
Writing VHDL for RTL Synthesis

Stephen A. Edwards, Columbia University

November 14, 2007

The nameVHDL is representative of the language itself: it is a two-level acronym
that stands forVHSIC Hardware Description Language; VHSIC stands for very high
speed integrated circuit. The language is vast, verbose, and was originally designed
for modeling digital systems for simulation. As a result, the full definition of the lan-
guage [?] is much larger than what we are concerned with here because many con-
structs in the language (e.g., variables, arbitrary events, floating-point types, delays) do
not have hardware equivalents and hence not synthesizable.

Instead, we focus here on a particular dialect ofVHDL dictated in part by the IEEE
standard defining RTL synthesis [?]. Even within this standard, there are many equiv-
alent ways to do essentially the same thing (e.g., define a process representing edge-
sensitive logic). This document presents a particular idiom that works; it does not try
to define all possible synthesizableVHDL specifications.

1 Structure

Much like a C program is mainly a series of function definitions, aVHDL specification
is mainly a series of entity/architecture definition pairs.An entity is an object with
a series of input and output ports that represent wires or busses, and an architecture
is the “guts” of an entity, comprising concurrent assignment statements, processes, or
instantiations of other entities.

Concurrent assignment statements that use logical expressions to define the values
of signals are one of the most common things in architectures. VHDL supports the
logical operatorsand, or, nand, nor, xnor, xnor, andnot.

library ieee; -- add this to the IEEE library
use ieee.std_logic_1164.all; -- includes std_ulogic

entity full_adder is
port(a, b, c : in std_ulogic;

sum, carry : out std_ulogic);
end full_adder;

architecture imp of full_adder is
begin
sum <= (a xor b) xor c; -- combinational logic
carry <= (a and b) or (a and c) or (b and c);

end imp;

1



1.1 Components

Once you have defined an entity, the next thing is to instantiate it as a component within
another entity’s architecture.

The interface of the component must be defined in any architecture that instantiates
it. Then, any number ofport map statements create instances of that component.

Here is how to connect two of the full adders to give a two-bit adder:

library ieee;
use ieee.std_logic_1164.all;

entity add2 is
port (

A, B : in std_logic_vector(1 downto 0);
C : out std_logic_vector(2 downto 0));

end add2;

architecture imp of add2 is
component full_adder

port (
a, b, c : in std_ulogic;
sum, carry : out std_ulogic);

end component;

signal carry : std_ulogic;

begin

bit0 : full_adder port map (
a => A(0),
b => B(0),
c => ’0’,
sum => C(0),
carry => carry);

bit1 : full_adder port map (
a => A(1),
b => B(1),
c => carry,
sum => C(1),
carry => C(2));

end imp;

1.2 Multiplexers

Thewhen...else construct is one way to specify a multiplexer.

library ieee;
use ieee.std_logic_1164.all;

entity multiplexer_4_1 is
port(in0, in1, in2, in3 : in std_ulogic_vector(15 downto 0);

s0, s1 : in std_ulogic;
z : out std_ulogic_vector(15 downto 0));

end multiplexer_4_1;

architecture imp of multiplexer_4_1 is
begin
z <= in0 when (s0 = ’0’ and s1 = ’0’) else

in1 when (s0 = ’1’ and s1 = ’0’) else
in2 when (s0 = ’0’ and s1 = ’1’) else
in3 when (s0 = ’1’ and s1 = ’1’) else
"XXXXXXXXXXXXXXXX";

end imp;

2



Thewith...select is another way to describe a multiplexer.

architecture usewith of multiplexer_4_1 is
signal sels : std_ulogic_vector(1 downto 0); -- Local wires

begin
sels <= s1 & s0; -- vector concatenation

with sels select
z <=
in0 when "00",
in1 when "01",
in2 when "10",
in3 when "11",
"XXXXXXXXXXXXXXXX" when others;

end usewith;

1.3 Decoders

Often, you will want to take a set of bits encoded in one way andrepresent them in
another. For example, the following one-of-eight decoder takes three bits and uses
them to enable one of eight.

library ieee;
use ieee.std_logic_1164.all;

entity dec1_8 is
port (
sel : in std_logic_vector(2 downto 0);
res : out std_logic_vector(7 downto 0));

end dec1_8;

architecture imp of dec1_8 is
begin
res <= "00000001" when sel = "000" else

"00000010" when sel = "001" else
"00000100" when sel = "010" else
"00001000" when sel = "011" else
"00010000" when sel = "100" else
"00100000" when sel = "101" else
"01000000" when sel = "110" else
"10000000";

end imp;

1.4 Priority Encoders

A priority encoder returns a binary value that indicates thehighest set bit among many.
This implementation says the output when none of the bits areset is a “don’t-care,”
meaning the synthesis system is free to generate any output it wants for this case.

