
Preliminary Information
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Version 7.2 Handbook
Volume 3: Verification

QII5V3-7.2

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Altera Corporation
Preliminary

Altera Corporation iii
Preliminary

Contents

Chapter Revision Dates .. xxix

About this Handbook .. xxxi
How to Contact Altera .. xxxi
Third-Party Software Product Information ... xxxi
Typographic Conventions ... xxxii

Section I. Simulation

Chapter 1. Quartus II Simulator
Introduction .. 1–1
Simulation Flow ... 1–1

Functional Simulation .. 1–3
Timing Simulation .. 1–4
Timing Simulation Using Fast Timing Model Simulation ... 1–4

Waveform Editor ... 1–5
Creating VWFs .. 1–5

Count Value ... 1–11
Clock ... 1–11
Arbitrary Value ... 1–12
Random Value ... 1–13

Generating a Testbench ... 1–13
Grid Size .. 1–14
Time Bars ... 1–14
Stretch or Compress a Waveform Interval ... 1–15
End Time .. 1–16
Arrange Group or Bus in LSB or MSB Order ... 1–17

Simulator Settings .. 1–17
Simulation Verification Options .. 1–21
Simulation Output Files Options ... 1–24

Simulation Report .. 1–25
Simulation Waveform .. 1–25
Simulating Bidirectional Pin ... 1–26
Logical Memories Report .. 1–27
Simulation Coverage Reports ... 1–27
Comparing Two Waveforms .. 1–28

Debugging with the Quartus II Simulator ... 1–29
Breakpoints .. 1–29
Updating Memory Content .. 1–30

iv Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Last Simulation Vector Outputs ... 1–30
Conventional Debugging Process .. 1–30

Accessing Internal Signals for Simulation ... 1–30
Scripting Support ... 1–32
Conclusion .. 1–33
Referenced Documents ... 1–33
Document Revision History ... 1–34

Chapter 2. Mentor Graphics ModelSim Support
Introduction .. 2–1
Background ... 2–1
Software Compatibility ... 2–3
Altera Design Flow with ModelSim or ModelSim-Altera Software .. 2–3
Functional RTL Simulation .. 2–5

Functional Simulation Libraries ... 2–5
lpm Simulation Models .. 2–5
Altera Megafunction Simulation Models .. 2–6
Low-Level Primitive Simulation Models .. 2–7

Simulating VHDL Designs .. 2–7
Create Simulation Libraries ... 2–7

Create Simulation Libraries Using the ModelSim GUI .. 2–8
Create Simulation Libraries Using the ModelSim Command Prompt 2–8

Compile Simulation Models into Simulation Libraries ... 2–8
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI 2–8
Compile Simulation Models into Simulation Libraries at the ModelSim Command
Prompt ... 2–9

Compile Testbench and Design Files into Work Library .. 2–9
Compile Testbench and Design Files into Work Library Using the ModelSim Command
Prompt ... 2–9

Loading the Design ... 2–9
Loading the Design Using the ModelSim Command Prompt 2–10

Running the Simulation ... 2–10
Running the Simulation Using the ModelSim Command Prompt 2–10

Simulating Verilog HDL Designs .. 2–10
Create Simulation Libraries ... 2–10

Create Simulation Libraries Using the ModelSim GUI .. 2–11
Create Simulation Libraries Using the ModelSim Command Prompt 2–11

Compile Simulation Models into Simulation Libraries ... 2–11
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI ... 2–11
Compile Simulation Models into Simulation Libraries Using the ModelSim Command
Prompt ... 2–12

Compile Testbench and Design Files into Work Library .. 2–12
Compile Testbench and Design Files into Work Library Using the ModelSim Command
Prompt ... 2–12

Altera Corporation v
Preliminary

Contents

Loading the Design ... 2–12
Loading a Design Using the ModelSim Command Prompt ... 2–13

Running the Simulation ... 2–13
Running the Simulation Using the ModelSim Command Prompt 2–13

Verilog HDL Functional RTL Simulation with Altera Memory Blocks 2–13
Post-Synthesis Simulation .. 2–16

Generating a Post-Synthesis Simulation Netlist .. 2–16
Simulating VHDL Designs .. 2–17

Create Simulation Libraries ... 2–17
Create Simulation Libraries Using the ModelSim GUI .. 2–17
Create Simulation Libraries Using the ModelSim Command Prompt 2–18
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI ... 2–18
Compile Simulation Models into Simulation Libraries Using the ModelSim Command
Prompt ... 2–18

Compile Testbench and VHDL Output File into Work Library .. 2–18
Compile Testbench and VHDL Output File into Work Library Using ModelSim
Command Prompt ... 2–19

Loading the Design ... 2–19
Loading the Design Using the ModelSim Command Prompt 2–19

Running the Simulation ... 2–19
Running the Simulation Using the ModelSim Command Prompt 2–20

Simulating Verilog HDL Designs .. 2–20
Create Simulation Libraries ... 2–20

Create Simulation Libraries Using the ModelSim GUI .. 2–20
Create Simulation Libraries Using the ModelSim Command Prompt 2–20
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI ... 2–21
Compile Simulation Models into Simulation Libraries Using the ModelSim Command
Prompt ... 2–21

Compile Testbench and Verilog Output File into Work Library 2–21
Compile Testbench and Verilog Output File into Work Library Using the ModelSim
Command Prompt ... 2–21

Loading the Design ... 2–22
Loading the Design Using the ModelSim Command Prompt 2–22

Running the Simulation ... 2–22
Running the Simulation Using the ModelSim Command Prompt 2–23

Gate-Level Timing Simulation ... 2–23
Generating a Gate-Level Timing Simulation Netlist ... 2–23

Generating a Different Timing Model ... 2–24
Operating Condition Example: Generate All Timing Models for Stratix III Devices 2–25

Perform Timing Simulation Using Post-synthesis Netlist .. 2–26
Gate-Level Simulation Libraries .. 2–27
Simulating VHDL Designs .. 2–29

Create Simulation Libraries ... 2–30
Create Simulation Libraries Using the ModelSim GUI .. 2–30
Create Simulation Libraries Using the ModelSim Command Prompt 2–31
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI ... 2–31
Compile Simulation Models into Simulation Libraries Using the ModelSim Command
Prompt ... 2–31

vi Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Compile Testbench and VHDL Output File into Work Library .. 2–31
Compile Testbench and VHDL Output File into Work Library Using the ModelSim
Command Prompt ... 2–32

Loading the Design ... 2–32
Loading a Design Using the ModelSim Command Prompt ... 2–33

Running the Simulation ... 2–33
Running a Simulation Using the ModelSim Command Prompt 2–33

Simulating Verilog HDL Designs .. 2–33
Create Simulation Libraries ... 2–33

Create Simulation Libraries Using the ModelSim GUI .. 2–34
Create Simulation Libraries Using the ModelSim Command Prompt 2–34
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI ... 2–34
Compile Simulation Models into Simulation Libraries Using the ModelSim Command
Prompt ... 2–35

Compile Testbench and Verilog Output File into Work Library 2–35
Compile Testbench and Verilog Output File into Work Libraries Using the ModelSim
Command Prompt ... 2–35

Loading the Design ... 2–35
Loading the Design Using the ModelSim Command Prompt 2–36

Running the Simulation ... 2–36
Running the Simulation Using the ModelSim Command Prompt 2–36

Simulating Designs that Include Transceivers .. 2–37
Stratix GX Functional Simulation .. 2–37

Example: Performing Functional Simulation for Stratix GX in Verilog HDL 2–37
Example: Performing Functional Simulation for Stratix GX in VHDL 2–37

Stratix GX Post-Fit (Timing) Simulation ... 2–38
Example: Performing Timing Simulation for Stratix GX in Verilog HDL 2–38
Example: Performing Timing Simulation for Stratix GX in VHDL 2–39

Stratix II GX Functional Simulation ... 2–39
Example: Performing Functional Simulation for Stratix II GX in Verilog HDL 2–40
Example: Performing Functional Simulation for Stratix II GX in VHDL 2–41

Stratix II GX Post-Fit (Timing) Simulation ... 2–41
Example: Performing Timing Simulation for Stratix II GX in Verilog HDL 2–42
Example: Performing Timing Simulation for Stratix II GX in VHDL 2–42

Transport Delays .. 2–43
+transport_path_delays ... 2–43
+transport_int_delays .. 2–43

Using the NativeLink Feature with ModelSim ... 2–44
Setting Up NativeLink ... 2–44
Performing an RTL Simulation Using NativeLink .. 2–44
Performing a Gate-Level Simulation Using NativeLink .. 2–47
Setting Up a Testbench .. 2–48

Creating a Testbench .. 2–49
Scripting Support ... 2–50

Generating a Post-Synthesis Simulation Netlist for ModelSim ... 2–50
Tcl Commands ... 2–50
Command Prompt .. 2–50

Generating a Gate-Level Timing Simulation Netlist for ModelSim 2–51
Tcl Commands ... 2–51

Altera Corporation vii
Preliminary

Contents

Command Line .. 2–51
Software Licensing and Licensing Setup ... 2–51

LM_LICENSE_FILE Variable ... 2–52
Conclusion .. 2–52
Referenced Documents ... 2–52
Document Revision History ... 2–53

Chapter 3. Synopsys VCS Support
Introduction .. 3–1
Software Requirements ... 3–1
Using VCS in the Quartus II Design Flow ... 3–3
Using VCS in the Quartus II Design Flow ...3–3

Functional Simulations .. 3–4
Megafunctions Requiring Atom Libraries .. 3–5
Functional RTL Simulation with Altera Memory Blocks .. 3–5

Compiling Functional Library Files with Compiler Directives 3–5
Post-Synthesis Simulation ... 3–6

Generating a Post-Synthesis Simulation Netlist ... 3–6
Gate-Level Timing Simulation ... 3–8
Generating a Gate-Level Timing Simulation Netlist ... 3–8

Generating Different Timing Model .. 3–9
Operating Condition Example: Generate All Timing Models for Stratix III Devices 3–10

Perform Timing Simulation Using Post-Synthesis Netlist ... 3–11
Common VCS Software Compiler Options ... 3–11
Using VirSim .. 3–12
Debugging Support Command-Line Interface ... 3–12
Simulating Designs that Include Transceivers .. 3–13

Stratix GX Functional Simulation .. 3–13
Example of Compiling Library Files for Functional Stratix GX Simulation in Verilog HDL .
..3–13

Stratix GX Post-Fit (Timing) Simulation ... 3–13
Example of Compiling Library Files for Timing Stratix GX Simulation in Verilog HDL
..3–14

Stratix II GX Functional Simulation ... 3–14
Example of Compiling Library Files for Functional Stratix II GX Simulation in Verilog HDL
..3–15

Stratix II GX Post-Fit (Timing) Simulation ... 3–16
Example of Compiling Library Files for Timing Stratix II GX Simulation in Verilog HDL ...
..3–16

Using PLI Routines with the VCS Software .. 3–16
Preparing and Linking C Programs to Verilog HDL Code .. 3–16

Transport Delays .. 3–17
+transport_path_delays ... 3–17
+transport_int_delays .. 3–17

Using NativeLink with the VCS Software ... 3–18
Setting Up NativeLink ... 3–18
Performing an RTL Simulation Using NativeLink .. 3–18

viii Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Performing a Gate-Level Simulation Using NativeLink .. 3–20
Setting Up a Testbench .. 3–21

Creating a Testbench .. 3–22
Scripting Support ... 3–23

Generating a Post-Synthesis Simulation Netlist for VCS ... 3–23
Tcl Commands ... 3–23
Command Prompt .. 3–23

Generating a Gate-Level Timing Simulation Netlist for VCS .. 3–23
Tcl Commands ... 3–24
Command Prompt .. 3–24

Conclusion .. 3–24
Referenced Documents ... 3–24
Document Revision History ... 3–25

Chapter 4. Cadence NC-Sim Support
Introduction .. 4–1
Software Requirements ... 4–1
Simulation Flow Overview ..4–3

Operation Modes .. 4–4
Quartus II Software and NC Simulation Flow Overview .. 4–5

Functional and RTL Simulation ... 4–6
Create Libraries .. 4–6

Basic Library Setup ... 4–7
Using Multiple cds.lib Files .. 4–7
Create a cds.lib File in Command-Line Mode ... 4–8
Create a cds.lib File in GUI Mode ... 4–8

LPM Functions, Altera Megafunctions, and Altera Primitives Libraries 4–9
Megafunctions Requiring Atom Libraries .. 4–11

Simulating a Design with Memory .. 4–11
Compile Source Code and Testbenches .. 4–13

Compilation in Command-Line Mode .. 4–13
Compilation in GUI Mode ... 4–14

Elaborate Your Design ... 4–15
Elaboration in Command-Line Mode .. 4–15
Elaboration in GUI Mode ... 4–16

Add Signals to View .. 4–17
Adding Signals in Command-Line Mode ... 4–17
Adding Signals in GUI Mode .. 4–18

Simulate Your Design .. 4–20
Functional/RTL Simulation in Command-Line Mode ... 4–21
Functional/RTL Simulation in GUI Mode .. 4–21

Post-Synthesis Simulation .. 4–22
Quartus II Simulation Output Files ... 4–22
Create Libraries .. 4–23

Altera Corporation ix
Preliminary

Contents

Compile Project Files and Libraries ... 4–23
Elaborate Your Design ... 4–23
Add Signals to the View .. 4–23
Simulate Your Design .. 4–24

Gate-Level Timing Simulation ... 4–24
Generating a Gate-Level Timing Simulation Netlist ... 4–24

Generating a Different Timing Model ... 4–25
Operating Condition Example: Generate All Timing Models for Stratix III and
Cyclone III Devices .. 4–26

Perform Timing Simulation Using Post-Synthesis Netlist ... 4–27
Quartus II Timing Simulation Libraries .. 4–27
Create Libraries .. 4–28
Compile the Project Files and Libraries .. 4–28
Elaborate Your Design ... 4–28

Compiling the Standard Delay Output File (VHDL Only)
in Command-Line Mode .. 4–29
Compiling the Standard Delay Output File (VHDL Only) in GUI Mode 4–30

Add Signals to View .. 4–30
Simulate Your Design .. 4–31

Simulating Designs that Include Transceivers .. 4–31
Stratix GX Functional Simulation .. 4–31

Example of Compiling Library Files for Functional Stratix GX Simulation in Verilog HDL .
..4–31
Example of Compiling Library Files for Functional Stratix GX Simulation in VHDL ... 4–31

Stratix GX Post-Fit (Timing) Simulation ... 4–32
Example of Compiling Library Files for Timing Stratix GX Simulation in Verilog HDL
..4–32
Example of Compiling Library Files for Timing Stratix GX Simulation in VHDL 4–32

Stratix II GX Functional Simulation ... 4–33
Example of Compiling Library Files for Functional Stratix II GX Simulation in Verilog HDL
..4–34

Example of Compiling Library Files for Functional Stratix II GX Simulation in VHDL 4–35
Stratix II GX Post-Fit (Timing) Simulation ... 4–35

Example of Compiling Library Files for Timing Stratix II GX Simulation in Verilog HDL ...
...4–35
Example of Compiling Library Files for Timing Stratix II GX Simulation in VHDL 4–36

Pulse Reject Delays ... 4–36
-PULSE_R ... 4–36
-PULSE_INT_R .. 4–36

Using the NativeLink Feature with NC-Sim ... 4–37
Setting Up NativeLink ... 4–37
Performing an RTL Simulation Using NativeLink .. 4–37
Performing a Gate Level Simulation Using NativeLink ... 4–40
Setting Up a Testbench .. 4–40

Creating a Testbench .. 4–42
Incorporating PLI Routines .. 4–43

Dynamically Link a PLI Library ... 4–43

x Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Dynamically Load a PLI Library .. 4–44
Statically Link the PLI Library with NC-Sim ... 4–47

Scripting Support ... 4–48
Generate NC-Sim Simulation Output Files .. 4–49

Tcl Commands: .. 4–49
Command Prompt .. 4–49

Conclusion .. 4–49
Referenced Documents ... 4–50
Document Revision History ... 4–50

Chapter 5. Simulating Altera IP in Third-Party Simulation Tools
Introduction .. 5–1
IP Functional Simulation Flow .. 5–1

Verilog and VHDL IP Functional Simulation (IPFS) Models .. 5–2
Instantiate the IP in Your Design .. 5–3
Perform Simulation ... 5–4

Simulating Altera IP Using the Quartus II NativeLink Feature .. 5–4
Set up a Quartus II Project ... 5–5
Select the Third-Party Simulation Tool .. 5–5
Specify the Path for the Third-Party Simulator .. 5–7
Specify the Testbench Settings .. 5–7
Analyze and Elaborate the Quartus II Project .. 5–9
Run RTL Functional Simulation ... 5–9

Simulating Altera IP Without the Quartus II NativeLink Feature .. 5–9
Design Language Examples5–11

Verilog HDL Example: Simulating the IPFS Model in the ModelSim Software 5–11
VHDL Example: Simulating the IPFS Model in the ModelSim Software 5–12
NC-VHDL Example: Simulating the IPFS Model in the NC-VHDL Software 5–14
Verilog HDL Example: Simulating Your IPFS Model in VCS ... 5–15

Single-Step Process ... 5–15
Two-Step Process (Compilation and Simulation) .. 5–16

Conclusion .. 5–16
Referenced Documents ... 5–16
Document Revision History ... 5–17

Section II. Timing Analysis

Chapter 6. The Quartus II TimeQuest Timing Analyzer
Introduction .. 6–1
Getting Started with the Quartus II TimeQuest Timing Analyzer ... 6–2

Setting Up the Quartus II TimeQuest Timing Analyzer .. 6–2
Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines 6–3

Running the Quartus II TimeQuest Timing Analyzer .. 6–4
Directly from the Quartus II Software ... 6–4
Stand-Alone Mode .. 6–5

Altera Corporation xi
Preliminary

Contents

Command-Line Mode .. 6–5
Timing Analysis Overview .. 6–7

Clock Analysis .. 6–11
Clock Setup Check .. 6–11
Clock Hold Check ... 6–13
Recovery and Removal .. 6–15
Multicycle Paths .. 6–16

Specify Design Timing Requirements .. 6–19
Create a Timing Netlist ... 6–19
Specify Timing Constraints ... 6–20
Generate SDC Constraint Reports ... 6–21

The Quartus II TimeQuest Timing Analyzer Flow Guidelines .. 6–22
Create a Timing Netlist ... 6–22
Read the Synopsys Design Constraints File ... 6–22
Update Timing Netlist ... 6–23
Generate Timing Reports .. 6–23

Collections .. 6–23
Application Examples .. 6–25

Constraints Files ... 6–25
Fitter and Timing Analysis SDC Files ... 6–26

Specifying SDC Files for Place-and-Route .. 6–26
Specifying SDC Files for Static Timing Analysis .. 6–26

Synopsys Design Constraints File Precedence ... 6–27
Clock Specification .. 6–28

Clocks ... 6–28
Generated Clocks ... 6–29
Virtual Clocks ... 6–32
Multi-Frequency Clocks .. 6–33
Automatic Clock Detection ... 6–34
Derive PLL Clocks .. 6–35
Default Clock Constraints ... 6–37
Clock Groups .. 6–37
Clock Effect Characteristics .. 6–39

Clock Latency .. 6–39
Clock Uncertainty ... 6–40

Derive Clock Uncertainty .. 6–41
Inter-Clock Transfers .. 6–42
Intra-Clock Transfers .. 6–43
I/O Interface Clock Transfers ... 6–43

I/O Specifications .. 6–45
Input and Output Delay .. 6–45

Set Input Delay .. 6–45
Set Output Delay ... 6–47

Timing Exceptions ... 6–48
Precedence ... 6–49
False Path ... 6–49
Minimum Delay ... 6–50

xii Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Maximum Delay ... 6–52
Multicycle Path ... 6–53
Clock-as-Data Analysis ... 6–55
Application Examples .. 6–55

Constraint and Exception Removal .. 6–57
Timing Reports ... 6–58

report_timing .. 6–58
report_clock_transfers ... 6–62
report_clocks ... 6–63
report_min_pulse_width ... 6–63
report_net_timing ... 6–65
report_sdc .. 6–66
report_ucp ... 6–66
report_path .. 6–68
report_datasheet ... 6–69
report_rskm ... 6–70
report_tccs ... 6–70
report_path .. 6–71
check_timing ... 6–73
report_clock_fmax_summary ... 6–75
create_timing_summary .. 6–76

Timing Analysis Features ... 6–77
Multi-Corner Analysis ... 6–77
Advanced I/O Timing and Board Trace Model Assignments .. 6–79
Wildcard Assignments and Collections .. 6–79
Resetting a Design .. 6–81

The TimeQuest Timing Analyzer GUI ... 6–82
The Quartus II Software Interface and Options ... 6–83
View Pane .. 6–85

View Pane: Splitting ... 6–85
View Pane: Removing Split Windows ... 6–86

Tasks Pane ... 6–87
Opening a Project and Writing a Synopsys Design Constraints File 6–87
Netlist Setup Folder .. 6–88
Reports Folder ... 6–88
Macros Folder .. 6–89

Console Pane ... 6–90
Report Pane ... 6–90
Constraints .. 6–90
Name Finder ... 6–92
Target Pane .. 6–94
SDC Editor ... 6–94

Conclusion .. 6–95
Referenced Documents ... 6–95
Document Revision History ... 6–96

Altera Corporation xiii
Preliminary

Contents

Chapter 7. Switching to the Quartus II TimeQuest Timing Analyzer
Introduction .. 7–1

Benefits of Switching to the Quartus II TimeQuest Analyzer ... 7–1
Chapter Contents .. 7–2

Switching to the Quartus II TimeQuest Analyzer .. 7–2
Compile Your Design .. 7–2
Create an SDC File ... 7–3

Conversion Utility ... 7–3
Perform Timing Analysis with the Quartus II TimeQuest Timing Analyzer 7–4

Run the Quartus II TimeQuest Analyzer .. 7–4
Set the Default Timing Analyzer .. 7–4

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers 7–5
Terminology .. 7–5

Netlist .. 7–6
Collections .. 7–7

Constraints .. 7–7
Constraint Files .. 7–7
Constraint Entry .. 7–8

Time Units .. 7–9
MegaCore Functions ... 7–9
Bus Name Format .. 7–10

Constraint File Priority ... 7–10
Constraint Priority .. 7–11
Ambiguous Constraints ... 7–12

Clocks ... 7–13
Related and Unrelated Clocks ... 7–13
Clock Offset .. 7–14
Clock Latency .. 7–15
Offset and Latency Example ... 7–15

Clock Offset Scenario .. 7–16
Clock Latency Scenario ... 7–17

Clock Uncertainty ... 7–18
Derived and Generated Clocks ... 7–19
Automatic Clock Detection ... 7–19

derive_clocks Command .. 7–20
derive_pll_clocks Command ... 7–22

Hold Relationship ... 7–23
Clock Objects ... 7–23
Hold Multicycle .. 7–24
Fitter Behavior .. 7–27

Fitter Performance .. 7–27
Reporting ... 7–27

Paths and Pairs .. 7–28
Default Reports ... 7–28
Netlist Names .. 7–29
Non-Integer Clock Periods .. 7–29
Other Features ... 7–30

xiv Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Scripting API ... 7–32
Timing Assignment Conversion ... 7–33

Setup Relationship ... 7–33
Hold Relationship .. 7–34
Clock Latency .. 7–34
Clock Uncertainty ... 7–34
Inverted Clock ... 7–35
Not a Clock .. 7–35
Default Required fMAX Assignment ... 7–35
Virtual Clock Reference ... 7–36
Clock Settings .. 7–37
Multicycle .. 7–37
Clock Enable Multicycle .. 7–38
I/O Constraints .. 7–38
Input and Output Delay .. 7–39
tSU Requirement .. 7–40
tH Requirement ... 7–43
tCO Requirement ... 7–45
Minimum tCO Requirement .. 7–48
tPD Requirement .. 7–50

Combinational Path Delay Scenario ... 7–50
Minimum tPD Requirement ... 7–51
Cut Timing Path ... 7–52
Maximum Delay ... 7–52
Minimum Delay ... 7–52
Maximum Clock Arrival Skew ... 7–53
Maximum Data Arrival Skew .. 7–53

Constraining Skew on an Output Bus .. 7–53
Conversion Utility ... 7–55

Unsupported Global Assignments .. 7–56
Recommended Global Assignments ... 7–56
Clock Conversion ... 7–58
Instance Assignment Conversion .. 7–59

PLL Phase Shift Conversion .. 7–61
tCO Requirement Conversion ... 7–62

Entity-Specific Assignments ... 7–63
Paths between Unrelated Clock Domains .. 7–63
Unsupported Instance Assignments ... 7–64
Reviewing Conversion Results .. 7–64

Warning Messages .. 7–64
Ignored QSF Variable <assignment> .. 7–65
Global <name> = <value> .. 7–65
QSF: Expected <name> to be set to <expected value> but it is set to <actual value>
......................... ...7–65
QSF: Found Global Fmax Requirement. Translation will be done using derive_clocks
............................. ...7–65
TAN Report Database not found. HDL based assignments will not be migrated 7–65

Altera Corporation xv
Preliminary

Contents

Ignored Entity Assignment (Entity <entity>): <variable> = <value> -from <from> -to
<to> .. 7–65
Ignoring OFFSET_FROM_BASE_CLOCK assignment for clock <clock> 7–66
Clock <clock> has no FMAX_REQUIREMENT - No clock was generated 7–66
No Clock Settings defined in QSF file .. 7–66

Clocks .. 7–66
Clock Transfers .. 7–66
Path Details .. 7–67
Unconstrained Paths ... 7–67
Bus Names ... 7–68
Other ... 7–68

Re-Running the Conversion Utility ... 7–68
Notes .. 7–68

Output Pin Load Assignments ... 7–68
Constraint Target Types .. 7–69
DDR Constraints with the DDR Timing Wizard ... 7–69
HardCopy Stratix Device Handoff .. 7–69
Unsupported SDC Features .. 7–69
Constraint Passing .. 7–70
Optimization ... 7–70
Clock Network Delay Reporting .. 7–70
PowerPlay Power Analysis ... 7–70
Project Management .. 7–71
Conversion Utility .. 7–71

tPD and Minimum tPD Requirement Conversion .. 7–71
Referenced Documents ... 7–72
Document Revision History ... 7–72

Chapter 8. Quartus II Classic Timing Analyzer
Introduction .. 8–1
Timing Analysis Tool Setup ... 8–2
Static Timing Analysis Overview .. 8–2

Clock Analysis .. 8–4
Clock Setup Check .. 8–4
Clock Hold Check ... 8–6

Multicycle Paths ... 8–7
Clock Settings ... 8–8

Individual Clock Settings .. 8–8
Default Clock Settings ... 8–8

Clock Types .. 8–9
Base Clocks .. 8–9
Derived Clocks .. 8–9
Undefined Clocks ... 8–9
PLL Clocks ... 8–10

Clock Uncertainty .. 8–11
Clock Latency ... 8–12
Timing Exceptions ... 8–15

xvi Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Multicycle .. 8–15
Destination Multicycle Setup Exception .. 8–15
Destination Multicycle Hold Exception ... 8–16
Source Multicycle Setup Exception .. 8–17
Source Multicycle Hold Exception ... 8–18
Default Hold Multicycle .. 8–19
Clock Enable Multicycle ... 8–19

Setup Relationship and Hold Relationship .. 8–22
Maximum Delay and Minimum Delay ... 8–24
False Paths ... 8–24

I/O Analysis ... 8–26
External Input Delay and Output Delay Assignments ... 8–26

Input Delay Assignment .. 8–26
Output Delay Assignment ... 8–28

Virtual Clocks ... 8–29
Asynchronous Paths .. 8–30

Recovery and Removal .. 8–30
Recovery Report .. 8–31
Removal Report ... 8–32

Skew Management .. 8–34
Maximum Clock Arrival Skew ... 8–34
Maximum Data Arrival Skew .. 8–35

Generating Timing Analysis Reports with report_timing .. 8–36
Other Timing Analyzer Features ... 8–38

Wildcard Assignments .. 8–38
Assignment Groups ... 8–38
Fast Corner Analysis .. 8–40
Early Timing Estimation ... 8–40
Timing Constraint Checker ... 8–41
Latch Analysis ... 8–42

Timing Analysis Using the Quartus II GUI ... 8–43
Assignment Editor ... 8–43
Timing Settings ... 8–44

Clock Settings Dialog Box .. 8–45
More Timing Settings Dialog Box ... 8–46

Timing Reports ... 8–47
Advanced List Path .. 8–49
Early Timing Estimate ... 8–51
Assignment Groups ... 8–51

Scripting Support ... 8–52
Creating Clocks ... 8–53

Base Clocks ... 8–53
Derived Clocks .. 8–53

Clock Latency .. 8–53
Clock Uncertainty ... 8–54
Cut Timing Paths .. 8–54
Input Delay Assignment ... 8–54

