p. 80

V: Thou Shalt Enumerate States

Better to use an enumeration to encode states:

type states is (START, RUN, IDLE, ZAPHOD);

signal current, next : states;

process (current)

begin

case current is

when START => ...

when RUN => ...

when IDLE => ...

end case;

end process;

Running this produces a helpful error:

Compiling vhdl file "/home/cristi/cs4840/lab4/main.vhd" in Library work.

Entity <system> compiled.

ERROR:HDLParsers:813 "/home/cristi/cs4840/lab4/main.vhd" Line 80.

Enumerated value zaphod is missing in case.

>

Digital Design with Synthesizable VHDL – p. 81

VI:

(There is no rule six)

Digital Design with Synthesizable VHDL – p. 82

VII: Thou Shalt Avoid Async

Only use asynchronous reset when there is one
global signal from outside.

 OK for external Reset

process (Clk, Reset)

begin

if Reset = ’1’ then

Q <= ’0’;

else

if rising_edge(Clk) then

Q <= D;

end if;

end if;

end process;

 Better

process (Clk)

begin

if rising_edge(Clk) then

if Reset = ’1’ then

Q <= ’0’;

else

Q <= D;

end if;

end if;

end process;

Never generate your own asynchronous reset.
Generating a synchronous reset is fine

Digital Design with Synthesizable VHDL – p. 83

VIII: Thou Shalt Have One Version

Never assume signals from the test bench
that are not there on the board

It is hard enough to make simulation match
the design; do not make it any harder

If you must slow down hardware, carefully
generate a slower clock and only use that
clock globally.

Digital Design with Synthesizable VHDL – p. 84

IX: Thou Shalt Not Test For X Or Z

architecture behv of ALU is begin

process (A,B,Sel) begin

case Sel is

when "00" => Res <= A + B;

when "01" => Res <= A + (not B) + 1;

when "1X" => Res <= A and B;

when "1Z" => Res <= A or B;

when others => Res <= "XX";

end case;

end process;

end behv;

architecture behv of ALU is begin

process(A,B,Sel) begin

case Sel is

when "00" => Res <= A + B;

when "01" => Res <= A + (not B) + 1;

when "10" => Res <= A and B;

when "11" => Res <= A or B;

when others => Res <= "XX";

end case;

end process;

end behv;

This is legal VHDL, but the synthesized circuit
won’t behave like you expect.

Digital Design with Synthesizable VHDL – p. 85

X: Thou Shalt Not Specify Delays

The wait statement can delay for a certain
amount of time, e.g., “wait 10ns;”

Only use it in test benches that are not
meant to become hardware

Do not use them in the design of your
hardware

Digital Design with Synthesizable VHDL – p. 86

Pitfalls: Boolean vs. Std_logic

Don’t assign Boolean to std_logic.
signal a : std_logic;

signal b : unsigned(7 downto 0);

a <= b = x"7E"; BAD: result is Boolean, not std_logic

a <= ’1’ when b = x"7E" else ’0’; OK

Don’t test std_logic in a Boolean context.
signal a, b, foo : std_logic;

if a then BAD: A is not Boolean

foo <= ’1’;

end if;

b <= ’0’ when a else ’1’; BAD: a is not Boolean

if a = ’1’ then OK

foo <= ’1’;

end if;

Digital Design with Synthesizable VHDL – p. 87

Pitfalls: Inferring a Latch

In a combinational process, make sure all output
signals are always assigned.
process (x, y)

begin

if x = ’1’ then

y <= ’0’;

end if;

 BAD: y not assigned when x = ’0’, synthesis infers a latch

end process;

process (x, y)

begin

y <= ’1’; OK: y is always assigned

if x = ’1’ then

y <= ’0’;

end if;

end process
Digital Design with Synthesizable VHDL – p. 88

Pitfalls: Reading Output Port

library ieee;

use ieee.std_logic_1164.all;

entity dont_read_output is

port (a : in std_logic;

x, y : out std_logic);

end dont_read_output;

architecture BAD of dont_read_output is

begin

x <= not a;

y <= not x; Error: can’t read an output port

end BAD;

architecture OK of dont_read_output is

signal x_sig : std_logic;

begin

x_sig <= not a;

x <= x_sig; x_sig just another name for x

y <= not x_sig; OK

end OK; Digital Design with Synthesizable VHDL – p. 89

Pitfalls: Complex Port Map Args

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity bad_port_map is end bad_port_map;

architecture BAD of bad_port_map is

component bar port (x : in unsigned(5 downto 0)); end component;

signal a : unsigned(3 downto 0);

begin

mybar : bar port map (x => "000" & a); BAD

end BAD;

architecture OK of bad_port_map is

component bar port (x : in unsigned(5 downto 0)); end component;

signal a : unsigned(3 downto 0);

signal aa : unsigned(5 downto 0);

begin

aa <= "000" & a;

mybar : bar port map (x => aa); OK

end OK; Digital Design with Synthesizable VHDL – p. 90

Pitfalls: Combinational Loops

You never really need them.

Drive every signal from exactly one process or
concurrent assignment.

Don’t build SR latches. Use D flip-flops instead.

Digital Design with Synthesizable VHDL – p. 91

Pitfalls: Clock Gating

Dangerous, difficult to get right.

Use a single, global clock and latch enables to
perform the same function.