library ieee;
use ieee.std_logic_1164.all;

entity priority is
port (

sel : in std_logic_vector(7 downto 0);
code : out std_logic_vector(2 downto 0));

end priority;

architecture imp of priority is
begin
code <= "000" when sel(0) = ’1’ else

"001" when sel(1) = ’1’ else
"010" when sel(2) = ’1’ else
"011" when sel(3) = ’1’ else
"100" when sel(4) = ’1’ else
"101" when sel(5) = ’1’ else
"110" when sel(6) = ’1’ else
"111" when sel(7) = ’1’ else
"---"; -- output is a "don’t care"

end imp;

3



1.5 Arithmetic Units

VHDL has extensive support for arithmetic. Here is an unsigned 8-bit adder with carry
in and out. By default VHDL’s+ operator returns a result that is the same width as
its arguments, so it is necessary to zero-extend them to get the ninth (carry) bit out.
One way to do this is to convert the arguments to integers, addthem, then convert them
back.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity adder is
port (

A, B : in std_logic_vector(7 downto 0);
CI : in std_logic;
SUM : out std_logic_vector(7 downto 0);
CO : out std_logic);

end adder;

architecture imp of adder is
signal tmp : std_logic_vector(8 downto 0);
begin
tmp <= conv_std_logic_vector((conv_integer(A) + conv_integer(B) +

conv_integer(CI)), 9);
SUM <= tmp(7 downto 0);
CO <= tmp(8);

end imp;

A very primitive ALU might perform either addition or subtraction:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity alu is
port (

A, B : in std_logic_vector(7 downto 0);
ADD : in std_logic;
RES : out std_logic_vector(7 downto 0));

end alu;

architecture imp of alu is
begin
RES <= A + B when ADD = ’1’ else

A - B;
end imp;

VHDL provides the usual arithmetic comparison operators. Note that signed and
unsigned versions behave differently.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity comparator is
port (

A, B : in std_logic_vector(7 downto 0);
GE : out std_logic);

end comparator;

architecture imp of comparator is
begin
GE <= ’1’ when A >= B else ’0’;

end imp;

Multiplication and division is possible, but is very costlyin area and can be very
slow.

4



1.6 Generate statements

To get an unusual array, say that for a 4-bit ripple-carry adder, use agenerate con-
struct, which expands its body into multiple gates when synthesized.

library ieee;
use ieee.std_logic_1164.all;

entity rippleadder is
port (a, b : in std_ulogic_vector(3 downto 0);

cin : in std_ulogic;
sum : out std_ulogic_vector(3 downto 0);
cout : out std_ulogic);

end rippleadder;

architecture imp of rippleadder is
signal c : std_ulogic_vector(4 downto 0);

begin
c(0) <= cin;
G1: for m in 0 to 3 generate

sum(m) <= a(m) xor b(m) xor c(m);
c(m+1) <= (a(m) and b(m)) or (b(m) and c(m)) or (a(m) and c(m));

end generate G1;
cout <= c(4);

end imp;

2 State-holding Elements

Although there are many ways to express something that behaves like a flip-flop in
VHDL , this is guaranteed to synthesize as you would like

library ieee;
use ieee.std_logic_1164.all;

entity flipflop is
port (Clk, D : in std_ulogic;

Q : out std_ulogic);
end flipflop;

architecture imp of flipflop is
begin
process (Clk) -- Process made sensitive to Clk
begin

if (Clk’event and Clk = ’1’) then -- Rising edge
Q <= D;

end if;
end process P1;

end imp;

Often, you want a synchronous reset on the flip-flop.

library ieee;
use ieee.std_logic_1164.all;

entity flipflop_reset is
port (Clk, Reset, D : in std_ulogic;

Q : out std_ulogic);
end flipflop_reset;

architecture imp of flipflop_reset is
begin
P1: process (Clk)
begin

if (Clk’event and Clk = ’1’) then
if (Reset = ’1’) then Q <= ’0’;
else Q <= D;
end if;

end if;
end process P1;

end imp;

5



2.1 Counters

Counters are often useful for delays, dividing clocks, and many other uses. Here is
code for a four-bit unsigned up counter with a synchronous reset:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is
port(

Clk, Reset : in std_logic;
Q : out std_logic_vector(3 downto 0)

);
end counter;

architecture imp of counter is
signal count : std_logic_vector(3 downto 0);
begin

process (Clk)
begin

if (Clk’event and Clk = ’1’) then
if (Reset = ’1’) then

count <= "0000";
else

count <= count + 1;
end if;

end if;
end process;

Q <= count;

end imp;

2.2 Shift Registers

Here is code for an eight-bit shift register with serial in and out.