Altera Corporation xvii
Preliminary

Contents

Maximum and Minimum Delay .. 8–55
Maximum Clock Arrival Skew ... 8–55
Maximum Data Arrival Skew .. 8–55
Multicycle .. 8–56
Output Delay Assignment .. 8–56
Report Timing ... 8–57
Setup and Hold Relationships .. 8–57
Assignment Group ... 8–57
Virtual Clock ... 8–58

MAX+PLUS II Timing Analysis Methodology ... 8–58
fMAX Relationships .. 8–58

Slack .. 8–58
I/O Timing .. 8–60

tSU Timing ... 8–60
tH Timing .. 8–60
tCO Timing .. 8–61
Minimum tCO (min tCO) .. 8–62
tPD Timing .. 8–62
Minimum tPD (min tPD) ... 8–62

The Timing Analyzer Tool .. 8–62
Conclusion .. 8–63
Referenced Documents ... 8–63
Document Revision History ... 8–64

Chapter 9. Synopsys PrimeTime Support
Introduction .. 9–1
Quartus II Settings for Generating the PrimeTime Software Files ... 9–2
Files Generated for the PrimeTime Software Environment .. 9–3

The Netlist ... 9–3
The SDO File ... 9–4

Generating Multiple Operating Conditions with TimeQuest .. 9–4
The Tcl Script .. 9–7

Generated File Summary ... 9–9
Running the PrimeTime Software ... 9–10

Analyzing Quartus II Projects .. 9–10
Other pt_shell Commands .. 9–11

PrimeTime Timing Reports .. 9–12
Sample of the PrimeTime Software Timing Report .. 9–12
Comparing Timing Reports from the Quartus II Classic Timing Analyzer and the PrimeTime
Software ... 9–13

Clock Setup Relationship and Slack ... 9–13
Clock Hold Relationship and Slack .. 9–17
Input Delay and Output Delay Relationships and Slack .. 9–21

Static Timing Analyzer Differences .. 9–23
The Quartus II Classic Timing Analyzer and the PrimeTime Software 9–23

Rise/Fall Support .. 9–23
Minimum and Maximum Delays ... 9–23

xviii Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Recovery/Removal Analysis .. 9–23
Encrypted Intellectual Property Blocks ... 9–24
Registered Clock Signals .. 9–24
Multiple Source and Destination Register Pairs ... 9–25
Latches .. 9–25
LVDS I/O ... 9–25
Clock Latency .. 9–26
Input and Output Delay Assignments ... 9–26
Generated Clocks Derived from Generated Clocks ... 9–26

The Quartus II TimeQuest Timing Analyzer and the PrimeTime Software 9–26
Encrypted Intellectual Property Blocks ... 9–26
Latches .. 9–27
LVDS I/O ... 9–27
The Quartus II TimeQuest Timing Analyzer SDC File and PrimeTime Compatibility . 9–27
Clock and Data Paths ... 9–27
Inverting and Non-Inverting Propagation .. 9–28
Multiple Rise/Fall Numbers For a Timing Arc .. 9–28
Virtual Generated Clocks ... 9–28
Generated Clocks Derived from Generated Clocks ... 9–28

Conclusion .. 9–28
Referenced Documents ... 9–29
Document Revision History ... 9–30

Section III. Power Estimation and Analysis

Chapter 10. PowerPlay Power Analysis
Introduction .. 10–1
Quartus II Early Power Estimator File ... 10–2

PowerPlay Early Power Estimator File Generator Compilation Report 10–5
Types of Power Analyses ... 10–6
Factors Affecting Power Consumption .. 10–6

Device Selection .. 10–6
Environmental Conditions .. 10–7

Air Flow .. 10–7
Heat Sink and Thermal Compound ... 10–7
Ambient Temperature .. 10–8
Board Thermal Model .. 10–8

Design Resources .. 10–8
Number, Type, and Loading of I/O Pins .. 10–8
Number and Type of Logic Elements, Multiplier Elements, and RAM Blocks 10–8
Number and Type of Global Signals .. 10–9

Signal Activities .. 10–9
PowerPlay Power Analyzer Flow10–10

Operating Conditions .. 10–11
Signal Activities Data Sources .. 10–12

Altera Corporation xix
Preliminary

Contents

Simulation Results .. 10–13
Using Simulation Files in Modular Design Flows10–15

Complete Design Simulation .. 10–16
Modular Design Simulation ... 10–16
Multiple Simulations on the Same Entity ... 10–17
Overlapping Simulations .. 10–18
Partial Simulations ... 10–18
Node Name Matching Considerations ... 10–18
Glitch Filtering .. 10–19
Node and Entity Assignments ... 10–21

Timing Assignments to Clock Nodes .. 10–22
Default Toggle Rate Assignment ... 10–22
Vectorless Estimation ... 10–23

Using the PowerPlay Power Analyzer ... 10–23
Common Analysis Flows .. 10–23

Signal Activities from Full Post-Fit Netlist (Timing) Simulation 10–23
Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless
Estimation .. 10–24
Signal Activities from Vectorless Estimation, User-Supplied Input Pin Activities 10–24
Signal Activities from User Defaults Only .. 10–24

Generating a SAF or VCD File Using the Quartus II Simulator .. 10–24
Generating a VCD File Using a Third-Party Simulator .. 10–28
Running the PowerPlay Power Analyzer Using the Quartus II GUI 10–31
PowerPlay Power Analyzer Compilation Report ... 10–39

Summary .. 10–39
Settings ... 10–39
Simulation Files Read ... 10–39
Operating Conditions Used ... 10–39
Thermal Power Dissipated by Block .. 10–39
Thermal Power Dissipation by Block Type (Device Resource Type) 10–39
Thermal Power Dissipation by Hierarchy ... 10–40
Core Dynamic Thermal Power Dissipation by Clock Domain .. 10–40
Current Drawn from Voltage Supplies .. 10–40
Confidence Metric Details ... 10–40
Signal Activities ... 10–41
Messages ... 10–41
Specific Rules for Reporting .. 10–41

Scripting Support ... 10–41
Running the PowerPlay Power Analyzer from the Command Line 10–42

Conclusion .. 10–43
Referenced Documents ... 10–43
Document Revision History ... 10–44

xx Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Section IV. Signal Integrity

Chapter 11. Signal Integrity Analysis with Third-Party Tools
Introduction .. 11–1
The Need for FPGA to Board Signal Integrity Analysis .. 11–3
The Double Counting Problem for FPGA Output Timing .. 11–4

Defining the Double Counting Problem ... 11–4
The Solution to Double Counting .. 11–5

I/O Model Selection: IBIS or HSPICE .. 11–7
FPGA to Board Signal Integrity Analysis Flow ... 11–8

Create I/O and Board Trace Model Assignments ... 11–10
Enable Output File Generation ... 11–10
Generate the Output Files ... 11–10
Customize the Output Files .. 11–11
Set Up and Run Simulations in Third-Party Tools .. 11–11
Interpret Simulation Results ... 11–12

Simulation with IBIS Models ... 11–12
Elements of an IBIS Model .. 11–12
Creating Accurate IBIS Models .. 11–13

Download IBIS Models .. 11–13
Generate Custom IBIS Models with the IBIS Writer .. 11–14

Design Simulation Using the Mentor Graphics HyperLynx Software 11–17
Configuring LineSim to Use Altera IBIS Models ... 11–20
Integrating Altera IBIS Models into LineSim Simulations ... 11–21
Running and Interpreting LineSim Simulations ... 11–24

Simulation with HSPICE Models .. 11–25
Supported Devices and Signaling .. 11–26
Creating Accurate HSPICE Models ... 11–26

Creating HSPICE Model Files Using the Quartus II GUI ... 11–27
Creating HSPICE Model Files Using Tcl Scripting and the Command Line 11–28

Customizing HSPICE Model Files ... 11–29
Design Simulation Using Synopsys HSPICE ... 11–30
Running HSPICE Simulations .. 11–30
Viewing and Interpreting Tabular Simulation Results ... 11–31
Viewing Graphical Simulation Results ... 11–31
Making Design Adjustments Based on HSPICE Simulations ... 11–33

Conclusion .. 11–35
Referenced Documents ... 11–36
Document Revision History ... 11–36

Section V. In-System Design Debugging

Chapter 12. Quick Design Debugging Using SignalProbe
Introduction .. 12–1

Altera Corporation xxi
Preliminary

Contents

On-Chip Debugging Tool Comparison .. 12–2
Debugging Using the SignalProbe Feature .. 12–4

Reserve the SignalProbe Pins ... 12–4
Perform a Full Compilation .. 12–6
Assign a SignalProbe Source .. 12–6
Add Registers to the Pipeline Path to SignalProbe Pin .. 12–7
Perform a SignalProbe Compilation .. 12–9
Analyze the Results of the SignalProbe Compilation ... 12–10
Generate the Programming File ... 12–11
SignalProbe ECO flows ... 12–11

SignalProbe ECO Flow with Quartus II Incremental Compilation 12–11
SignalProbe ECO Flow without Quartus Incremental Compilation 12–12

Common Questions About the SignalProbe Feature .. 12–14
Why Did I Get the Following Error Message, “Error: There are No Enabled SignalProbes to
Process”? .. 12–14
How Can I Retain My SignalProbe ECOs during Re-compilation of My Design? 12–14
Why Did My SignalProbe Source Disappear in the Change Manager? 12–14
What is an ECO and Where Can I Find More Information on ECO? 12–15
How Do I Migrate My Previous SignalProbe Assignments in the Quartus II Software
Versions 5.1 and below to Versions 6.0 and Higher? .. 12–15
What are all the Changes for the SignalProbe Feature between the Quartus II Software
Version 5.1 and Earlier, and Version 6.0 and Later? .. 12–16

Scripting Support ... 12–17
Make a SignalProbe Pin ... 12–17
Delete a SignalProbe Pin .. 12–17
Enable a SignalProbe Pin ... 12–18
Disable a SignalProbe Pin .. 12–18
Perform a SignalProbe Compilation .. 12–18
Migrating Previous SignalProbe Pins to the Quartus II Software Versions 6.0 and Later
.. ...12–18
Script Example ... 12–18

Using SignalProbe with the APEX Device Family .. 12–19
Adding SignalProbe Sources .. 12–19
Performing a SignalProbe Compilation .. 12–20

Running SignalProbe with Smart Compilation .. 12–21
Understanding the Results of a SignalProbe Compilation .. 12–21

Analyzing SignalProbe Routing Failures .. 12–23
SignalProbe Scripting Support for APEX Devices ... 12–23
Reserving SignalProbe Pins .. 12–24
Adding SignalProbe Sources .. 12–24
Assigning I/O Standards .. 12–24
Adding Registers for Pipelining ... 12–24
Run SignalProbe Automatically ... 12–25
Run SignalProbe Manually ... 12–25
Enable or Disable All SignalProbe Routing .. 12–25
Running SignalProbe with Smart Compilation ... 12–26
Allow SignalProbe to Modify Fitting Results .. 12–26

xxii Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Conclusion .. 12–26
Referenced Documents ... 12–26
Document Revision History ... 12–27

Chapter 13. Design Debugging Using the SignalTap II Embedded Logic Analyzer
Introduction .. 13–1

Hardware and Software Requirements .. 13–3
On-Chip Debugging Tool Comparison .. 13–5
Design Flow Using the SignalTap II Logic Analyzer ... 13–7
SignalTap II Logic Analyzer Task Flow ... 13–8

Add the SignalTap II Logic Analyzer to Your Design .. 13–9
Configure the SignalTap II Logic Analyzer .. 13–9
Define Triggers ... 13–9
Compile the Design .. 13–9
Program the Target Device or Devices .. 13–9
Run the SignalTap II Logic Analyzer .. 13–10
View, Analyze, and Use Captured Data ... 13–10

Add the SignalTap II Logic Analyzer to Your Design ... 13–10
Creating and Enabling a SignalTap II File .. 13–10

Creating a SignalTap II File ... 13–10
Enabling and Disabling a SignalTap II File for the Current Project 13–11

Using the MegaWizard Plug-In Manager to Create Your Embedded Logic Analyzer 13–12
Creating an HDL Representation Using the MegaWizard Plug-In Manager 13–12
SignalTap II Megafunction Ports .. 13–16
Instantiating the SignalTap II Logic Analyzer in Your HDL .. 13–16

Embedding Multiple Analyzers in One FPGA .. 13–17
Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer 13–17

Configure the SignalTap II Logic Analyzer ... 13–18
Assigning an Acquisition Clock ... 13–18
Adding Signals to the SignalTap II File .. 13–19

Signal Preservation ... 13–21
Assigning Data Signals .. 13–22
Node List Signal Use Options ... 13–23
Untappable Signals ... 13–23

Adding Signals with a Plug-In ... 13–23
Specifying the Sample Depth ... 13–25
Capturing Data to a Specific RAM Type .. 13–26
Choosing the Buffer Acquisition Mode .. 13–26

Circular Buffer ... 13–27
Segmented Buffer .. 13–27

Managing Multiple SignalTap II Files and Configurations ... 13–28
Define Triggers ... 13–30

Creating Basic Trigger Conditions ... 13–30
Creating Advanced Trigger Conditions ... 13–31

Examples of Advanced Triggering Expressions .. 13–32
Trigger Condition Flow Control .. 13–34

Sequential Triggering ... 13–34

Altera Corporation xxiii
Preliminary

Contents

Custom State-Based Triggering .. 13–36
State Diagram Pane ... 13–39
State Machine Pane .. 13–39
Resources Pane ... 13–39

SignalTap II Trigger Flow Description Language .. 13–40
State Labels .. 13–41
Boolean_expression .. 13–41
Action_list .. 13–42
Resource Manipulation Action ... 13–43
Buffer Control Action ... 13–43
State Transition Action ... 13–44

Specifying the Trigger Position .. 13–44
Creating a Power-Up Trigger ... 13–45

Enabling a Power-Up Trigger ... 13–45
Managing and Configuring Power-Up and Runtime Trigger Conditions 13–46

Using External Triggers ... 13–47
Trigger In .. 13–47
Trigger Out .. 13–48
Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer 13–48

Compile the Design ... 13–50
Faster Compilations with Quartus II Incremental Compilation ... 13–51

Enabling Incremental Compilation for your Design ... 13–51
Using Incremental Compilation with the SignalTap II Logic Analyzer 13–52

Preventing Changes Requiring Recompilation .. 13–54
Timing Preservation with the SignalTap II Logic Analyzer .. 13–54
Performance and Resource Considerations ... 13–55

Program the Target Device or Devices ... 13–57
Programming a Single Device .. 13–57
Programming Multiple Devices to Debug Multiple Designs .. 13–58

Run the SignalTap II Logic Analyzer .. 13–59
Running with a Power-Up Trigger .. 13–60
Running with Runtime Triggers .. 13–60
Performing a Force Trigger ... 13–61
SignalTap II Status Messages .. 13–62

View, Analyze, and Use Captured Data .. 13–63
Viewing Captured Data .. 13–63
Creating Mnemonics for Bit Patterns .. 13–64
Automatic Mnemonics with a Plug-In .. 13–64
Locating a Node in the Design ... 13–65
Saving Captured Data ... 13–66
Converting Captured Data to Other File Formats ... 13–66
Creating a SignalTap II List File ... 13–67

Other Features .. 13–67
Using the SignalTap II MATLAB MEX Function to Capture Data 13–67
Using SignalTap II in a Lab Environment .. 13–69
Remote Debugging Using the SignalTap II Logic Analyzer .. 13–69

Equipment Setup ... 13–70

xxiv Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Software Setup on the Remote PC .. 13–70
Software Setup on the Local PC .. 13–71
SignalTap II Setup on the Local PC .. 13–72

SignalTap II Scripting Support .. 13–72
SignalTap II Command Line Options ... 13–73
SignalTap II Tcl Commands ... 13–75

Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems 13–77
Custom Triggering Flow Application Examples .. 13–77

Design Example 1: Specifying a Custom Trigger Position ... 13–77
Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and
triggercond3 .. 13–78

Conclusion13–80
Referenced Documents13–80
Document Revision History ... 13–81

Chapter 14. In-System Debugging Using External Logic Analyzers
Introduction .. 14–1

Choosing a Logic Analyzer ... 14–2
Required Components ... 14–3
FPGA Device Support ... 14–3

Debugging Your Design Using the Logic Analyzer Interface .. 14–4
Creating a Logic Analyzer Interface File .. 14–4

Creating a New Logic Analyzer Interface File ... 14–5
Opening an Existing External Analyzer Interface File .. 14–6
Saving the External Analyzer Interface File .. 14–7

Configuring the Logic Analyzer Interface File Core Parameters .. 14–7
Mapping the Logic Analyzer Interface File Pins to Available I/O Pins 14–9
Mapping Internal Signals to the Logic Analyzer Interface Banks .. 14–9
Using the Node Finder .. 14–10
Enabling the Logic Analyzer Interface Before Compiling Your Quartus II Project 14–11
Compiling Your Quartus II Project .. 14–12
Programming Your FPGA Using the Logic Analyzer Interface .. 14–13
Using the Logic Analyzer Interface with Multiple Devices ... 14–14
Configuring Banks in the Logic Analyzer Interface File .. 14–15
Acquiring Data on Your Logic Analyzer .. 14–15

Advanced Features .. 14–15
Using the Logic Analyzer Interface with Incremental Compilation 14–15
Creating Multiple Logic Analyzer Interface Instances in One FPGA 14–16

Conclusion .. 14–17
Document Revision History ... 14–18

Chapter 15. In-System Updating of Memory and Constants
Introduction .. 15–1
Overview ... 15–1
Device Megafunction Support ... 15–2
Using In-System Updating of Memory Constants with Your Design ... 15–3
Creating In-System Modifiable Memories Constants .. 15–3

Altera Corporation xxv
Preliminary

Contents

Running the In-System Memory Content Editor .. 15–4
Instance Manager ... 15–5
Editing Data Displayed in the Hex Editor .. 15–7
Importing Exporting Memory Files ... 15–7
Viewing Memories Constants in the Hex Editor ... 15–7
Scripting Support ... 15–9
Programming the Device Using the In-System Memory Content Editor 15–10
Example: Using the In-System Memory Content Editor with the SignalTap II Embedded Logic
Analyzer .. 15–10

Conclusion .. 15–11
Referenced Documents ... 15–11
Document Revision History ... 15–12

Chapter 16. Design Debugging Using In-System Sources and Probes
Introduction .. 16–1
Overview ... 16–1

Hardware and Software Requirements .. 16–3
Design Flow Using In-System Sources and Probes .. 16–4

Configuring the altsource_probes Megafunction .. 16–6
Instantiating the altsource_probe Megafunction ... 16–8
Compiling the Design .. 16–8

Running the
In-System Sources and Probes Editor ... 16–9

Programming Your Device Using the JTAG Chain Configuration Window 16–11
Instance Manager ... 16–12
Sources and Probes Editor Window .. 16–13

Reading Probe Data .. 16–13
Writing Data .. 16–13
Data Organization ... 16–14

TCL Support ... 16–14
Design Example: Dynamic PLL Reconfiguration ... 16–18
Conclusion .. 16–21
Referenced Documents ... 16–21
Document Revision History ... 16–21

Section VI. Formal Verification

Chapter 17. Cadence Encounter Conformal Support
Introduction .. 17–1

Formal Verification Versus Simulation ... 17–2
Formal Verification: What You Need to Know .. 17–2

Formal Verification Design Flow .. 17–2
Quartus II Integrated Synthesis ... 17–3
EDA Tool Support for Quartus II Integrated Synthesis ... 17–3
Synplify Pro ... 17–3

xxvi Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

EDA Tool Support for Synplify Pro ... 17–4
RTL Coding Guidelines for Quartus II Integrated Synthesis .. 17–5

Synthesis Directives and Attributes .. 17–5
Stuck-at Registers ... 17–7
ROM, LPM_DIVIDE, and Shift Register Inference ... 17–8
RAM Inference .. 17–8
Latch Inference ... 17–9
Combinational Loops .. 17–9
Finite State Machine Coding Styles ... 17–10

Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files 17–10
Tcl Command .. 17–15
GUI .. 17–15

The Quartus II Software Generated Files, Formal Verification Scripts, and Directories ... 17–16
Understanding the Formal Verification Scripts for Encounter Conformal 17–18

The Encounter Conformal Commands within the Quartus II Software-Generated Scripts
...17–18

Comparing Designs Using Encounter Conformal .. 17–21
Black Boxes in the Encounter Conformal Flow .. 17–21
Running the Encounter Conformal Software ... 17–22

Running the Encounter Conformal Software from the GUI ... 17–22
Running the Encounter Conformal Software From a System Command Prompt 17–24

Known Issues and Limitations .. 17–24
Conclusion .. 17–27
Black Box Models ... 17–28
Conformal Dofile/Script Example .. 17–30
Referenced Documents ... 17–32
Document Revision History ... 17–33

Chapter 18. Synopsys Formality Support
Introduction .. 18–1
Formal Verification .. 18–1

Equivalence Checking ... 18–1
Formal Verification Support .. 18–2

EDA Tools and Device Support ... 18–2
Formal Verification Between RTL and Post-Synthesis Netlist .. 18–2

Generating Post-Synthesis Netlist for Formal Verification ... 18–3
DC FPGA Software Settings ... 18–3

Generating the VO File and Formality Script .. 18–4
Handling Black Boxes .. 18–9

Tcl Command .. 18–9
GUI .. 18–10

Quartus II Scripts for Formality .. 18–11
Comparing Designs Using the Formality Software .. 18–11
Known Issues and Limitations .. 18–12
Conclusion .. 18–12
Related Links .. 18–12
Tcl Sample Script ... 18–13

Altera Corporation xxvii
Preliminary

Contents

DC FPGA Synthesis Script .. 18–13
Quartus II Software-Generated Formal Verification Script ... 18–14

Referenced Documents ... 18–15
Document Revision History ... 18–15

Section VII. Device Programming

Chapter 19. Quartus II Programmer
Introduction .. 19–1
Programming Flow ... 19–1
Programming and Configuration Modes ... 19–4

JTAG Mode .. 19–4
Passive Serial Mode ... 19–4
Active Serial Mode ... 19–5
In-Socket Programming Mode ... 19–5

Programmer Overview ... 19–6
Tools Menu .. 19–11

Hardware Setup ... 19–12
Hardware Settings .. 19–12
JTAG Settings .. 19–13

Device Programming and Configuration .. 19–14
Single Device Programming and Configuration ... 19–14
Multi-Device Programming and Configuration .. 19–14

Bypassing an Altera Device ... 19–15
Bypassing a Non-Altera Device .. 19–15
Chain Description File .. 19–17
Design Security Key Programming .. 19–17

Optional Programming Files .. 19–18
Types of Programming and Configuration Files ... 19–18
Generating Optional Programming Files ... 19–20

Create Programming Files ... 19–20
Convert Programming Files .. 19–20
Generating Optional Programming or Configuration Files During Compilation 19–21

Flash Loaders ... 19–21
Parallel Flash Loader ... 19–21
Serial Flash Loader ... 19–21

Other Programming Tools ... 19–22
Quartus II Stand-Alone Programmer .. 19–22
jtagconfig Debugging Tool .. 19–22

Scripting Support ... 19–22
Conclusion .. 19–23
Referenced Documents ... 19–24
Document Revision History ... 19–24

xxviii Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Altera Corporation xxix

Chapter Revision Dates

The chapters in this book, the Quartus II Handbook, Volume 3, were revised on the following dates.
Where chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Quartus II Simulator
Revised: October 2007
Part number: QII53017-7.2.0

Chapter 2. Mentor Graphics ModelSim Support
Revised: October 2007
Part number: QII53001-7.2.0

Chapter 3. Synopsys VCS Support
Revised: October 2007
Part number: QII53002-7.2.0

Chapter 4. Cadence NC-Sim Support
Revised: October 2007
Part number: QII53003-7.2.0

Chapter 5. Simulating Altera IP in Third-Party Simulation Tools
Revised: October 2007
Part number: QII53014-7.2.0

Chapter 6. The Quartus II TimeQuest Timing Analyzer
Revised: October 2007
Part number: QII53018-7.2.0

Chapter 7. Switching to the Quartus II TimeQuest Timing Analyzer
Revised: October 2007
Part number: QII53019-7.2.0

Chapter 8. Quartus II Classic Timing Analyzer
Revised: October 2007
Part number: QII53004-7.2.0

Chapter 9. Synopsys PrimeTime Support
Revised: October 2007
Part number: QII53005-7.2.0

xxx Altera Corporation

Chapter Revision Dates Quartus II Handbook, Volume 3

Chapter 10. PowerPlay Power Analysis
Revised: October 2007
Part number: QII53013-7.2.0

Chapter 11. Signal Integrity Analysis with Third-Party Tools
Revised: October 2007
Part number: QII53020-7.2.0

Chapter 12. Quick Design Debugging Using SignalProbe
Revised: October 2007
Part number: QII53008-7.2.0

Chapter 13. Design Debugging Using the SignalTap II Embedded Logic Analyzer
Revised: October 2007
Part number: QII53009-7.2.0

Chapter 14. In-System Debugging Using External Logic Analyzers
Revised: October 2007
Part number: QII53016-7.2.0

Chapter 15. In-System Updating of Memory and Constants
Revised: October 2007
Part number: QII53012-7.2.0

Chapter 16. Design Debugging Using In-System Sources and Probes
Revised: October 2007
Part number: QII53021-7.2.0

Chapter 17. Cadence Encounter Conformal Support
Revised: October 2007
Part number: QII53011-7.2.0

Chapter 18. Synopsys Formality Support
Revised: October 2007
Part number: QII53015-7.2.0

Chapter 19. Quartus II Programmer
Revised: October 2007
Part number: QII53022-7.2.0

Altera Corporation xxxi
Preliminary

About this Handbook

This handbook provides comprehensive information about the Altera®
Quartus® II design software, version 7.2.

How to Contact
Altera

For the most up-to-date information about Altera products, refer to the
following table.

Third-Party
Software
Product
Information

Third-party software products described in this handbook are not Altera
products, are licensed by Altera from third parties, and are subject to change
without notice. Updates to these third-party software products may not be
concurrent with Quartus II software releases. Altera has assumed
responsibility for the selection of such third-party software products and its
use in the Quartus II 7.2 software release. To the extent that the software
products described in this handbook are derived from third-party software, no
third party warrants the software, assumes any liability regarding use of the
software, or undertakes to furnish you any support or information relating to
the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE
ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER
WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH
RESPECT TO THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR
DOCUMENTATION IN THE SOFTWARE, INCLUDING, WITHOUT
LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. For more
information, including the latest available version of specific third-party
software products, refer to the documentation for the software in question.

Information Type Contact (1)

Technical support www.altera.com/mysupport/

Technical training www.altera.com/training/
custrain@altera.com

Product literature www.altera.com/literature/

Altera literature services literature@altera.com (1)

FTP site ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/mysupport/
http://www.altera.com/training/
mailto:custrain@altera.com
http://www.altera.com/literature/
ftp://ftp.altera.com

xxxii Altera Corporation
Preliminary

Typographic Conventions Quartus II Handbook, Volume 3

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN
75: High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

v, —, N/A Used in table cells to indicate the following: v indicates a “Yes” or “Applicable”
statement; — indicates a “No” or “Not Supported” statement; N/A indicates that
the table cell entry is not applicable to the item of interest.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Altera Corporation Section I–i
Preliminary

Section I. Simulation

As the design complexity of FPGAs continues to rise, verification
engineers are finding it increasingly difficult to simulate their system-on-
a-programmable-chip (SOPC) designs in a timely manner. The
verification process is now the bottleneck in the FPGA design flow. You
can perform functional and timing simulation of your design by using the
Quartus® II Simulator. The Quartus II software also provides a wide
range of features for performing simulation of designs in EDA simulation
tools.

This section includes the following chapters:

■ Chapter 1, Quartus II Simulator
■ Chapter 2, Mentor Graphics ModelSim Support
■ Chapter 3, Synopsys VCS Support
■ Chapter 4, Cadence NC-Sim Support
■ Chapter 5, Simulating Altera IP in Third-Party Simulation Tools

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section I–ii Altera Corporation
Preliminary

Simulation Quartus II Handbook, Volume 3

Altera Corporation 1–1
October 2007 Preliminary

1. Quartus II Simulator

Introduction With today’s FPGAs becoming faster and more complex, designers face
challenges in validating their designs. Simulation verifies the correctness
of the design, reducing board testing and debugging time.

Altera® offers the Simulator as part of the Quartus® II software to assist
designers with design verification. The Quartus II Simulator has a
comprehensive set of features that are covered in the following sections:

■ “Simulation Flow”
■ “Waveform Editor” on page 1–5
■ “Simulator Settings” on page 1–17
■ “Simulation Report” on page 1–25
■ “Debugging with the Quartus II Simulator” on page 1–29
■ “Scripting Support” on page 1–32

This chapter describes how to perform different types of simulations with
the Quartus II Simulator.

Simulation Flow You can perform both functional and timing simulations with the
Quartus II Simulator. Both types of simulation verify the correctness and
behavior of your design. Functional simulations are run at the beginning
of the Quartus II design flow and timing simulations are run at the end.

