
1

mindTunes
W4840 - Project Description

Jonathan Chen jtc2119@columbia.edu UNI:jtc2119
Po-Han Huang ph2252@columbia.edu UNI:ph2252

Michael Kempf mjk2154@columbia.edu UNI:mjk2154
Yen-Liang Tung yt2230@columbia.edu UNI:yt2230

Christos Vezyrtzis chris@cisl.columbia.edu UNI:cv2176

F

Abstract—This project involves the combination of software and hard-
ware design techniques for the implementation of a voice recording
system. The particular system will involve both the interface to record
voice clips and to store them in .wav format in an external storage (USB
flash drive). Playing existing voice clips will also be a feature of the
designed system. In this report we give an analytic description of the
followed procedure and of the system setup and organization.

1 INTRODUCTION

The designed system can serve as a complete voice
recording system, capable of storing memos through a
line/microphone input to a USB external storage device
(flash-type). The entire project was built on the Altera
DE2 FPGA Board. The operation of the ”mindTunes”
system offers:

• 16-bit quality voice recording
• Storing of recorded voice clips to an external USB

flash drive in a wave and mp3 format
• Browsing the contents of the external storing

medium and playback of the existing voice clips

The process of voice recording can significantly lower
the standards that the system needs to satisfy. The band-
limited nature of the speech signals can offer the choice
of a wave format storage, which can significantly lower
the system’s complexity, as well as the produced files’
size, while maintaining the vioce-recording functionality.

The choise of an external USB flash drive will offer the
possibility of a large storing space, in the Gigabyte Byte
(GB) region, which can extend the storing capacity to
hundreds of hours of voice clips. Futhermore, the USB
flash drive storage has a well known interface, which
can be implemented through software.

The authors are with Columbia University, New York, NY. This project is
associated with Embedded Systems Design CSEE4840. Theu authors would
like to thank Professor Steven Edwards and their Teaching Assistant, David
Lariviere, for their contribution and comments in this project.

2 FLOORPLAN OF THE SYSTEM

The block diagram of the system is illustrated in Figure
1. The nature of each entity (i.e. if its implementation
is through hardware or software) is also mentioned
Figure 1 and in Table 2. We also note the interactions

Required Block Implementation
ADC/DAC Hardware

USB Flash Drive and Interface Hardware/Software
CPU and OS Software

Memory Buffer Hardware
Speaker, Microphone Hardware

TABLE 1
Required Blocks for mindTunes

between these building blocks, which denote their way
of cooperation for the operation of this system.

3 ENVIRONMENT OF THE SYSTEM/SAMPLING
AND WAVE FORMAT

As mentioned previously, the key functionality of this
system is the recording and reproduction of voice
memos (signals). We, therefore, take advantage of the
form of inputs to the system, to set limits to the system’s
standards. This process will prove beneficial in terms of
complexity in designing the system.

More specifically, it is a well-known fact that voice
signals are (with a very small approximation) band-
limited to a region of 4kHz in the baseband. Moreover,
speech signals can be well approximated as band-
limited to an even smaller region (namely to a 3.3kHz
region in the baseband), making small sacrifices in the
speech quality, since small errors are not of primary
concern in memo-recording applications. It is, therefore,
dictated that a very small sampling rate, namely 8kHz,
can very well serve as the sampling rate for such
systems, since small degradations due to aliasing can be

2

tolerated in voice-recording applications. Finally, by the
same token (of some tolerance in the recorded signal
quality), a 16-bit sampling scheme can offer satisfactory
performance (we mention here that the aliasing error
will be the limiting factor in such systems, since a 16-bit
sampling can offer higher performances).

Reduction of both the sampling rate and of the
quantization level scheme can make the resulting
sampled signal be of a relatively low bitrate, thus
enabling us to bypass any encoding scheme and use a
very simple recording format, namely wave, since the
recorded clips will not have the large size that would be
caused through a non-compressed highly-oversampled
signal sampling. Further (and more sophisticated)
encoding of this file into mp3 format can be of low
complexity and computational time, due to the reduced
size of the wave file. This will also bring the encoding
of the recorded clips closer to real-time.

4 ANALYTIC DESCRIPTION OF THE SYSTEM
BUILDING BLOCKS

We now proceed by analytically describing each building
block and its function, along which some key parameters
through which it influences the system’s performance.

4.1 Audio Interface

In this voice recording and playback scheme, the
ADC and DAC (namely Analog to Digital Converter
and Digital to Analog Converter respectively) are
the interfaces of the system’s communication with
the ”outside world”. They provide the conversion of
the analog inputs to the system (voice) to a digital
format (”word”) so that they can be processed, as
well as the back-conversion of the words to a clean
(in terms of its noise performance) analog signal to
be used for playback. The setup of these components
must be accompanied by the existence of a few other
building blocks, which ensure the proper data transfer
to the storing/encoding structure. In this section we
provide an analytic description and both qualitative
and quantitative perspective of the hardware blocks;
we must, however note that we mainly emphasize on
the description of the input compomnents (ADC,S/P,
input FIFO), the corresponding output structures are the
symmetric structures of the former and their function
can easily be derived and comprehended from the
description of the input blocks.

The Altera DE2 board offers a top-level quality ADC
and DAC (combined they are named as ”Codec”), which
can be used in numerous (software controlled) settings,
depending on the application in hand. These settings
include analog and digital pre-and-pro processing filters,
along with the sampling rates and the analysis (number
of bits) which the ADC and DAC encorporate. These

parameters are involved in trade-offs that characterize
the system’s performance. As a simple example, we
refer to the obvious trade-off between speed (and thus
power) and audio quality (usually characterized by
SQNR or SNR1), according to the number of used bits,
more bits will lead to more use of resources and power,
along with a degradation in speed (due to processing),
but improvement in audio quality2.

The use of the system for voice processing and storing
(with a large tolerance in quality degradation and main
concern toward storage) indicates the obvious choice
for the Mixed Signal (ADC/DAC) blocks: they should
be operated in minimum sampling rate and analysis,
which is 8kHz and 16 bits respectively. A sampling
rate of 8kHz is enough to handle a voice signal, which
is band-limited to less than 4kHz (thus the Nyquist
criterion is satisfied) and a 16-bit analysis is more
than satisfactory for this purpose. This choice will be
beneficiary (as mentioned before) in terms of occupied
system resources, speed and power consumption
and will allow the use of maximum resources in the
encoding process (which is clearly more demanding).
Furthermore, as is also obvious, the serializing and
FIFO structures can also be of minimal space.

The hardware implementation of the audio interface
involves the design and setup of the following:

• The Wolfson Audio Chip, operating in slave mode
• A serializer, which handles the serial-to parallel

conversion of the data and the inverse structure
• A First In First Out (FIFO) structure, to act as a

buffer structure

This procedure is shown in Figure 2.

The Wolfson Audio Chip contains (among others)
the ADC and DAC structures. The proper setup will
guarantee the correct sampling rate of the input signal
(and playback of the stored clips), for which the
chip needs to be provided with the appropriate clock
signals. More specifically, for the operation of the audio
inteface structures we need the 8kHz sampling clock
(16MHz if stereo inputs are sampled) for the ADC and
DAC, along with the 16 · 8MHz = 128kHz clock for
the serializing and de-serializing operation (see next
following comments). These clocks must be created as
fractions of the existing audio clock (which is set by
means of a crystal ocillator on the Altera DE2 board
used for this project to 18.432MHz by means of a crystal
type oscillator); more specifically we use a divide ratio
of 2304 and 144 to create the above mentioned clocks.

The output of the ADC and the input of the DAC,

1. SQNR means Signal to Quantization and Noise Ratio while SNR
means Signal to Noise Ratio

2. The SNR or SQNR will approximately be 6.02n+1.76 in dB, where
n is the number of employed bits if no post-processing filter is used.

3

however, deal with a single-bit bit stream. This translates
to the fact that the 16-bit samples (either of the input
or of the stored clip to be played back) need to be
converted to a 16-bit form and from it to a single-bit
waveform respectively. This is done by means of a
de-serializer and a serializer respectively. Moreover, this
block must have comleted its function before the arrival
of the next audio sample.

Consider the case of the input from the ADC (the
DAC case can be easily considered easily if we explore
the symmetry of the structure). Within a period of the
ADC-sampling clock the de-serializer must convert the
1-bit produced by the ADC to a single 16-bit word,
which will later be processed by the system. It is
clear, therefore, that this block must be running at a
clock 16 times (or in general to the bit acuracy of our
sampling scheme) faster than the one at which the ADC
samples. The placement of the bits in the ”word” is
done according to the wav (and mp3) specifications,
which is little endian for this case. This function is
illustrated in Figure 3.

The most important part of the audio interface
(and the one with the more difficulties in the timing
specifications - see section on problems) is the ”buffer”
structure, implemented as a FIFO structure. The need
for such a structure arises because the internal processor
of the system (through µcLinux) is operating at a
speed of 100MHz, which is significantly larger than
the sampling rate. Without the presence of the FIFO
structure, the above would dictate that the need for
input samples would exceed the number provided by
the ADC, for a fixed time interval. The solution for this
is the implementation of a ”wait” function, which holds
the existing samples, feeding them to the processor
in a serial way when they exist, while preventing the
encoding/decoding operations from being executed in
the absense of input samples (or in the opposite case
for the DAC in the abundance of samples to be fed to
the output).

The implementation of this was done be means of
creating an Avalon component which implemented two
FIFO structures, along with some combinational and
sequential logic to control their process. While the key
idea behind this process is trivial, this structure is prone
to errors, mostly due to the tight timing specifications
posed by the structures. More specifically, we need to
perform the ”pause” function (described in the previous
paragraph), whenever we need to process samples and
there are currently none present and when we need to
play some samples and there is already an abundance
of samples to be played back (two perfectly symmetric
cases). We chose to use a FIFO operating in Legacy
Mode (as described in the Altera documentations).

For the operation of the control logic, we implemented

a Moore state machine. The underlying idea behind its
function is the need to hold the processing system, by
means of asserting the bus stalling signal ”waitrequest”,
when the system is in the cases described above.
Furthermore, we also need waitrequest to pause the
function of the processor during the first cycle of a
sample transfer, due to the delay posed by the FIFO
structure before the valid data are presented to the
bus. The associated timing diagram and state machine
describing images are shown below. As shown in
Figure, the key delays associated with this transfer are:

• The delay between the writing procedure in the
FIFO and the moment that the corresponding signal
declaring if the FIFO is empty (or nearly full) is
asserted, which is zero clock cycles (with respect to
the ”writing clock”)

• The delay from the assertion of the ”read” signal of
the FIFO to the point at which the valid data are
presented at the output, whch is one clock cycle of
the ”reading clock”. This is an effect of the choice
of the function of the FIFO structure in ”Legacy
Mode”, which is recommended by the providing
plattform as the top-performance structure.