library ieee;
use ieee.std_logic_1164.all;

entity shifter is
port (

Clk : in std_logic;
SI : in std_logic;
SO : out std_logic);

end shifter;

architecture impl of shifter is
signal tmp : std_logic_vector(7 downto 0);

begin
process (Clk)
begin

if (Clk’event and Clk = ’1’) then
for i in 0 to 6 loop -- Static loop, expanded at compile time

tmp(i+1) <= tmp(i);
end loop;
tmp(0) <= SI;

end if;
end process;

SO <= tmp(7);
end impl;

6



2.3 RAMs

While large amounts of memory should be stored off-chip, small RAMs (say 32× 4
bits) can be implemented directly. Here’s how:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ram_32_4 is
port (

Clk : in std_logic;
WE : in std_logic; -- Write enable
EN : in std_logic; -- Read enable
addr : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0); -- Data in
do : out std_logic_vector(3 downto 0)); -- Data out

end ram_32_4;

architecture imp of ram_32_4 is
type ram_type is array(31 downto 0) of std_logic_vector(3 downto 0);
signal RAM : ram_type;

begin
process (Clk)
begin
if (Clk’event and Clk = ’1’) then

if (en = ’1’) then
if (we = ’1’) then

RAM(conv_integer(addr)) <= di;
do <= di;

else
do <= RAM(conv_integer(addr));

end if;
end if;

end if;
end process;
end imp;

Occasionally, an initialized ROM is the most natural way to compute a certain
function or store some data. Here is what a synchronous ROM looks like:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rom_32_4 is
port (

Clk : in std_logic;
en : in std_logic; -- Read enable
addr : in std_logic_vector(4 downto 0);
data : out std_logic_vector(3 downto 0));

end rom_32_4;

architecture imp of rom_32_4 is
type rom_type is array (31 downto 0) of std_logic_vector(3 downto 0);
constant ROM : rom_type :=
("0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000",
"1001", "1010", "1011", "1100", "1101", "1110", "1111", "0001",
"0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001",
"1010", "1011", "1100", "1101", "1110", "1111", "0000", "0010");

begin

process (Clk)
begin
if (Clk’event and Clk = ’1’) then

if (en = ’1’) then
data <= ROM(conv_integer(addr));

end if;
end if;

end process;

end imp;

7



2.4 Finite-State Machines

Write a finite state machine as an entity containing two processes: a sequential pro-
cess with if statement sensitive to the edge of the clock and acombinational process
sensitive to all the inputs of the machine.

library ieee;
use ieee.std_logic_1164.all;

entity tlc is
port (

clk : in std_ulogic;
reset : in std_ulogic;
cars : in std_ulogic;
short : in std_ulogic;
long : in std_ulogic;
highway_yellow : out std_ulogic;
highway_red : out std_ulogic;
farm_yellow : out std_ulogic;
farm_red : out std_ulogic;
start_timer : out std_ulogic);

end tlc;

architecture imp of tlc is
signal current_state, next_state : std_ulogic_vector(1 downto 0);
constant HG : std_ulogic_vector := "00";
constant HY : std_ulogic_vector := "01";
constant FY : std_ulogic_vector := "10";
constant FG : std_ulogic_vector := "11";
begin

P1: process (clk)
begin
if (clk’event and clk = ’1’) then

current_state <= next_state;
end if;

end process P1;

P2: process (current_state, reset, cars, short, long)
begin
if (reset = ’1’) then

next_state <= HG;
start_timer <= ’1’;

else
case current_state is

when HG =>
highway_yellow <= ’0’;
highway_red <= ’0’;
farm_yellow <= ’0’;
farm_red <= ’1’;
if (cars = ’1’ and long = ’1’) then
next_state <= HY;
start_timer <= ’1’;

else
next_state <= HG;
start_timer <= ’0’;

end if;

when HY =>
highway_yellow <= ’1’;
highway_red <= ’0’;
farm_yellow <= ’0’;
farm_red <= ’1’;
if (short = ’1’) then
next_state <= FG;
start_timer <= ’1’;

else
next_state <= HY;
start_timer <= ’0’;

end if;

8



when FG =>
highway_yellow <= ’0’;
highway_red <= ’1’;
farm_yellow <= ’0’;
farm_red <= ’0’;
if (cars = ’0’ or long = ’1’) then
next_state <= FY;
start_timer <= ’1’;

else
next_state <= FG;
start_timer <= ’0’;

end if;

when FY =>
highway_yellow <= ’0’;
highway_red <= ’1’;
farm_yellow <= ’1’;
farm_red <= ’0’;
if (short = ’1’) then
next_state <= HG;
start_timer <= ’1’;

else
next_state <= FY;
start_timer <= ’0’;

end if;

when others =>
next_state <= "XX";
start_timer <= ’X’;
highway_yellow <= ’X’;
highway_red <= ’X’;
farm_yellow <= ’X’;
farm_red <= ’X’;

end case;
end if;

end process P2;

end imp;

Acknowledgements

Ken Shepard’s handouts for his EECS E4340 class formed a basis for these examples.

References

9