Figure 1–1 shows the Quartus II Simulator flow.

QII53017-7.2.0

1–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 1–1. Simulation Flow

Notes to Figure 1–1:
(1) For more information on EDA Simulators, refer to the Simulation section in volume 3 of the Quartus II Handbook.
(2) You can use Signal Activity Files (.saf) or Value Change Dump Files (.vcd) in the PowerPlay Power Analyzer to

check power resources.

Design Entry

Analysis & Synthesis

Place & Route (Fitter)

Timing Analysis

.saf

.vwf/.tbl/

.vec/.scf/
.cvwf/
.vcd

.rptSimulation
Report File

Input Stimulus

NetlistNetlist

Generate Functional
Simulation Netlist

Fast Timing
Analysis

Netlist

Timing Simulation Using
Fast Timing Model

Functional Simulation Timing Simulation

Functional
Netlist (db)

Timing
Netlist (db)

Fast Timing
Netlist (db)

Signal Activity File (2)

Netlist
Writer

EDA
Simulator (1)

Quartus II Simulator

Quartus II
Simulator

.vwf/
.cvwf/
.vcd

Test Bench File

EndSimulation Debugging
YesNo Requirements

Satisfied?

Convert to
RTL Testbench

.vt/.vht

.vcd

Altera Corporation 1–3
October 2007 Preliminary

Simulation Flow

As shown in Figure 1–1, your design simulation can happen at the
functional level, where your design’s logical behavior is verified and no
timing information is used in simulation. Timing simulation can happen
after your design has been compiled (synthesized and placed and routed)
and after you use the timing data of your design’s resources. In Timing
simulation, your design’s logical behavior is verified with the device’s
worst-case timing models. Timing simulation using the Fast Timing
Model is also a type of Timing simulation where best-case timing data is
used.

To perform functional simulations with the Quartus II Simulator, you
must first generate a functional simulation netlist. A functional netlist file
is a flattened netlist extracted from the design files that does not contain
timing information.

For timing simulations, you must first perform place-and-route and static
timing analysis to generate a timing simulation netlist. A timing
simulation netlist includes timing delays of each device atom block and
the routing delays.

If you want to use third-party EDA simulation tools, you can generate a
netlist using EDA Netlist Writer. You can use this netlist with your
testbench files in third-party simulation tools.

f For more information about third-party simulators, refer to the
respective EDA Simulation chapter in the Simulation section in volume 3
of the Quartus II Handbook.

The Quartus II Simulator supports Functional, Timing, and Timing using
Fast Timing Model simulations. The following sections describe how to
perform these simulations.

Functional Simulation

To run a functional simulation, perform the following steps:

1. On the Processing menu, click Generate Functional Simulation
Netlist. This flattens the functional simulation netlist extracted from
the design files. The netlist does not contain timing information.

2. On the Assignments menu, click Settings. The Settings dialog box
appears.

3. In the Category list, select Simulator Settings. The Simulator
Settings page appears.

4. In the Simulation mode list, select Functional.

1–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

5. In the Simulation input box, specify the vector source. You must
specify the vector file to run the simulation.

6. Click OK.

7. On the Processing menu, click Start Simulation.

Timing Simulation

To run a timing simulation, perform the following steps:

1. On the Processing menu, click Start Compilation or click the
Compilation button on the toolbar. This flattens the design and
generates an internal netlist with timing delay information
annotated.

2. On the Assignments menu, click Settings. The Settings dialog box
appears.

3. In the Category list, select Simulator Settings. The Simulator
Settings page appears.

4. In the Simulation Mode list, select Timing.

5. In the Simulation input list, specify the vector source. You need to
specify the vector file to run the simulation.

6. Click OK.

7. On the Processing menu, click Start Simulation.

Timing Simulation Using Fast Timing Model Simulation

To run a timing simulation using a fast timing model, perform the
following steps:

1. On the Processing menu, point to Start and click Start Analysis and
Synthesis.

2. On the Processing menu, point to Start and click Start Fitter.

You must perform fast timing analysis before you can perform a
timing simulation using the fast timing models.

3. On the Processing menu, point to Start and click Start Classic
Timing Analyzer (Fast Timing Model).

Altera Corporation 1–5
October 2007 Preliminary

Waveform Editor

4. On the Assignments menu, click Settings. The Settings dialog box
appears.

5. In the Category list, select Simulator Settings. The Simulator
Settings page appears.

6. In the Simulation mode list, select Timing using Fast Timing
Model.

7. In the Simulation input box, specify the vector source. You need to
specify the vector file to run the simulation.

8. Click OK.

9. On the Processing menu, click Start Simulation.

Waveform Editor The most common input stimulus for the Quartus II Simulator are VWFs.
You can use the Quartus II Waveform Editor to generate a VWF.

Creating VWFs

To create a VWF, perform the following steps:

1. On the File menu, click New. The New dialog box appears.

2. Click the Other Files tab, and select Vector Waveform File.

3. Click OK. A blank Waveform Editor window appears (Figure 1–2).

1–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 1–2. Waveform Editor Window

4. Add nodes and buses. To add a node or bus, on the Edit menu, click
Insert and click Insert Node or Bus. The Insert Node or Bus dialog
box appears (Figure 1–3). All nodes and buses, as well as the
internal signals, are listed under Name in the Waveform Editor
window.

1 You can also open the Insert Node or Bus dialog box by
double-clicking under Name in the Waveform Editor.

Altera Corporation 1–7
October 2007 Preliminary

Waveform Editor

Figure 1–3. Insert Node or Bus Dialog Box

5. You can customize the type of node or bus you want to add. If you
have a large design with many nodes or buses, you may want to use
the Node Finder for node or bus selection. To use the Node Finder,
click Node Finder. The Node Finder dialog box appears
(Figure 1–4).

1–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 1–4. Node Finder Dialog Box

You can use the Node Finder to find your nodes for simulation
among all the nodes and buses in your design. Use the Node Finder
to filter and add nodes to your waveform. The Node Finder is
equipped with multiple default filter options. By using the correct
filter in the Node Finder, you can find the internal node’s name and
add it to your Vector Waveform File for simulation.

1 Your node might not appear in the simulation waveform and
might be ignored during simulation. This happens because the
node has been renamed or synthesized away by the Quartus II
software. To prevent this from happening, Altera recommends
using the register and pin nodes to simulate your design.

Name of the node or
bus you want to find

Specify or browse the hierarchy
of the design to find the node or bus

List of default filters

Customize your filters

All nodes and buses matching
the search criteria are listed here

All selected nodes and
buses are placed here

Altera Corporation 1–9
October 2007 Preliminary

Waveform Editor

Table 1–1 describes twelve of the Node Finder default filters.

To customize your own filters in the Node Finder, perform the
following steps:

a. Click Customize. The Customize Filter dialog box appears.

b. To configure settings, click New. The New Custom Filter
dialog box appears.

c. In the Filter name box, type the name of the custom filter.

d. In the Copy settings from filter list, select the filter setting.

e. Click OK.

f. You can now customize your filters in the Customize Filter
dialog box.

6. In the Look in box, you can view and edit the current search
hierarchy path. You can type the search hierarchy path or you can
browse for the hierarchy path by clicking the browse button.

Table 1–1. Filter Options

Filter Description

Pins: input Finds all input pin names in your design file(s).

Pins: output Finds all output pin names in your design file(s).

Pins: bidirectional Finds all bidirectional pin names in your design file(s).

Pins: virtual Finds all virtual pin names.

Pins: all Finds all pin names in your design file(s).

Registers: pre-synthesis Finds all user-entered register names contained in the design after design
elaboration, but before physical synthesis does any synthesis optimizations.

Registers: post-fitting Finds all user-entered register names in your design file(s) that survived physical
synthesis and fitting.

Design Entry (all names) Finds all user-entered names in your design file(s).

Post-Compilation Finds all user-entered and compiler-generated names that do not have location
assignments and survived fitting.

SignalTap II:
pre-synthesis

Finds all internal device nodes in the pre-synthesis netlist that can be analyzed by
the SignalTap® II Logic Analyzer.

SignalTap II: post-fitting Finds all internal device nodes in the post-fitting netlist that can be analyzed by the
SignalTap II Logic Analyzer.

SignalProbe Finds all SignalProbe™ device nodes in the post-fitting netlist.

1–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

You can move up the search hierarchy by selecting hierarchical
names in the Select Hierarchy Level dialog box. This ensures that in
a large design with many signals, you can specify which hierarchy
you would like to get the node from to reduce the amount of signals
displayed.

7. After you have configured the filter and specified the correct
hierarchy in the Node Finder dialog box, click List to display all
relevant nodes or buses.

Select any node(s) or bus(es) from the Nodes Found list and click >
to include it in the waveform, or you can click >> to include all nodes
and buses displayed in the Nodes Found list.

8. Click OK.

1 You can also add nodes to the Waveform Editor by dragging
nodes from the Project Navigator, Netlist Viewers, or Block
Diagram, and dropping them into the Waveform Editor.

9. Create a waveform for a signal. The Quartus II Waveform Editor
toolbar includes some of the most common waveform settings,
making waveform vector drawings easier and user friendly.
Figure 1–5 shows the options available on the Waveform Editor
toolbar.

Figure 1–5. Waveform Editor Toolbar

10. After you edit your waveform, save the waveform. On the File
menu, click Save As. The Save As dialog box appears. Type your
file name, specify the file type, and click Save.

Selection
Tool

Full
Screen

Forcing
Unknown (x)

Weak
Unknown (W)

Invert Random
Value (R)

Waveform
Editing Tool

Replace Forcing
High (1)

Weak
High (H)

Overwrite
Clock

Sort

Text Find
Forcing
Low (0)

Weak
Low (L)

Count
Value (C)

Snap
to Grid

Zoom
Tool

Unitialized
(U)

High
Impedence

(Z)
Don't

Care (DC)
Arbitrary

Value

Altera Corporation 1–11
October 2007 Preliminary

Waveform Editor

1 Instead of using the Node Finder to insert your nodes for your
VWF, you can also drag-and-drop any nodes from the Netlist
Viewer to your Simulation Vector Waveform File. For more
information on Netlist Viewers, refer to Analyzing Designs with
the Quartus II Netlist Viewers in volume 1 of the Quartus II
Handbook.

Count Value

Count Value applies a count value to a bus to increment the value of the
bus by a specified time interval. Instead of manually editing the values
for each node, the Count Value feature on the Waveform Editor toolbar
automatically creates the counting values for buses. This feature enables
you to specify a starting value for a bus, what time interval to increment,
and when to stop counting. You can also configure transition
occurrences, while setting the count type and increment number. When
you click on the Count Value button in the Waveform Editor toolbar, the
Count Value dialog box appears (Figure 1–6). You can also open the
Count Value dialog box by right-clicking the selected node, pointing to
Value, and clicking Count Value.

Figure 1–6. Count Value Dialog Box

Clock

You can use the Clock feature in the Waveform Editor toolbar to
automatically generate the clock wave, rather than drawing each clock
triggering pulse. To generate a clock signal with the Clock dialog box,

1–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

click the Overwrite Clock button on the Waveform Editor toolbar.
Furthermore, you can determine the start and end time of a clock signal,
whether to manually configure the period (the offset and the duty cycle),
or whether to generate the clock based on a specified clock. Figure 1–7
shows the Clock dialog box.

Figure 1–7. Clock Dialog Box

Arbitrary Value

Arbitrary Value allows you to overwrite a node value over the selected
waveform, waveform interval, or across one or more nodes or groups. To
overwrite a node value, perform the following steps:

1. Select a node or a bus and click the Arbitrary Value button on the
Waveform Editor toolbar (Figure 1–5). The Arbitrary Value dialog
box appears (Figure 1–8).

2. Under Time range, specify the start and end time you want to
overwrite for the node value.

3. In the Radix list, select the radix type.

4. Specify the new value you want overwritten in the Numeric or
named value box.

5. Click OK.

Altera Corporation 1–13
October 2007 Preliminary

Waveform Editor

Figure 1–8. Arbitrary Value Dialog Box

Random Value

Random Value allows you to generate random node values over the
selected waveform, waveform interval, or across one or more nodes or
groups. Figure 1–9 shows the Random Values dialog box.

You can generate random node values by every grid interval, every half
grid interval, at random intervals, or at fixed intervals.

Figure 1–9. Random Values Dialog Box

Generating a Testbench

You can export your VWF as a VHDL Test Bench File (.vht) or Verilog
Test Bench File (.vt). This is useful when you want to use a vector
waveform in different EDA tools. You must run an analysis and

1–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

elaboration before you can export a waveform vector. To export a
waveform vector, have your vector waveform open and perform the
following steps:

1. On the File menu, click Export. The Export dialog box appears.

2. In the Save as type list, select VHDL Test Bench File (*.vht) or
Verilog Test Bench File (*.vt).

3. You can optionally turn on Add self-checking code to file. This
option adds additional logic to check the results of the output and
compares it to the original VWF.

1 You must open your project in the Quartus II software before
you can export a VWF.

f For more information about using the generated test bench in other EDA
tools, refer to the respective EDA simulator chapter in the Simulation
section in volume 3 of the Quartus II Handbook.

Grid Size

When you select portions of your waveform, the selection area snaps to
time intervals specified in the Grid Size dialog box. You can customize
the grid size in the Waveform Editor. You can change the grid size based
on the clock settings or by setting the time period. To customize the grid
size, on the Edit menu, click Grid Size.

Time Bars

Add time bars in the Waveform Editor to compare edges between
different signals. You can also use time bars to jump forward and
backward to the next edge transition in the selected signal, and read the
logic level of signals by sliding the Time Bar in your waveform. The logic
level is displayed in the Value at column of the Waveform Editor.

The Time Bar Organizer dialog box enables you to create, delete, and edit
a time bar, and to create a master time bar. Only one master time bar is
allowed per waveform file. To use the Time Bar Organizer, on the Edit
menu, point to Time Bar and click Time Bar Organizer.

1 Under Existing time bars, in the Absolute time column, the
red M indicates the master time bar (Figure 1–10).

Altera Corporation 1–15
October 2007 Preliminary

Waveform Editor

Figure 1–10. Time Bar Organizer Dialog Box

Stretch or Compress a Waveform Interval

You can stretch or compress a waveform interval in the Waveform Editor,
which enables you to analyze the effects on a waveform. For example,
you can check the behavior of your design at high speeds for a short
interval by using the compress option to compress the waveform. You
can also use this feature to delay the transition of a signal by stretching
the waveform.

You have to specify the original start and end time, and the new time for
the waveform you want to stretch or compress. If you want to stretch or
compress all the nodes or buses, deselect all nodes and buses and set the
stretch or compress feature.

To stretch or compress a waveform interval, on the Edit menu, point to
Value and click Stretch or Compress Waveform Interval. The Stretch or
Compress Waveform Interval dialog box appears.

The “To time value” end time specified in the Stretch or Compress
Waveform Interval dialog box cannot be larger than the “End Time”
specified in the Simulator Settings page of the Settings dialog box
(Figure 1–12). Otherwise, the Quartus II software displays a message
indicating the invalid time value.

1–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

End Time

The End Time setting enables you to change the end time of the VWF. The
end time represents the maximum length of time in the VWF. You can
specify the end time and your preferred time unit, and have different
extension values for different nodes or buses. With the waveform open,
specify the end time by performing the following steps:

1. On the Edit menu, click End Time. The End Time dialog box
appears (Figure 1–11).

Figure 1–11. End Time Dialog Box

2. In the Time box, specify the end time and select the time unit in the
Time list.

3. Under Default extension options, in the Extension value list, select
the value.

4. Under End time extension per signal, you can select specific
extension values for each signal by clicking in the Extension value
column.

Altera Corporation 1–17
October 2007 Preliminary

Simulator Settings

1 The options in the End time dialog box are different settings
than those under Simulation period in the Settings dialog box.
Simulation period is the period that the Quartus II software
simulates the stimuli. End time is the maximum length of time
in the VWF. For information on the simulation period, refer to
Table 1–2 on page 1–19.

Arrange Group or Bus in LSB or MSB Order

You can arrange a group or bus in Least Significant Bit (LSB) or Most
Significant Bit (MSB) order. If you arrange in LSB order, the LSB is on top
and MSB is at bottom. If you arrange in MSB order, the MSB is on top and
LSB is at bottom.

To arrange a group or bus in LSB or MSB order, perform the following
steps:

1. Select the bus that you want to change the LSB or MSB order. You
can also select multiple buses in the waveform editor.

2. On the Edit, point to Group and Bus Bit Order and click either MSB
on top, LSB on Bottom to change the bus or group in MSB order or
click LSB on top, MSB on Bottom to change the bus or group in LSB
order.

Simulator
Settings

You can enhance your output, reduce debugging time, and provide better
coverage before running a simulation. This section covers the different
simulation modes supported by the Quartus II Simulator. Additionally,
the Quartus II Simulator offers common setup features like glitch
filtering, setup and hold violation detection, and simulation coverage.

To setup simulation settings, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Simulator Settings. The Simulator
Settings page appears (Figure 1–12).

1–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 1–12. Simulator Settings Page

Altera Corporation 1–19
October 2007 Preliminary

Simulator Settings

Table 1–2 shows the options in the Simulator Settings page.

Table 1–2. Quartus II Simulator Settings (Part 1 of 2)

Settings and Options Description

Simulation mode (1) Functional
This simulation mode uses a pre-synthesis compiler database to simulate the logical
performance of a project without the timing information. This mode enables you to
check the functionality of the design. All nodes and buses are preserved in this
simulation because functional simulation is performed before synthesis, partitioning,
or fitting. A VWF is required to perform this simulation mode.

Timing
This simulation mode takes the compiled netlist that includes timing information. With
this simulation mode, you can check setup, hold violation, glitches, and simulation
coverage. You can remove nodes or buses using the Quartus II Compiler when logic
is optimized. This simulation mode uses the worst case timing model.

Timing using Fast Timing Model
This simulation mode is similar to timing simulation but this mode uses the best-case
timing model.

Simulation input You must include the vector file in the Simulation input box. You can type the name
of the file or use the browse button to open the Select File dialog box. In the Files of
type list, you can select Vector Waveform File (*.vwf), Compressed Vector
Waveform File (*.cvwf), Value Change Dump File (*.vcd), Vector Table Output File
(*.tbl), Vector Text File (*.vec), Simulation Channel File (.scf), or All Files (*.*).

TBL files contain input vectors and output logic levels in tabular-format list. You can
generate this file using a VWF. However, if you would like to maintain, view, or update
the vectors, VWFs offer better visibility. VWF or TBL file formats are interchangeable.
You can generate TBL files from VWFs and vice versa. You can create a VWF with
the Waveform Editor. For more information on the Waveform Editor, refer to
“Waveform Editor” on page 1–5.

The Quartus II software also supports MAX+PLUS® II simulation vector files, such as
VEC and SCF.

A CVWF is the simplified version, non-readable, format of the VWF format. This file
type is in binary format and is generally smaller in file size. You can use CVWFs in
the Waveform Editor and simulation.

A VCD file is an ASCII file which contains header information, variable definitions,
and the value changes for specified variables, or all variables, in a given design. The
value changes for a variable are given in scalar or vector format, based on the nature
of the variable.

1–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Simulation period The simulation period determines the length of time that the simulator runs the stimuli
with the maximum period being equal to the end time of a VWF. If the simulation
period is configured shorter than the end time, all signals beyond the simulation
period are displayed as Unknown (X). Therefore, you can also shorten the simulation
period or end the simulation earlier by selecting End Simulation at and specifying
the time and selecting the time unit. If the simulation period is configured longer than
the end time, the simulation will stop at the end time. For information on the end time,
refer to “End Time” on page 1–16.

Glitch filtering options Specifies whether to enable glitch filtering for simulations. You can select one of the
following options:

Auto—The Simulator performs glitch filtering when SAF generation is enabled in the
Simulation Output Files page of the Settings dialog box.

Always—The Simulator always performs glitch filtering, even if SAF generation is not
enabled.

Never—The Simulator never performs glitch filtering, even if SAF generation is
enabled.

More Settings If you click More Settings, the More Simulator Settings dialog box appears. The
following options are available under Existing option settings.

Cell Delay Model Type
Specifies the type of delay model to be used for cell delays: transport or inertial. The
default is transport.

Interconnect Delay Model Type
Specifies the type of delay model to be used for interconnect delays: transport or
inertial. The default is transport.

Preserve fewer signal transition to reduce memory requirements
This option is effective on lower performance workstations because turning on this
option flushes signal transitions from memory to disk for memory optimization.

Note to Table 1–2:
(1) The Quartus II Simulator may flag an error message if zero-time oscillation happens in your design. Zero-time

oscillation happens when a particular output signal does not achieve a stable output value at a particular fixed
time, which may be due to your design containing combinational logic path loops.

Table 1–2. Quartus II Simulator Settings (Part 2 of 2)

Settings and Options Description

Altera Corporation 1–21
October 2007 Preliminary

Simulator Settings

Simulation Verification Options

Figure 1–13 shows the simulation verification page.

Figure 1–13. Simulation Verification Page

1–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 1–3 shows the options in the simulation verification page.

Table 1–3. Quartus II Simulation Verification (Part 1 of 2)

Settings and Options Description

Check outputs Check outputs checks expected outputs against actual outputs in the
simulation report. After turning on Check outputs, click the Waveform
Comparison Settings button. The Waveform Comparison Settings dialog
box appears.

In the Waveform Comparison Settings dialog box, you can specify the
waveform comparison time frame and the comparison options. You can also set
the tolerance level for all the signals by specifying the tolerance limit in the
Default comparison timing tolerance box. The Maximum comparison
mismatches box is the amount of mismatches the Quartus II Simulator is
allowed to accept before it stops comparing.

You can also set the type of transition the comparison should trigger in the
Waveform Comparison Settings dialog box. You can assign trigger
comparisons based on Input signal transition edges, All signal transition
edges, or Selected Signal transition edges.

To customize the waveform comparison matching rules, you can also click the
Comparison Rules button. The Comparison Rules dialog box appears,
allowing you to customize the comparison matching rules.

Setup and hold time
violation detection

This option detects setup and hold time violation. Setup time is the period
required by a synchronous signal to stabilize before the arrival of a clock edge.
Hold time is the time required by a synchronous signal to maintain after the
same clock edge. If the Setup and hold time violation detection option is
turned on, a warning in the Messages windows appears if any setup or hold time
violation is detected during the simulation. This option is only for Timing and
Timing using Fast Timing Model simulation modes.

Glitch detection Conditions happen when two or more signals toggle simultaneously and can
cause glitches or unwanted short pulses. The Glitch detection option enables
you to detect glitches and specify the time interval that defines a glitch. If two
logic level transitions occur in a period shorter than the specified time period, the
resulting glitch is detected and reported in the Processing tab of the Messages
window.

If you turn on the Glitch detection option, you can specify the acceptable glitch
width. A Messages window appears when a pulse is smaller than the specified
glitch width that is detected. The Glitch detection option is only available for
Timing and Timing using Fast Timing Model simulation modes.

Altera Corporation 1–23
October 2007 Preliminary

Simulator Settings

Simulation coverage
reporting

This option reports the ratio of outputs (coverage) actually simulated to the
number of outputs in the netlist and is expressed as a percentage. When you
turn on the Simulation coverage reporting option, the Report Settings button
is available. If you click Report Settings, the Report Settings dialog box
appears. The three types of coverage reports you can select from are Display
complete 1/0 value coverage report, Display missing 1-value coverage
report, and Display missing 0-value coverage report.

Disable setup and hold time
violation detection for input
registers of bi-directional
pins

This option enables you to disable setup and hold time violations detection in
input registers of all bidirectional pins in the simulated design during Timing or
Timing using Fast Timing Model simulation.

Table 1–3. Quartus II Simulation Verification (Part 2 of 2)

Settings and Options Description

1–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Simulation Output Files Options

Figure 1–14 shows the simulation output file page.

Figure 1–14. Simulation Output Files Page

Altera Corporation 1–25
October 2007 Preliminary

Simulation Report

Table 1–4 shows the options in the simulation output file page.

Simulation
Report

Comprehensive reports are shown after the completion of each
simulation. These reports are important to ensure designs meet timing
and logical correctness. These simulation reports also play an important
role in debugging.

Simulation Waveform

Simulation Waveforms are part of the Simulation report. In this report,
the stimuli and the results of the simulation are displayed.

Table 1–4. Quartus II Simulation Output Files

Setting and Options Description

Simulation output
waveform

Specify the simulation output waveform options.

Automatically add pins to simulation output waveforms
The Automatically add pins to simulation output waveforms option
automatically adds all outputs that are available in the design to the waveform
reports. If your design has large amounts of outputs, turning on this option
ensures all outputs are monitored during simulation.

Overwrite simulation input file with simulation results
This option overwrites the vector source file with simulation results. This option
is ignored when the Check outputs setting is turned on. This option adds the
result to the vector file and generally, it can give you more visibility during the
debugging process. (1)

Group bus channel in simulation results
This option automatically groups bus channels in the output waveform that are
shown in the simulation reports. By turning off this option, all output waveforms
have a node to represent each bus signal.

Signal activity output for
power analysis

When you perform your simulation with the Quartus II Simulator, you can
generate a SAF which is used by the PowerPlay Power Analyzer to assist you
with power analysis. (2), (3)

VCD output for power
analysis

When you perform simulation with the Quartus II Simulator, you can generate a
VCD file, which is used by the PowerPlay Power Analyzer to assist you with
power analysis. (2), (3)

Notes to Table 1–4:
(1) A backup copy of the source vector file is saved under the db folder with the name <project>.sim_ori.

<vector file format type>.
(2) Instead of using the SAF or Generate VCD file (*.vcd), you can also save your output waveform as a VCD file to

perform power analysis.
(3) For more information about the PowerPlay Power Analyzer, refer to the PowerPlay Power Analysis chapter in

volume 3 of the Quartus II Handbook.

1–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

You can export the simulation waveform as a VHDL Test Bench File or a
Verilog Test Bench File for use in other EDA tools. You can also save a
simulation as a VWF or Vector Table Output File for use with the
Quartus II software.

When you try to edit the Simulation Waveform, the Edit Input Vector
File dialog box appears, asking whether you would like to edit the vector
input file with the results of the simulation or if you would like to
overwrite the vector input file with other vector inputs (Figure 1–15).

Figure 1–15. Edit Input Vector File

You can overwrite your simulation input file with the simulation results
so that your input vector file is updated with the resulting waveform after
a simulation. For more information, refer to the Overwrite simulation
input file with simulation results option in Table 1–2.

If you do not want to overwrite the simulation input file in every
simulation run, perform the following to overwrite simulation input files
with simulation results after a simulation:

On the Processing Menu, point to Simulation Debug and click Overwrite
Vector Inputs with Simulation Outputs.

Simulating Bidirectional Pin

A bidirectional pin is represented in the waveform by two channels. One
channel represents the input to the bidirectional pin, and the other
channel represents the output from the bidirectional pin. You can enter
the input channel into the waveform by using the Node Finder dialog
box. The output channel is automatically created by the Quartus II
Simulator and named <bidir pin name> ~result.

Altera Corporation 1–27
October 2007 Preliminary

Simulation Report

Logical Memories Report

The Quartus II software writes out the contents of each memory module
after simulation. Therefore, if you use memory cells in your design, you
can analyze the contents of the logic memory structures in the device in
the Logical Memories Report. The Logical Memories Report displays
individual reports for each memory block and contains the data stored in
the memory cell used at the end of simulation.

After being simulated, a memory module’s contents are stored in the
Logical Memories section of the simulation report file.

To view this section, perform the following steps:

1. On the Processing menu, click Simulation Report. The Simulation
Report window appears.

2. In the report window, click on the “+” next to Logical Memories.

Simulation Coverage Reports

The Coverage Summary report contains the following summary
information for the simulation:

■ Total toggling coverage as a percentage
■ Total nodes checked in the design
■ Total output ports checked
■ Total output ports with complete 1/0-value coverage
■ Total output ports with no 1/0-value coverage
■ Total output ports with no 1-value coverage
■ Total output ports with no 0-value coverage

The Complete 1/0-Value Coverage report lists the following information:

■ Node name
■ Output port name
■ Output port type for output ports that toggle between 1 and 0 during

the simulation

The Missing 0-Value Coverage report and Missing 1-Value Coverage
report list the following information:

■ Node name
■ Output port name
■ Output port type for output ports that do not toggle to the

designated value

1–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

For more information about Simulation Coverage reports, refer to the
Simulation coverage reporting option in Table 1–2 on page 1–19.

The following are individual reports and their definition:

Complete 1/0 value coverage report
Displays all the nodes or buses that toggle between 1 and 0 during
simulation.

Missing 1-value coverage and Missing 0-value coverage reports
Displays all the nodes that do not toggle to the designated value.