The state machine was designed so as to keep the bus
on hold for the period when the action planned cannot
be completed (i.e. the FIFO containing the samples fed
from the ADC is empty when a read command is issued
or when the FIFO that contains the samples to be fed
to the DAC is full). The key issue in implementing this
procedure is that it was done asynchronously (with
respect to the processor clock), thus giving rise to a
Moore state machine. Furthermore, even during the
process of a succesful command (either read or write),
the processor was paused by means of asserting the
waitrequest signal until the data presented to the bus
was valid. This gave rise to a two-processor-clock-period
time interval at which waitrequest was to be held high,
in order for a command to be completed with success
and without any invalid data presented to the encoder.
The principle of the state machine’s function is indicated
in Figure 7

The input FIFO is created out of Altera’s build-in
MegaFunction. Both the input and output are of 16-bit
width. It provides status flags which can be used to
decide the state of our Moore machine. The important
status signals are rdempty, wrfull, and usedw. One clock
cycle after rdreq has been asserted, one 16-bit data will
be popped out of the FIFO and be presented on the
output q at which time usedw decrements. Similarly,
one clock cycle after wrreq has been asserted, one 16-bit
data will be latched into the FIFO at which time usedw
increments. Reading and writing to the FIFO in the
same clock cycle is allowed, and usedw will not be
updated.

Upon a system reset, it goes into state a0. In this

4

state the Avalon bus is blocked from reading the FIFO.
The state machine is allowed to traverse to the next
state a1 provided that rdempty signal is deasserted and
a read request has been issued. The state machine stays
in state a1 for one clock cycle, with waitrequest and
rdreq asserted, before checking the rdempty and read
request signal from the Avalon bus. It will loop inside
a1 if and only if the aforementioned conditions are true.
If not, it goes to state a2, in which the bus is again
blocked from reading the FIFO. One clock cycle after
a2, it goes back to a0.

Because we maintain two independent, concurrently
running state machines, the Moore machine on the
output side is analogous to that of the input side. The
system goes to state d0 upon a reset. Thereafter, it will
only go to d1 provided wrfull signal is deasserted and a
write request has been issued. The state machine stays
in state d1 for one clock cycle, with waitrequest and
wrreq asserted, before checking the wrfull and write
request signal from the Avalon bus. It will loop inside
d1 if and only if the aforementioned conditions are
true. If not, it goes to state d2, in which the bus is again
blocked from writing into the FIFO. One clock cycle
after d2, it goes back to d0.

4.2 USB Flash Drive and Interface
An external Universal Serial Bus (USB) flash drive will
be used as the storage medium for recorded voice clip
files. The flash drive will also act as the file reposi-
tory for voice clip playback. It will have a capacity in
the GB region at low cost. The DE2 board provides
both USB host and device interfaces using the Philips
ISP1362 single-chip USB controller. Our flash drive will
be mounted to the operating system as a USB host.
Typically, the challenge of implementing a USB com-
ponent is the requirement to design a device driver.
Fortunately, uClinux provides a USB driver that we will
utilize for writing and reading WAV/MP3 formatted
voice clips. Once mounted, the USB provides an easy
to use peripheral for software programming and can be
treated as a path directory.

4.3 WAV Format
Waveform audio format (WAV) is a file format stan-
dard for storing audio data. This format stores data
in ”chunks” with a 44 byte header that describes the
sound information (sampling rate, sample size, etc.) that
characterizes the audio file. Since our sound information
was constant, we were able to prepare a header and write
it to the file descriptor on the USB flash drive that was
awaiting the input data from the ADC. Storing our data
in WAV format allowed us to check the recording half
of our project by providing us the capability of playing
the audio sample through an audio application. During
playback the 44 byte header can be safely skipped and
the data chunk can be written to the audio base address.

Also, the stored WAV file provided a ready to use file
input to the MP3 encoder application discussed in the
following section. The WAV header source code can be
found in the main.c file.

4.4 MP3 Encoding

MP3 is commonly known as the MPEG 1 version Layer
3. However, MPEG 1 standard does not support our
ADC or DAC sampling rate, which is 8000Hz in our
design. Therefore, we choose to use the version MPEG
2.5, which is the extension version of MPEG 2 . The
format and procedure to encode MPEG 2.5 layer 3
and MPEG 1 layer 3 are basically the same. The only
difference is that version MPEG 2.5 support the lower
sampling rate. The following table shows the sampling
rate each version support.

The MP3 header is 32 bit long; the format is shown in
Figures 10 11.

The difference between MP3 format files and WAV
format file is that mp3 files are composed by successions
of frames; each frame has its own header and small size
data chunk. It is different from WAV files, which there
is only one header for the entire file and a large size of
data chunk. Therefore we can cut any part of the MP3
file and be able to decode it successfully.

The steps to encode mp3 data are not trivial but
however the concept is actually simple. The concept
behind mp3 encoding is that we take discrete cosine
transform to a certain amount of audio samples in the
time domain and project it to the frequency domain. We
then masking out the frequency that human ear cannot
easily perceive and only leave the most important
frequency. The theory behinds this is that in Fourier
analysis, the lowest few frequency coefficients can
always well represent the original signal and contains
the majority of the energy. Then we do Huffman coding
to the result information in order to save the number
of bitstream since it encodes the most popular symbols
with least bits. And the decoding procedure is exactly
the same steps but backwards.

The library we implement encoding on the NiosII
CPU is modified based on the ShineFixed Point MP3
open source encoder version 1.09. The program was
originally developed on the ARM’s RISC Operating
System with inline assembly optimization. Thus in
order to make the program to run on the Nios operation
system, we remove the inline assembly language and
substitute them with the proper C code. And we also
undefined the RISC OS in the programs. We then
port the program to the NIOS board by add it to be
an uClinux user’s application. Later we integrate the
program with the wav recorder together to be our main
program.

5

4.5 MP3 Decoding
We choose MP3PLAY as our decoding library because
it is built-in uClinux and supports various MPEG
standards (MPEG-1,2,2.5 in Layer 1, 2, 3) which can
match our encoder. In the MP3PLAY library, it can
support both floating point and fixed point operation.
There is also Assembly optimization but it conflicts to
our platform, so we need to set the code not to turn
on the assembly mode. By porting the original code to
Nios2, we need to comment some functions because
they are used for other devices.

The process of decoding MP3 file is to feed bitstream
data into the decoder, unpack the frame , read header
info to reconstruct and inverse mapping, as shown in
Figure 12.

The bitstream unpacking block does error detection if
error-check is applied in the encoder. Then, the bitstream
data are unpacked to recover the various pieces of
information. The reconstruction block reconstructs the
quantized version of the set of mapped samples. The
inverse mapping transforms these mapped samples
back into uniform PCM.

With the existing MPEG decode library (in
/mp3play/mpegdec lib), we can decode 8K Hz 16
bits MP3 file into raw PCM data, and write it to
”na audio” which is our FIFO address to buffer the
data being decoded and pass to LINE OUT. There is
also a function can show what the format of the file is.
Because the output DAC is set to play stereo in 8K Hz
sampling rate, if we want to test our file match is in 8K
Hz format or not.

4.6 Operating System
The need to access (browsing through the files and
storing) the USB flash drive data indicates the neccesity
to use an operating system, to take advantage of
the existing libraries to handle the file system needs.
Furthermore (see previous section), we chose to use
software to implement the MP3 coding, which again can
be found as open-source code for an existing operating
system.

A wide-used choice for such applications is clinux.
Programming a uClinux OS to the board is a procedure
which does is not resouce-hungry and enables the use
of a wide variety of libraries for any use, thus wide
programmability and function range. A careful design
of the Operating System will save any such design of
significant hardware complexity, with the single use of
some (prefedined) resources (memory and gates).

As our programs are running as user applications
on uClinux, it is important to note we are running our
program in user space. This means we can not use

interrupts or the NiosII Hardware Abstraction Layer
that we utilized in the labs. To access peripherals we
defined memory pointer access for read and write
commands.

5 PROBLEMS DURING IMPLEMENTATION - KEY
POINTS AND REMARKS

The implementation of this project was not done in the
absense of design issues and pitfalls; in this section we
choose to mention the points which caused the largest
obstacles toward the completion of this project. The
functionality of the project was limited; we use this
section to provide a complete list of all the problems
encountered, as well as the possible causes and solutions
to tackle them.

5.1 Hardware - Audio Interface

The key issue in implementing the hardware arose
in the implementation of the buffer structure. The
trivial way of operation becomes, when translated to a
state machine and correspoinding logic structure, quite
complicated, mostly due to the tight timing diagrams
and the numerous cases that have to be examined.
Among the different configurations available and the
many clock and control signals, the choice of a set of
control signals that could give rise to a fast and easy-
to-comprehend method of creating the FIFO/Buffer
structure was a non-trivial issue.

The large availability of FIFO structures made their
vast majority prone to timing issues, due to the
asunchronous way in which ”waitrequest” signal had
to be set and the presence of two (very different) clocks
that operated each FIFO structure. Despite the presence
of an asynchronous (again with respect to the processor
clock) control signal, most asynchronous control signals
could not be used in this project (such as the data flow
control signals available to us) due to the tight timing of
the FIFO structure and the presence of two clocks. Data
corruption and the issue of not efficiently pausing the
processor turned out to be the largers sources of error,
before the adoption of an asynchronous Moore state
machine. It is clear that a more conservative way to
deal with the pausing of the processor could not have
been employed, due to the further slowing down of
the processing system that it would have brought about.

Further problems arose while trying to verify the
functionality of our design by means of a simulation
testbench. The very nature of the control signals made
it very difficult to construct a simple testbench, which
would be able to be used as a verification scenario.
Furthermore, difficulty arises when we are not careful
when writing and reading in a FIFO of the type that we
used. To be more speccific, the Legacy mode FIFO needs
to be read from one time before the first readrequest,

6

since the first (ever) written word in it will not be
available immediately. A FIFO in Show-Ahead mode,
which does not suffer from this limitation, comes with a
warning from the existing software about performance
limitation. We, therefore, chose Legacy Mode in order to
enhance the FIFO’s performance and simply tolerated
this non-immediate existance of the first sample at the
output of the FIFO. Simulation showed the success of
the FIFO structure in transmitting to the bus all the
samples of the input, as shown in Figures 5 - 6. The
boundary cases (when the processor is both reading and
writing by accident) are covered by the asynchronous
logic which controls the ”waitrequest” signal. As
expected, this property of the Legacy mode FIFO had
no effect on the functionality of our system, which was
indeed verified by the success of the encoding process.
The initialization of the FIFO is also covered by our
logic, since the output of the FIFO is initially set to the
zero sample, as Figure proves.

One more limitation factor in (mostly) the decoding
process (which would have caused some degradation
or lag in the decoding process) is the limited size of the
M4K blocks, which can serve as the building blocks for
the FIFO structures. This project (despite the fact that
some peripherals which were not used) were removed,
ended up occupying 98/108 memory units, thus limiting
the maximum number of frames that could be stored
in the FIFO. In this implementation, 90% of the existing
memory blocks were allocated to the FIFO structures.

5.2 MP3 Encoding
The encoding program is originally 180% slower than
the real-time. By changing the number winder filter
subbands or the number of DCT coefficient we can make
it as close as a real-time mp3 encode, but the trade off
is the quality drops significantly. Moreover, the original
thought of the front stage is to read from the ADC into
a chunk of data and feed to encoder. Then we found out
that with this step added, the encoding program cannot
be real-time anymore. And that is the reason we decides
not to encode directly from the ADC, instead, break it
into two stages. We read from the ADC samples to and
encode it to a wav file to the USB, since a wav encoder
can be easily real-time. Then the mp3encode encodes
from the WAV file on USB to a mp3 file on USB. This
way is not real time, but then we don’t have to constraint
our MP3 encoder and we can have a better quality.