Digital Design with Synthesizable VHDL – p. 92

Pitfalls: Multiple Clock Domains

If you must, vary the phase and drive clocks
directly from flip-flops.

Digital Design with Synthesizable VHDL – p. 93

Writing Testbenches

Digital Design with Synthesizable VHDL – p. 94

Testbenches

One of VHDL’s key points: can describe hardware
and environment together.
 Explicit delays are allowed

clk <= not clk after 50 ns;

process

begin

reset <= ’0’;

wait 10 ns; Explicit delay

reset <= ’1’;

wait for a = ’1’; Delay for an event

assert b = ’1’ report "b did not rise" severity failure;

assert c = ’1’ report "c=0" severity warning; or error or note

wait for 50 ns; Delay for some time

wait; Halt this process

end process;

Digital Design with Synthesizable VHDL – p. 95

Testbench Methodology

Always put testbench in a separate .vhd file
since it cannot be synthesized.

Instantiate block under test and apply
desired inputs (clocks, other stimulus)

Use assert to check conditions

Try to emulate hardware environment as
closely as possible (no special inputs, etc.)

Digital Design with Synthesizable VHDL – p. 96

A Testbench

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity tlc_tb is A testbench usually has no ports

end tlc_tb;

architecture tb of tlc_tb is

signal clk : std_logic := ’0’; Must initialize!

 One signal per port is typical

signal reset, cars, short, long : std_logic;

signal farm_red, start_timer : std_logic;

begin

clk <= not clk after 34.92 ns; 14 MHz

Digital Design with Synthesizable VHDL – p. 97

A testbench continued

 Apply stimulus and check the results

process

begin

cars <= ’0’; short <= ’0’; long <= ’0’; reset <= ’1’;

wait for 100 ns;

assert start_timer = ’1’ report "No timer" severity error;

reset <= ’0’;

wait for 100 ns;

assert farm_red = ’1’ report "Farm not red" severity error;

wait;

end process;

 Instantiate the Unit Under Test

uut : entity work.tlc

port map (clk => clk, reset => reset,

cars => cars, short => short,

long => long, farm_red => farm_red,

start_timer => start_timer);

end tb;
Digital Design with Synthesizable VHDL – p. 98

	Why HDLs?
	Why HDLs?
	Why HDLs?
	Two Separate but Equal Languages
	Basic Lexical Rules of VHDL
	Literals in VHDL
	Bits
	The std_logic_1164 package
	Boolean Operators
	Rules of Boolean Algebra (1)
	Rules of Boolean Algebra (2)
	A Full Adder: Truth Table
	Simplifying Using Boolean Rules
	Structure of a VHDL Module
	A Full Adder in VHDL
	...After Logic Synthesis
	Vectors of Bits
	Endianness
	Binary and Hexadecimal in VHDL
	Two's Complement
	A Hex-to-seven-segment Decoder
	VHDL: Hex-to-7-segment Decoder
	Four-to-one mux: when .. else
	Four-to-one mux: with...select
	Three-to-eight Decoder
	Priority Encoder
	Integer Arithmetic
	A Very Simple ALU
	Arithmetic Comparison
	Tri-state drivers
	Syntax of Expressions
	Summary of Dataflow Modeling
	Hierarchy: port map positional style
	Hierarchy: port map by-name style
	Direct Instantiation (no component)
	Generate: Ripple-carry adder
	Processes
	A 4-to-1 mux in the procedural style
	A 4-to-1 mux using case
	An Address Decoder
	Summary of Procedural Modeling
	Basic D Flip-Flop
	Flip-Flop with Latch Enable
	Flip-Flop with Synchronous Reset
	Four-bit binary counter
	Eight-bit serial in/out shift register
	Synchronous RAM
	A small ROM
	Variables and Signals
	Variables vs. Signals
	Constants: A VGA sync generator
	Rocket Science: FSMs
	Moore FSMs
	Coding Moore State Machines
	Coding Mealy State Machines
	The Traffic Light Controller
	FSM for the Traffic Light Controller
	Traffic Light Controller in VHDL
	TLC in VHDL, continued
	TLC in VHDL, concluded
	Three Modeling Styles: Dataflow (1)
	Procedural Combinational (2)
	Three Styles: Procedural Sequential (3)
	Ten Commandments of VHDL
	I: Thou Shalt Design Before Coding
	Block Diagram of a Character Gen.
	Pixel-Level Timing
	Start-of-line Detail
	End-of-line detail
	II: Thou Shalt be Synchronous
	III: Thou Shalt Be Sensitive
	III: Thou Shalt Be Sensitive
	IV: Thou Shalt Assign All Outputs
	``Default'' values are convenient
	V: Thou Shalt Enumerate States
	VI:
	VII: Thou Shalt Avoid Async
	VIII: Thou Shalt Have One Version
	IX: Thou Shalt Not Test For X Or Z
	X: Thou Shalt Not Specify Delays
	Pitfalls: Boolean vs. Std_logic
	Pitfalls: Inferring a Latch
	Pitfalls: Reading Output Port
	Pitfalls: Complex Port Map Args
	Pitfalls: Combinational Loops
	Pitfalls: Clock Gating
	Pitfalls: Multiple Clock Domains
	Testbenches
	Testbench Methodology
	A Testbench
	A testbench continued