Comparing Two Waveforms

You can compare your simulation results against previous simulations
using the compare option. To compare two waveforms in the Simulation
Report, turn on the Check outputs option. For more information on the
Check outputs option, refer to Table 1–2 on page 1–19. With the Check
outputs option turned on, the two comparable waveforms are visible in
black and red. The black waveforms represent the original output or the
expected output, and the red waveforms represent the compared output
or the actual output. Figure 1–16 shows an example of expected output
waveform versus actual output waveform.

Figure 1–16. Example of Simulation Waveform from the Simulation Report When Check Output is Turned On

Expected Output Waveform

(in Black)
Actual Output Waveform

(in Red)

Altera Corporation 1–29
October 2007 Preliminary

Debugging with the Quartus II Simulator

Debugging with
the Quartus II
Simulator

The Quartus II software includes tools to help with simulation
debugging. This section covers some debugging tools and their use.

Breakpoints

Inserting breakpoints into the simulation process enables the simulator to
break at the desired time or on the desired node or bus condition. You can
monitor the activity of nodes or buses during specified times and
pinpoint the cause of mismatched signal levels between expected and
actual. To use breakpoints, perform the following steps:

1. On the Processing menu, point to Simulation Debug and click
Breakpoints. The Breakpoints dialog box appears (Figure 1–17).

Figure 1–17. Breakpoints Dialog Box

2. Click New to create a new breakpoint. The New Breakpoint dialog
box appears. In this dialog box, you can specify the name, the
equation, and the action of the breakpoint. You can also enable or
disable this breakpoint by using the Enable Breakpoint check box.

3. In the Equation text box, click condition. You can configure the
logical conditions of individual nodes or buses, or you can set the
time.

4. After you configure the equation conditions, select the action for the
Quartus II Simulator. In the Action drop down list, select Stop,
Warning Message, Error Message, or Information Message. This
selection defines the action once the condition is met.

1–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

5. You can also enter the text that appears when the Simulator encounters
the breakpoint. If you do not make an entry in this box, the Quartus II
software displays a default message.

Updating Memory Content

If your design includes memories, when the simulator stops at a breakpoint,
you can view and edit the contents of the memories. To view your memories
during a breakpoint in the simulation, on the Processing menu, point to
Simulation Debug and click Embedded Memory.

Last Simulation Vector Outputs

The Last Simulation Vector Outputs command opens the Output Simulation
Waveforms report generated by the last simulation. To use this command, on
the Processing menu, point to Simulation Debug and click Last Simulation
Vector Outputs.

You can open the current input vectors that you defined in the Simulator
Settings dialog box with the Current Vector Inputs command. To use this
command, on the Processing menu, point to Simulation Debug and click
Current Vector Inputs. Lastly, you can overwrite the vector source file with
the simulation outputs which open the resulting file.

Conventional Debugging Process

During the design phase, tapping out internal signals is a common practice to
debug simulation errors. Therefore, the Quartus II software enables you to tap
out the signal for simulation debug and also enables you to pull out the
internal signal to the physical I/O. The Quartus II software also offers
SignalTap II and SignalProbe to further assist you with debugging.

Accessing Internal Signals for Simulation

You can conventionally debug by probing out the internal signals, which
enables you to preserve the internal signals during synthesis. You can probe
the internal signal by selecting the node or bus and specifying a name, and then
adding an output port to the schematic with a similar name. Figure 1–18 shows
an example of accessing internal signals for simulation from a schematic
diagram.

Altera Corporation 1–31
October 2007 Preliminary

Debugging with the Quartus II Simulator

Figure 1–18. Example of Tapping Out Internal Signal

For timing simulations, the simulation netlist is based on the Compilation
post-Synthesis and post-Fitting netlist. Therefore, some of the internal
nodes or buses are optimized away during compilation of the netlist. If an
internal node is optimized away, the Quartus II software shows a
warning in the Warning tab of the Messages window similar to the
following message:

Warning: Compiler packed, optimized or synthesized away node “DataU”. Ignored vector
source file node.

This internal node is ignored by the Quartus II Simulator.

If you would like to tap out the D and Q ports of registers, turn on Add
D and Q ports of register node to Simulation Output Waveform from
the Assignment Editor. This feature is only available for functional
simulations.

Accesing the internal
signal of the bus INTA.

Both the internal signal bus and
the output port have the same name.

1–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r

The Scripting Reference Manual includes the same information in PDF
form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

You can change the Functional, Timing, or Timing using Fast Timing
Model simulation modes with the following command:

simulation_mode <mode> r

To initialize the simulation for the current design, use the following
command. During initialization, the Simulator builds the simulation
netlist and sets the simulation time to zero.

The option -ignore_vector_file is set to Off by default, when the
source vector file exists for simulation. The Quartus II software ignores
the source vector file during simulation if the option
-ignore_vector_file is set to On. The -end_time option is used
only when the -ignore_vector_file option is set to On.

initialize_simulation [-h | -help] [-long_help] [-check_outputs <On | Off>] \
[-end_time <end_time>] [-glitch_filtering <On | Off>] [-ignore_vector_file <On | Off>] \
[-memory_limiter <On | Off>] [-power_vcd_output <target_file>] [-read_settings_files <On |
Off>] \ [-saf_output <target_file>] [-sim_mode <functional | timing | timing_using_fast_timing_model >] \
[-vector_source <vector_source_file>] [-write_settings_files <On | Off>] \
-simulation_results_format <VWF | CVWF | VCD> -vector_source <vector source file>

To force the specified signal or group of signals to the specified value,
type the following at a command prompt:

force_simulation_value [-h | -help] [-long_help] -node <hpath> <value> r

To turn on the simulator to simulate the design for a specified time, type
the following at a command prompt:

run_simulation [-h | -help] [-long_help] [-time <time>] r

Altera Corporation 1–33
October 2007 Preliminary

Conclusion

1 If you do not specify the length of time the simulation runs, it
runs until the simulation is complete.

To create a breakpoint with a specified equation and action, type the
following at a command prompt:

create_simulation_breakpoint [-h | -help] [-long_help] \
-action [Give Warning | Give Info | Give Error] \
-breakpoint <breakpoint_name> -equation <equation> [-user_message <message_text>]r

To delete a breakpoint with a specified name, type the following at a
command prompt:

delete_simulation_breakpoint [-h | -help] [-long_help] \
-breakpoint <breakpoint_name> r

Conclusion Simulation plays an important role in ensuring the quality of a product.
The Quartus II software offers various tools to assist you with simulation
and helps reduce debugging time with the introduction of features like
Glitch Filtering and Breakpoints.

Referenced
Documents

This chapter references the following documents:

■ Quartus II Settings File Reference Manual
■ Section I: Simulation section in volume 3 of the Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

1–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 1–5 shows the revision history for this chapter.

Table 1–5. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 1–33. —

May 2007
v7.1.0

● Updated a command in Scripting Support.
● Updated Breakpoints.
● Added procedure to Logical Memories Report.
● Updated sections, added sections and deleted sections in

Simulator Settings.
● Updated Simulation Report.
● Updated Table 1-2.
● Added Arrange Group or Bus in LSB ir MSB Order.
● Updated Creating VWFs.
● Added Referenced Documents.

Updated for the
Quartus II software
version 7.1.

March 2007 v7.0.0 Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Updated for the Quartus II software version 6.1.
● Added references to Value Change Dump File (.vcd)
● Added Random Value section
● Other minor changes

Updated for the
Quartus II software
version 6.1.

May 2006 v6.0.0 Initial release. —

Altera Corporation 2–1
October 2007 Preliminary

2. Mentor Graphics
ModelSim Support

Introduction An Altera® software subscription includes a license for the
ModelSim-Altera software on a PC or UNIX platform. The
ModelSim-Altera software can be used to perform functional register
transfer level (RTL), post-synthesis, and gate-level timing simulations for
either Verilog HDL or VHDL designs that target an Altera FPGA. This
chapter provides detailed instructions on how to simulate your design in
the ModelSim-Altera version or the Mentor Graphics® ModelSim®
software version. This chapter gives you details on the specific libraries
that are needed for a functional RTL simulation or a gate-level timing
simulation.

This document describes using ModelSim-Altera software version 6.1g
and the Mentor Graphics ModelSim software version 6.1g. It also
contains references to features available in the Altera Quartus® II
software version 7.2.

The following topics are discussed in this chapter:

■ “Background”
■ “Software Compatibility” on page 2–3
■ “Altera Design Flow with ModelSim or ModelSim-Altera Software”

on page 2–3
■ “Functional RTL Simulation” on page 2–5
■ “Post-Synthesis Simulation” on page 2–16
■ “Gate-Level Timing Simulation” on page 2–23
■ “Simulating Designs that Include Transceivers” on page 2–37
■ “Using the NativeLink Feature with ModelSim” on page 2–44
■ “Scripting Support” on page 2–50
■ “Software Licensing and Licensing Setup” on page 2–51

f For more information about the current Quartus II software version,
refer to the Altera website at www.altera.com.

Background The ModelSim-Altera software version 6.1g is included with your Altera
software subscription and can be licensed for the PC, Solaris, or Linux
platforms to support either Verilog HDL or VHDL hardware description
language (HDL) simulation. The ModelSim-Altera software supports
VHDL or Verilog functional RTL, post-synthesis, and gate-level timing
simulations for all Altera devices.

QII53001-7.2.0

2–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 2–1 describes the differences between the Mentor Graphics
ModelSim SE/PE and ModelSim-Altera software versions.

Table 2–1. Comparison of ModelSim Software Versions

Product Feature ModelSim SE ModelSim PE ModelSim-Altera ModelSim-Altera
Web Edition

100% VHDL, Verilog,
mixed-HDL support

Optional Optional Supports only
single-HDL
simulation

Supports only
single-HDL
simulation

Complete HDL debugging
environment

v v v v

Optimized direct compile
architecture

v v v v

Industry-standard scripting v v v v
Flexible licensing v Optional v —

Verilog PLI support.
Interfaces Verilog HDL
designs to customer C code
and third-party software

v v v v

VHDL FLI support. Interfaces
VHDL designs to customer C
code and third-party software

v — — —

Standard Delay Format File
annotation

v v v(1) v (1)

Advanced debugging
features and
language-neutral licensing

v — — —

Customizable, user-
expandable graphical user
interface GUI and integrated
simulation performance
analyzer

v — — —

Integrated code coverage
analysis and SWIFT support

v — — —

Accelerated VITAL and
Verilog HDL primitives
(3 times faster), and register
transfer level (RTL)
acceleration (5 times faster)

v — — —

Platform support PC, UNIX, Linux PC only PC, UNIX, Linux PC only

Precompiled Libraries No No Yes Yes

Note to Table 2–1:
(1) ModelSim-Altera will only allow SDF annotation to modules in the Altera library.

Altera Corporation 2–3
October 2007 Preliminary

Software Compatibility

Software
Compatibility

Table 2–2 shows which ModelSim-Altera software version is compatible
with the Quartus II software versions. ModelSim versions provided
directly from Mentor Graphics do not correspond to specific Quartus II
software versions.

For help with ModelSim-Altera licensing set up, refer to “Software
Licensing and Licensing Setup” on page 2–51.

Altera Design
Flow with
ModelSim or
ModelSim-
Altera Software

This chapter contains the following sections:

■ Functional RTL simulations
■ Post-synthesis simulations
■ Gate-level timing simulations
■ Using the NativeLink® feature with ModelSim

Figure 2–1 illustrates an Altera design flow using the Mentor Graphics
ModelSim software or ModelSim-Altera software.

Table 2–2. Compatibility Between Software Versions

ModelSim-Altera Software Quartus II Software (1)

ModelSim-Altera software version 6.1g Quartus II software version 6.1, 7.0, 7.1, and 7.2

ModelSim-Altera software version 6.1d Quartus II software version 6.0

ModelSim-Altera software version 6.0e Quartus II software version 5.1

ModelSim-Altera software version 6.0c Quartus II software version 5.0

ModelSim-Altera software version 5.8.e
ModelSim-Altera software version 5.8

Quartus II software version 4.2

Note to Table 2–2:
(1) Updated ModelSim-Altera precompiled libraries are available for download on Altera’s website for each release

of the Quartus II service pack.

2–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 2–1. Altera Design Flow with ModelSim-Altera and Quartus II Software

Note to Figure 2–1:
(1) If you are performing a functional simulation through NativeLink, you must

complete analysis and elaboration first.

.vo/.vho

Design Entry

Functional RTL Simulation (1)

Synthesis

Post-Synthesis Simulation

Verilog Output
File and VHDL

Output File

.sdo

Place-and-Route

.v/.vhd

Gate-Level Timing Simulation

Gate-Level
Simulation

Library Files

Post-Synthesis
Simulation

Library Files

Functional
Simulation

Library Files

.vo/.vho
Verilog Output
File and VHDL

Output File

Standard Delay
Format Output

File

Testbench

ALTERA IP

Altera Corporation 2–5
October 2007 Preliminary

Functional RTL Simulation

Functional RTL
Simulation

A functional RTL simulation is performed before a gate-level simulation
or post-synthesis simulation. Functional RTL simulation verifies the
functionality of the design before synthesis and place-and-route. This
section provides detailed instructions on how to perform a functional
RTL simulation in the ModelSim-Altera software and highlights some of
the differences in performing similar steps in the Mentor Graphics
ModelSim software versions for Verilog HDL and VHDL designs.

Functional Simulation Libraries

Pre-compiled libraries are available for functional simulation with the
ModelSim-Altera software. These libraries include the lpm library and
the altera_mf library. To create these libraries for simulation with the
ModelSim SE/PE software, compile the library files described in the
following sections.

lpm Simulation Models

To simulate designs containing lpm functions, use the following
functional simulation models:

■ 220model.v (for Verilog HDL)
■ 220pack.vhd and 220model.vhd (for VHDL)

1 When you are simulating a design that uses VHDL-1987, use the
220model_87.vhd model file.

Table 2–3 shows the location of these simulation model files and
precompiled libraries in the Quartus II software and the
ModelSim-Altera software.

f For more information about LPM functions, refer to the Quartus II Help.

Table 2–3. Location of lpm Simulation Models Files and Pre-Compiled Libraries

Software Location

Quartus II <Quartus II installation directory>\eda\sim_lib\ (1)

ModelSim-Altera <ModelSim-Altera installation directory>\altera\<HDL>\220model\ (2), (3)

Notes to Table 2–3:
(1) For ModelSim SE/PE, compile the files provided with the Quartus II software.
(2) For ModelSim-Altera, use the precompiled libraries for simulation.
(3) <HDL> can be either Verilog HDL or VHDL.

2–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Megafunction Simulation Models

To simulate a design that contains Altera megafunctions, use the
following simulation models:

■ altera_mf.v (for Verilog HDL)
■ altera_mf.vhd and altera_mf_components.vhd (for VHDL)

1 When you are simulating a design that uses VHDL-1987, use
altera_mf_87.vhd.

Table 2–4 shows the location of these simulation files and precompiled
libraries in the Quartus II software and the ModelSim-Altera software.

The following Altera megafunctions require device atom libraries to
perform a functional simulation in a third-party simulator:

■ altclkbuf
■ altclkctrl
■ altdqs
■ altdq
■ altddio_in
■ altddio_out
■ altddio_bidir
■ altufm_none
■ altufm_parallel
■ altufm_spi
■ altmemmult
■ altremote_update

The device atom library files are located in the following directory:

<Quartus II installation directory>/eda/sim_lib

Table 2–4. Location of Altera Megafunction Simulation Models Files and Precompiled Libraries

Software Location

Quartus II <Quartus II installation directory>\eda\sim_lib\ (1)

ModelSim-Altera <ModelSim-Altera installation directory>\altera\<HDL>\altera_mf\ (2), (3)

Notes to Table 2–4:
(1) For ModelSim SE/PE, compile the files provided with the Quartus II software.
(2) For ModelSim-Altera, use the precompiled libraries for simulation.
(3) <HDL> can be either Verilog HDL or VHDL.

Altera Corporation 2–7
October 2007 Preliminary

Functional RTL Simulation

Low-Level Primitive Simulation Models

You can simulate a design that contains low-level Altera primitives with
the following simulation models:

■ altera_primitives.v (for Verilog HDL)
■ altera_primitives.vhd and altera_primitives_components.vhd (for

VHDL)

Table 2–5 shows the location of these simulation library files and
precompiled libraries in the Quartus II software and the
ModelSim-Altera software.

Simulating VHDL Designs

Use the following instructions to perform a functional RTL simulation for
VHDL designs in the ModelSim software.

1 The steps in the following section assume you have already
created a ModelSim project.

The ModelSim-Altera software comes with precompiled
simulation libraries. Creating simulation libraries and
compiling simulation models steps are not required. You can
proceed directly to “Compile Testbench and Design Files into
Work Library” on page 2–9.

Create Simulation Libraries

Simulation libraries are required to simulate a design that contains an
Altera primitive, lpm function, or Altera megafunction. These libraries
have already been compiled if you are using the ModelSim-Altera
software. However, if you are using the Mentor Graphics ModelSim
software, you must create the simulation libraries and link them to your
design correctly.

Table 2–5. Location of Altera Primitives Model Files and Precompiled Libraries

Software Location

Quartus II <Quartus II installation directory>\eda\sim_lib (1)

ModelSim-Altera <ModelSim-Altera installation directory>\altera\<HDL>\altera (2), (3)

Notes to Table 2–5:
(1) For ModelSim SE/PE, compile the files provided with the Quartus II software.
(2) For ModelSim-Altera, use the precompiled libraries for simulation.
(3) <HDL> can be either Verilog HDL or VHDL.

2–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Create Simulation Libraries Using the ModelSim GUI
Perform the following steps to create simulation libraries:

1. In the ModelSim software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the name of the newly created
library.

For example, the library name for Altera megafunctions should be
altera_mf, and the library name for LPM should be lpm.

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vlib altera_mf r
vmap altera_mf altera_mf r
vlib lpm r
vmap lpm lpm r
vlib altera r
vmap altera altera r

Compile Simulation Models into Simulation Libraries

The following steps are not required for the ModelSim-Altera software.

Compile Simulation Models into Simulation Libraries Using the
ModelSim GUI
Perform the following steps to compile simulation models into
simulation libraries:

1. On the File menu, point to Add to Project and click Existing File.

2. Browse to the <Quartus II installation directory>/eda/sim_lib and add
the necessary simulation model files to your project.

1 The altera_mf.vhd model file should be compiled into the
altera_mf library. The 220pack.vhd and 220model.vhd model
files should be compiled into the lpm library.

3. In the Workspace window, select the simulation model file, and on
the View menu, click Properties.

Altera Corporation 2–9
October 2007 Preliminary

Functional RTL Simulation

4. Choose the correct library from the Compile to Library list.

5. Click OK.

6. On the Compile menu, click Compile selected.

Compile Simulation Models into Simulation Libraries at the
ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vcom -work altera_mf <Quartus II installation directory>/eda/sim_lib/altera_mf_components.vhd r
vcom -work altera_mf <Quartus II installation directory>/eda/sim_lib/altera_mf.vhd r
vcom -work lpm <Quartus II installation directory>/eda/sim_lib/220pack.vhd r
vcom -work lpm <Quartus II installation directory>/eda/sim_lib/220model.vhd r
vcom -work altera <Quartus II installation directory>/eda/sim_lib/altera_primitives_components.vhd r
vcom -work altera <Quartus II installation directory>/eda/sim_lib/altera_primitives.vhd r

Compile Testbench and Design Files into Work Library

Compile a testbench and design files into a work library by clicking
Compile All or by clicking the Compile All toolbar icon on the Compile
menu.

Compile Testbench and Design Files into Work Library Using the
ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vcom -work work <my_test bench.vhd> <my_design_files.vhd>r
1 Resolve compile-time errors before proceeding to the following

section.

Loading the Design

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation
dialog box appears.

2. Expand the work library in the Start Simulation dialog box.

3. Select the top-level design unit (your testbench).

4. In the Resolution list, select ps.

5. Click OK.

2–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Loading the Design Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vsim work.<my_test bench> -t ps r

Running the Simulation

Perform the following steps to run a simulation:

1. On the View menu, point to Debug Windows and click Objects.
This command displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them
into the Wave window.

4. Type the following command at the ModelSim command prompt:

run <time period> r

Running the Simulation Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

add wave /<signal name> r
run <time period> r

Simulating Verilog HDL Designs

The following instructions provide step-by-step instructions to perform
functional RTL simulation for Verilog HDL designs in the ModelSim
software.

1 The following steps assume you have already created a
ModelSim project.

If you are using the ModelSim-Altera software, a set of
precompiled libraries are created when you install the software.
Creating simulation libraries and compiling simulation models
steps are not required. You can proceed directly to “Compile
Testbench and Design Files into Work Library” on page 2–12.

Create Simulation Libraries

Simulation libraries are needed to properly simulate a design that
contains an lpm function or an Altera megafunction. These libraries have
already been compiled if you are using the ModelSim-Altera software.

Altera Corporation 2–11
October 2007 Preliminary

Functional RTL Simulation

However, if you are using the Mentor Graphics ModelSim software, you
must create the simulation libraries and correctly link them to your
design.

Create Simulation Libraries Using the ModelSim GUI
Perform the following steps to create simulation libraries:

1. On the File menu, point to New and click Library. The Create a
New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the name of the newly created
library.

For example, the library name for Altera megafunctions should be
altera_mf, and the library name for LPM should be lpm.

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vlib altera_mf r
vmap altera_mf altera_mf r
vlib lpm r
vmap lpm lpm r
vlib altera r
vmap altera altera r

Compile Simulation Models into Simulation Libraries

The following steps are not required for the ModelSim-Altera software.

Compile Simulation Models into Simulation Libraries Using the
ModelSim GUI
Perform the following steps to compile simulation models into
simulation libraries:

1. On the File menu, point to Add to Project and click Existing File.

2. Browse to the <Quartus II installation directory>/eda/sim_lib and add
the necessary simulation model files to your project.

1 Compile the altera_mf.v into the altera_mf library. Compile the
220model.v into the lpm library.

2–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

3. Select the simulation model file and on the View menu, click
Properties.

4. Choose the correct library from the Compile to Library list.

5. Click OK.

6. On the Compile menu, click Compile selected.

Compile Simulation Models into Simulation Libraries Using the
ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vlog -work altera_mf <Quartus II installation directory>/eda/sim_lib/altera_mf.v r
vlog -work lpm <Quartus II installation directory>/eda/sim_lib/220model.v r
vlog -work altera <Quartus II installation directory>/eda/sim_lib/altera_primitives.v r

Compile Testbench and Design Files into Work Library

Compile a testbench and design files into a work library on the Compile
menu by clicking Compile All or clicking the Compile All toolbar icon
on the Compile menu.

Compile Testbench and Design Files into Work Library Using the
ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vlog -work work <my_test bench.v> <my_design_files.v>r
1 Resolve compile-time errors before proceeding to the following

section.

Loading the Design

Perform the following steps to load a design:

1. On the Simulate menu, click Start Simulation. The Start Simulation
dialog box appears.

2. Click the Libraries tab.

3. In the Search Libraries box, click Add.

4. Specify the location of the lpm or altera_mf simulation libraries.

Altera Corporation 2–13
October 2007 Preliminary

Functional RTL Simulation

1 If you are using the ModelSim-Altera version, refer to Table 2–3
on page 2–5 and Table 2–4 on page 2–6 for the location of the
precompiled simulation libraries. If you are using the
Mentor Graphics ModelSim software version, browse to the
library that was created earlier.

5. In the Load Design dialog box, click the Design tab and expand the
work library.

6. Select the top-level design unit (your testbench).

7. In the Resolution list, select ps.

8. Click OK.

Loading a Design Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vsim -L altera_mf -L lmp work.<my_test bench> -t ps r

Running the Simulation

Perform the following steps to run a simulation:

1. On the View menu, point to Debug Windows and click Objects.
This command displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag the signals to monitor from the Objects window and drop
them into the Wave window.

4. Type the following command at the ModelSim command prompt:

run <time period> r

Running the Simulation Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

add wave /<signal name> r
run <time period> r

Verilog HDL Functional RTL Simulation with Altera Memory Blocks

Both ModelSim software products support simulating Altera memory
megafunctions initialized with Hexadecimal (Intel-Format) File (.hex) or
RAM initialization files (.rif).

2–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Although synthesis is able to read a Memory Initialization File (.mif), this
memory file is not supported with third-party tools and must be
converted to either a Hexadecimal (Intel-Format) File or RAM
Initialization File.

Table 2–6 summarizes the different types of memory initialization file
formats that are supported with each RTL language.

To simulate your design by converting your Memory Initialization File
into either a Hexadecimal (Intel-Format) File or a RAM Initialization File,
perform the following steps:

1. Convert a Memory Initialization File to a Hexadecimal
(Intel-Format) File or RAM Initialization File in the Quartus II
software.

Converting a Memory Initialization File to a Hexadecimal
(Intel-Format) File

a. Open the Memory Initialization File. On the File menu, click
Save As. The Save As dialog box appears.

b. In the Save as type list, select Hexadecimal (Intel-Format) File
(*.hex).

c. Click OK.

Convert a Memory Initialization File to a RAM Initialization File

a. Open the Memory Initialization File and on the File menu, click
Export. The Export dialog box appears.

b. In the Save as type list, select RAM Initialization File (*.rif).

Table 2–6. Simulation Support for Memory Initialization Files

File Verilog HDL VHDL

Hexadecimal (Intel-Format) File Yes (1) Yes

Memory Initialization File No No

RAM Initialization File Yes (2) No

Notes to Table 2–6:
(1) For memories and library files from the Quartus II software version 5.0 and earlier, you must use a PLI library

containing the convert_hex2ver function.
(2) Requires the USE_RIF macro to be defined, described later in this section.

Altera Corporation 2–15
October 2007 Preliminary

Functional RTL Simulation

c. Click OK.

Alternatively, you can convert a Memory Initialization File to a RAM
Initialization File using the mif2rif.exe utility located in the
<Quartus II installation>/bin directory.

mif2rif <mif_file> <rif_file> r
2. Modify the HDL file generated by the MegaWizard® Plug-In

Manager.

The Altera memory custom megafunction variation file includes the
lpm_file parameter for LPM memories such as LPM_ROM, or the
init_file for Altera specific memories such as an altsyncram, to
point to the initialization file.

In a text editor, open the custom megafunction variation file and edit
the lpm_file or init_file to point to the Hexadecimal
(Intel-Format) File or RAM Initialization File, as shown in the
following example:

lpm_ram_dp_component.lpm_file = “<path to HEX/RIF>”

3. Compile the functional library files with compiler directives.

If you use a Hexadecimal (Intel-Format) File, no compiler directives
are required. If you use a RAM Initialization File, you must define
the USE_RIF macro when compiling the model library files. For
example, you should enter the following when compiling the
altera_mf library when RAM Initialization File memory
initialization files are used:

vlog -work altera_mf altera_mf.v +define+USE_RIF=1

1 For the Quartus II software versions 5.0 and earlier, you must
define the NO_PLI macro instead of USE_RIF. The NO_PLI
macro is forward compatible with the Quartus II software.

2–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Post-Synthesis
Simulation

A post-synthesis simulation verifies the functionality of a design after
synthesis has been performed. You can create a post-synthesis netlist in
the Quartus II software and use this netlist to perform a post-synthesis
simulation in ModelSim. Once the post-synthesis version of the design is
verified, the next step is to place-and-route the design in the target device
using the Quartus II Fitter.

Generating a Post-Synthesis Simulation Netlist

The following steps describe the process of generating a post-synthesis
simulation netlist in the Quartus II software:

1. Perform Analysis and Synthesis. On the Processing menu, point to
Start and click Start Analysis and Synthesis (you can also perform
this after step 2).

2. Turn on the Generate Netlist for Functional Simulation Only
option by performing the following steps:

a. On the Assignments menu, click EDA Tool Settings. The
Settings dialog box appears.

b. In the Category list, select Simulation. The Simulation page
appears.

c. In the Tool name list:

• If you are using the ModelSim-Altera software, select
ModelSim-Altera.

• If you are using the Mentor Graphics ModelSim software,
select ModelSim.

d. Under EDA Netlist Writer options, in the Format for output
netlist list, select VHDL or Verilog. You can also modify where
you want the post-synthesis netlist generated by editing or
browsing to a directory in the Output directory box.

e. Click More Settings. The More EDA Tools Simulation
Settings dialog box appears. In the Existing options settings
list, click Generate Netlist for Functional Simulation Only
and select On from the Setting list under Option.

f. Click OK.

g. In the Settings dialog box, click OK.

Altera Corporation 2–17
October 2007 Preliminary

Post-Synthesis Simulation

3. Run the EDA Netlist Writer. On the Processing menu, point to Start
and click Start EDA Netlist Writer.

During the EDA Netlist Writer stage, the Quartus II software
produces a Verilog Output File (.vo) or VHDL Output File (.vho) that
can be used for post-synthesis simulations in the ModelSim software.
This netlist file is mapped to architecture-specific primitives. No
timing information is included at this stage. The resulting netlist is
located in the output directory you specified in the Settings dialog
box, which defaults to the <project directory>/simulation/modelsim
directory.

Simulating VHDL Designs

The following instructions help you perform a post-synthesis simulation
for a VHDL design in the ModelSim software.