5.3 MP3 Decoding
The decoding problem of MP3PLAY library is that we
can successfully ”process” the data, and write to LINE
OUT. However, we barely hear the singer’s voice and
there is distorted background. We try to write PCM
data to WAV file instead of writing to FIFO directly
to test if the library works. On Matlab, it sounds like
random noise. By Realplayer, we cannot hear the voice.

For software verification, it is hard to debug on
the board. We try to port MP3PLAY to CentOS so that
we can test the result without uploading zImage to
Linux Desktop and downloading it to Board back and
forth which can help us save lots of time to debug. Also,
isolating the problem between software and hardware
is important. At first, we discussed the hardware wait-
request issues, because since the decoding process is
faster than playing process, the FIFO will be exploded
without wait-request. We made the PCM write to the
FIFO address. But, the wait-request issue is not solved
and the MP3PLAY does not provide functions to convert
PCM data into WAV, and we met problems to write it
into WAV format so it is hard to prove if the library
works. The best way to verify the library is writing the
decoding material into a wav file and try to test it on
laptop. Therefore, we can check and try to find suitable
library.

There is another issue about wait-request. We are
not sure when the FIFO requests software to feed data
into FIFO again if the software is able to write data
immediately since the FIFO is empty.

5.4 Team Organization
As our project included some very complex hardware
and software design issues, we made the decision to take
a divide and conquer approach toward assigning areas
of focus. Our project consisted of different serial stages of
audio processing. The division of labor resulted in group
members being knowledgeable about their particular
stage but, affected our ability to collaborate. The major
drawback of our organization scheme was that it created
a single point of failure.

6 CONCLUSION

In this project we planned to fully implement a complete
audio (mp3 and wav format) recording system, with
recording and playback features. Problems in the decod-
ing stage prevented us from fully integrating the system,
which offers the possibility for mp3 and wav recording
to an external USB Flash Disk drive. During the process
of this project, valuable experiences were gained from
all the authors, since we encountered the increased com-
plexity of the encoding and decoding mechanisms, along
with the numerous standards presented (all of which
carry increased complexity). Timing requirements and
processing pausing also posed objects. The functionality
of the system (to the recording extent) was confirmed by
both simulations and through a live demonstration.

7

Fig. 1. Top Level Design of mindTunes

Fig. 2. Block Diagram of mindTunes

8

Fig. 3. Serial to Parallel Converter

Fig. 4. FIFO structure

Fig. 5. Timing Diagram in the process of writing input samples

9

Fig. 6. Timing Diagram in the process of writing input samples

Fig. 7. Function of FIFO controlling state machine

Fig. 8. Wav Header

10

Fig. 9. Mp3 Header and Encoding

Fig. 10. Mp3 Header 1

11

Fig. 11. Mp3 Header 2

Fig. 12. Mp3 Decoding

library IEEE;
use IEEE.STD_LOGIC_1164.all;
--use IEEE.STD_LOGIC_ARITH.all;
--use IEEE.STD_LOGIC_SIGNED.all;
use IEEE.numeric_std.all;

-- entity

entity de2_audio is
port (
 clk : in std_logic;
 reset_n : in std_logic;

 -- Bus master signals
 address : in std_logic_vector (7 downto 0);
 byteenable : in std_logic_vector (1 downto 0);
 writedata : in std_logic_vector (15 downto 0);
 read : in std_logic;
 write : in std_logic;
 chipselect : in std_logic;

 -- Slave signals
 readdata : out std_logic_vector (15 downto 0);
 waitrequest : out std_logic;

 -- Audio interface signals
 AUD_CLK : in std_logic; -- 18.43MHz
audio clock AUD_XCK
 AUD_ADCLRCK : out std_logic; -- Audio CODEC
ADC LR Clock
 AUD_ADCDAT : in std_logic; -- Audio CODEC
ADC Data
 AUD_DACLRCK : out std_logic; -- Audio CODEC
DAC LR Clock
 AUD_DACDAT : out std_logic; -- Audio CODEC
DAC Data
 AUD_BCLK : inout std_logic; -- Audio CODEC
Bit-Stream Clock
 AUD_XCK : out std_logic;
 -- Test signals --
 ledr : out std_logic_vector (17 downto 0)
);
end de2_audio;

-- architecture

architecture imp of de2_audio is

 component de2_fifo

 port (
 data : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
 rdclk : IN STD_LOGIC ;
 rdreq : IN STD_LOGIC ;
 wrclk : IN STD_LOGIC ;
 wrreq : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
 rdempty : OUT STD_LOGIC ;
 wrfull : OUT STD_LOGIC ;
 wrusedw : OUT STD_LOGIC_VECTOR (12 DOWNTO 0)
);
 end component;

 component de2_wm8731_audio_in is
 port (
 clk : in std_logic; -- Audio CODEC Chip Clock AUD_XCK
(18.43 MHz)
 reset_n : in std_logic;
 data_out : out std_logic_vector(15 downto 0);
 audio_req : out std_logic;

 -- Audio interface signals
 AUD_ADCLRCK : out std_logic; -- Audio CODEC ADC LR Clock
 AUD_ADCDAT : in std_logic; -- Audio CODEC ADC Data
 AUD_BCLK : inout std_logic -- Audio CODEC Bit-Stream
Clock
);
 end component;

 component de2_wm8731_audio_out is
 port (
 clk : in std_logic; -- Audio CODEC Chip Clock AUD_XCK
(18.43 MHz)
 reset_n : in std_logic;
 test_mode : in std_logic; -- Audio CODEC controller
test mode
 data_in : in std_logic_vector(15 downto 0);
 audio_req : out std_logic;

 -- Audio interface signals
 AUD_DACLRCK : out std_logic; -- Audio CODEC DAC LR Clock
 AUD_DACDAT : out std_logic -- Audio CODEC DAC Data
);
 end component;

 signal reset : std_logic;

 signal dac_request : std_logic;
 signal adc_request : std_logic;
 signal data_from_bus : std_logic_vector (15 downto 0);
 signal data_to_bus : std_logic_vector (15 downto 0);
 signal adc_data : std_logic_vector (15 downto 0);
 signal dac_data : std_logic_vector (15 downto 0);
 signal adc_rdempty : std_logic;
 signal adc_wrfull : std_logic;
 signal dac_rdempty : std_logic;
 signal dac_wrfull : std_logic;

 signal writefifo : std_logic;
 signal readfifo : std_logic;
 signal adc_rdreq : std_logic;
 signal dac_wrreq : std_logic;

 signal adc_used_buf : std_logic_vector (12 downto 0);
 signal dac_used_buf : std_logic_vector (12 downto 0);

 signal adc_stop : std_logic;
 signal dac_stop : std_logic;

 --test
 signal ledr_count : std_logic_vector (16 downto 0);
 signal led_ctrl : std_logic;

 --Audio clk dividers
 signal sampling_clk : std_logic;
 signal audio_counter : unsigned (13 downto 0);
 signal counter_aud_adclkrck : unsigned (15 downto 0);
 signal LRCK: std_logic;
 signal bus_state: std_logic_vector (2 downto 0);

 type state_t is (a0, a1, a2, d0, d1, d2);
 signal adc_state, adc_new_state, dac_state, dac_new_state :
state_t;

begin

 adc_rdreq <= readfifo;
 dac_wrreq <= writefifo;

 -- waitrequest is combinational
 waitrequest <= (chipselect and adc_rdempty and read) or
(chipselect and dac_wrfull and write);

 SM_ADC: process(adc_state, adc_rdempty, read, adc_stop)
 begin
 case adc_state is
 when a0 =>
 if (adc_rdempty = '0' and read = '1') then
 adc_new_state <= a1;
 else
 adc_new_state <= a0;
 end if;
 when a1 =>
 if (adc_stop = '1') then
 adc_new_state <= a2;
 else
 adc_new_state <= a1;
 end if;
 when a2 =>
 if (read = '1' and adc_rdempty = '0') then
 adc_new_state <= a1;
 else
 adc_new_state <= a0;
 end if;
 when others =>

 adc_new_state <= a0;
 end case;
 end process SM_ADC;

 SM_DAC: process(dac_state, dac_wrfull, write, dac_stop)
 begin
 case dac_state is
 when d0 =>
 if (dac_wrfull = '0' and write = '1') then
 dac_new_state <= d1;
 else
 dac_new_state <= d0;
 end if;
 when d1 =>
 if (dac_stop = '1') then
 dac_new_state <= d2;
 else
 dac_new_state <= d1;
 end if;

 when d2 =>
 if (write = '1' and dac_wrfull = '0') then
 dac_new_state <= d1;
 else
 dac_new_state <= d0;
 end if;
 when others =>
 dac_new_state <= d0;
 end case;
 end process SM_DAC;

 ST_ADC: process(clk, reset_n)
 begin
 if reset_n = '0' then
 adc_state <= a0;
 elsif rising_edge(clk) then
 if chipselect = '1' then
 adc_state <= adc_new_state;
 end if;
 end if;
 end process ST_ADC;

 ST_DAC: process(clk, reset_n)
 begin
 if reset_n = '0' then
 dac_state <= d0;
 elsif rising_edge(clk) then
 if chipselect = '1' then
 dac_state <= dac_new_state;
 end if;
 end if;
 end process ST_DAC;

 BusComm: process(clk, reset_n)
 begin
 if reset_n = '0' then
 readdata <= (others => '0');

 --waitrequest <= '0';
 adc_stop <= '0';
 dac_stop <= '0';
 readfifo <= '0';
 writefifo <= '0';
 elsif rising_edge(clk) then
 if adc_new_state = a0 then
 if chipselect = '1' then
 readfifo <= '0';
 --waitrequest <= '0';
 adc_stop <= '0';
 end if;
 elsif adc_new_state = a1 then
 if chipselect = '1' then
 --if (address(0) = '1' and read = '1')
then
 if (read = '1') then
 readdata <= data_to_bus;
 readfifo <= '1';
 --waitrequest <= '1';
 adc_stop <= '1';
 end if;
 end if;
 elsif adc_new_state = a2 then
 if chipselect = '1' then
 --waitrequest <= '0';
 adc_stop <= '0';
 readfifo <= '0';
 end if;
 end if;

 if dac_new_state = d0 then
 if chipselect = '1' then
 writefifo <= '0';
 --waitrequest <= '0';
 dac_stop <= '0';
 end if;
 elsif dac_new_state = d1 then
 if chipselect = '1' then
 --if (address(0) = '1' and write = '1')
then
 if (write = '1') then
 data_from_bus <= writedata;
 writefifo <= '1';
 --waitrequest <= '1';
 dac_stop <= '1';
 end if;
 end if;
 elsif dac_new_state = d2 then
 if chipselect = '1' then
 --waitrequest <= '0';
 dac_stop <= '0';
 writefifo <= '0';
 end if;
 end if;

 end if;

 end process BusComm;

 process(AUD_BCLK)
 begin
 if rising_edge(AUD_BCLK) then
 counter_aud_adclkrck <= counter_aud_adclkrck + 1;
 end if;

 if (counter_aud_adclkrck = "0000000000000000") then
 led_ctrl <= not led_ctrl;
 end if;
 end process;

 AUD_XCK <= AUD_CLK;

 ADC : de2_wm8731_audio_in
 port map (
 clk => AUD_CLK,
 reset_n => reset_n,
 data_out => adc_data,
 audio_req => adc_request,

 AUD_ADCLRCK => AUD_ADCLRCK,
 AUD_ADCDAT => AUD_ADCDAT,
 AUD_BCLK => AUD_BCLK
);

 DAC : de2_wm8731_audio_out
 port map (
 clk => AUD_CLK,
 reset_n => reset_n,
 test_mode => '0',
 audio_req => dac_request,
 data_in => dac_data,

 AUD_DACLRCK => AUD_DACLRCK,
 AUD_DACDAT => AUD_DACDAT
);

 ADC_FIFO : de2_fifo
 port map (
 data => adc_data,
 rdclk => clk,
 rdreq => adc_rdreq,
 wrclk => AUD_CLK,
 wrreq => adc_request,
 q => data_to_bus,
 rdempty => adc_rdempty,
 wrfull => adc_wrfull,
 wrusedw => adc_used_buf
);

 DAC_FIFO : de2_fifo
 port map (
 data => data_from_bus,
 rdclk => AUD_CLK,
 rdreq => dac_request,

 wrclk => clk,
 wrreq => dac_wrreq,
 q => dac_data,
 rdempty => dac_rdempty,
 wrfull => dac_wrfull,
 wrusedw => dac_used_buf
);

 ledr(1) <= led_ctrl;
 ledr(2) <= dac_wrfull;
 ledr(3) <= adc_rdempty;
 ledr(0) <= '0';

end architecture imp;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- de2_wm8731_audio_in : generate clock and get the samples from device

entity de2_wm8731_audio_in is
port (
 clk : in std_logic; -- Audio CODEC Chip Clock AUD_XCK (18.43 MHz)
 reset_n : in std_logic;
 data_out : out std_logic_vector(15 downto 0);
 audio_req : out std_logic;

 -- Audio interface signals
 AUD_ADCLRCK : out std_logic; -- Audio CODEC ADC LR Clock
 AUD_ADCDAT : in std_logic; -- Audio CODEC ADC Data
 AUD_BCLK : inout std_logic -- Audio CODEC Bit-Stream Clock
);
end de2_wm8731_audio_in;

architecture Behavioral of de2_wm8731_audio_in is

 signal lrck : std_logic;
 signal bclk : std_logic;
 signal xck : std_logic;

 signal lrck_divider : std_logic_vector (7 downto 0);
 signal bclk_divider : std_logic_vector (3 downto 0);

 signal set_bclk : std_logic;
 signal set_lrck : std_logic;
 signal lrck_lat : std_logic;
 signal clr_bclk : std_logic;
 signal datain : std_logic;

 signal shift_in : std_logic_vector (15 downto 0);
 signal shift_counter : integer := 15;

 -- Second clock divider

 signal lrck_div2 : std_logic_vector (11 downto 0);
 --signal set_lrck2 : std_logic;
 signal bclk_divider2: std_logic_vector (7 downto 0);

begin
 -- LRCK divider

 -- Audio chip main clock is 18.432MHz / Sample rate 48KHz
 -- Divider is 18.432 MHz / 48KHz = 192 (X"C0")
 -- Left justify mode set by I2C controller

 process(clk, reset_n) -- loops Another divider to slow down the LRclk
 begin
 if (reset_n = '0') then
 lrck_div2 <= (others => '0');
 elsif (clk'event and clk='1') then
 if (lrck_div2 = X"47F") then -- 8FF = 900 - 1
 lrck_div2 <= X"000";
 else
 lrck_div2 <= lrck_div2 + '1';
 end if;
 end if;
 end process;

 process(clk, reset_n) -- loops second bclk_divider -- we only need one of the 2
 begin
 if (reset_n = '0') then
 bclk_divider2 <= (others => '0');
 elsif (clk'event and clk='1') then
 if (bclk_divider2 = X"47" or set_lrck = '1') then -- 8F = 90-1
 bclk_divider2 <= X"00";
 else
 bclk_divider2 <= bclk_divider2 + '1';
 end if;
 end if;
 end process;

 process (lrck_div2)
 begin
 if (lrck_div2 = X"47F") then
 set_lrck <= '1';
 else
 set_lrck <= '0';
 end if;
 end process;

-- Here we just have to change set_lrck to set_lrck2 to change the Sampling rate to 8kHz

 process (clk, reset_n)
 begin
 if (reset_n = '0') then
 lrck <= '0';
 elsif (clk 'event and clk = '1') then
 if (set_lrck = '1') then
 lrck <= not lrck;

 end if;
 end if;
 end process;

 -- BCLK divider
 process (bclk_divider2)
 begin
 if (bclk_divider2 = X"23") then -- x5 -- why 5 and B?
 set_bclk <= '1';
 else
 set_bclk <= '0';
 end if;

 if (bclk_divider2 = X"47") then -- xB
 clr_bclk <= '1';
 else
 clr_bclk <= '0';
 end if;
 end process;

 process (clk, reset_n)
 begin
 if (reset_n = '0') then
 bclk <= '0';
 elsif (clk 'event and clk = '1') then
 if (set_lrck = '1' or clr_bclk = '1') then
 bclk <= '0';
 elsif (set_bclk = '1') then
 bclk <= '1';
 end if;
 end if;
 end process;

 process (clk)
 begin
 if (clk 'event and clk = '1') then
 if (set_bclk = '1') then
 shift_in(shift_counter) <= AUD_ADCDAT;
 if (shift_counter = 0) then
 shift_counter <= 15;
 else
 shift_counter <= shift_counter - 1;
 end if;
 end if;
 end if;
 end process;
 process(clk)
 begin

 if (clk'event and clk='1') then -- why??
 lrck_lat <= lrck;
 end if;
 end process;
 process (clk)
 begin
 if (clk'event and clk = '1') then
 if ((lrck_lat = '1' and lrck = '0') or (lrck_lat = '0' and lrck = '1')) then
 audio_req <= '1';
 else
 audio_req <= '0';
 end if;
 end if;
 end process;
 -- Audio data shift output
 process (clk, reset_n)
 begin
 if (clk 'event and clk = '1') then
 if (set_lrck = '1') then
 data_out <= shift_in;
 end if;
 end if;
 end process;

 -- Audio outputs

 AUD_BCLK <= bclk;
 AUD_ADCLRCK <= lrck;

end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- de2_wm8731_audio_in : generate clock and set the samples from device

entity de2_wm8731_audio_out is
port (
 clk : in std_logic; -- Audio CODEC Chip Clock AUD_XCK (18.43 MHz)
 reset_n : in std_logic;
 test_mode : in std_logic; -- Audio CODEC controller test mode
 data_in : in std_logic_vector(15 downto 0);
 audio_req : out std_logic;

 -- Audio interface signals
 AUD_DACLRCK : out std_logic; -- Audio CODEC DAC LR Clock
 AUD_DACDAT : out std_logic -- Audio CODEC DAC Data
);
end de2_wm8731_audio_out;

architecture Behavioral of de2_wm8731_audio_out is

 signal lrck : std_logic;
 signal bclk : std_logic;
 signal xck : std_logic;

 signal lrck_divider : std_logic_vector (11 downto 0);
 signal bclk_divider : std_logic_vector (7 downto 0);

 signal set_bclk : std_logic;
 signal set_lrck : std_logic;
 signal clr_bclk : std_logic;
 signal lrck_lat : std_logic;

 signal shift_out : std_logic_vector (15 downto 0);

 signal sin_out : std_logic_vector (15 downto 0);
 signal sin_counter : std_logic_vector (5 downto 0);

begin

 -- LRCK divider
 -- Audio chip main clock is 18.432MHz / Sample rate 48KHz
 -- Divider is 18.432 MHz / 48KHz = 192 (X"C0")
 -- Left justify mode set by I2C controller

 process(clk, reset_n)
 begin
 if (reset_n = '0') then
 lrck_divider <= (others => '0');
 elsif (clk'event and clk='1') then
 if (lrck_divider = X"47F") then -- "C0" minus 1
 lrck_divider <= X"000";
 else
 lrck_divider <= lrck_divider + '1';
 end if;
 end if;
 end process;

 process(clk, reset_n)
 begin
 if (reset_n = '0') then
 bclk_divider <= (others => '0');
 elsif (clk'event and clk='1') then
 if (bclk_divider = X"47" or set_lrck = '1') then
 bclk_divider <= X"00";
 else
 bclk_divider <= bclk_divider + '1';
 end if;
 end if;
 end process;

 process (lrck_divider)
 begin
 if (lrck_divider = X"47F") then
 set_lrck <= '1';
 else
 set_lrck <= '0';
 end if;
 end process;

 process (clk, reset_n)
 begin
 if (reset_n = '0') then
 lrck <= '0';
 elsif (clk 'event and clk = '1') then
 if (set_lrck = '1') then
 lrck <= not lrck;
 end if;
 end if;
 end process;

 -- BCLK divider
 process (bclk_divider)
 begin
 if (bclk_divider = X"23") then
 set_bclk <= '1';
 else
 set_bclk <= '0';
 end if;

 if (bclk_divider = X"47") then
 clr_bclk <= '1';
 else
 clr_bclk <= '0';
 end if;
 end process;

 process (clk, reset_n)
 begin
 if (reset_n = '0') then
 bclk <= '0';
 elsif (clk 'event and clk = '1') then
 if (set_lrck = '1' or clr_bclk = '1') then
 bclk <= '0';
 elsif (set_bclk = '1') then
 bclk <= '1';
 end if;
 end if;
 end process;

 -- Audio data shift output
 process (clk, reset_n)
 begin
 if (reset_n = '0') then
 shift_out <= (others => '0');
 elsif (clk 'event and clk = '1') then
 if (set_lrck = '1') then
 if (test_mode = '1') then
 shift_out <= sin_out;
 else
 shift_out <= data_in;
 end if;
 elsif (clr_bclk = '1') then
 shift_out <= shift_out (14 downto 0) & '0';
 end if;
 end if;
 end process;

 -- Audio outputs

 AUD_DACLRCK <= lrck;
 AUD_DACDAT <= shift_out(15);