1 The following steps assume you have already created a
ModelSim project.

If you are using the ModelSim-Altera software, a set of
precompiled libraries are created when you install the software.
Creating simulation libraries and compiling simulation models
steps are not required. You can proceed directly to “Compile
Testbench and Design Files into Work Library” on page 2–9.

Create Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to
post-synthesis primitives. If you are using the Mentor Graphics
ModelSim software, you must create the simulation libraries and
correctly link them to your design.

1 This process is not required with the ModelSim-Altera version
because a set of pre-compiled libraries is installed with the
software.

Create Simulation Libraries Using the ModelSim GUI
Perform the following steps to create simulation libraries:

1. On the File menu, click New Library. The Create a New Library
dialog box appears.

2. Select a new Library and a logical linking to it.

3. In the Library Name box, type the name of the newly created
library.

2–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt
Type the following commands to create simulation libraries:

vlib <device family name> r
vmap <device family name> <device family name> r
For more information about library names, refer to Table 2–9 on
page 2–28.

Compile Simulation Models into Simulation Libraries Using the
ModelSim GUI
Perform the following steps to compile simulation models into
simulation libraries:

1. On the File menu, point to Add to Project and click Existing File.

2. Browse to the <Quartus II installation directory>/eda/sim_lib
directory and add the necessary gate-level simulation files to your
project.

3. Select the simulation model file and on the View menu, click
Properties.

4. In the Compile to Library list, select the correct library.

5. Click OK.

6. On the Compile menu, click Compile selected.

Compile Simulation Models into Simulation Libraries Using the
ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vcom -work <device family name> <Quartus II installation directory> \
/eda/sim_lib/<device family name>_atoms.vhd r
vcom -work <device family name> <Quartus II installation directory> \
/eda/sim_lib/<device family name>_components.vhd r

Compile Testbench and VHDL Output File into Work Library

To compile the testbench and VHDL Output Files into a work library, on
the Compile menu, click Compile All or click the Compile All toolbar
icon on the Compile menu.

Altera Corporation 2–19
October 2007 Preliminary

Post-Synthesis Simulation

Compile Testbench and VHDL Output File into Work Library Using
ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vcom -work work <my_test bench.vhd> <my_vhdl_output_file.vho>r
1 Resolve any compilation errors before proceeding to the

following section.

Loading the Design

Perform the following steps to load a design:

1. On the Simulate menu, click Simulate.

2. Click the Design tab.

3. In the Library list, select the work library.

4. In the Simulate dialog box, expand the work library and select the
top-level design unit (your testbench).

5. Click OK.

Loading the Design Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vsim work.<my test bench> -t 1ps r
1 Set the time scale resolution to 1 ps when simulating Altera

FPGA designs.

Running the Simulation

Perform the following steps to run a simulation:

1. On the View menu, point to Debug Windows and click Objects.
This command displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag the signals to monitor from the Objects window and drop
them into the Wave window.

4. Type the following command at the ModelSim command prompt:

run <time period> r

2–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Running the Simulation Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

add wave /<signal name> r
run <time period> r

Simulating Verilog HDL Designs

The following sections provide step-by-step instructions for performing
post-synthesis simulation for Verilog HDL designs in the ModelSim
software.

Create Simulation Libraries

The following steps assume you have already created a ModelSim
project.

1 If you are using the ModelSim-Altera software, a set of
precompiled libraries are created when you install the software.
Creating simulation libraries and compiling simulation models
steps are not required. You can proceed directly to “Compile
Testbench and Design Files into Work Library” on page 2–9.

Create Simulation Libraries Using the ModelSim GUI
Perform the following steps to create simulation libraries:

1. In the ModelSim software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

1 The name of the libraries should be altera_mf (for Altera
megafunctions) and lpm (for lpm and MegaWizard Plug-in
Manager-generated entities).

3. In the Library Name box, type the name of the newly created
library.

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vlib <device family name> r
vmap <device family name> <device family name> r
For more information about library names, refer to Table 2–9 on
page 2–28.

Altera Corporation 2–21
October 2007 Preliminary

Post-Synthesis Simulation

Compile Simulation Models into Simulation Libraries Using the
ModelSim GUI
Perform the following steps to compile simulation models into
simulation libraries:

1. On the File menu, click Add to Project, then select Existing File.

2. Browse to the <Quartus II installation directory>/eda/sim_lib
directory and add the necessary simulation model files to your
project.

3. Select the simulation model file and on the View menu, click
Properties.

4. Specify the correct library in the Compile to Library box.

Compile Simulation Models into Simulation Libraries Using the
ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vlog -work <device family name> <Quartus II installation \
directory> /eda/sim_lib/<device family name>_atoms.v r

Compile Testbench and Verilog Output File into Work Library

To compile the testbench and Verilog Output Files into a work library, on
the Compile menu, click Compile All or click the Compile All toolbar
icon on the Compile menu.

Compile Testbench and Verilog Output File into Work Library Using
the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vlog -work work <my_test bench.v> <my_verilog_output_file.vo> r
1 Resolve any compilation errors before proceeding to the

following section.

2–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Loading the Design

Perform the following steps to load a design:

1. On the Simulate menu, click Start Simulation. The Start Simulation
dialog box appears.

2. Click the Libraries tab.

3. In the Search Libraries box, click Add.

4. Specify the location of the device family simulation libraries.

5. In the Load Design dialog box, click the Design tab and expand the
work library.

6. Select the top-level design unit (your testbench).

7. In the Resolution list, select ps.

8. Click OK.

Loading the Design Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vsim -L <gate-level simulation library> work.<my_test bench> -t 1ps r
1 Set the time scale resolution to 1 ps when simulating Altera

FPGA designs.

Running the Simulation

Perform the following steps to run a simulation:

1. In the View menu, point to Debug Windows and click Objects. This
command displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag the signals to monitor from the Objects window and drop
them into the Wave window.

4. Type the following command at the ModelSim command prompt:

run <time period> r

Altera Corporation 2–23
October 2007 Preliminary

Gate-Level Timing Simulation

Running the Simulation Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

add wave /<signal name> r
run <time period> r

Gate-Level
Timing
Simulation

Gate-level timing simulation is a post place-and-route simulation to
verify the operation of the design after the worst-case timing delays have
been calculated. This section provides detailed instructions on how to
perform gate-level timing simulation in the ModelSim-Altera software
and highlights differences in performing similar steps in the
Mentor Graphics ModelSim software versions for VHDL and
Verilog HDL designs.

Generating a Gate-Level Timing Simulation Netlist

To perform gate-level timing simulation, the ModelSim-Altera software
requires information about how the design was placed into
device-specific architectural blocks. The Quartus II software provides
this information in the form of a Verilog Output File for Verilog HDL
designs and a VHDL Output File for VHDL designs. The accompanying
timing information is stored in the Standard Delay Format Output File
(.sdo), which annotates the delay for the elements found in the Verilog
Output File or VHDL Output File.

The following steps describe the process of generating a gate-level timing
simulation netlist in the Quartus II software:

1. Perform a full compilation. On the Processing menu, click Start
Compilation.

2. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

3. In the Category list, click the “+” icon to expand EDA Tool Settings
and select Simulation. The Simulation page appears.

4. In the Tool name list:

● If you are using the ModelSim-Altera software, select
ModelSim-Altera.

● If you are using the Mentor Graphics ModelSim software, select
ModelSim.

2–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

5. Under EDA Netlist Writer options, in the Format for output netlist
list, select VHDL or Verilog. You can also modify where you want
the post-synthesis netlist generated by editing or browsing to a
directory in the Output directory box.

6. Click OK.

7. In the Settings dialog box, click OK.

8. Run the EDA Netlist Writer. On the Processing menu, point to Start
and click Start EDA Netlist Writer.

During the EDA Netlist Writer stage, the Quartus II software
produces a Verilog Output File (.vo), VHDL Output File (.vho), and
a SDO used for gate-level timing simulations in the ModelSim
software. This netlist file is mapped to architecture-specific
primitives. The timing information for the netlist is included in the
SDO. The resulting netlist is located in the output directory you
specified in the Settings dialog box, which defaults to the
<project directory>/simulation/modelsim directory.

Generating a Different Timing Model

If you enable the Quartus II Classic or Quartus II TimeQuest Timing
Analyzer when generating the SDO file, slow-corner (worst case) timing
models are used by default. To generate the SDO file using a different
timing model, you must run the Quartus II Classic or the Quartus II
TimeQuest Timing Analyzer with a different timing model before you
start the EDA Netlist writer.

To run the Quartus II Classic Timing Analyzer with the best-case model,
on the Processing menu, point to Start and click Start Classic Timing
Analyzer (Fast Timing Model). After timing analysis is complete, the
Compilation Report appears. You can also type the following command
at a command prompt:

quartus_tan <project_name> --fast_model=on r
To run the Quartus II TimeQuest Timing Analyzer with a best-case
model, use the -fast_model option after you create the timing netlist.
The following command enables the fast timing models:

create_timing_netlist -fast_model r
You can also type the following command at a command prompt:

quartus_sta <project_name> --fast_model=on r

Altera Corporation 2–25
October 2007 Preliminary

Gate-Level Timing Simulation

f For more information about generating the timing model, refer to the
Quartus II Classic Timing Analyzer or Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

After you run the Classic or TimeQuest Timing Analyzer, you can
perform steps 2 through 8 in “Generating a Gate-Level Timing Simulation
Netlist” on page 2–23 to generate the SDO file. For fast corner timing
models, the _fast post fix is added to the VO, VHO, and SDO file (for
example, my_project_fast.vo, my_project_fast.vho, and
my_project_fast.sdo).

Operating Condition Example: Generate All Timing Models for
Stratix III Devices
In Stratix III and Cyclone III devices, you can specify different
temperature and voltage parameters to generate the timing models.
Table 2–7 shows the available operation conditions (model, voltage, and
temperature) for Stratix III and Cyclone III devices.

To generate the SDO files for the three different operating conditions for
a Stratix III design, perform the following steps:

1. Generate all the available corner models at all operating conditions.
Type the following command at a command prompt:

quartus_sta <project name> --multicorner r
2. Generate the ModelSim simulation output files for all three corners

specified above. The output files are generated in the simulation
output directory. Type the following command at a command
prompt:

quartus_eda <project name> --simulation --tool=modelsim --format=verilog r

Table 2–7. Available Operating Condition for Stratix III and Cyclone III
Devices

Device Family Model Voltage Temperature

Stratix III Slow 1100 mV 85° C

Slow 1100 mV 0° C

Fast 1100 mV 0° C

Cyclone III Slow 1200 mV 85° C

Slow 1200 mV 0° C

Fast 1200 mV 0° C

2–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

To summarize, for the three operating conditions the preceding steps
generate the following files in the simulation output directory:

First slow corner (slow, 1100 mV, 85º C):
VO file— <revision name>.vo
SDO file— <revision name>_v.sdo

Second slow corner (slow, 1100 mV, 0º C):
VO file— <revision name>_<speedgrade>_1100mv_0c_slow.vo
SDO file— <revision name>_<speedgrade>_1100mv_0c_v_slow.sdo

Fast corner (fast, 1100 mV, 0º C):
VO file— <revision name>_<speedgrade>_1100mv_0c_fast.vo
SDO file— <revision name>_<speedgrade>_1100mv_0c_v_fast.sdo

Perform Timing Simulation Using Post-synthesis Netlist

Instead of using the gate-level netlist, you can also perform a timing
simulation with the post-synthesis netlist. You can generate a SDO
without running the fitter. In this case, the SDO file includes all timing
values for only the device cells. Interconnect delays are not included
because fitting (placement and routing) has not been performed.

To generate the post-synthesis netlist and the SDO file, type the following
command at a command prompt:

quartus_map <project name> -c <revision name> r
quartus_tan <project name> -c <revision name> --post_map --zero_ic_delays r
quartus_eda <project name> -c <revision name> --simulation --tool= \
<3rd party EDA tool> --format=<HDL language> r

For more information on the --format and --tool options, type the
following command at a command prompt:

quartus_eda -help=<options> r

Altera Corporation 2–27
October 2007 Preliminary

Gate-Level Timing Simulation

Gate-Level Simulation Libraries

Table 2–8 provides a description of the ModelSim-Altera precompiled
device libraries.

Table 2–8. ModelSim-Altera Precompiled Device Libraries

Library Description

arriagx_hssi Precompiled library for Arria® GX device designs using the Gigabit Transceiver Block
(alt2gxb megafunction). This precompiled library is required for both functional and timing
simulations.

stratixiii Precompiled library for Stratix® III device designs.

stratixii Precompiled library for Stratix II device designs.

stratixiigx Precompiled library for Stratix II GX device designs.

stratixiigx_hssi Precompiled library for Stratix II GX device designs using the Gigabit Transceiver Block
(alt2gxb megafunction). This precompiled library is required for both functional and timing
simulations.

stratix Precompiled library for Stratix device designs.

stratixgx Precompiled library for Stratix GX device designs.

stratixgx_gxb Precompiled library for Stratix GX device designs using the Gigabit Transceiver Block. This
precompiled library should be used for post-fit (timing) simulations.

altgxb Precompiled library for Stratix GX device designs that include the altgxb megafunction.
This precompiled library should be used for functional simulations.

cycloneii Precompiled library for Cyclone® II device designs.

cyclone Precompiled library for Cyclone device designs.

maxii Precompiled library for MAX® II device designs.

max Precompiled library for MAX 7000 and MAX 3000 device designs.

apexii Precompiled library for APEX™ II device designs.

apex20k Precompiled library for APEX 20K device designs.

apex20ke Precompiled library for APEX 20KC, APEX 20KE, and Excalibur™ device designs.

mercury Precompiled library for Mercury™ device designs.

flex10ke Precompiled library for FLEX® 10KE and ACEX® 1K device designs.

flex6000 Precompiled library for FLEX 6000 device designs.

2–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 2–9 shows the location of the timing simulation libraries in the
ModelSim-Altera software for Verilog HDL.

Table 2–10 shows the location of the timing simulation libraries in the
ModelSim-Altera software for VHDL.

Table 2–9. Location of Timing Simulation Libraries for ModelSim-Altera for Verilog HDL

Library Verilog HDL

arriagx_ver <ModelSim-Altera installation directory>\altera\verilog\arriagx\

arriagx_hssi_ver <ModelSim-Altera installation directory>\altera\verilog\arriagx_hssi\ (1)

stratixii_ver <ModelSim-Altera installation directory>\altera\verilog\stratixii\

stratixiigx_ver <ModelSim-Altera installation directory>\altera\verilog\stratixiigx\

stratixiigx_hssi_ver <ModelSim-Altera installation directory>\altera\verilog\stratixiigx_hssi\ (1)

stratixiii_ver <ModelSim-Altera installation directory>\altera\verilog\stratixiii\

stratix_ver <ModelSim-Altera installation directory>\altera\verilog\stratix\

stratixgx_ver <ModelSim-Altera installation directory>\altera\verilog\stratixgx\

stratixgx_gxb_
ver

<ModelSim-Altera installation directory>\altera\verilog\stratixgx_gxb\

cycloneiii_ver <ModelSim-Altera installation directory>\altera\verilog\cycloneiii\

cycloneii_ver <ModelSim-Altera installation directory>\altera\verilog\cycloneii\

cyclone_ver <ModelSim-Altera installation directory>\altera\verilog\cyclone\

maxii_ver <ModelSim-Altera installation directory>\altera\verilog\maxii\

max_ver <ModelSim-Altera installation directory>\altera\verilog\max\

apexii_ver <ModelSim-Altera installation directory>\altera\verilog\apexii\

apex20k_ver <ModelSim-Altera installation directory>\altera\verilog\apex20k\

apex20ke_ver <ModelSim-Altera installation directory>\altera\verilog\apex20ke\

mercury_ver <ModelSim-Altera installation directory>\altera\verilog\mercury\

flex10ke_ver <ModelSim-Altera installation directory>\altera\verilog\flex10ke\

flex6000_ver <ModelSim-Altera installation directory>\altera\verilog\flex6000\

Note to Table 2–9:
(1) The stratixiigx_hssi precompiled library is required for functional and timing simulations.

Table 2–10. Location of Timing Simulation Library Files for ModelSim-Altera for VHDL (Part 1 of 2)

Library VHDL

arriagx <ModelSim-Altera installation directory>\altera\vhdl\arriagx\

arriagx_hssi <ModelSim-Altera installation directory>\altera\vhdl\arriagx_hssi\ (1)

stratixii <ModelSim-Altera installation directory>\altera\vhdl\stratixii\

Altera Corporation 2–29
October 2007 Preliminary

Gate-Level Timing Simulation

If you are using the Mentor Graphics ModelSim software version for
your timing simulation, libraries are available in the Quartus II software
in the <Quartus II installation directory>\eda\sim_lib\ directory.
Mentor Graphics ModelSim software users must use the files provided
with the Quartus II software.

Simulating VHDL Designs

The following section provides step-by-step instructions for performing
gate-level timing simulation for VHDL designs. The following steps
assume you have already created a ModelSim project. For additional
information, refer to “Altera Design Flow with ModelSim or ModelSim-
Altera Software” on page 2–3.

stratixiigx <ModelSim-Altera installation directory>\altera\vhdl\stratixiigx\

stratixiigx_hssi <ModelSim-Altera installation directory>\altera\vhdl\stratixiigx_hssi\ (1)

stratixiii <ModelSim-Altera installation directory>\altera\vhdl\stratixiii\

stratix <ModelSim-Altera installation directory>\altera\vhdl\stratix\

stratixgx <ModelSim-Altera installation directory>\altera\vhdl\stratixgx\

stratixgx_gxb <ModelSim-Altera installation directory>\altera\vhdl\stratixgx_gxb\

cycloneiii <ModelSim-Altera installation directory>\altera\vhdl\cycloneiii\

cycloneii <ModelSim-Altera installation directory>\altera\vhdl\cycloneii\

cyclone <ModelSim-Altera installation directory>\altera\vhdl\cyclone\

maxii <ModelSim-Altera installation directory>\altera\vhdl\maxii\

max <ModelSim-Altera installation directory>\altera\vhdl\max\

apexii <ModelSim-Altera installation directory>\altera\vhdl\apexii\

apex20ke <ModelSim-Altera installation directory>\altera\vhdl\apex20ke\

apex20k <ModelSim-Altera installation directory>\altera\vhdl\apex20k\

flex10ke <ModelSim-Altera installation directory>\altera\vhdl\flex10ke\

flex6000 <ModelSim-Altera installation directory>\altera\vhdl\flex6000\

mercury <ModelSim-Altera installation directory>\altera\vhdl\mercury\

Note to Table 2–10:
(1) The stratixiigx_hssi precompiled library is required for functional and timing simulations.

Table 2–10. Location of Timing Simulation Library Files for ModelSim-Altera for VHDL (Part 2 of 2)

Library VHDL

2–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 If you are using the ModelSim-Altera software, a set of
precompiled libraries are created when you install the software.
Creating simulation libraries and compiling simulation models
steps are not required. You can proceed directly to “Compile
Testbench and Design Files into Work Library” on page 2–9.

Create Simulation Libraries

If you are using the Mentor Graphics ModelSim software, create the
gate-level simulation libraries and correctly link them to your design.

Create Simulation Libraries Using the ModelSim GUI
Perform the following steps to create simulation libraries:

1. In the ModelSim software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

1 The name of the libraries should be altera_mf (for Altera
megafunctions) and lpm (for lpm and MegaWizard Plug-In
Manager-generated entities).

3. In the Library Name box, type the name of the newly created
library.

1 The library name must be one of those listed in Table 2–10 on
page 2–28.

4. Click OK.

Altera Corporation 2–31
October 2007 Preliminary

Gate-Level Timing Simulation

Create Simulation Libraries Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vlib <device family name> r
vmap <device family name> <device family name> r

For more information about library names, refer to Table 2–9 on
page 2–28.

Compile Simulation Models into Simulation Libraries Using the
ModelSim GUI
Perform the following steps to compile simulation models into
simulation libraries:

1. On the File menu, point to Add to Project and click Existing File.

2. Browse to the <Quartus II installation directory>/eda/sim_lib
directory, and add the necessary gate-level simulation files to your
project.

3. Select the simulation model file, and on the View menu, click
Properties.

4. In the Compile to Library list, select the correct library.

5. Click OK.

6. On the Compile menu, click Compile selected.

Compile Simulation Models into Simulation Libraries Using the
ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vcom -work <device family name> <Quartus II installation directory> \
/eda/sim_lib/<device family name>_atoms.vhd r
vcom -work <device family name> <Quartus II installation directory> \
/eda/sim_lib/<device family name>_components.vhd r

Compile Testbench and VHDL Output File into Work Library

Compile testbench and VHDL Output Files into a work library on the
Compile menu by clicking Compile All or by clicking the Compile All
toolbar icon on the Compile menu.

2–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Compile Testbench and VHDL Output File into Work Library Using
the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vcom -work work <my_test bench.vhd> <my_vhdl_output_file.vho> r
1 Resolve any compilation errors before proceeding to the

following section.

Loading the Design

Perform the following steps to load a design:

1. On the Simulate menu, click Start Simulation.

2. Click the SDF tab, and click Add.

3. In the Add SDF Entry dialog box, click Browse and select the
Standard Delay Format Output File (.sdo).

4. In the Apply to Region dialog box, type in the instance path to
which the SDO should be applied. For example, if you are using a
testbench exported into the Quartus II software from a Vector
Waveform File, the instance path should be set to /i1.

1 You do not have to choose from the Delay list because the
Quartus II EDA Netlist Writer generates the SDO using the
same value for the triplet (minimum, typical, and
maximum timing values). The value is derived from either
the fast (minimum) timing model or worst case (maximum)
timing model, depending on which timing model was used
in the last timing analysis. In the standard compilation
flow, the Quartus II software writes the SDO using timing
values from the worst case (maximum) timing model.

5. Click OK.

6. Click the Design tab. In the Resolution list, select ps.

7. In the Library list, select the work library.

8. In the Start Simulation dialog box, expand the work library.

9. Select the top-level design unit (your testbench).

10. Click OK.

Altera Corporation 2–33
October 2007 Preliminary

Gate-Level Timing Simulation

Loading a Design Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vsim -sdftyp <instance path to design>=<path to SDO> work. \
<my_test bench> -t ps r

Running the Simulation

Perform the following steps to run a simulation:

1. In the View menu, point to Debug Windows and click Objects. This
command displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag the signals to monitor from the Objects window and drop
them into the Wave window.

4. Type the following command at the ModelSim command prompt:

run <time period> r

Running a Simulation Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

add wave /<signal name> r
run <time period> r

Simulating Verilog HDL Designs

The following sections provide step-by-step instructions on performing
gate-level timing simulation for Verilog HDL designs in the
ModelSim-Altera software.

1 If you are using the ModelSim-Altera software, a set of
pre-compiled libraries are created when you install the
software. Creating simulation libraries and compiling
simulation models steps are not required. You can proceed
directly to “Compile Testbench and Design Files into Work
Library” on page 2–9.

Create Simulation Libraries

If you are using the Mentor Graphics ModelSim software, you must
create the simulation libraries and correctly link them to your design.

2–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The following steps assume you have already created a ModelSim
project. For additional information, refer to “Altera Design Flow with
ModelSim or ModelSim-Altera Software” on page 2–3.

Create Simulation Libraries Using the ModelSim GUI
Perform the following steps to create simulation libraries:

1. In the ModelSim software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

1 The names of the libraries should be altera_mf (for Altera
megafunctions) and lpm (for lpm and MegaWizard Plug-In
Manager-generated entities).

3. In the Library Name box, type the name of the newly created
library.

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vlib <library name> r
vmap <library name> <device family name> r
For more information about library names, refer to Table 2–9 on
page 2–28.

Compile Simulation Models into Simulation Libraries Using the
ModelSim GUI
Perform the following steps to compile simulation models into
simulation libraries:

1. On the File menu, point to Add to Project and click Existing File.

2. Browse to the <Quartus II installation directory>/eda/sim_lib, and
add the necessary simulation model files to your project.

3. Select the simulation model file, and on the View menu, click
Properties.

4. In the Compile to Library list, select the correct library.

Altera Corporation 2–35
October 2007 Preliminary

Gate-Level Timing Simulation

5. Click OK.

6. On the Compile menu, click Compile selected.

Compile Simulation Models into Simulation Libraries Using the
ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vlog -work <device family name> <Quartus II installation directory> /eda/sim_lib/<device family name> \
_atoms.v r

Compile Testbench and Verilog Output File into Work Library

Compile a testbench and Verilog Output File into a work library on the
Compile menu by clicking Compile All or by clicking the Compile All
toolbar icon on the Compile menu.

Compile Testbench and Verilog Output File into Work Libraries
Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vlog -work work <my_test bench.v> <my_verilog_output_file.vo> r
1 Resolve any compilation errors before proceeding to the

following section.

Loading the Design

Perform the following steps to load a design:

1. On the Simulate menu, click Start Simulation. The Start Simulation
dialog box appears.

2. Click the Libraries tab.

3. In the Search Libraries box, click Add.

4. Specify the location of the lpm or altera_mf simulation libraries.

1 If you are using the ModelSim-Altera version, refer to Table 2–3
on page 2–5 and Table 2–4 on page 2–6 for the location of the
precompiled simulation libraries. If you are using the
Mentor Graphics ModelSim software version, browse to the
library that you created earlier.

5. In the Load Design dialog box, click the Design tab and expand the
work library.

2–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

6. Select the top-level design unit (your testbench).

7. In the Resolution list, select ps.

8. Click OK.

When simulating in Verilog HDL, the SDO does not have to be manually
specified because in the Quartus II generated Verilog Output File, there
is a $sdf_annotate task that ModelSim uses to look into the current
directory from which VSIM was run and uses to look for the SDO. If your
SDO is not in the same directory from which you ran VSIM, you can
either copy the SDO into your current directory or comment out the
$sdf_annotate line in the Verilog Output File and manually specify
the SDO in the Load Design dialog box.

Loading the Design Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vsim -L <location of the gate level simulation library> -work.<my_test bench> -t ps r

Running the Simulation

Perform the following steps to run a simulation:

1. On the View menu, point to Debug Windows and click Objects.
This command displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag the signals to monitor from the Objects window and drop
them into the Wave window.

4. Type the following command at the ModelSim command prompt:

run <time period> r

Running the Simulation Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

add wave /<signal name> r
run <time period> r

f For the design examples to run gate-level timing simulation in VHDL or
Verilog language, refer to:
www.altera.com/support/examples/modelsim/exm-modelsim.html.

Altera Corporation 2–37
October 2007 Preliminary

Simulating Designs that Include Transceivers

Simulating
Designs that
Include
Transceivers

If your design includes a Stratix GX or Stratix II GX transceiver, you must
compile additional library files to perform functional or timing
simulations.

Stratix GX Functional Simulation

To perform a functional simulation of your design that instantiates the
altgxb megafunction which enables the gigabit transceiver block on
Stratix GX devices, compile the stratixgx_mf model file into the altgxb
library.

1 The stratixiigx_mf model file references the lpm and sgate
libraries. If you are using ModelSim PE/SE, you must create
these libraries to perform a simulation.

Example: Performing Functional Simulation for Stratix GX in Verilog HDL

 If you are using ModelSim-Altera, compiling the libraries is not
necessary. You can simulate the design directly by typing the following
command:

vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L altgxb work.<my design> r
If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulation the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vlib work r
vlib lpm r
vlib altera_mf r
vlib sgate r
vlib altgxb r
vlog -work lpm 220model.v r
vlog -work altera_mf altera_mf.v r
vlog -work sgate sgate.v r
vlog -work altgxb stratixgx_mf.v r
vsim -L lpm -L sgate-L altgxb work.<my design> r

Example: Performing Functional Simulation for Stratix GX in VHDL

If you are using ModelSim-Altera, compiling the libraries is not necessary
and you can simulate the design directly by typing the following
command:

vsim -L lpm -L sgate -L altgxb work.<my design> r r

2–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulation the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work altgxb stratixgx_mf.vhd stratixgx_mf_components.vhd r
vsim -L lpm -L altera_mf -L sgate -L altgxb work.<my design> r

Stratix GX Post-Fit (Timing) Simulation

Perform a post-fit timing simulation of your design that includes a
Stratix GX transceiver by compiling the stratixgx_atoms and
stratixgx_hssi_atoms model files into the stratixgx and stratixgx_gxb
libraries, respectively.

1 The stratixgx_hssi_atoms model file references the lpm and
sgate libraries. If you are using ModelSim PE/SE, you must
create these libraries to perform a simulation.