 -- Self test with Sin wave

 process(clk, reset_n)
 begin
 if (reset_n = '0') then
 sin_counter <= (others => '0');
 elsif (clk'event and clk='1') then
 if (lrck_lat = '1' and lrck = '0') then
 if (sin_counter = "101111") then
 sin_counter <= "000000";
 else
 sin_counter <= sin_counter + '1';
 end if;
 end if;
 end if;
 end process;

 process(clk)
 begin
 if (clk'event and clk='1') then
 lrck_lat <= lrck;
 end if;
 end process;
 process (clk)
 begin
 if (clk'event and clk = '1') then
 if ((lrck_lat = '1' and lrck = '0') or (lrck_lat = '0' and lrck = '1')) then
 audio_req <= '1';
 else
 audio_req <= '0';
 end if;
 end if;
 end process;
 process (sin_counter)
 begin
 case sin_counter is
 when "000000" => sin_out <= X"0000";
 when "000001" => sin_out <= X"10b4";
 when "000010" => sin_out <= X"2120";
 when "000011" => sin_out <= X"30fb";
 when "000100" => sin_out <= X"3fff";
 when "000101" => sin_out <= X"4deb";
 when "000110" => sin_out <= X"5a81";
 when "000111" => sin_out <= X"658b";

 when "001000" => sin_out <= X"6ed9";
 when "001001" => sin_out <= X"7640";
 when "001010" => sin_out <= X"7ba2";
 when "001011" => sin_out <= X"7ee6";
 when "001100" => sin_out <= X"7fff";
 when "001101" => sin_out <= X"7ee6";
 when "001110" => sin_out <= X"7ba2";
 when "001111" => sin_out <= X"7640";
 when "010000" => sin_out <= X"6ed9";
 when "010001" => sin_out <= X"658b";
 when "010010" => sin_out <= X"5a81";
 when "010011" => sin_out <= X"4deb";
 when "010100" => sin_out <= X"3fff";
 when "010101" => sin_out <= X"30fb";
 when "010110" => sin_out <= X"2120";
 when "010111" => sin_out <= X"10b4";
 when "011000" => sin_out <= X"0000";
 when "011001" => sin_out <= X"ef4b";
 when "011010" => sin_out <= X"dee0";
 when "011011" => sin_out <= X"cf05";
 when "011100" => sin_out <= X"c001";
 when "011101" => sin_out <= X"b215";
 when "011110" => sin_out <= X"a57e";
 when "011111" => sin_out <= X"9a74";
 when "100000" => sin_out <= X"9127";
 when "100001" => sin_out <= X"89bf";
 when "100010" => sin_out <= X"845d";
 when "100011" => sin_out <= X"8119";
 when "100100" => sin_out <= X"8000";
 when "100101" => sin_out <= X"8119";
 when "100110" => sin_out <= X"845d";
 when "100111" => sin_out <= X"89bf";
 when "101000" => sin_out <= X"9127";
 when "101001" => sin_out <= X"9a74";
 when "101010" => sin_out <= X"a57e";
 when "101011" => sin_out <= X"b215";
 when "101100" => sin_out <= X"c000";
 when "101101" => sin_out <= X"cf05";
 when "101110" => sin_out <= X"dee0";
 when "101111" => sin_out <= X"ef4b";
 when others => sin_out <= X"0000";
 end case;
 end process;

end architecture;

/* main.c
 * Command line interface.
 *
 * This fixed point version of shine is based on Gabriel Bouvigne's original
 * source, version 0.1.2
 *
 * 09/02/01 PRE Ported to Acorn computers running RISC OS.
 * 19/06/03 PRE MPEG2/2.5 support added. RISC OS build conditional.
 */

#include "types.h"

int timelimit = 40;
int dsp_speed = 16000;
int dsp_stereo = 0;
int samplesize = 16;
int flag=0;

FILE * pFile;

/* write a WAVE-header */
void start_wave(int fd, unsigned long cnt)
{
 WaveHeader wh;

 wh.main_chunk = RIFF;
 wh.length = cnt + sizeof(WaveHeader) - 8;
 wh.chunk_type = WAVE;
 wh.sub_chunk = FMT;
 wh.sc_len = 16;
 wh.format = PCM_CODE;
 wh.modus = dsp_stereo ? 2 : 1;
 printf("stereo 2 or mono 1: %d\n", wh.modus);
 wh.sample_fq = dsp_speed;
 wh.byte_p_spl = ((samplesize == 8) ? 1 : 2) * (dsp_stereo ? 2 : 1);
 wh.byte_p_sec = dsp_speed * wh.modus * wh.byte_p_spl;
 wh.bit_p_spl = samplesize;
 wh.data_chunk = DATA;
 wh.data_length= cnt;
 fwrite (&wh, sizeof(WaveHeader), 1, fd);
}

unsigned long calc_count(void)
{
 unsigned long count;

 if (!timelimit)
 count = 0x7fffffff;
 else {
 count = timelimit * dsp_speed;
 if (dsp_stereo)
 count *= 2;
 if (samplesize != 8)
 count *= 2;
 }
 return count;
}

void record(FILE* fd)
{
 //WAVE header calls
 int i = 0;
 unsigned long cnt;
 cnt = calc_count();

 start_wave(fd, cnt);

 short int * samples = (short *) malloc(sizeof(short) * numSamples);

 for (i=0; i<numSamples; i++)
 {
 //volatile unsigned int audioIn = inw(na_audio);
 samples[i] = IORD(na_audio, 1);
 switch(i)
 {
 case 8000:
 printf("15 sec left\n");
 break;
 case 16000:
 printf("14 sec left\n");
 break;
 case 24000:
 printf("13 sec left\n");
 break;
 case 32000:
 printf("12 sec left\n");
 break;
 case 40000:
 printf("11 sec left\n");
 break;
 case 48000:
 printf("10 sec left\n");

 break;
 case 56000:
 printf("9 sec left\n");
 break;
 case 64000:
 printf("8 sec left\n");
 break;
 case 72000:
 printf("7 sec left\n");
 break;
 case 80000:
 printf("6 sec left\n");
 break;
 case 88000:
 printf("5 sec left\n");
 break;
 case 96000:
 printf("4 sec left\n");
 break;
 case 114000:
 printf("3 sec left\n");
 break;
 case 122000:
 printf("2 sec left\n");
 break;
 case 130000:
 printf("1 sec left\n");
 break;
 case 138000:
 printf("0 sec left\n");
 break;
 //default:

 }
 }

 int numSamplesWritten = fwrite(samples, sizeof(short), numSamples, fd);
 printf("numSamplesWritten=%d\n", numSamplesWritten);
 if (numSamplesWritten!=numSamples) {
 printf("Error: only wrote %d of %d samples\n", numSamplesWritten,
numSamples);
 }

 //printf("samples[128]=%d\n", samples[128]);
 //printf("samples[129]=%d\n", samples[129]);

 fflush(fd);
 free(samples);
 fclose(fd);
 flag = 1;

}

/*
 * main:
 * -----
 */
int main()
{
 static int j=0;
 static int i=0;

 printf("Program Starts!!");

 while(1)
 {

 if ((inw(na_switch_pio) == 0x3) && (flag==0))
 {
 char str1[20];
 char str2[20];
 //const char* saxiao = "/mnt/test";
 //const char* WAVE = "wav";
 const char* name = "/mnt/Mike";
 const char* EMPEE3 = "mp3";
 //for (i=0;i<10;i++){
 //strcpy(str1, saxiao);
 sprintf(str1, "/mnt/test_%d.wav", j);

 FILE * fd = fopen(str1, "w");
 if (fd==NULL)
 {
 printf("Error opening file\n");
 exit(-1);
 }

 printf("Start Recording......\n");

 record(fd);
 printf("Done recording!\n");
 //The ADC to wac code
 strcpy(str2, name);
 sprintf(str2, "%s_%d.%s", name, j, EMPEE3);
 j++;
 mp3encode(str2, str1);
 printf("Done Encoding %s\n",str2);
 }
 if ((inw(na_switch_pio) == 0x1) && (flag==1))
 {
 flag=0;
 printf("Ready to Record\n");
 }
 if ((inw(na_switch_pio) == 0x5) && (flag==0))
 exit(EXIT_SUCCESS);
 }
}

/* main.c
 * Command line interface.
 *
 * This fixed point version of shine is based on Gabriel Bouvigne's original
 * source, version 0.1.2
 *
 * 09/02/01 PRE Ported to Acorn computers running RISC OS.
 * 19/06/03 PRE MPEG2/2.5 support added. RISC OS build conditional.
 */

#include "types.h"

//filetypes
#define AMPEG 0x1ad
#define DATA 0xffd
#define WAVE 0xfb1
#define CD_DATA 0x0cd

config_t config;
int cutoff;

void (*L3_window_filter_subband)(unsigned long **buffer, long s[SBLIMIT], int k);
void (*L3_mdct_sub)(long sb_sample[2][3][18][SBLIMIT],
 long mdct_freq[2][2][samp_per_frame2]);
int (*quantize)(int ix[samp_per_frame2], int stepsize);

extern void L3_window_filter_subband_a(unsigned long **buffer, long s[SBLIMIT], int
k);
extern void L3_mdct_sub_a(long sb_sample[2][3][18][SBLIMIT],
 long mdct_freq[2][2][samp_per_frame2]);
extern int quantize_a(int ix[samp_per_frame2], int stepsize);

/*
 * error:
 * ------
 */
void error(char *s)
{
 printf("[ERROR] %s\n",s);
 exit(1);
}

/*
 * print_usage:
 * ------------
 */
/*
static void print_usage()
{
 printf("\nUSAGE : Shine [options] <infile> <outfile>\n"
 "options : -h this help message\n"
 " -b <bitrate> set the bitrate [32-320], default 128kbit\n"
 " -c set copyright flag, default off\n"
 " -o reset original flag, default on\n"
 " -r [sample rate] raw cd data file instead of wave\n"
 " -m mono from stereo, raw mono with -r\n"
);

 exit(0);
}
 */
/*
 * set_functions
 * -------------
 * Initialises the function pointers for strongarm or normal arm
 * function versions.
 */
static void set_functions()//int strongarm)
{

 L3_window_filter_subband = L3_window_filter_subband_a;
 L3_mdct_sub = L3_mdct_sub_a;
 quantize = quantize_a;

}

/*
 * set_defaults:
 * -------------
 */
static void set_defaults()
{
 config.mpeg.type = MPEG2; //Original MPEG1 Yen
 config.mpeg.layr = LAYER_3;
 config.mpeg.mode = MODE_MONO;
 config.mpeg.bitr = 128;
 config.mpeg.psyc = 0;
 config.mpeg.emph = 0;

 config.mpeg.crc = 0;
 config.mpeg.ext = 0;
 config.mpeg.mode_ext = 0;
 config.mpeg.copyright = 0;
 config.mpeg.original = 0;
 config.mpeg.channels = 1; //2 to 1 Yen
 config.mpeg.granules = 1; // originally 2, but since it is MPEG2.5 so granules=1
Yen
 cutoff = 418; // 16KHz @ 44.1Ksps original 418 Yen
 config.wave.samplerate = 8000; //original 41000 Yen
}

/*
 * parse_command:
 * --------------
 */
/*
static int parse_command(int argc, char **argv, int *raw, int *mono_from_stereo)
{
 int i = 0, x;

 if(argc<3) return 0;

 while(argv[++i][0]=='-')
 switch(argv[i][1])
 {
 case 'b':
 config.mpeg.bitr = atoi(argv[++i]);
 break;

 case 'c':
 config.mpeg.copyright = 1;
 break;

 case 'o':
 config.mpeg.original = 0;
 break;

 case 'r':
 *raw = 1;
 x = atoi(argv[i+1]);
 if(x > 7999)
 {
 i++;
 config.wave.samplerate = x;
 }

 break;

 case 'm':
 *mono_from_stereo = 1;
 break;

 default :
 return 0;
 }

 /*if((argc-i)!=2) return 0;
 config.infile = argv[i++];
 config.outfile = argv[i];
 return 1;
}
*/
/*
 * find_samplerate_index:
 * ----------------------
 */
static int find_samplerate_index(long freq)
{
 static long sr[4][3] = {{11025, 12000, 8000}, /* mpeg 2.5 */
 { 0, 0, 0}, /* reserved */
 {22050, 24000, 16000}, /* mpeg 2 */
 {44100, 48000, 32000}}; /* mpeg 1 */
 int i, j;

 for(j=0; j<4; j++)
 for(i=0; i<3; i++)
 if((freq == sr[j][i]) && (j != 1))
 {
 config.mpeg.type = j;
 return i;
 }

 error("Invalid samplerate");
 return 0;
}

/*
 * find_bitrate_index:
 * -------------------
 */
static int find_bitrate_index(int bitr)
{

 static long br[2][15] =
 {{0, 8,16,24,32,40,48,56, 64, 80, 96,112,128,144,160}, /* mpeg 2/2.5 */
 {0,32,40,48,56,64,80,96,112,128,160,192,224,256,320}}; /* mpeg 1 */
 int i;

 for(i=1; i<15; i++)
 if(bitr==br[config.mpeg.type & 1][i]) return i;

 error("Invalid bitrate");
 return 0;
}

int set_cutoff(void)
{
 static int cutoff_tab[3][2][15] =
 {
 { /* 44.1k, 22.05k, 11.025k */
 {100,104,131,157,183,209,261,313,365,418,418,418,418,418,418}, /* stereo */
 {183,209,261,313,365,418,418,418,418,418,418,418,418,418,418} /* mono */
 },
 { /* 48k, 24k, 12k */
 {100,104,131,157,183,209,261,313,384,384,384,384,384,384,384}, /* stereo */
 {183,209,261,313,365,384,384,384,384,384,384,384,384,384,384} /* mono */
 },
 { /* 32k, 16k, 8k */
 {100,104,131,157,183,209,261,313,365,418,522,576,576,576,576}, /* stereo */
 {183,209,261,313,365,418,522,576,576,576,576,576,576,576,576} /* mono */
 }
 };

 return cutoff_tab[config.mpeg.samplerate_index]
 [config.mpeg.mode == MODE_MONO]
 [config.mpeg.bitrate_index];
}

/*
 * check_config:
 * -------------
 */
static void check_config()
{
 static char *mode_names[4] = { "stereo", "j-stereo", "dual-ch", "mono" };
 static char *layer_names[4] = { "", "III", "II", "I" };
 static char *version_names[4] = { "MPEG 2.5", "", "MPEG 2", "MPEG 1" };
 static char *psy_names[3] = { "none", "MUSICAM", "Shine" };
 static char *demp_names[4] = { "none", "50/15us", "", "CITT" };

 config.mpeg.samplerate_index = find_samplerate_index(config.wave.samplerate);
 config.mpeg.bitrate_index = find_bitrate_index(config.mpeg.bitr);
 cutoff = set_cutoff();

 printf("%s layer %s, %s Psychoacoustic Model: %s\n",
 version_names[config.mpeg.type],
 layer_names[config.mpeg.layr],
 mode_names[config.mpeg.mode],
 psy_names[config.mpeg.psyc]);
 printf("Bitrate=%d kbps ",config.mpeg.bitr);
 printf("De-emphasis: %s %s %s\n",
 demp_names[config.mpeg.emph],
 (config.mpeg.original) ? "Original" : "",
 (config.mpeg.copyright) ? "(C)" : "");
}

/*
 * main:
 * -----
 */
int mp3encode(const char* name, const char* saxiao)
{
 int mono_from_stereo = 0;
 int raw =0;
 config.infile=saxiao;
 config.outfile=name;

 set_defaults();

 set_functions();

 wave_open(raw,mono_from_stereo);

 check_config();

 printf("Encoding \"%s\" to \"%s\"\n", config.infile, config.outfile);

 L3_compress();

 wave_close();

 return 0;
}

#include "defs.h"
#include "mpegdec.h"
#include "genre.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <sys/file.h>
#include <nios2_system.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <getopt.h>
#include <signal.h>
#include <linux/soundcard.h>
#include <sys/resource.h>
#include <config/autoconf.h>
#include "fmtheaders.h"

int timelimit = 85;
int dsp_speed = 8000;
int dsp_stereo = 0;
int samplesize = 16;

/* write a WAVE-header */
void start_wave(int fd, unsigned long cnt)
{
 WaveHeader wh;

 wh.main_chunk = RIFF;
 wh.length = cnt + sizeof(WaveHeader) - 8;
 wh.chunk_type = WAVE;
 wh.sub_chunk = FMT;
 wh.sc_len = 16;
 wh.format = PCM_CODE;
 wh.modus = dsp_stereo ? 2 : 1;
 wh.sample_fq = dsp_speed;
 wh.byte_p_spl = ((samplesize == 8) ? 1 : 2) * (dsp_stereo ? 2 : 1);
 wh.byte_p_sec = dsp_speed * wh.modus * wh.byte_p_spl;
 wh.bit_p_spl = samplesize;
 wh.data_chunk = DATA;
 wh.data_length= cnt;
 fwrite (&wh, sizeof(WaveHeader), 1, fd);

}

FILE *f;

#ifdef CONFIG_USER_SETKEY_SETKEY
#include <key/key.h>
#endif

/***
*****/

int verbose;
int quiet;
int http_streaming;
int lcd_line, lcd_time;
int prebuflimit;
int lcdfd = -1;
int gotsigusr1;
char key[128];

/*
 * Keep track of start and end times.
 */
struct timeval tvstart, tvend;

/*
 * Global settings per decode stream. Used to control the final
 * PCM to raw driver data conversion.
 */
static int stereo;
static int bits;
static int testtone;
static int quality;

/*
 * Master MP3 decoder settings.
 */
static MPEGDEC_STREAM *mps = NULL;

static MPEGDEC_CTRL mpa_ctrl;
static MPEGDEC_CTRL mpa_defctrl = {
 NULL, // Bitstream access is default file I/O
 // Layers I & II settings (#3)
 { FALSE, { 1, 2, 48000 }, { 1, 2, 48000 } },
 // Layer III settings (#3)
 { FALSE, { 1, 2, 48000 }, { 1, 2, 48000 } },

 0, // #2: Don't check mpeg validity at start
 // (needed for mux stream)
 2048 // #2: Stream Buffer size
};

static char *modes[] = { "stereo", "j-stereo", "dual", "mono" };

/***
*****/
/*
 * MP3 data stream support (could be file or http stream).
 */
#define MP3_BUF_SIZE (4*1024)

static char *mp3_filename;
static int mp3_fd;
static INT8 *mp3_buffer;
static UINT32 mp3_buffer_size;
static UINT32 mp3_buffer_offset;
static UINT32 mp3_buffer_next_block;
static UINT32 mp3_stream_size;

static char *rawbuf;
static char *prebuffer;

int prebufsize;
int prebufcnt;
int prebufnow;

/***
*****/

/*
 * MP3 file TAG info. Output when in verbose mode. This structure is
 * designed to match the in-file structure, don't change it!
 * Nice printable strings are generated in the other vars below.
 */
struct mp3tag {
 char tag[3];
 char title[30];
 char artist[30];
 char album[30];
 char year[4];
 char comments[30];
 unsigned char genre;
};

static struct mp3tag mp3_tag;
static int mp3_gottag;

static char mp3_title[32];
static char mp3_artist[32];
static char mp3_year[8];
static char mp3_album[32];
static char mp3_comments[32];
static char *mp3_genre;

unsigned long calc_count(void)
{
 unsigned long count;

 if (!timelimit)
 count = 0x7fffffff;
 else {
 count = timelimit * dsp_speed;
 if (dsp_stereo)
 count *= 2;
 if (samplesize != 8)
 count *= 2;
 }
 return count;
}
/***
*****/
/*
 * Trivial signal handler, processing is done from the main loop.
 */

void usr1_handler(int ignore)
{
 gotsigusr1 = 1;
}

/***
*****/

/*
 * Get stream size (just file size).
 */

static int getstreamsize(void)
{

 struct stat st;
 if (stat(mp3_filename, &st) < 0)
 return(0);
 return(st.st_size);
}

/***
*****/
/*
 * Get another chunk of data into RAM.
 */

static UINT32 getnextbuffer()
{
 int rc;

 lseek(mp3_fd, mp3_buffer_next_block, SEEK_SET);
 rc = read(mp3_fd, mp3_buffer, MP3_BUF_SIZE);
 mp3_buffer_size = (rc < 0) ? 0 : rc;
 mp3_buffer_next_block += mp3_buffer_size;
 return(mp3_buffer_size);
}

/***
*****/

/*
 * Start our own bitstream access routines.
 */

INT32 bs_open(char *stream_name, INT32 buffer_size, INT32 *stream_size)
{
#if 0
 printf("bs_open: '%s'\n", stream_name);
#endif

 if (!mp3_buffer)
 return(0);

 mp3_buffer_offset = 0;

 /* We know total size, we can set it */
 *stream_size = mp3_stream_size;

 /* Just return a dummy handle (not NULL) */
 return(1);

}

/***
*****/

void bs_close(INT32 handle)
{
#if 0
 printf("bs_close\n");
#endif
 /* Don't need to do anything... */
}

/***
*****/

INT32 bs_read(INT32 handle, void *buffer, INT32 num_bytes)
{
 INT32 read_size;

 if (!handle)
 return(-1);

tryagain:
 read_size = mp3_buffer_size - mp3_buffer_offset;
 if (read_size > num_bytes)
 read_size = num_bytes;

 if (read_size > 0) {
 if(!buffer)
 return(-1);
 memcpy(buffer, &mp3_buffer[mp3_buffer_offset], read_size);
 mp3_buffer_offset += read_size;
 } else {
 if (getnextbuffer() > 0) {
 mp3_buffer_offset = 0;
 goto tryagain;
 }
 read_size = -1; /* End of stream */
 }

 return(read_size);
}

/***
*****/

int bs_seek(INT32 handle, INT32 abs_byte_seek_pos)
{
 if (!handle)
 return(-1);

 if (abs_byte_seek_pos <= 0)
 mp3_buffer_offset = 0;
 else if (abs_byte_seek_pos >= mp3_buffer_size)
 return(-1);
 else
 mp3_buffer_offset = abs_byte_seek_pos;
 return(0);
}

/***
*****/

MPEGDEC_ACCESS bs_access = { bs_open, bs_close, bs_read, bs_seek };

/***
*****/

void mkstring(char *str, char *buf, int size)
{
 int i, j = 0;
 char save;
 for (i = size - 1; i >= 0; i--) {
 if (buf[i] != ' ') {
 while (buf[j] == ' ')
 j++;
 strncpy(str, &buf[j], i - j + 1);
 str[i-j+1] = '\0';
 return;
 }
 }
}