Example: Performing Timing Simulation for Stratix GX in Verilog HDL

If you are using ModelSim-Altera, compiling the libraries is not
necessary. You can simulate the design directly by typing the following
command:

vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver -L \
stratixgx_gxb work.<my design> -t ps +transport_int_delays \
+transport_path_delays r

If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulate the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vlog -work lpm 220model.v r
vlog -work altera_mf altera_mf.v r
vlog -work sgate sgate.v r
vlog -work stratixgx stratixgx_atoms.v r
vlog -work stratixgx_gxb stratixgx_hssi_atoms.v r
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work.<my design> -t ps +transport_int_delays +transport_path_delays r

Altera Corporation 2–39
October 2007 Preliminary

Simulating Designs that Include Transceivers

1 This example assumes you are using ModelSim PE/SE. If you
are using ModelSim-Altera, type the following command to
simulate your design:

vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver -L \
stratixgx_gxb work.<my design> -t ps +transport_int_delays \
+transport_path_delays r

Example: Performing Timing Simulation for Stratix GX in VHDL

If you are using ModelSim-Altera, compiling the libraries is not
necessary. You can simulate the design directly by typing the following
command:

vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work. <my design> -t ps - +transport_int_delays+transport_path_delays r

If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulate the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixgx stratixgx_atoms.vhd stratixgx_components.vhd r
vcom -work stratixgx_gxb stratixgx_hssi_atoms.vhd \
stratixgx_hssi_components.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work. <my design> -t ps +transport_int_delays +transport_path_delays r

1 This example assumes you are using ModelSim PE/SE. If you
are using ModelSim-Altera, type the following command to
simulate your design:

vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work. <my design> -t ps - +transport_int_delays+transport_path_delays r

Stratix II GX Functional Simulation

To perform a functional simulation of your design that instantiates the
alt2gxb megafunction, which enables the gigabit transceiver block on
Stratix II GX devices, compile the stratixiigx_hssi model file into the
stratixiigx_hssi library.

1 The stratixiigx_hssi_atoms model file references the lpm and
sgate libraries. If you are using ModelSim PE/SE, you must
create these libraries to perform a simulation.

2–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Generate a functional simulation netlist by turning on Generate
Simulation Model in the Simulation Library tab of the alt2gxb
MegaWizard Plug-In Manager (Figure 2–2). The <alt2gxb entity
name>.vho or <alt2gxb module name>.vo is generated in the current project
directory.

1 The Quartus II-generated alt2gxb functional simulation
library file references stratixiigx_hssi wysiwyg atoms.

Figure 2–2. alt2gxb MegaWizard

.

Example: Performing Functional Simulation for Stratix II GX in Verilog
HDL

 If you are using ModelSim-Altera, compiling the libraries is not
necessary and you can simulate the design directly by typing the
following command:

Altera Corporation 2–41
October 2007 Preliminary

Simulating Designs that Include Transceivers

vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_hssi_ver \
work.<my design> r

If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulate the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vlog -work lpm 220model.v r
vlog -work altera_mf altera_mf.v r
vlog -work sgate sgate.v r
vlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v r
vlog -work work <alt2gxb module name>.vo r
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my design> r

Example: Performing Functional Simulation for Stratix II GX in VHDL

 If you are using ModelSim-Altera, compiling the libraries is not
necessary. You can simulate the design directly by typing the following
command:

vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my design> r r
If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulate the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd r
vcom -work work <alt2gxb entity name>.vho r
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my design> r

Stratix II GX Post-Fit (Timing) Simulation

To perform a post-fit timing simulation of your design that includes a
Stratix II GX transceiver, compile stratixiigx_atoms and
stratixiigx_hssi_atoms into the stratixiigx and stratixiigx_hssi
libraries, respectively.

1 The stratixiigx_hssi_atoms model file references the lpm and
sgate libraries. If you are using ModelSim PE/SE, you must
create these libraries to perform a simulation.

2–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example: Performing Timing Simulation for Stratix II GX in Verilog HDL

If you are using ModelSim-Altera, compiling the libraries is not necessary
and you can simulate the design directly by typing the following
command:

vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my design> -t ps +transport_int_delays +transport_path_delays r

If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulate the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vlog -work lpm 220model.v r
vlog -work altera_mf altera_mf.v r
vlog -work sgate sgate.v r
vlog -work stratixiigx stratixiigx_atoms.v r
vlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v r
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my design> -t ps +transport_int_delays +transport_path_delays r

Example: Performing Timing Simulation for Stratix II GX in VHDL

If you are using ModelSim-Altera, compiling the libraries is not
necessary. You can simulate the design directly by typing the following
command:

vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<mydesign> -t ps +transport_int_delays +transport_path_delays r

If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulate the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixiigx stratixiigx_atoms.vhd stratixiigx_components.vhd r
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my design> -t ps +transport_int_delays +transport_path_delays r

Altera Corporation 2–43
October 2007 Preliminary

Simulating Designs that Include Transceivers

1 This example assumes you are using ModelSim PE/SE. If you
are using ModelSim-Altera, you do not need to compile any
libraries and can type the following command:

vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my design> -t ps +transport_int_delays +transport_path_delays r

Transport Delays

By default, the ModelSim software filters out all pulses that are shorter
than the propagation delay between primitives. Turning on the transport
delay options in the ModelSim software prevents the simulation tool
from filtering out these pulses. Use the following options to ensure that
all signal pulses are seen in the simulation results.

+transport_path_delays

Use this option when the pulses in your simulation may be shorter than
the delay within a gate-level primitive.

+transport_int_delays

Use this option when the pulses in your simulation may be shorter than
the interconnect delay between gate-level primitives.

The +transport_path_delays and +transport_int_delays
options are also used by default in the NativeLink feature for gate-level
timing simulation.

f For more information about either of these options, refer to the
ModelSim Altera Command Reference installed with the ModelSim
software.

The following ModelSim software command describes the command-line
syntax to perform a gate-level timing simulation with the device family
library:

vsim -t 1ps -L stratixii -sdftyp /i1=filtref_vhd.sdo work.filtref_vhd_vec_tst \
+transport_int_delays +transport_path_delays

2–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Using the
NativeLink
Feature with
ModelSim

The NativeLink feature in the Quartus II software facilitates the seamless
transfer of information between the Quartus II software and EDA tools
and allows you to run ModelSim within the Quartus II software.

Setting Up NativeLink

To run ModelSim automatically from the Quartus II software using the
NativeLink feature, you must specify the path to your simulation tool by
performing the following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, select EDA Tool Options.

3. Double-click the entry under Location of executable beside the
name of your EDA Tool.

4. Type or browse to the directory containing the executables of your
EDA tool.

1 For ModelSim-Altera and ModelSim SE/PE, executable files are
stored in the win32aloem and win32 directories, respectively.

c:\<ModelSim-Altera installation path>\win32aloem

c:\<ModelSim installation path>\win32

5. Click OK.

You can also specify the path to the simulator’s executables by using the
set_user_option TCL command:

set_user_option –name EDA_TOOL_PATH_MODELSIM <path to executables>
set_user_option -name EDA_TOOL_PATH_MODELSIM_ALTERA <path to executables>

Performing an RTL Simulation Using NativeLink

To run a functional RTL simulation with the ModelSim software in the
Quartus II software, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears (Figure 2–3).

Altera Corporation 2–45
October 2007 Preliminary

Using the NativeLink Feature with ModelSim

Figure 2–3. Simulation Page in the Settings Dialog Box

3. In the Tool name list, select one of the following choices:

● ModelSim
● ModelSim-Altera

4. If your design is written entirely in Verilog HDL or in VHDL, the
NativeLink feature automatically chooses the correct language and
Altera simulation libraries. If your design is written with mixed
languages, the NativeLink feature uses the default language
specified in the Format for output netlist list. To change the default
language when there is a mixed language design, under EDA
Netlist Writer options, in the Format for output netlist list, select
VHDL or Verilog. Table 2–11 shows the design languages for
output netlists and simulation models.

2–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 For mixed language simulation, choose the same language that
was used to generate your megafunctions to ensure correct
parameter passing between the megafunctions and the Altera
libraries. For example, if your altsyncram megafunction was
generated in VHDL, choose VHDL as the format for the output
netlist.

When creating mixed language designs, it is important to be
aware of the following:

• EDA Simulation tools do not allow seamless passing of
parameters when a VHDL entity is instantiated in Verilog
designs.

• The ModelSim and ModelSim-Altera software do not allow
the use of Verilog User Defined Primitives (UDPs) to be
instantiated in VHDL designs.

5. If you have testbench files or macro scripts, enter the information
under NativeLink settings.

For more information about setting up a testbench with NativeLink,
refer to “Setting Up a Testbench” on page 2–48.

6. Click OK.

7. On the Processing menu, point to Start and click Start Analysis and
Elaboration to perform an analysis and elaboration. This command
collects all your file name information and builds your design
hierarchy in preparation for simulation.

8. On the Tools menu, point to EDA Simulation Tool and click Run
EDA RTL Simulation to automatically run ModelSim, compile all
necessary design files, and complete a simulation.

Table 2–11. NativeLink Design Languages

Design File Format for Output Netlist Simulation Models Used

Verilog Any Verilog

VHDL Any VHDL

Mixed Verilog Verilog

Mixed VHDL VHDL

Altera Corporation 2–47
October 2007 Preliminary

Using the NativeLink Feature with ModelSim

Performing a Gate-Level Simulation Using NativeLink

To run a gate-level timing simulation with the ModelSim software in the
Quartus II software, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears (Figure 2–3 on page 2–45).

3. In the Tool name list, select one of the following:

● ModelSim
● ModelSim-Altera

4. Under EDA Netlist Writer options, in the Format for output netlist
list, choose VHDL or Verilog. You can also modify where you want
the post-synthesis netlist generated by editing or browsing to a
directory in the Output directory box.

5. To run a gate-level simulation after each full compilation, turn on
Run Gate Level Simulation automatically after compilation.

6. If you have testbench files or macro scripts, enter the information
under NativeLink settings.

7. Click OK.

8. On the Processing menu, point to Start and click Start EDA Netlist
Writer to generate a simulation netlist of your design.

9. On the Tools menu, point to EDA Simulation Tool and click Run
EDA Gate Level Simulation to automatically run ModelSim,
compile all necessary design files, and complete a simulation.

1 A ModelSim Macro File (*.do) is generated in the
<project_directory>\simulation\modelsim directory while
running NativeLink. You can perform a simulation with the DO
file directly from ModelSim when you rerun a simulation
without using NativeLink. To perform the simulation directly
without NativeLink, type the following command in the
ModelSim console: do <generated_do_file>.do.

2–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Setting Up a Testbench

You can use NativeLink to compile your design files and testbench files,
and run an EDA simulation tool to automatically perform a simulation.

To set up NativeLink for simulation, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, click the “+” icon to expand EDA Tool Settings
and select Simulation. The Simulation page appears.

3. Under NativeLink settings, select None, Compile test bench, or
Script to compile test bench (Table 2–12).

4. If you select Compile test bench, select your test bench setup from
the Compile test bench list. You can use different testbench setups
to specify different test scenarios. If there are no testbench setups
entered, create a testbench setup by performing the following steps:

a. Click Test Benches. The Test Benches dialog box appears.

b. Click New. The New Test Bench Settings dialog box appears.

c. In the Test Bench name box, type in the testbench setup name
that identifies the different test bench setups.

d. In the Test bench entity box, type in the top-level testbench
entity name. For example, for a Quartus II generated VHDL
testbench, type in <Vector Waveform File name>_vhd_vec_tst.

e. In the Instance box, type in the full instance path to the top
level of your FPGA design. For example, for a Quartus II
generated VHDL testbench, type in i1.

Table 2–12. NativeLink Settings

Settings Description

None Compile simulation models and design files.

Compile test bench NativeLink compiles simulation models, design files, testbench files, and starts
simulation.

Script to compile test bench NativeLink compiles the simulation models and design files. The script you provide
is sourced after design files compile. Use this option when you want to create your
own script to compile your testbench and perform simulation.

Altera Corporation 2–49
October 2007 Preliminary

Using the NativeLink Feature with ModelSim

f. Under Simulation period, select Run simulation until all
vector stimuli are used or specify the end time of the
simulation.

g. Under Test bench files, browse and add all your testbench files
in the File name box. Use the Up and Down button to reorder
your files. The script used by NativeLink compiles the files in
order from top to bottom.

1 You can also specify the library name and the HDL version to
compile the testbench file. Native link compiles the testbench to
a library name using the specified HDL version.

h. Click OK.

i. In the Test Benches dialog box, click OK.

5. Under NativeLink settings, you can turn on Use script to setup
simulation and browse to your script. Your script is executed to set
up and run simulation after loading the design using the vsim
command.

6. If you choose Script to compile test bench, browse to your script
and click OK.

Creating a Testbench

In the Quartus II software, you can create a Verilog HDL or VHDL
testbench from a Vector Waveform File. The generated testbench includes
the behavior of the input stimulus and applies it to your instantiated
top-level FPGA design.

1. On the File menu, click Open. The Open dialog box appears.

2. Click the Files of type arrow and select Waveform/Vector Files.
Select your Vector Waveform File.

3. Click Open.

4. On the File menu, click Export. The Export dialog box appears.

5. Click the Save as type arrow and select VHDL Test Bench File
(*.vht) or Verilog Test Bench File (*.vt).

6. You can turn on Add self-checking code to file to check your
simulation results against your Vector Waveform File.

2–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

7. Click Export. Your VHDL or Verilog testbench file is generated in
your project directory.

Scripting
Support

You can run procedures and create settings described in this chapter in a
Tcl script. You can also run some procedures at the command line
prompt.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

For more information about command line scripting, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

For detailed information about scripting command options, refer to the
Qhelp command line and Tcl API help browser.

Type this command to start the Qhelp help browser:

quartus_sh --qhelpr

Generating a Post-Synthesis Simulation Netlist for ModelSim

You can use the Quartus II software to generate a post-synthesis
simulation netlist with Tcl commands or with a command at the
command-line prompt. The following example assumes that you are
selecting ModelSim (Verilog HDL output from Quartus II software).

Tcl Commands

Use the following Tcl commands to set the output format to Verilog HDL,
the simulation tool to ModelSim for Verilog HDL, and to generate a
functional netlist:

set_global_assignment-name EDA_SIMULATION_TOOL "ModelSim (Verilog)"
set_global_assignment-name EDA_GENERATE_FUNCTIONAL_NETLIST ON

Command Prompt

Use the following command to generate a simulation output file for the
ModelSim simulator. Specify VHDL or Verilog HDL for the format:

quartus_eda <project name> --simulation=on --format=<format> --tool=ModelSim \
--functional r

http://www/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii52002.pdf

Altera Corporation 2–51
October 2007 Preliminary

Software Licensing and Licensing Setup

Generating a Gate-Level Timing Simulation Netlist for
ModelSim

You can use the Quartus II software to generate a gate-level timing
simulation netlist with Tcl commands or with a command at the
command prompt.

Tcl Commands

Use one of the following Tcl commands:

set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim-Altera (Verilog)"
set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim-Altera (VHDL)"
set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim (Verilog)"
set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim (VHDL)"

Command Line

Generate a simulation output file for the ModelSim simulator by
specifying VHDL or Verilog HDL for the format by typing the following
command at the command prompt:

quartus_eda <project name> --simulation=on --format=<format> --tool=ModelSim r

Software
Licensing and
Licensing Setup

License the ModelSim-Altera software with a parallel port software
guard (T-guard), USB guard, FIXEDPC license, or a network FLOATNET
or FLOATPC license. Each Altera software subscription includes a license
for either VHDL or Verilog HDL. Network licenses with multiple users
may have their licenses split between VHDL and Verilog HDL in any
ratio.

1 The USB software guard is not supported by versions earlier
than Mentor Graphics ModelSim software 5.8d.

Obtain a license for the ModelSim-Altera software from the Altera
website at www.altera.com. Get licensing information for the
Mentor Graphics ModelSim software directly from Mentor Graphics.
Refer to Figure 2–4 for the set-up process.

1 For ModelSim-Altera versions prior to 5.5b, use the PCLS utility
included with the software to set up the license.

2–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 2–4. ModelSim-Altera Licensing Set Up Process

LM_LICENSE_FILE Variable

Altera recommends setting the LM_LICENSE_FILE environment
variable to the location of the license file.

Conclusion Using the ModelSim-Altera simulation software within the Altera FPGA
design flow enables Altera software users to easily and accurately
perform functional RTL simulations, post-synthesis simulations, and
gate-level simulations on their designs. Proper verification of designs at
the functional, post-synthesis, and post place-and-route stages using the
ModelSim-Altera software helps ensure design functionality and success
and, ultimately, a quick time-to-market.

Referenced
Documents

This chapter references the following documents:

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook

 Set the
LM_LICENSE_FILE

Variable

Finish

No

Yes

Initial Installation

 Is
ModelSim-Altera
Properly Licensed?

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii52002.pdf

Altera Corporation 2–53
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 2–13 shows the revision history for this chapter.

Table 2–13. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Updated Table 2–2.
Updated “Operating Condition Example: Generate All Timing
Models for Stratix III Devices” on page 2–25.

Updated for the
Quartus II software
version 7.2.

May 2007
v7.1.0

Updated “Functional RTL Simulation” on page 2–5.
Updated “Gate-Level Timing Simulation” on page 2–23.
Added “Perform Timing Simulation Using Post-synthesis Netlist”
on page 2–26.
Updated examples in “Simulating Designs that Include
Transceivers” on page 2–37.
Updated procedures in “Setting Up a Testbench” on page 2–48.
Added “Referenced Documents” on page 2–52.

Updated for the
Quartus II software
version 7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. —

November 2006
v6.1.0

● Added ModelSim-Altera Web Edition to Table 2-1.
● Added Stratix III library support to Table 2-8, 2-9, and 2-10.
● Other minor changes to chapter.

Updated for the
Quartus II software
version 6.1.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Added a section on setting ModelSim as the Simulation Tool
● Updated EDA Tools Settings in the GUI.
● Updated the Synopsys Design Constraints File information.
● Updated the device information.
● Added Quartus II-Generated Testbench information
● Updated megafunction information.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

● Updates to tables, figures.
● Updated information.
● New functionality for Quartus II software 5.0.

—

December 2004
v3.0

● Reorganized chapter, updated information.
● Updates to tables, figures.
● New functionality for Quartus II software 4.2.

—

June 2004
v2.0

● Updates to tables, figures.
● New functionality for Quartus II software 4.1.

—

February 2004
v1.0

Initial release. —

2–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 3–1
October 2007

3. Synopsys VCS Support

Introduction This chapter is an overview about using the Synopsys VCS software to
simulate designs that target Altera® FPGAs. It provides a step-by-step
explanation of how to perform functional register transfer level (RTL)
simulations, post-synthesis simulations, and gate-level timing
simulations using the VCS software.

This chapter discusses the following topics:

■ “Software Requirements”
■ “Common VCS Software Compiler Options” on page 3–11
■ “Using VirSim” on page 3–12
■ “Debugging Support Command-Line Interface” on page 3–12
■ “Simulating Designs that Include Transceivers” on page 3–13
■ “Using PLI Routines with the VCS Software” on page 3–16
■ “Transport Delays” on page 3–17
■ “Using NativeLink with the VCS Software” on page 3–18
■ “Scripting Support” on page 3–23

Software
Requirements

To simulate your design using VCS, you must first set up the Altera
libraries. These libraries are installed with the Quartus II software.

Table 3–1 shows the compatibility between versions of the Quartus II
software and the Synopsys VCS software.

Table 3–1. Supported Quartus II and VCS Software Version Compatibility

Synopsys Altera

VCS software version Y-2006.06-SP1 Quartus II software version 7.2

VCS software version 2006.06 Quartus II software version 7.1

VCS software version 2005.06-SP2 Quartus II software version 7.0 and 6.1

VCS software version 2005.06-SP1 Quartus II software version 6.0

VCS software version 7.2 Quartus II software version 5.1

VCS software version 7.2 Quartus II software version 5.0

VCS software version 7.1.1 Quartus II software version 4.2

QII53002-7.2.0

3–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more information about installing the software and the directories
created during the Quartus II software installation, refer to the Quartus II
Installation and Licensing for Windows or the Quartus II Installation and
Licensing for UNIX and Linux Workstation manuals.

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_unix.pdf
http://www.altera.com/literature/manual/quartus_unix.pdf

Altera Corporation 3–3
October 2007 Preliminary

Using VCS in the Quartus II Design Flow

Using VCS in the
Quartus II
Design Flow

You can perform the following types of simulations using VCS:

■ Functional RTL
■ Post-synthesis
■ Gate-level timing

Figure 3–1 shows the VCS and Quartus II software design flow.

Figure 3–1. Altera Design Flow with the VCS and Quartus II Software

.vo

Design Entry (.v)

Functional RTL Simulation

Synthesis

Post-Synthesis Simulation

Verilog Output
File

.sdo

Place-and-Route

.v

Gate-Level Timing Simulation

Gate-Level
Simulation

Library Files

Post-Synthesis
Simulation

Library Files

Functional
Simulation

Library Files

.vo
Verilog Output

File

Standard Delay
Format Output

File

Testbench

3–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Functional Simulations

Functional RTL simulations verify the functionality of the design before
synthesis, placement, and routing. These simulations are independent of
any Altera FPGA architecture implementation. Once the HDL designs are
verified to be functionally correct, the next step is to synthesize the design
and use the Quartus II software to place-and-route the design in an Altera
device.

To functionally simulate an Altera FPGA design in the VCS software that
uses Altera intellectual property (IP) megafunctions, or library of
parameterized modules (LPM) functions, you must include certain
libraries during the compilation. Table 3–2 summarizes the Verilog HDL
library files that are required to compile LPM functions and Altera
megafunctions.

The library files in Table 3–2 are installed with the Quartus II software.
These files are found in the <path to Quartus II installation>\eda\sim_lib
directory.

The following is a VCS command for performing a functional RTL
simulation with one of the libraries in Table 3–2:

vcs -R <test bench>.v <design name>.v –v <library file>.v r

Table 3–2. Altera Verilog HDL Functional/Behavioral Simulation Library
Files

Library Name Verilog HDL Libraries

LPM 220model.v

altera_mf altera_mf.v

altgxb stratixgx_mf.v (1)

alt2gxb stratixiigx_hssi_atoms.v (1)
arriagx_hssi_atoms.v (1)

sgate sgate.v

altera altera_primitives.v

Note to Table 3–2:
(1) The stratixgx_mf.v, stratixiigx_hssi_atoms.v, and arriagx_hssi_atoms.v library

files require the LPM and SGATE libraries.

Altera Corporation 3–5
October 2007 Preliminary

Using VCS in the Quartus II Design Flow

Megafunctions Requiring Atom Libraries

The following Altera megafunctions require gate-level libraries to
perform a functional simulation in a third-party simulator:

■ altclkbuf
■ altclkctrl
■ altdq
■ altdqs
■ altddio_in
■ altddio_out
■ altddio_bidir
■ altufm_none
■ altufm_parallel
■ altufm_spi
■ altmemmult
■ altremote_update

The gate-level library files are located in <path to Quartus II
installation>eda/sim_lib directory (Table 3–3).

Functional RTL Simulation with Altera Memory Blocks

The VCS software supports functional simulation of complex Altera
memory blocks such as lpm_ram_dp and altsyncram. You can create
these memory blocks with the Quartus II MegaWizard® Plug-In Manager,
which can be initialized with power-up data via a Hexadecimal
(Intel-Format) File (.hex) or Memory Initialization File (.mif). The
lpm_file parameter included in the file generated by the MegaWizard
Plug-In Manager points to the path of the Hexadecimal (Intel-Format)
File or Memory Initialization File that is used to initialize the memory
block. You can create a Hexadecimal (Intel-Format) File or Memory
Initialization File with the Quartus II software.

Compiling Functional Library Files with Compiler Directives

If you use a Hexadecimal (Intel-Format) File, no compiler directives are
required. If you use a RAM Initialization File, the USE_RIF macro must
be defined to compile the model library files. For example, enter the
following when compiling the altera_mf library using RIF memory
initialization files:

vcs -R -v <path to Quartus installation> /
\eda\sim_lib\altera_mf.v <test bench file> /
<design file (top-level)> +define+USE_RIF=1 r

3–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 For the Quartus II software versions 5.0 and earlier, the NO_PLI
macro must be defined instead of USE_RIF. The NO_PLI macro
is forward compatible with the Quartus II software.

Post-Synthesis Simulation

A post-synthesis simulation verifies the functionality of a design after
synthesis has been performed. You can create a post-synthesis netlist in
the Quartus II software and use this netlist to perform a post-synthesis
simulation in the VCS software. Once the post-synthesis version of the
design has been verified, the next step is to place-and-route the design in
the target architecture using the Quartus II software.

Generating a Post-Synthesis Simulation Netlist

The following steps describe the process of generating a post-synthesis
simulation netlist in the Quartus II software:

1. Perform Analysis and Synthesis. On the Processing menu, point to
Start and click Start Analysis and Synthesis.

2. Turn on the Generate Netlist for Functional Simulation Only
option by performing the following steps:

a. On the Assignments menu, click EDA Tool Settings. The
Settings dialog box appears.

b. In the Category list, select Simulation. The Simulation page is
shown.

c. In the Tool name list, select VCS.

d. You can modify where you want the post-synthesis netlist
generated by editing or browsing to a directory in the Output
directory box.

e. Click More Settings. The More EDA Tools Simulation
Settings dialog box appears. In the Existing options settings
list, click Generate Netlist for Functional Simulation Only
and select On from the Setting list under Option.

f. Click OK.

g. In the Settings dialog box, click OK.

3. Run the EDA Netlist Writer. On the Processing menu, point to Start
and click Start EDA Netlist Writer.

Altera Corporation 3–7
October 2007 Preliminary

Using VCS in the Quartus II Design Flow

During the EDA Netlist Writer stage, the Quartus II software produces a
Verilog Output File (.vo) that can be used for the post-synthesis
simulations in the VCS software. This netlist file is mapped to
architecture-specific primitives. No timing information is included at this
stage.

The resulting netlist is located in the output directory you specified in the
Settings dialog box, which defaults to the <project directory>
/simulation/vcs directory. This netlist, along with the device family
library listed in Table 3–3, can be used to perform a post-synthesis
simulation in the VCS software.

Table 3–3. Altera Gate-Level Simulation Library Files

Library Files Description

arriagx_atoms.v
arriagx_hssi_atoms.v

Atom libraries for Arria™ GX designs

stratixii_atoms.v Atom libraries for Stratix® II designs

stratixiigx_atoms.v
stratixiigx_hssi_atoms.v

Atom libraries for Stratix II GX designs

stratix_atoms.v Atom libraries for Stratix designs

stratixgx_atoms.v
stratixgx_hssi_atoms.v

Atom libraries for Stratix GX designs

stratixiii_atoms.v Atom libraries for Stratix III designs

hardcopyii_atoms.v Atom libraries for HardCopy® II designs

hcstratix_atoms.v Atom libraries for HardCopy Stratix designs

cycloneiii_atoms.v Atom libraries for Cyclone® III designs

cycloneii_atoms.v Atom libraries for Cyclone II designs

cyclone_atoms.v Atom libraries for Cyclone designs

apexii_atoms.v Atom libraries for APEXTM II designs

apex20ke_atoms.v Atom libraries for APEX 20KE, APEX 20KC, and ExcaliburTM designs

apex20k_atoms.v Atom libraries for APEX 20K designs

flex10ke_atoms.v Atom libraries for FLEX® 10KE and ACEX® 1K designs

flex6000_atoms.v Atom libraries for FLEX 6000 designs

maxii_atoms.v Atom libraries for MAX® II designs

max_atoms.v Atom libraries for MAX 3000 and MAX 7000 designs

mercury_atoms.v Atom libraries for MercuryTM designs

3–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The following VCS software commands describe the command-line
syntax used to perform a post-synthesis simulation with the appropriate
device family library listed in Table 3–3:

vcs -R <test bench> <post synthesis netlist> -v <altera device family library> r

Gate-Level Timing Simulation

A gate-level timing simulation verifies the functionality of the design
after place-and-route. You can create a post-fit netlist in the Quartus II
software and use this netlist to perform a gate-level timing simulation in
VCS software.

Generating a Gate-Level Timing Simulation Netlist

To perform gate-level timing simulation, the VCS software requires
information about how the design was placed into device-specific
architectural blocks. The Quartus II software provides this information in
the form of a Verilog Output File for Verilog HDL designs. The
accompanying timing information is stored in the Standard Delay Output
File (.sdo), which annotates the delay for the elements found in the
Verilog Output File.

The following steps describe the process of generating a gate-level timing
simulation netlist in the Quartus II software:

1. Perform a full compilation. On the Processing menu, click Start
Compilation.

2. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

3. In the Category list, select Simulation. The Simulation page is
shown.

4. In the Tool name list, select VCS.

5. You can modify where you want the post-synthesis netlist
generated by editing or browsing to a directory in the Output
directory box.

6. Click OK.

7. In the Settings dialog box, click OK.

8. Run the EDA Netlist Writer. On the Processing menu, point to Start
and click Start EDA Netlist Writer.

Altera Corporation 3–9
October 2007 Preliminary

Using VCS in the Quartus II Design Flow

During the EDA Netlist Writer stage, the Quartus II software produces a
Verilog Output File (.vo) that can be used for post-synthesis simulations
in the VCS software. This netlist file is mapped to architecture-specific
primitives. No timing information is included at this stage. The resulting
netlist is located in the output directory you specified in the Settings
dialog box, which defaults to the <project directory>/simulation/vcs
directory.