/***
*****/

/*
 * Get TAG info from mp3 file, if it is present. No point doing a
 * fatal exit on errors, just assume no tag info is present.
 */

void getmp3taginfo(void)
{
 long pos;
 int size;

 mp3_gottag = 0;
 size = sizeof(mp3_tag);
 pos = mp3_stream_size - size;
 if (pos < 0)
 return;

 if (lseek(mp3_fd, pos, SEEK_SET) < 0)
 return;
 if (read(mp3_fd, &mp3_tag, size) != size)
 return;
 if (strncmp(&mp3_tag.tag[0], "TAG", 3) != 0)
 return;

 /* Return file pointer to start of file */
 lseek(mp3_fd, 0, SEEK_SET);

 /* Construct fill NULL terminated strings */
 mkstring(&mp3_title[0], &mp3_tag.title[0], sizeof(mp3_tag.title));
 mkstring(&mp3_artist[0], &mp3_tag.artist[0], sizeof(mp3_tag.artist));
 mkstring(&mp3_album[0], &mp3_tag.album[0], sizeof(mp3_tag.album));
 mkstring(&mp3_year[0], &mp3_tag.year[0], sizeof(mp3_tag.year));
 mkstring(&mp3_comments[0], &mp3_tag.comments[0],
sizeof(mp3_tag.comments));
 mp3_genre = (mp3_tag.genre >= genre_count) ? "Unknown" :
 genre_table[mp3_tag.genre];

 mp3_gottag = 1;
}

/***
*****/

/*
 * Print out everything we know about the MP3 stream.
 */

void printmp3info(void)
{
 if (quiet)
 return;

 if (verbose == 0) {
 printf("New");
 printf("%s: MPEG%d-%s (%ld ms)\n", mp3_filename, mps->norm,
 (mps->layer == 1)?"I":(mps->layer == 2)?"II":"III",
 mps->ms_duration);
 return;
 }

 /* This is the verbose output */
 printf("%s:\n", mp3_filename);
 printf(" MPEG%d-%s %s %dkbps %dHz (%ld ms)\n", mps->norm,
 (mps->layer == 1) ? "I" : (mps->layer == 2) ? "II" : "III",
 modes[mps->mode], mps->bitrate, mps->frequency,
 mps->ms_duration);
 printf(" Decoding: Channels=%d Quality=%d Frequency=%dHz\n",
 mps->dec_channels, mps->dec_quality, mps->dec_frequency);

 if (mp3_gottag) {
 printf(" Title: %s\n", mp3_title);
 printf(" Artist: %s\n", mp3_artist);
 printf(" Album: %s\n", mp3_album);
 printf(" Year: %s\n", mp3_year);
 printf(" Comments: %s\n", mp3_comments);
 printf(" Genre: %s\n", mp3_genre);
 }
}

/***
*****/

/*
 * Print out the name on a display device if present.
 */

void lcdtitle(void)
{
 char ctrl, *name;
 int ivp;
 struct iovec iv[4];
 char prebuf[10];
 char postbuf;
 char *p;
 int namelen;

 /* Install a signal handler to allow updates to be forced */
 signal(SIGUSR1, usr1_handler);

 /* Determine the name to display. We use the tag if it is
 * present and the basename of the file if not.
 */
 if (mp3_gottag) {
 name = mp3_title;
 namelen = strlen(name);
 } else {
 name = strrchr(mp3_filename, '/');
 if (name == NULL)
 name = mp3_filename;
 else
 name++;
 p = strchr(name, '.');
 if (p == NULL)
 namelen = strlen(name);
 else
 namelen = p - name;
 }

 if (lcd_line) {
 /* Lock the file so we can access it... */
 if (flock(lcdfd, LOCK_SH | LOCK_NB) == -1)
 return;
 if (lcd_line == 0) {
 prebuf[0] = '\f';
 prebuf[1] = '\0';
 } else if (lcd_line == 1) {
 strcpy(prebuf, "\003\005");
 } else if (lcd_line == 2) {
 strcpy(prebuf, "\003\v\005");
 }

 /*
 * Now we'll write the title out. We'll do this atomically
 * just in case two players decide to coexecute...
 */
 ivp = 0;
 iv[ivp].iov_len = strlen(prebuf) * sizeof(char);
 iv[ivp++].iov_base = prebuf;

 iv[ivp].iov_len = namelen * sizeof(char);
 iv[ivp++].iov_base = name;

 //postbuf = '\n';
 //iv[ivp].iov_len = sizeof(char);

 //iv[ivp++].iov_base = &postbuf;
 writev(lcdfd, iv, ivp);

 /* Finally, unlock it since we've finished. */
 flock(lcdfd, LOCK_UN);
 }
}

/***
*****/

/*
 * Output time info to display device.
 */

void lcdtime(time_t sttime)
{
 static time_t lasttime;
 time_t t;
 char buf[15], *p;
 int m, s;

 t = time(NULL) - sttime;
 if (t != lasttime && flock(lcdfd, LOCK_SH | LOCK_NB) == 0) {
 p = buf;
 *p++ = '\003';
 if (lcd_time == 2)
 *p++ = '\v';
 *p++ = '\005';
 m = t / 60;
 s = t % 60;
 if (s < 0) s += 60;
 sprintf(p, "%02d:%02d", m, s);
 write(lcdfd, buf, strlen(buf));
 flock(lcdfd, LOCK_UN);
 }
 lasttime = t;
}

/***
*****/

/*
 * Configure DSP engine settings for playing this track.
 */

void setdsp(int fd, int playstereo, int playbits)
{
 if (ioctl(fd, SNDCTL_DSP_SPEED, &mps->dec_frequency) < 0) {
 fprintf(stderr, "ERROR: Unable to set frequency to %d, "
 "errno=%d\n", mps->dec_frequency, errno);
 exit(1);
 }

 /* Check if data stream is stereo, otherwise must play mono. */
 stereo = (mps->channels == 1) ? 0 : playstereo;
 if (ioctl(fd, SNDCTL_DSP_STEREO, &stereo) < 0) {
 fprintf(stderr, "ERROR: Unable to set stereo to %d, "
 "errno=%d\n", stereo, errno);
 exit(1);
 }

#if BYTE_ORDER == LITTLE_ENDIAN
 bits = (playbits == 16) ? AFMT_S16_LE : AFMT_U8;
#else
 bits = (playbits == 16) ? AFMT_S16_BE : AFMT_U8;
#endif
 if (ioctl(fd, SNDCTL_DSP_SAMPLESIZE, &bits) < 0) {
 fprintf(stderr, "ERROR: Unable to set sample size to "
 "%d, errno=%d\n", bits, errno);
 exit(1);
 }
}

/***
*****/

/*
 * Generate a tone instead of PCM output. This is purely for
 * testing purposes.
 */

int writetone(int fd, INT16 *pcm[2], int count)
{
 static int ramp = 0;
 unsigned char *pbufbp;
 unsigned short *pbufwp;
 int i;

 if (count <= 0)
 return(count);

 if (stereo) {
 if (bits == 8) {
 /* 8bit stereo */
 pbufbp = (unsigned char *) rawbuf;
 for (i = 0; (i < count); i++) {
 *pbufbp++ = ramp;
 *pbufbp++ = ramp;
 ramp = (ramp + 0x80) & 0x7ff;
 }
 i = count * 2 * sizeof(unsigned char);
 } else {
 /* 16bit stereo */
 pbufwp = (unsigned short *) rawbuf;
 for (i = 0; (i < count); i++) {
 *pbufwp++ = ramp;
 *pbufwp++ = ramp;
 ramp = (ramp + 0x80) & 0x7ff;
 }
 i = count * 2 * sizeof(unsigned short);
 }
 } else {
 if (bits == 8) {
 /* 8bit mono */
 pbufbp = (unsigned char *) rawbuf;
 for (i = 0; (i < count); i++) {
 *pbufbp++ = ramp;
 ramp = (ramp + 0x80) & 0x7ff;
 }
 i = count * sizeof(unsigned char);
 } else {
 /* 16bit mono */
 pbufwp = (unsigned short *) rawbuf;
 for (i = 0; (i < count); i++) {
 *pbufwp++ = ramp;
 ramp = (ramp + 0x80) & 0x7ff;
 }
 i = count * sizeof(unsigned short);
 }
 }

 write(fd, rawbuf, i);
 return(i);
}

/***
*****/

//writepcm(dspfd, pcm, pcmcount);
/*
 * Write out the PCM data to the file descriptor, translating to
 * the specified data format.
 */
/*

int writepcm(int fd, INT16 *pcm[2], int count)
{
 unsigned short *pcm0, *pcm1;
 unsigned char *pbufbp;
 unsigned short *pbufwp;
 char *buf;
 int i;

 if (count <= 0)
 return(count);
 if (testtone)
 return(writetone(fd, pcm, count));

 buf = rawbuf;

 if (stereo) {
 if (bits == 8) {
 // 8bit stereo //
 pcm0 = pcm[0];
 pcm1 = pcm[1];
 pbufbp = (unsigned char *) buf;
 for (i = 0; (i < count); i++) {
 *pbufbp++ = (*pcm0++ ^ 0x8000) >> 8;
 *pbufbp++ = (*pcm1++ ^ 0x8000) >> 8;
 }
 i = count * 2 * sizeof(unsigned char);
 } else {
 // 16bit stereo
 pcm0 = pcm[0]; //pcm[0] store pcm0 address
 pcm1 = pcm[1];
 pbufwp = (unsigned short *) buf;
 for (i = 0; (i < count); i++) {
 *pbufwp++ = *pcm0++;
 *pbufwp++ = *pcm1++;
 }
 i = count * 2 * sizeof(unsigned short);
 }
 } else {
 if (bits == 8) {

 // 8bit mono
 pcm0 = pcm[0];
 pbufbp = (unsigned char *) buf;
 for (i = 0; (i < count); i++)
 *pbufbp++ = (*pcm0++ ^ 0x8000) >> 8;
 i = count * sizeof(unsigned char);
 } else {
 // 16bit mono, no translation required!
 i = count * sizeof(unsigned short);
 buf = (char *) pcm[0];
 }
 }

 if (prebufnow) {
 memcpy(&prebuffer[prebufcnt], buf, i);
 prebufcnt += i;
 if (prebufcnt > prebufnow) {
 write(fd, &prebuffer[0], prebufcnt);
 prebufnow = prebufcnt = 0;
 }
 } else {
 write(fd, buf, i);
 }

 return(i);
}
*/

/***
*****/

/*
 * Flush out any remaining buffered PCM data. This is really to allow
 * for prebuffing of files smaller than the prebuffer.
 */

void flushpcm(int fd)
{
 if (prebufnow) {
 write(fd, &prebuffer[0], prebufcnt);
 prebufnow = prebufcnt = 0;
 }
}

/***
*****/

void usage(int rc)
{
 printf("usage: mp3play [-hmvqz8RPTZ] [-g <quality>] [-s <time>] "
 "[-d <device>] [-w <filename>] [-B <prebuf>] "
 "[-l <line> [-t]] mp3-files...\n\n"
 "\t\t-h this help\n"
 "\t\t-v verbose stdout output\n"
 "\t\t-q quiet (don't print title)\n"
 "\t\t-m mix both channels (mono)\n"
 "\t\t-8 play 8 bit samples\n"
 "\t\t-R repeat tracks forever\n"
 "\t\t-z shuffle tracks\n"
 "\t\t-Z psuedo-random tracks (implicit -R)\n"
 "\t\t-P print time to decode/play\n"
 "\t\t-T do decode, but output test tone\n"
 "\t\t-g <quality> decode quality (0,1,2)\n"
 "\t\t-s <time> sleep between playing tracks\n"
#ifdef SWAP_WD
 "\t\t-w <device> audio device for playback\n"
 "\t\t-d <filename> write output to file\n"
#else
 "\t\t-d <device> audio device for playback\n"
 "\t\t-w <filename> write output to file\n"
#endif
 "\t\t-l <line> display title on LCD line (0,1,2) (0 = no title)\n"
 "\t\t-t <line> display time on LCD line (1,2)\n"
 "\t\t-B <prebuf> size of pre-buffer\n");
 exit(rc);
}

/***
*****/

int main(int argc, char *argv[])
{
 unsigned long us;
 INT16 *pcm[MPEGDEC_MAX_CHANNELS];
 int pcmcount, rawcount;
 int c, i, j, dspfd, dsphw, slptime;
 int count = 0;
 int pcmsize=0;
 int k=0;
 int playbits, playstereo, repeat, printtime;
 int argnr, startargnr, rand, shuffle;
 char *device, *argvtmp;

 time_t sttime;

 verbose = 0;
 quiet = 0;
 playstereo = 1;
 playbits = 16;
 quality = 2;
 shuffle = 0;
 rand = 0;
 repeat = 0;
 printtime = 0;
 slptime = 0;
 prebuflimit = 64000;
 device = "/dev/dsp";
 dsphw = 1;

 while ((c = getopt(argc, argv, "?hmvqzt:8RZPTg:s:d:w:l:B:V")) >= 0) {
 switch (c) {
 case 'V':
 printf("%s version 1.0\n", argv[0]);
 return 0;
 case 'v':
 verbose++;
 break;
 case 'q':
 verbose = 0;
 quiet++;
 break;
 case 'm':
 playstereo = 0;
 break;
 case '8':
 playbits = 8;
 break;
 case 'R':
 repeat++;
 break;
 case 'z':
 shuffle++;
 break;
 case 'Z':
 rand++;
 repeat++;
 break;
 case 'P':
 printtime++;

 break;
 case 'T':
 testtone++;
 break;
 case 'g':
 quality = atoi(optarg);
 if ((quality < 0) || (quality > 2)) {
 fprintf(stderr, "ERROR: valid quality 0, 1 "
 "and 2\n");
 exit(1);
 }
 break;
 case 's':
 slptime = atoi(optarg);
 break;
 case 'd':
 device = optarg;
#ifdef SWAP_WD
 dsphw = 0;
#endif
 break;
 case 'w':
 device = optarg;
#ifndef SWAP_WD
 dsphw = 0;
#endif
 break;
 case 'l':
 lcd_line = atoi(optarg);
 break;
 case 't':
 lcd_time = atoi(optarg);
 break;
 case 'B':
 prebuflimit = atoi(optarg);
 if ((prebuflimit < 0) || (prebuflimit > (1*1024*1024))){
 fprintf(stderr, "ERROR: valid pre-buffer range "
 "0 to 1000000 bytes\n");
 exit(1);
 }
 break;
 case 'h':
 case '?':
 usage(0);
 break;
 }

 }

 argnr = optind;
 if (argnr >= argc)
 usage(1);
 startargnr = argnr;

 mp3_buffer = (INT8 *) malloc(MP3_BUF_SIZE);
 if (!mp3_buffer) {
 fprintf(stderr, "ERROR: Can't allocate MPEG buffer\n");
 exit(0);
 }

 for (i = 0; (i < MPEGDEC_MAX_CHANNELS); i++) {
 pcm[i] = malloc(MPEGDEC_PCM_SIZE * sizeof(INT16));
 if (!pcm[i]) {
 fprintf(stderr, "ERROR: Can't allocate PCM buffers\n");
 exit(1);
 }
 }

 if ((rawbuf = malloc(MPEGDEC_PCM_SIZE * sizeof(short) * 2)) == NULL) {
 fprintf(stderr, "ERROR: Can't allocate raw buffers\n");
 exit(1);
 }
 if (prebuflimit) {
 prebufsize = prebuflimit + (MPEGDEC_PCM_SIZE*sizeof(short)*2);
 if ((prebuffer = malloc(prebufsize)) == NULL) {
 fprintf(stderr, "ERROR: Can't allocate pre-buffer\n");
 exit(1);
 }
 }

 /* Make ourselves the top priority process! */
 setpriority(PRIO_PROCESS, 0, -20);
 srandom(time(NULL));

 /* Open the audio playback device */
 /*
 if ((dspfd = open(device, (O_WRONLY | O_CREAT | O_TRUNC), 0660)) < 0) {
 fprintf(stderr, "ERROR: Can't open output device '%s', "
 "errno=%d\n", device, errno);
 exit(0);
 }
*/
 /* Open LCD device if we are going to use it */

/*
 if ((lcd_line > 0) || (lcd_time > 0)) {
 lcdfd = open("/dev/lcdtxt", O_WRONLY);
 if (lcdfd < 0) {
 lcd_time = 0;
 lcd_line = 0;
 }
 }
*/
nextall:
 /* Shuffle tracks if slected */
 if (shuffle) {
 for (c = 0; (c < 10000); c++) {
 i = (((unsigned int) random()) % (argc - startargnr)) +
 startargnr;
 j = (((unsigned int) random()) % (argc - startargnr)) +
 startargnr;
 argvtmp = argv[i];
 argv[i] = argv[j];
 argv[j] = argvtmp;
 }
 }

nextfile:
 if (rand) {
 argnr = (((unsigned int) random()) % (argc - startargnr)) +
 startargnr;
 }

 mpa_ctrl = mpa_defctrl;
 mpa_ctrl.bs_access = &bs_access;
 if (playstereo == 0)
 mpa_ctrl.layer_3.force_mono = 1;
 mpa_ctrl.layer_3.mono.quality = quality;
 mpa_ctrl.layer_3.stereo.quality = quality;

 mp3_buffer_offset = 0;
 mp3_buffer_next_block = 0;

 mp3_filename = argv[argnr];

 /* Open file or stream to mp3 data */
 if (strncmp(mp3_filename, "http://", 7) == 0) {
 mp3_stream_size = 0; /*HACK*/
 mp3_fd = openhttp(mp3_filename);
 } else {

 mp3_stream_size = getstreamsize();
 mp3_fd = open(mp3_filename, O_RDONLY);
 }

 if (mp3_fd < 0) {
 fprintf(stderr, "ERROR: Unable to open '%s', errno=%d\n",
 mp3_filename, errno);
 http_streaming = 0;
 goto badfile;
 }

 getmp3taginfo();

 /* Get first part of the stream into a ram buffer */
 getnextbuffer();

mp3_restream:
 mps = MPEGDEC_open(mp3_filename, &mpa_ctrl);
 if (!mps) {
 fprintf(stderr, "ERROR: Unable to open MP3 Audio "
 "stream '%s'\n", mp3_filename);
 http_streaming = 0;
 goto badfile;
 }

#ifdef CONFIG_USER_SETKEY_SETKEY
 if ((i = getdriverkey(&key, sizeof(key))) > 0)
 MPEGDEC_setkey(mps, &key, i);
#endif

 printmp3info();

 gettimeofday(&tvstart, NULL);
 sttime = time(NULL);

 /* Restart pre-buffering for next track */
 prebufnow = prebuflimit;
 prebufcnt = 0;

 //short *audioOut = na_audio; //AUDIO_BASE : 0x01b02000
 //f=fopen("/mnt/Huang2.wav", "wb");

 //WAVE header calls
 // unsigned long cnt;
 // cnt = calc_count();
 // start_wave(f, cnt);

 /* write the 'RIFF' header */
 //fwrite("RIFF", 1, 4, f);
 /* write the total size */
 //temp32 = 0;
 //wav->total_offs = ftell(wav->file);
 //fwrite(&temp32, 1, 4, wav->file);

 while ((pcmcount = MPEGDEC_decode_frame(mps, pcm)) >= 0) {

 /*
 for (i = 0; i < pcmcount; i++) {
 //audio_data = inw(na_sram_0);
 int addr = pcm[0] + (i * 0x00000010);
 printf("ADDR=%d\n",addr);
 //printf("i=%d\n",i);
 outw(inw(addr), na_audio);
 for (count = 0; count < DELAY2; count++);
 }
 */
 volatile INT16 *wavOutput = na_audio+2;
 for (i=0; i<pcmcount; i++) {
 *wavOutput = pcm[0][i]; //>>16
 //pcm[0][i]= ((pcm[0][i]>>8) & 0xFF) | ((pcm[0][i]<<8) & 0xFF);
 // *wavOutput = pcm[0][i];
 // *wavOutput = pcm[1][i];
 //printf("&pcm[0][i]=%X pcm[0][i]=%X \n",&pcm[0][i],pcm[0][i]);
 //printf("&pcm[1][i]=%X pcm[1][i]=%X \n",&pcm[1][i],pcm[1][i]);
 //printf("channels=%d",channels);
 //f=fopen("/mnt/freeza.wav", "wa");
 //fwrite(pcm[0][i], sizeof(INT16), 1, f);

 }
 //fwrite(pcm[0],1152,1,f);

 //printf("pcmaddr=%d\n",&pcm);
 //printf("pcm[0]=%d\n",pcm[0]);
 //printf("k=%d\n",k);
 //printf("Stereo=%d\n",stereo);
 //printf("bits=%d\n",bits);
 //printf("pcmcount=%d\n",pcmcount);
 //printf("rawcount=%d\n",rawcount);
 //pcmsize=sizeof(pcm);
 //printf("pcmsize=%d\n",pcmsize);
 //k=k+1;

 }
 //fclose(f);
 //printf("Finsih");

 /* Flush out any remaining buffer PCM data */
 //flushpcm(dspfd);

 gettimeofday(&tvend, NULL);
 if (printtime) {
 us = ((tvend.tv_sec - tvstart.tv_sec) * 1000000) +
 (tvend.tv_usec - tvstart.tv_usec);
 printf("Total time = %d.%06d seconds\n",
 (us / 1000000), (us % 1000000));
 }

badfile:
 if (slptime)
 sleep(slptime);

 close(mp3_fd);
 MPEGDEC_close(mps);
 mps = NULL;

 if (++argnr < argc)
 goto nextfile;

 if (repeat) {
 argnr = startargnr;
 goto nextall;
 }
/*
 close(dspfd);
 if (lcdfd >= 0)
 close(lcdfd);
*/
 exit(0);
}

/***
*****/

	Introduction
	Floorplan of the System
	Environment of the System/Sampling and wave format
	Analytic Description of the System Building Blocks
	Audio Interface
	USB Flash Drive and Interface
	WAV Format
	MP3 Encoding
	MP3 Decoding
	Operating System

	Problems during implementation - key points and remarks
	Hardware - Audio Interface
	MP3 Encoding
	MP3 Decoding
	Team Organization

	Conclusion