Generating Different Timing Model

If you enable the Quartus II Classic or Quartus II TimeQuest Timing
Analyzer when generating the SDO file, slow-corner (worst case) timing
models are used by default. To generate the SDO file using a different
timing model, you must run the Quartus II Classic or the Quartus II
TimeQuest Timing Analyzer with a different timing model before you
start the EDA Netlist writer.

To run the Classic Timing Analyzer with the best-case model, on the
Processing menu, point to Start and click Start Classic Timing Analyzer
(Fast Timing Model). After timing analysis is complete, the Compilation
Report appears. You can also type the following command at a command
prompt:

quartus_tan <project_name> --fast_model=on r
To run the Quartus II TimeQuest Timing Analyzer with a best-case
model, use the -fast_model option after you create the timing netlist.
The following command enables the fast timing models:

create_timing_netlist -fast_model

You can also type the following command at a command prompt:

quartus_sta <project_name> --fast_model=on r
f For more information about generating the timing model, refer to the

Quartus II Classic Timing Analyzer or Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

After you run the Quartus II Classic Timing Analyzer or the Quartus II
TimeQuest Timing Analyzer, you can perform steps 2 through 8 in
“Generating a Gate-Level Timing Simulation Netlist” on page 3–8 to
generate the SDO file. For fast corner timing models, the _fast post fix is
added to the VO, VHO, and SDO file (for example, my_project_fast.vo,
my_project_fast.vho, and my_project_fast.sdo).

3–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Operating Condition Example: Generate All Timing Models for
Stratix III Devices
In Stratix III and Cyclone III devices, you can specify different
temperature and voltage parameters to generate the timing models.
Table 3–4 shows the available operation conditions (model, voltage, and
temperature) for Stratix III and Cyclone III devices.

To generating the SDO files for the three different operating conditions
for a Stratix III design, perform the following steps:

1. Generate all the available corner models at all operating conditions.
Type the following command at a command prompt:

quartus_sta <project name> --multicorner r
2. Generate the ModelSim simulation output files for all three corners

specified above. The output files are generated in the simulation
output directory. Type the following command at a command
prompt:

quartus_eda <project name> --simulation --tool=vcs --format=verilog r
To summarize, for the three operating conditions the steps above
generate the following files in the simulation output directory:

First slow corner (slow, 1100 mV, 85º C):
VO file— <revision name>.vo
SDO file— <revision name>_v.sdo

Table 3–4. Available Operating Condition for Stratix III and Cyclone III
Devices

Device Family Model Voltage Temperature

Stratix III Slow 1100 mV 85° C

Slow 1100 mV 0° C

Fast 1100 mV 0° C

Cyclone III Slow 1200 mV 85° C

Slow 1200 mV 0° C

Fast 1200 mV 0° C

Altera Corporation 3–11
October 2007 Preliminary

Common VCS Software Compiler Options

Second slow corner (slow, 1100 mV, 0º C):
VO file— <revision name>_<speedgrade>_1100mv_0c_slow.vo
SDO file— <revision name>_<speedgrade>_1100mv_0c_v_slow.sdo

Fast corner (fast, 1100 mV, 0º C):
VO file— <revision name>_<speedgrade>_1100mv_0c_fast.vo
SDO file— <revision name>_<speedgrade>_1100mv_0c_v_fast.sdo

Perform Timing Simulation Using Post-Synthesis Netlist

You can perform a timing simulation using the post-synthesis netlist
instead of using a gate-level netlist and you can generate a SDO without
running the fitter. In this case, the SDO file includes all timing values for
the device cells only. Interconnect delays are not included because fitting
(placement and routing) has not been performed.

To generate the post-synthesis netlist and the SDO file, type the following
command at a command prompt:

quartus_map <project name> -c <revision name> r
quartus_tan <project name> -c <revision name> --post_map --zero_ic_delays r
quartus_eda <project name> -c <revision name> --simulation --tool=<third party EDA tool>
--format=<HDL language> r

For more information about the -format and -tool option, type the
following command: quartus_eda -help=<options> command

Common VCS
Software
Compiler
Options

The VCS software has options that help you simulate your design.
Table 3–5 lists some of the options that are available.

Table 3–5. VCS Software Compiler Options (Part 1 of 2)

Library Description

-R Runs the executable file immediately.

-RI Once the compile has completed, instructs the VCS software to automatically launch
VirSim.

-v <library filename> Specifies a Verilog HDL library file (for example, 220model.v or altera_mf.v). The VCS
software looks in this file for module definitions that are found in the source code. Only
the relevant library files are compiled based on the modules found.

-y <library directory> Specifies a Verilog HDL library directory. The VCS software looks for library files in this
folder that contain module definitions that are instantiated in the source code.

3–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more information about any VCS software option, refer to the VCS
User Guide.

Using VirSim VirSim is the graphical debugging system for the VCS software. This tool
is included with the VCS software and can be run by using the -RI
compile-time compiler option when compiling a design. The following
VCS software command describes the command-line syntax for
compiling and loading a timing simulation in VirSim:

vcs -RI <test bench>.v <design name>.vo -v <path to Quartus II installation> \
\eda\sim_lib\<device family>_atoms.v +compsdf r

f For more information about using VirSim, refer to the VirSim User
Manual included in the VCS software installation.

Debugging
Support
Command-Line
Interface

The VCS software has an interactive non-graphical debugging capability
that is very similar to other UNIX debuggers such as the GNU debugger
(GDB). The VCS software CLI can be used to halt simulations at
user-defined break points, force registers with values, and display values
of registers.

Enable the non-graphical capability by using the +cli run-time option.
Use the VCS software CLI to debug your Altera FPGA design by typing
the following command:

vcs -R <test bench>.v <design name>.vo
-v <path to Quartus II installation> \
\eda\sim_lib\<device family>_atoms.v +compsdf +cli r

+compsdf Indicates that the VCS software compiler includes the back-annotated SDF file in the
compilation.

+cli The VCS software enters Command-Line Interface (CLI) mode upon successful
compilation completion.

+race Specifies that the VCS software generate a report that indicates all of the race conditions
in the design. Default report name is race.out.

-P Compiles user-defined Programming Language Interface (PLI) table files.

-q Indicates the VCS software runs in quiet mode. All messages are suppressed.

Table 3–5. VCS Software Compiler Options (Part 2 of 2)

Library Description

Altera Corporation 3–13
October 2007 Preliminary

Simulating Designs that Include Transceivers

The +cli command takes an optional number argument that specifies
the level of debugging capability. As the optional debugging capability is
increased, the overhead incurred by the simulation is increased, resulting
in an increase in simulation times.

f For more information about the +cli options, refer to the VCS User
Guide included in the VCS software installation.

For the design examples to run gate-level timing simulation in VHDL or
Verilog language, refer to www.altera.com/support/examples/vcs/exm-
vcs.html.

Simulating
Designs that
Include
Transceivers

If your design includes a Stratix GX or Stratix II GX transceiver, you must
compile additional library files to perform functional or timing
simulations.

Stratix GX Functional Simulation

To perform a functional simulation of your design that instantiates the
altgxb megafunction, enabling the gigabit transceiver block gigabit
transceiver block on Stratix GX devices, compile the stratixgx_mf model
file into the altgxb library.

1 The stratixiigx_mf model file references the lpm and sgate
libraries, so you must create these libraries to perform a
simulation.

Example of Compiling Library Files for Functional Stratix GX Simulation in
Verilog HDL

To compile the libraries necessary for functional simulation of a Verilog
HDL design targeting a Stratix GX device, type the following commands
at the VCS command prompt:

vcs -R <test bench>.v <design files>.v -v stratixgx_mf.v -v \
sgate.v -v 220model.v -v altera_mf.v r

Stratix GX Post-Fit (Timing) Simulation

Perform a post-fit timing simulation of your design that includes a
Stratix GX transceiver by compiling the stratixgx_atoms and
stratixgx_hssi_atoms model files into the stratixgx and stratixgx_gxb
libraries, respectively.

3–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 The stratixgx_hssi_atoms model file references the lpm and
sgate libraries, so you must create these libraries to perform a
simulation.

Example of Compiling Library Files for Timing Stratix GX Simulation in
Verilog HDL

To compile the libraries necessary for timing simulation of a Verilog HDL
design targeting a Stratix GX device, type the following commands at the
VCS command prompt:

vcs -R <testbench>.v <gate-level netlist>.vo -v stratixgx_atoms.v -v \
stratixgx_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0 r

Stratix II GX Functional Simulation

To perform a functional simulation of your design that instantiates the
alt2gxb megafunction, enabling the gigabit transceiver block gigabit
transceiver block on Stratix II GX devices, compile the stratixiigx_hssi
model file into the stratixiigx_hssi library.

1 The stratixiigx_hssi_atoms model file references the lpm and
sgate libraries, so you must create these libraries to perform a
simulation.

Generate a functional simulation netlist by turning on Generate
Simulation Model in the Simulation Library in the alt2gxb MegaWizard
Plug-In Manager (Figure 3–2). The <alt2gxb entity name>.vho file or
<alt2gxb module name>.vo file is generated in the current project directory.

1 The Quartus II-generated alt2gxb functional simulation
library file references stratixiigx_hssi wysiwyg atoms.

Altera Corporation 3–15
October 2007 Preliminary

Simulating Designs that Include Transceivers

Figure 3–2. alt2gxb MegaWizard

Example of Compiling Library Files for Functional Stratix II GX Simulation
in Verilog HDL

To compile the libraries necessary for functional simulation of a Verilog
HDL design targeting a Stratix II GX device, type the following
commands at the VCS command prompt:

vcs -R <testbench>.v <alt2gxb simulation netlist>.vo -v stratixgx_hssi_atoms.v -v \
sgate.v -v 220model.v -v altera_mf.v r

3–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Stratix II GX Post-Fit (Timing) Simulation

To perform a post-fit timing simulation of your design that includes a
Stratix II GX transceiver, compile stratixiigx_atoms and
stratixiigx_hssi_atoms into the stratixiigx and stratixiigx_hssi
libraries, respectively.

1 The stratixiigx_hssi_atoms model file references the lpm and
sgate libraries, so you must create these libraries to perform a
simulation.

Example of Compiling Library Files for Timing Stratix II GX Simulation in
Verilog HDL

To compile the libraries necessary for timing simulation of a Verilog HDL
design targeting a Stratix II GX device, type the following commands at
the VCS command prompt:

vcs -R <testbench>.v <gate-level netlist>.vo -v stratixiigx_atoms.v -v \
stratixiigx_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0 r

Using PLI
Routines with
the VCS
Software

The VCS software can interface your custom-defined C code with Verilog
HDL source code. This interface is known as PLI. This interface is
extremely useful because it allows advanced users to define their own
system tasks that currently may not exist in the Verilog HDL.

Preparing and Linking C Programs to Verilog HDL Code

When compiling the source code, the C code must include a reference to
the vcsuser.h file. This file defines PLI constants, data structures, and
routines that are necessary for the PLI interface. This file is included with
the VCS software installation and can be found in the $VCS_HOME\lib
directory.

Once the C code is complete, you must create an object file (.o). Create the
object file with the following command:

gcc -c my_custom_function.c r
Next, you must create a PLI table file (.tab). This file maps the C program
task to the matching task $task in the Verilog HDL source code. You can
create this file using a standard text editor. The following is an example
of an entry in the PLI file:

$my_custom_function call=my_custom_function acc+=rw* r

Altera Corporation 3–17
October 2007 Preliminary

Transport Delays

The Verilog HDL code can now include a reference to the user-defined
task. To compile an Altera FPGA design that includes a reference to a
user-defined system task, type the following at the command-line
prompt:

vcs -R <test bench>.v <design name>.v -v <Altera library file>.v –P <my_tabfile.tab> \
<my_custom_function.o> r

Transport
Delays

By default, the VCS software filters out all pulses that are shorter than the
propagation delay between primitives. Turning on the transport delay
options in the VCS software prevents the simulation tool from filtering
out these pulses. Use the following options to ensure that all signal pulses
are seen in the simulation results.

+transport_path_delays

Use this option when the pulses in your simulation may be shorter than
the delay within a gate-level primitive. For this option to work you must
also include the +pulse_e/number and +pulse_r/number options.

+transport_int_delays

Use this option when the pulses in your simulation may be shorter than
the interconnect delay between gate-level primitives. For this option to
work, you must also include the +pulse_int_e/number and
+pulse_int_r/number options. The +transport_path_delays
and +transport_int_delays options are also used by default in the
NativeLink feature for gate-level timing simulation.

f For more information about either of these options, refer to the VCS User
Guide installed with the VCS software.

The following VCS software command describes the command-line
syntax to perform a post-synthesis simulation with the device family
library:

vcs -R <test bench>.v <gate-level netlist>.v -v <altera device family library>.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0 r

http://synopsys.com/
http://synopsys.com/

3–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Using
NativeLink with
the VCS
Software

The NativeLink® feature in the Quartus II software facilitates the
seamless transfer of information between the Quartus II software and
EDA tools and allows you to run VCS within the Quartus II software.

Setting Up NativeLink

To run VCS automatically from the Quartus II software using the
NativeLink feature, you must specify the path to your simulation tool by
performing the following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, select EDA Tool Options. The EDA Tool
Options page is shown.

3. Double-click the entry under the Location of executable column.

4. Type or browse to the directory containing the executables of your
EDA tool.

5. Click OK.

You can also specify the path to the simulator’s executables by using the
set_user_option Tcl command:

set_user_option –name EDA_TOOL_PATH_VCS <path to executables> r

Performing an RTL Simulation Using NativeLink

To run a functional RTL simulation automatically with the VCS software
in the Quartus II software, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page is
shown (Figure 3–3).

Altera Corporation 3–19
October 2007 Preliminary

Using NativeLink with the VCS Software

Figure 3–3. Simulation Page in the Settings Dialog Box

3. In the Tool name list, select VCS. You can also modify where you
want the post-synthesis netlist generated by editing or browsing to
a directory in the Output directory box.

4. If you have testbench files or macro scripts, enter the information
under NativeLink settings.

For more information about setting up a testbench with NativeLink, refer
to “Setting Up a Testbench” on page 3–21.

5. Click OK.

3–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

6. On the Processing menu, point to Start and click Start Analysis and
Elaboration to perform an analysis and elaboration. This command
collects all your file name information and builds your design
hierarchy in preparation for simulation.

7. On the Tools menu, point to EDA Simulation Tool and click Run
EDA RTL Simulation to automatically launch VCS, compile all
necessary design files, and complete a simulation.

Performing a Gate-Level Simulation Using NativeLink

To run a gate-level timing simulation with the VCS software
automatically in the Quartus II software, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page is
shown (Figure 3–3).

3. In the Tool name list, select VCS.

4. You can modify where you want the post-synthesis netlist
generated by editing or browsing to a directory in the Output
directory box.

5. To perform a gate level simulation after each full compilation, turn
on Run Gate Level Simulation automatically after compilation.

6. If you have testbench files or macro scripts, enter the information
under NativeLink settings.

7. Click OK.

8. Perform a full compilation. On the Processing menu, click Start
Compilation.

9. On the Processing menu, point to Start and click Start EDA Netlist
Writer to generate a simulation netlist of your design.

10. On the Tools menu, point to EDA Simulation Tool and click Run
EDA Gate Level Simulation to automatically launch VCS, compile
all necessary design files, and complete a simulation.

Altera Corporation 3–21
October 2007 Preliminary

Using NativeLink with the VCS Software

1 A VCS file (*.vcs) is generated in the
<project_dirrectory>\simulation\vcs directory while running
the NativeLink. With this VCS File (*.vcvs), you can simulating
the design using the following command without using the
NativeLink:

vcs -file <project_directory>\simulation\vcs\<generated_do_file>.vcs

Setting Up a Testbench

You can automatically launch your EDA simulator tool, compile your
design files and testbench files, and perform a simulation automatically
using the NativeLink feature.

To setup NativeLink with a testbench, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, click the “+” icon to expand EDA Tool Settings
and select Simulation. The Simulation page is shown.

3. Under NativeLink settings, select None or Compile test bench
(Table 3–6).

4. If you select Compile test bench, select your testbench setup from
the Compile test bench list. You can use different testbench setups
to specify different testbench files for different test scenarios. If there
are no testbench setups entered, create a testbench setup by
performing the following steps:

a. Click Test Benches. The Test Benches dialog box appears.

b. Click New. The New Test Bench Settings dialog box appears.

c. In the Test Bench name box, type in the testbench setup name
which is used to identify between the different testbench
setups.

Table 3–6. NativeLink Settings

Settings Description

None Compile simulation models and design files.

Compile test bench NativeLink compiles simulation models, design files, testbench files, and starts
simulation.

3–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

d. In the Test bench entity box, type in the top-level entity name.
For example, for a Quartus II generated Verilog testbench, type
in <Vector Waveform File name>_vlg_vec_tst.

e. In the Instance box, type the full instance path to the top level
of your FPGA design. For example, for a Quartus II generated
Verilog test bench, type i1.

f. Under Simulation period, select Run simulation until all
vector stimuli are used. If you select End simulation at, specify
the simulation end time and the time unit.

g. Under Test bench files, browse and add all your testbench files
in the File name box. Use the Up and Down buttons to reorder
your files. The script used by NativeLink compiles the files in
the order from top to the bottom.

1 You can also specify the library name and the HDL version to
compile the testbench file. NativeLink compiles the testbench to
the library name of the HDL specified version.

h. Click OK.

i. In the Test Benches dialog box, click OK.

Creating a Testbench

In the Quartus II software, you can create a Verilog HDL or VHDL
testbench from a Vector Waveform File. The generated testbench includes
the behavior of the input stimulus and applies it to your instantiated
top-level FPGA design.

1. On the File menu, click Open. The Open dialog box appears.

2. Click the Files of type arrow and select Waveform/Vector Files.
Select your file.

3. Click Open.

4. On the File menu, click Export. The Export dialog box appears.

5. Click the Save as type arrow and select VHDL Test Bench File
(*.vht) or Verilog Test Bench File (*.vt).

6. You can turn on Add self-checking code to file to check your
simulation results against your Vector Waveform File.

Altera Corporation 3–23
October 2007 Preliminary

Scripting Support

7. Click Export.

Scripting
Support

You can run procedures and create settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

For more information about command-line scripting, refer to the
Command Line Scripting chapter in volume 2 of the Quartus II Handbook.

For detailed information about scripting command options, refer to the
Qhelp utility.

To start the Qhelp utility, type this command:

quartus_sh --qhelp r

Generating a Post-Synthesis Simulation Netlist for VCS

You can use the Quartus II software to generate a post-synthesis
simulation netlist with Tcl commands or with a command at a command
prompt.

Tcl Commands

Use the following Tcl commands:

set_global_assignment -name EDA_SIMULATION_TOOL "VCS" r
set_global_assignment –name EDA_GENERATE_FUNCTIONAL_NETLIST ON r

Command Prompt

Use the following command to generate a simulation output file for the
VCS software simulator; specify VHDL or Verilog HDL for the format:

quartus_eda <project name> --simulation=on --format=<format> --tool=vcs
--functional r

Generating a Gate-Level Timing Simulation Netlist for VCS

You can use the Quartus II software to generate a gate-level timing
simulation netlist with Tcl commands or with a command at a command
prompt.

3–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Tcl Commands

Use the following Tcl commands:

set_global_assignment -name EDA_SIMULATION_TOOL "VCS" r

Command Prompt

Use the following command to generate a simulation output file for the
VCS software simulator. Specify VHDL or Verilog HDL for the format.

quartus_eda <project name> --simulation=on --format=<format> --tool=vcs r

Conclusion You can use the VCS software in your Altera FPGA design flow to easily
and accurately perform functional RTL simulations, post-synthesis
simulations, and gate-level functional timing simulations. The seamless
integration of the Quartus II software and VCS software make this
simulation flow an ideal method for fully verifying an FPGA design.

Referenced
Documents

This chapter references the following documents:

■ Quartus II Installation and Licensing for Windows Manual
■ Quartus II Installation and Licensing for UNIX and Linux Workstation

Manual
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ VCS User Guide
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook
■ Command Line Scripting chapter in volume 2 of the Quartus II

Handbook

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_unix.pdf
http://synopsys.com/

Altera Corporation 3–25
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 3–7 shows the revision history for this chapter.

Table 3–7. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

● Updated Table 3–1.
● Updated “Operating Condition Example: Generate All Timing

Models for Stratix III Devices” on page 3–10.

Updated for the
Quartus II software
version 7.2.

May 2007
v7.1.0

● Updated Tables 3–1, 3–2, and 3–3.
● Updated “Generating a Gate-Level Timing Simulation Netlist”

on page 3–8.
● Added “Perform Timing Simulation Using Post-Synthesis

Netlist” on page 3–11.
● Updated “Performing a Gate-Level Simulation Using

NativeLink” on page 3–20.
● Updated procedures in “Setting Up a Testbench” on

page 3–21.

Updated for the
Quartus II software
version 7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. —

November 2006
v6.1.0

● Updated for the Quartus II software version 6.1.
● Added library for Stratix III support.
● Minor updates to Table 3-1, 3-2, and 3-3.

Updated for the
Quartus II software
version 6.1.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Added a section on setting VCS as the Simulation Tool
● Updated EDA Tools Settings in the GUI.
● Updated the Synopsys Design Constraints File information.
● Added pulse_e and pulse_r information to simulation

sections.
● Added Quartus II-Generated Testbench information
● Updated megafunction information.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

● Updated information.
● Updated tables.
● Added Using NativeLink® with VCS section.
● New functionality for Quartus II software version 5.0.

December 2004
v2.1

● Updates to tables, figures.
● New functionality for Quartus II software version 4.2.

June 2004
v2.0

● Updates to tables and figures.
● New functionality for the Quartus II software version 4.1.

February 2004
v1.0

● Initial release.

3–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 4–1
October 2007

4. Cadence NC-Sim Support

Introduction This chapter is a getting started guide to using the Cadence Incisive
verification platform software in Altera® FPGA design flows. The Incisive
verification platform software includes NC-Sim, NC-Verilog, NC-VHDL,
Verilog, and VHDL desktop simulators. This chapter provides
step-by-step explanations of the basic NC-Sim, NC-Verilog, and
NC-VHDL functional, post-synthesis, and gate-level timing simulations.
It also describes the location of the simulation libraries and how to
automate simulations.

This chapter contains the following topics:

■ “Software Requirements”
■ “Functional and RTL Simulation” on page 4–6
■ “Post-Synthesis Simulation” on page 4–22
■ “Gate-Level Timing Simulation” on page 4–24
■ “Simulating Designs that Include Transceivers” on page 4–31
■ “Using the NativeLink Feature with NC-Sim” on page 4–37
■ “Incorporating PLI Routines” on page 4–43
■ “Scripting Support” on page 4–48

Software
Requirements

You must first install the Quartus® II software before using it with the
Cadence Incisive verification platform software. The Cadence interface is
installed automatically when you install the Quartus II software on your
computer.

QII53003-7.2.0

4–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 4–1 shows the Cadence NC simulator versions compatible with
specific Quartus II software versions.

Table 4–1. Compatibility Between Software Versions

Quartus II Software Cadence NC Simulators
(UNIX)

Cadence NC Simulators
(PC)

Cadence NC Simulators
(Linux)

Version 7.2 Version 6.10 p001 Version 5.4 s011 Version 6.10 p001

Version 7.1 Version 5.83 p003 Version 5.4 s011 Version 5.83 p003

Version 6.1 and 7.0 Version 5.82 p001 Version 5.4 s011 Version 5.82 p001

Version 6.0 Version 5.5 s012 Version 5.4 s011 Version 5.5 s012

Version 5.1 Version 5.4 s011 Version 5.4 s011 Version 5.4 s011

Version 5.0 Version 5.4 s004 Version 5.4 p001 Version 5.4 s004

Version 4.2 Version 5.1 s017 Version 5.1 s017 Version 5.1 s017

Version 4.1 Version 5.1 s012 Version 5.1 s010 Version 5.0 p001

Version 4.0 Version 5.0 s005 Version 5.0 s006 Version 5.0 p001

Altera Corporation 4–3
October 2007 Preliminary

Simulation Flow Overview

Simulation Flow
Overview

The Incisive platform software supports the following simulation flows:

■ Functional and RTL Simulation
■ Post-Synthesis Simulation
■ Gate-Level Timing Simulation
■ Using the NativeLink Feature with NC-Sim

Figure 4–1 shows the Quartus II software and Cadence design flow.

Figure 4–1. Quartus II Software Design Flow with Cadence NC Simulators

.vo/.vho

Design Entry

Functional RTL Simulation

Synthesis

Post-Synthesis Simulation

Verilog Output
File and VHDL

Output File

.sdo

Place-&-Route

.v/.vhd

Gate-Level Timing Simulation

Gate-Level
Simulation

Library Files

Post-Synthesis
Simulation

Library Files

Functional
Simulation

Library Files

.vo/.vho
Verilog Output
File and VHDL

Output File

Standard Delay
Format Output

File

Testbench

ALTERA IP

4–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Functional and RTL simulation verifies the functionality of your design.
When you perform a functional simulation with Cadence Incisive
simulators, you use your design files (Verilog HDL or VHDL) and the
models provided with the Quartus II software. These Quartus II models
are required if your design uses the library of parameterized modules
(LPM) functions or Altera-specific megafunctions. Refer to “Functional
and RTL Simulation” on page 4–6 for more information about how to
perform this simulation.

A post-synthesis simulation verifies the functionality of a design after
synthesis has been performed. You can create a post-synthesis netlist (.vo
or .vho) in the Quartus II software and use this netlist to perform a
post-synthesis simulation with the Incisive simulator. Refer to
“Post-Synthesis Simulation” on page 4–22 for more information about
how to perform this simulation.

After performing place-and-route, the Quartus II software generates a
Verilog Output File (.vo) or VHDL Output File (.vho) and a Standard
Delay Output file (.sdo) for gate-level timing simulation. The netlist files
map your design to architecture-specific primitives. The SDO file
contains the delay information of each architecture primitive and routing
element specific to your design. Together, these files provide an accurate
simulation of your design with the selected Altera FPGA architecture.
Refer to “Gate-Level Timing Simulation” on page 4–24 for more
information about how to perform this simulation.

Operation Modes

In the NC simulators, you can use either the GUI mode or the
command-line mode to simulate your design.

You can start the Incisive simulators in GUI mode in a PC or a UNIX
environment by typing nclaunch at a command prompt.

Altera Corporation 4–5
October 2007 Preliminary

Simulation Flow Overview

To simulate in command-line mode, use the programs shown in
Table 4–2.

Quartus II Software and NC Simulation Flow Overview

An overview of the Quartus II software and Cadence NC simulation flow
is described below. More detailed information is provided in “Functional
and RTL Simulation” on page 4–6, “Post-Synthesis Simulation” on
page 4–22, and “Gate-Level Timing Simulation” on page 4–24.

1. Set up your working environment (UNIX only).

You must set several environment variables in UNIX to establish an
environment that facilitates entering and processing designs.

2. Create user libraries.

Create a file that maps logical library names to their physical
locations. These library mappings include your working directory
and any design-specific libraries; for example, Altera LPM functions
or megafunctions.

3. Compile source code and testbenches.

You compile your design files at the command-line using ncvlog
(Verilog HDL files) or ncvhdl (VHDL files), or on the Tools menu by
clicking Verilog Compiler or VHDL Compiler in NCLaunch.
During compilation, the NC software performs syntax and static
semantic checks. If no errors are found, compilation produces an

Table 4–2. Command-Line Programs

Program Function

ncvlog
or
ncvhdl

NC-Verilog (ncvlog) compiles your Verilog HDL code into a Verilog Syntax Tree (.vst) file. ncvlog
also performs syntax and static semantics checks.

NC-VHDL (ncvhdl) compiles your VHDL code into a VHDL Syntax Tree (.ast) file. ncvhdl also
performs syntax and static semantics checks.

ncelab NC-Elab (ncelab) elaborates the design. ncelab constructs the design hierarchy and establishes
signal connectivity. This program also generates a Signature File (.sig) and a Simulation SnapShot
File (.sss).

ncsim NC-Sim (ncsim) performs mixed-language simulation. This program is the simulation kernel that
performs event scheduling and executes the simulation code.

4–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

internal representation for each HDL design unit in the source files.
By default, these intermediate objects are stored in a single, packed,
library database file in your working directory.

4. Elaborate your design.

Before you can simulate your model, you must define the design
hierarchy in a process called elaboration. Use ncelab in
command-line mode or on the Tools menu, click Elaborator in
NCLaunch to elaborate the design.

5. Add signals to your waveform.

Before simulating, specify which signals to view in your waveform
using a simulation history manager (SHM) database.

6. Simulate your design.

Run the simulator with the ncsim program (command-line mode) or
by clicking Run in the SimVision Console window.

Functional and
RTL Simulation

The following sections provide detailed instructions for performing
functional/RTL simulation using the Quartus II software and the
Cadence Incisive platform software tools.

Create Libraries

Before simulating with the Incisive simulator, you must set up libraries
with a file named cds.lib. The cds.lib file is an ASCII text file that maps
logical library names—for example, your working directory or the
location of resource libraries such as models for LPM functions—to their
physical directory paths. When you run the Incisive simulator, the tool
reads cds.lib to determine which libraries are accessible and where they
are located. There is also a default cds.lib file, which you can modify for
your project settings.

You can use more than one cds.lib file. For example, you can have a
project-wide cds.lib file that contains library settings specific to a project
such as technology or cell libraries and a user cds.lib file.

The following sections describe how to create and edit a cds.lib file:

■ Basic libraries setup
■ LPM function, Altera megafunction, and Altera primitive library

setup

Altera Corporation 4–7
October 2007 Preliminary

Functional and RTL Simulation

Basic Library Setup

You can create a cds.lib file with any text editor. The following examples
show how you use the DEFINE statement to bind a library name to its
physical location. The logical and physical names can be the same or you
can select different names. The DEFINE statement usage is:

DEFINE <library name> <physical directory path>

For example, a simple cds.lib file for Verilog HDL contains the following
lines:

DEFINE lib_std /usr1/libs/std_lib
DEFINE worklib ../worklib

Using Multiple cds.lib Files
Use the INCLUDE or SOFTINCLUDE statement to reference another cds.lib
file within a cds.lib file. The syntax is:

INCLUDE <path to another cds.lib>

or

SOFTINCLUDE <path to another cds.lib>

1 For the Windows operating system, enclose the path with
quotation marks if there are spaces in the directory path.

For VHDL or mixed-language simulation, in addition to the DEFINE
statements, you must include the default cds.lib file (included with
NC-Sim). The syntax for including the default cds.lib file is:

INCLUDE <path to NC installation>/tools/inca/files/cds.lib

or

INCLUDE $CDS_INST_DIR/tools/inca/files/cds.lib

The default cds.lib file, provided with NC tools, contains a
SOFTINCLUDE statement to include other cds.lib files, such as
cdsvhdl.lib and cdsvlog.lib. These files contain library definitions for
IEEE libraries and Synopsys libraries.

4–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Create a cds.lib File in Command-Line Mode
To create a cds.lib file at a the command prompt, perform the following
steps:

1. Create a directory for the work library and any other libraries you
need by typing the following command at a command prompt:

mkdir <library name> r
For example: mkdir worklib r

2. Using a text editor, create a cds.lib file and add the following line to
it:

DEFINE <library name> <physical directory path>

For example: DEFINE worklib ./worklib

Create a cds.lib File in GUI Mode
To create a cds.lib file using the GUI, perform the following steps:

1. Type nclaunch r at the command line to run the GUI.

2. If the NCLaunch window is not in multiple step mode, on the File
menu, click Switch to Multiple Step.

3. Change your design directory on the File menu by clicking Set
Design Directory. The Set Design Directory dialog box appears
(Figure 4–2).

Figure 4–2. Creating a Work Directory in GUI Mode

Altera Corporation 4–9
October 2007 Preliminary

Functional and RTL Simulation

4. Click Browse to navigate to your design directory.

5. Click Create cds.lib File and in the New cds.lib File dialog box,
click Save and choose the libraries you want to include.

6. Click New under Work Library.

7. Enter your new work library name, for example, worklib.

8. Click OK. The new library is displayed under Work Library.
Figure 4–2 shows an example using the directory name worklib.

9. Repeat steps 7 and 8 for each functional simulation library. For
example, lpm, altera_mf, and altera.

10. Click OK in the Set Design Directory dialog box.

1 You can edit your libraries by editing the cds.lib file. Edit the
cds.lib file by right-clicking the cds.lib filename in the right side
of the window and choosing Edit.

LPM Functions, Altera Megafunctions, and Altera Primitives Libraries

Altera provides behavioral descriptions for LPM functions,
Altera-specific megafunctions, and Altera primitives. You can implement
the megafunctions in a design using the Quartus II MegaWizard® Plug-In
Manager or by instantiating them directly from your design file. You
must set up resource libraries so that you can simulate your design in the
Incisive simulator if your design uses LPM functions, Altera
megafunctions, or Altera primitives.

1 Many LPM functions and Altera megafunctions use memory
files. You must convert the memory files into a format the
Incisive tools can read before simulating. Follow the instructions
in “Compile Source Code and Testbenches” on page 4–13 to
connect the memory files.

Altera provides megafunction behavioral descriptions in the files shown
in Table 4–3. These library files are located in the following directory:

<path to Quartus II installation>/eda/sim_lib directory.

4–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

For more information about LPM functions and Altera megafunctions,
refer to the Quartus II Help.

If an lpm library does not exist, set up a library for LPM functions by
creating a new directory and adding the following line to your cds.lib
file:

DEFINE lpm <path>/<directory name>

If an altera_mf library does not exist, set up a library for Altera
megafunctions by adding the following line to your cds.lib file:

DEFINE altera_mf <path>/<directory name>

Table 4–3. Megafunction Behavioral Description Files

Library
Description Verilog HDL VHDL

LPM 220model.v 220model.vhd (1)
220model_87.vhd (2)
220pack.vhd

Altera
megafunction

altera_mf.v altera_mf.vhd (1)
altera_mf_87.vhd (2)
altera_components.vhd

Altera primitives altera_primitives.v altera_primitives.vhd (1)
altera_primitives_components.vhd

IP functional
simulation model

sgate.v sgate.vhd
sgate_pack.vhd

altgxb stratixgx_mf.v (3) stratixgx_mf.vhd (3)
stratixgx_mf_components.vhd (3)

alt2gxb stratixiigx_hssi_atoms.v,
arriagx_hssi_atoms.v(3), (4)

stratixiigx_hssi_atoms.vhd
stratixiigx_hssi_components.vhd
arriagx_hssi_atoms.vhd
arriagx_hssi_components.vhd (3), (4)

Notes to Table 4–3:
(1) Use this model with VHDL 93.
(2) Use this model with VHDL 87.
(3) The alt2gxb and altgxb library files require the lpm and sgate libraries.
(4) You must generate a functional simulation netlist for simulation.

Altera Corporation 4–11
October 2007 Preliminary

Functional and RTL Simulation

Megafunctions Requiring Atom Libraries

The following Altera megafunctions require device atom libraries to
perform a functional simulation in a third-party simulator:

■ altclkbuf
■ altclkctrl
■ altdq
■ altdqs
■ altddio_in
■ altddio_out
■ altddio_bidir
■ altufm_none
■ altufm_parallel
■ altufm_spi
■ altmemmult
■ altremote_update

The device atom library files are located in the following directory:

<path to Quartus II installation>/eda/sim_lib

Simulating a Design with Memory

The NC-Sim simulator supports simulating Altera memory
megafunctions initialized with Hexadecimal (Intel-Format) File (.hex) or
RAM Initialization Files (.rif).

Although synthesis is able to read a Memory Initialization File (.mif),
these files are not supported in simulations with third-party tools and
must be converted to either a Hexadecimal (Intel-Format) File or RAM
Initialization File.

Table 4–4 summarizes the different types of memory initialization file
formats that are supported with each RTL language.

Table 4–4. Simulation Support for Memory Initialization Files

File Verilog HDL VHDL

Hexadecimal (Intel-Format) File Yes (1) Yes

Memory Initialization File No No

RAM Initialization File Yes (2) No

Notes to Table 4–4:
(1) For memories and library files from Quartus II software version 5.0 and earlier, you are required to use a PLI

library containing the convert_hex2ver task function.
(2) Requires the USE_RIF macro to be defined.

4–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

To convert your Memory Initialization File into either a Hexadecimal
(Intel-Format) File or RAM Initialization File, perform the following
steps:

1. Open the Memory Initialization File and on the File menu, click
Export. The Export dialog box appears.

2. Select Hexadecimal (Intel-Format) File (*.hex) or RAM
Initialization File (*.rif) from the Save as type list and click OK.

1 Alternatively, you can convert a Memory Initialization File to a
RAM Initialization File using the mif2rif.exe executable
located in the <Quartus II installation>/bin directory. An
example of this executable is:

mif2rif <mif_file> <rif_file>

3. Modify the HDL file generated with the MegaWizard Plug-In
Manager.

The MegaWizard Plug-In Manager-generated Altera memory
megafunction wrapper file includes the lpm_file parameter for
LPM memories, or the init_file parameter for Altera-specific
memories to point to the initialization file.

In a text editor, open the MegaWizard Plug-In Manager generated
wrapper file and edit the lpm_file or init_file parameters to
point to the Hexadecimal (Intel-Format) File or RAM Initialization
File, as shown below:

lpm_ram_dp_component.lpm_file = "<path to HEX/RIF>"

4. Compile the functional library files with compiler directives.

If you use a Hexadecimal (Intel-Format) File, no compiler directives
are required. If you use a RAM Initialization File, the USE_RIF
macro must be defined when compiling the model library files. For
example, the following should be entered when compiling the
altera_mf library when RAM Initialization Files are used:

ncvlog -work altera_mf altera_mf.v -DEFINE
"USE_RIF=1"

1 For Quartus II software versions 5.0 and earlier, you must define
the NO_PLI macro instead of USE_RIF. The NO_PLI macro is
forward compatible with the Quartus II software.

Altera Corporation 4–13
October 2007 Preliminary

Functional and RTL Simulation

Compile Source Code and Testbenches

Compile your testbench and design files with ncvlog (for Verilog HDL
files) and ncvhdl (for VHDL files). Both ncvlog and ncvhdl perform
syntax checks and static semantic checks. A successful compilation
produces an internal representation for each HDL design unit in the
source files. By default, these intermediate objects are stored in a single,
packed, library database file in your work library directory.

Compilation in Command-Line Mode

To compile from the command line, use one of the following commands:

1 You must create a work library before compiling.

■ Verilog HDL:
ncvlog <options> -work <library name> <design files> r
■ VHDL:
ncvhdl <options> -work <library name> <design files> r

If your design uses LPM, Altera megafunctions, or Altera primitives,
you must also compile the Altera-provided functional models. The
following commands show an example of each.

■ Verilog HDL:
ncvlog –WORK lpm 220model.v r
ncvlog –WORK altera_mf altera_mf.v r
ncvlog -WORK altera altera_primitives.v r

If you are using the Quartus II software versions 5.0 and earlier and
your design uses a memory initialization file, compile the nopli.v
file, which is located in the <Quartus II installation>/eda/
sim_lib directory, before you compile your model. For example:

ncvlog –WORK lpm nopli.v 220model.v r
ncvlog –WORK altera_mf nopli.v altera_mf.v r

Another option is to define NO_PLI during compilation with the
following command:

ncvlog –DEFINE "NO_PLI=1" –WORK lpm 220model.v r
ncvlog –DEFINE "NO_PLI=1" –WORK altera_mf altera_mf.v r

■ VHDL:
ncvhdl –V93 –WORK lpm 220pack.vhd r
ncvhdl –V93 –WORK lpm 220model.vhd r
ncvhdl –V93 –WORK altera_mf altera_mf_components.vhd r
ncvhdl –V93 –WORK altera_mf altera_mf.vhd r
ncvhdl -V93 -WORK altera altera_primitives_components.vhd r

4–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

ncvhdl -V93 -WORK altera altera_primitives.vhd r

Compilation in GUI Mode

To compile using the NCLaunch GUI, perform the following steps:

1. Right-click a library filename in the NCLaunch window and click
NCVlog (Verilog HDL) or NCVhdl (VHDL).

Alternatively, on the Tools menu, click Verilog Compiler or VHDL
Compiler. Figure 4–3 shows the Compile Verilog and Compile
VHDL dialog boxes.

Figure 4–3. Compiling Verilog HDL and VHDL Files

2. Select the file and click OK in the Compile Verilog or Compile
VHDL dialog box to begin compilation. The dialog box closes and
returns you to NCLaunch.

Altera Corporation 4–15
October 2007 Preliminary

Functional and RTL Simulation

1 The command-line equivalent argument is shown at the
bottom of the NCLaunch window.

Elaborate Your Design

Before you can simulate your design, you must define the design
hierarchy in a process called elaboration. When you use the Incisive
simulator, you use the language-independent ncelab program to
elaborate your design. The ncelab program constructs a design hierarchy
based on the design’s instantiation and configuration information,
establishes signal connectivity, and computes initial values for all objects
in the design. The elaborated design hierarchy is stored in a simulation
snapshot, which is the representation of your design that the simulator
uses to run the simulation. The snapshot is stored in the library database
file, along with the other intermediate objects generated by the compiler
and elaborator.

1 If you are running the NC-Verilog simulator with the single-step
invocation method (ncverilog), and want to compile your
source files and elaborate the design with one command, use the
+elaborate option to stop the simulator after elaboration, for
example:

ncverilog +elaborate test.v r

Elaboration in Command-Line Mode

To elaborate your Verilog HDL or VHDL design from the command line,
use the following command:

ncelab [options][<library>.]<cell>[:<view>] r

You can set your simulation timescale using the –TIMESCALE <arguments>
option. The following example elaborates a dual-port RAM with the time
scale option:

ncelab –TIMESCALE 1ps/1ps worklib.lpm_ram_dp_test:entity r

1 If you specified a timescale of 1 ps in the Verilog HDL testbench,
the TIMESCALE option is not necessary. Using a ps resolution
ensures the correct simulation of your design.

If your design includes high speed signals, you may need to add the
following pulse reject options with your ncelab command.

ncelab -TIMESCALE 1ps/1ps worklib.mydesign:entity -PULSE_R 0 –PULSE_INT_R 0 r

4–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more information about the pulse reject options, refer to the SDF
Annotate Guide from Cadence.

To list the elements in your library and the available views, use the ncls
program. The following command displays all of the cells and their views
in your current worklib directory:

ncls –library worklib r

f For more information about the ncls program, refer to the Cadence
NC-Verilog Simulator Help or Cadence NC-VHDL Simulator Help.

Elaboration in GUI Mode

To elaborate using the GUI, perform the following steps:

1. In the right side of the NCLaunch window, expand your current
work library.

2. Select and expand (if necessary) the entity or module name you
want to elaborate.

3. Right-click the view you want to display and click NCElab. The
Elaborate dialog box appears (Figure 4–4). Optionally, on the Tools
menu, click Elaborator.

4. In the Other Options box, set the simulation timescale by typing
(Figure 4–4):

–TIMESCALE 1ps/1ps

Altera Corporation 4–17
October 2007 Preliminary

Functional and RTL Simulation

Figure 4–4. Elaborating the Design

5. Click OK in the Elaborate dialog box to begin elaboration. The
dialog box closes and returns you to NCLaunch.

Add Signals to View

To view the stored selected signals, use an SHM database, which is a
Cadence proprietary waveform database, to store the selected signals you
want to view. Before you can specify which signals to view, you must
create the database by adding commands to your code. Or you can create
a Value Change Dump File (.vcd) to store the simulation history.

f For more information about using a Value Change Dump File, refer to
the Cadence NC-Sim User Manual from Cadence included with the
installation.

Adding Signals in Command-Line Mode

To create an SHM database, specify the system tasks described in
Table 4–5 in your Verilog HDL code.

4–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 For VHDL, you can use the Tcl command interface or C function
calls to add signals to a database. Refer to the Cadence
documentation included in the installation package for details.

The following sample shows a simple example of how to add signals to
an SHM database.

initial
begin

$shm_open ("waves.shm");
$shm_probe ("AS");

end

1 You can insert this code sample into your Verilog HDL file. It is
applicable only for Verilog HDL files. For more information
about these system tasks, refer to the Cadence NC-Sim software
user manual included in the installation.

Adding Signals in GUI Mode

To add signals in GUI mode, perform the following steps:

1. In the NC-Sim software, load the design.

a. In the NCLaunch window, click the + icon to expand the
Snapshots directory.

b. Right-click on the lib.cell:view you want to simulate and click
NCSim.

Table 4–5. SHM Database System Tasks

System Task Description

$shm_open("<filename>.shm"); Opens a database. If you do not specify a filename, the default
waves.shm database opens. If a database with the specified name does
not exist, it is created for you.

$shm_probe("[A|S|C]"); Probe signals. You can specify the signals to probe; if you do not specify
signals, the default is all ports in the current scope.

A probes all nodes in the current scope.
S probes all nodes below the current scope.
C probes all nodes below the current scope and in libraries.

$shm_save; Saves the database.

$shm_close; Closes the database.

Altera Corporation 4–19
October 2007 Preliminary

Functional and RTL Simulation

c. Click OK in the Simulate dialog box.

After you load the design, the SimVision Console and SimVision
Design Browser windows appear. Figure 4–5 shows the
SimVision Design Browser window.

2. In the Design Browser window, select a module in the left side of
the window to display the signal names (Figure 4–5).

Figure 4–5. SimVision Design Browser

3. To send the selected signals to the Waveform Viewer, perform one
of the following steps:

Select a group of signals from the right side of the Design Browser
window and click the Send to Waveform Viewer icon in the Send
To toolbar (the upper-right area of the Design Browser window).

or

4–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Right-click the signals and click Send to Waveform Window
(Figure 4–6).

A waveform window showing all of your signals appears. You are
now ready to simulate your testbench and design.

Figure 4–6. Selecting Signals in the Design Browser Window

Simulate Your Design

After you have compiled and elaborated your design, you can simulate it
using ncsim. The ncsim program loads the file or snapshot generated by
ncelab as its primary input. It then loads other intermediate objects
referenced by the snapshot. If you enable interactive debugging, it may
also load HDL source files and script files. The simulation output is
controlled by the model or debugger. The output can include result files
generated by the model, SHM database, or Value Change Dump File.

Altera Corporation 4–21
October 2007 Preliminary

Functional and RTL Simulation

Functional/RTL Simulation in Command-Line Mode

To perform functional/RTL simulation of your Verilog HDL or VHDL
design at the command line, type the following command:

ncsim [options][<library>.]<cell>[:<view>] r
For example:

ncsim worklib.lpm_ram_dp:syn r

Table 4–6 shows some of the options you can use with ncsim.

Functional/RTL Simulation in GUI Mode

You can run and step through simulation of your Verilog HDL or VHDL
design in the GUI. In the Design Browser window, on the Simulation
menu, click Run to begin the simulation.

1 You must load the design before simulating. If you have not
done so, refer to step 1 in “Adding Signals in GUI Mode” on
page 4–18 for instructions.

Table 4–6. ncsim Options

Options Description

-gui Launch GUI mode

-batch Used for non-interactive mode

-tcl Used for interactive mode (not required when using –gui)

4–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Post-Synthesis
Simulation

The following sections provide detailed instructions for performing
post-synthesis simulation using Quartus II output files, simulation
libraries, and the Incisive platform software.

Quartus II Simulation Output Files

After performing synthesis with either a third-party synthesis tool or
with the Quartus II integrated synthesis, you must generate a simulation
netlist for functional simulations. To generate a simulation netlist for
functional simulation, perform the following steps in the Quartus II
software:

1. Perform Analysis and Synthesis. On the Processing menu, point to
Start and click Start Analysis and Synthesis.

2. Turn on the Generate Netlist for Functional Simulation Only
option by performing the following steps:

a. On the Assignments menu, click EDA Tool Settings. The
Settings dialog box appears.

b. In the Category list, select Simulation. The Simulation page
appears.

c. In the Tool name list, select NCSim.

d. Under EDA Netlist Writer options, in the Format for output
netlist list, select VHDL or Verilog. You can also modify where
you want the post-synthesis netlist generated by editing or
browsing to a directory in the Output directory box.

e. Click More Settings. The More EDA Tools Simulation
Settings dialog box appears. In the Existing options settings
list, click Generate Netlist for Functional Simulation Only
and select On from the Setting list under Option.

f. Click OK.

g. In the Settings dialog box, click OK.

3. Run the EDA Netlist Writer. On the Processing menu, point to Start
and click Start EDA Netlist Writer.

Altera Corporation 4–23
October 2007 Preliminary

Post-Synthesis Simulation

1 During the EDA Netlist Writer stage, the Quartus II software
produces a Verilog Output File (.vo) or VHDL Output File (.vho)
that can be used for post-synthesis simulations in the NC-Sim
software. This netlist file is mapped to architecture-specific
primitives. No timing information is included at this stage. The
resulting netlist is located in the output directory you specified
in the Settings dialog box, which defaults to the
<project directory>/simulation/NCSim directory.

Create Libraries

Create the following libraries for your simulation:

■ Work library
■ Device family library targeting your design targets using the

following files in the <path to Quartus II installation>/eda/sim_lib
directory:
● <device_family>_atoms.v
● <device_family>_atoms.vhd
● <device_family>_components.vhd

Compile Project Files and Libraries

Compile the project files and libraries into your work directory using the
ncvlog or ncvhdl programs or the GUI. Include the following files:

■ Test bench file
■ The Quartus II software functional output netlist file (Verilog

Output File or VHDL Output File)
■ Atom library file for the device family

<device family>_atoms.<v|vhd>
■ For VHDL, <device family>_components.vhd

Refer to the section “Compile Source Code and Testbenches” on
page 4–13 for instructions about compiling.

Elaborate Your Design

Elaborate your design using the ncelab program as described in
“Elaboration in GUI Mode” on page 4–16.

Add Signals to the View

Refer to the section “Add Signals to View” on page 4–17 for information
about adding signals to the view.

4–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Simulate Your Design

Simulate your design using the ncsim program as described in “Simulate
Your Design” on page 4–20.

Gate-Level
Timing
Simulation

The following sections provide detailed instructions for performing
timing simulation using the Quartus II output files, simulation libraries,
and Cadence NC tools.

Generating a Gate-Level Timing Simulation Netlist

To perform gate-level timing simulation, the NC-Sim software requires
information about how the design was placed into device-specific
architectural blocks. The Quartus II software provides this information in
the form of a Verilog Output File for Verilog HDL designs and a VHDL
Output File for VHDL designs. The accompanying timing information is
stored in the SDO file, which annotates the delay for the elements found
in the Verilog Output File or VHDL Output File.

To generate the Verilog Output File or VHDL Output Files and the
Standard Delay File, perform the following steps:

1. Perform a full compilation. On the Processing menu, click Start
Compilation.

2. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

3. In the Category list, select Simulation. The Simulation page
appears.

4. In the Tool name list, select NCSim.

5. Under EDA Netlist Writer options, in the Format for output netlist
list, select VHDL or Verilog. You can also modify where you want
the post-synthesis netlist generated by editing or browsing to a
directory in the Output directory box.

6. Click OK.

7. Run the EDA Netlist Writer. On the Processing menu, point to Start
and click Start EDA Netlist Writer.

During the EDA Netlist Writer stage, the Quartus II software
produces a Verilog Output File (.vo), VHDL Output File (.vho), and
a SDO file used for gate-level timing simulations in the NC-Sim
software. This netlist file is mapped to architecture-specific

Altera Corporation 4–25
October 2007 Preliminary

Gate-Level Timing Simulation

primitives. The timing information for the netlist is included in the
SDO file. The resulting netlist is located in the output directory you
specified in the Settings dialog box, which defaults to the <project
directory>/simulation/ncsim directory.

Generating a Different Timing Model

If you enable the Quartus II Classic Timing Analyzer or Quartus II
TimeQuest Timing Analyzer when generating the SDO file, slow-corner
(worst case) timing models are used by default. To generate the SDO file
using a different timing model, you must run the Quartus II Classic
Timing Analyzer or the Quartus II TimeQuest Timing Analyzer with a
different timing model before you start the EDA Netlist Writer.

To run the Quartus II Classic Timing Analyzer with the best-case model,
on the Processing menu, point to Start and click Start Classic Timing
Analyzer (Fast Timing Model). After timing analysis is complete, the
Compilation Report appears. You can also type the following at a
command prompt:

quartus_tan <project_name> --fast_model=on r
To run the Quartus II TimeQuest Timing Analyzer with a best-case
model, use the -fast_model option after you create the timing netlist.
The following command enables the fast timing models:

create_timing_netlist -fast_model

You can also type the following command at a command prompt:

quartus_sta <project_name> --fast_model=on r
f For more information about generating the timing model, refer to the

Quartus II Classic Timing Analyzer or Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

After you run the Quartus II Classic Timing Analyzer or Quartus II
TimeQuest Timing Analyzer, you can perform steps 2 through 7 in
“Generating a Gate-Level Timing Simulation Netlist” on page 4–24 to
generate the SDO file. For fast corner timing models, the _fast post fix is
added to the VO, VHO, and SDO file (for example, my_project_fast.vo,
my_project_fast.vho, and my_project_fast.sdo).

4–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Operating Condition Example: Generate All Timing Models for
Stratix III and Cyclone III Devices
In Stratix® III and Cyclone® III devices, you can specify different
temperature and voltage parameters to generate the timing models.
Table 4–7 shows the available operating conditions (model, voltage, and
temperature) for Stratix III and Cyclone III devices.

To generate the SDO files for the three different operating conditions for
a Stratix III design, perform the following steps:

1. Generate all the available corner models at all operating conditions.
Type the following command at a command prompt:

quartus_sta <project name> --multicorner r
2. Generate the ModelSim simulation output files for all three corners

specified above. The output files are generated in the simulation
output directory. Type the following command at a command
prompt:

quartus_eda <project name> --simulation --tool=ncsim --format=verilog

To summarize, for the three operating conditions the steps above
generate the following files in the simulation output directory:

First slow corner (slow, 1100 mV, 85º C):
VO file— <revision name>.vo
SDO file— <revision name>_v.sdo

Table 4–7. Available Operating Conditions for Stratix III and Cyclone III
Devices

Device Family Model Voltage Temperature

Stratix III Slow 1100 mV 85° C

Slow 1100 mV 0° C

Fast 1100 mV 0° C

Cyclone III Slow 1200 mV 85° C

Slow 1200 mV 0° C

Fast 1200 mV 0° C

Altera Corporation 4–27
October 2007 Preliminary

Gate-Level Timing Simulation

Second slow corner (slow, 1100 mV, 0º C):
VO file— <revision name>_<speedgrade>_1100mv_0c_slow.vo
SDO file— <revision name>_<speedgrade>_1100mv_0c_v_slow.sdo

Fast corner (fast, 1100 mV, 0º C):
VO file— <revision name>_<speedgrade>_1100mv_0c_fast.vo
SDO file— <revision name>_<speedgrade>_1100mv_0c_v_fast.sdo

Perform Timing Simulation Using Post-Synthesis Netlist

You can perform a timing simulation using the post-synthesis netlist
instead of using a gate-level netlist and you can generate a Standard
Delay Format Output File (.sdo) without running the Fitter. In this case,
the SDO file includes all timing values for the device cells only.
Interconnect delays are not included because fitting (placement and
routing) has not been performed.

To generate the post-synthesis netlist and the SDO file, type the following
at a command prompt:

quartus_map <project name> -c <revision name> r
quartus_tan <project name> -c <revision name> --post_map --zero_ic_delays r
quartus_eda <project name> -c <revision name> --simulation --tool= \

<3rd party EDA tool> --format=<HDL language> r
For more information on the -format and -tool options, type the
following command at a command prompt:

quartus_eda -help=<options> command r

Quartus II Timing Simulation Libraries

Altera device simulation library files are provided in the <Quartus II
installation>/eda/sim_lib directory. The Verilog Output File or VHDL
Output File requires the library for the device your design targets. For
example, the Stratix device family requires the following library files:

■ stratix_atoms.v
■ stratix_atoms.vhd
■ stratix_components.vhd

If your design targets a Stratix device, you must set up the appropriate
mappings in your cds.lib file. Refer to “Create Libraries” for more
information.

4–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Create Libraries

Create the following libraries for your simulation:

■ Work library
■ Device family libraries targeting using the following files in the <path

to Quartus II installation>/eda/sim_lib directory:

● <device_family>_atoms.v
● <device_family>_atoms.vhd
● <device_family>_components.vhd

For step-by-step instructions on creating libraries, refer to “Basic Library
Setup” on page 4–7 and “LPM Functions, Altera Megafunctions, and
Altera Primitives Libraries” on page 4–9.

Compile the Project Files and Libraries

Compile the project files and libraries into your work directory using the
ncvlog or ncvhdl programs or the GUI. Include the following files:

■ Test bench file
■ The Quartus II software functional output netlist file (Verilog

Output File or VHDL Output File)
■ Atom library file for the device family

<device family>_atoms.<v|vhd>
■ For VHDL, <device family>_components.vhd

For instructions on compiling, refer to “Compile Source Code and
Testbenches” on page 4–13.

Elaborate Your Design

When performing elaboration with the Quartus II-generated Verilog
HDL netlist file, the Standard Delay Format Output File is read
automatically. When you run ncelab, it recognizes the embedded system
task $sdf_annotate and automatically compiles and annotates the
Standard Delay Format Output File (runs ncsdfc automatically).

1 The Standard Delay Format Output File should be located in the
same directory where you invoke an elaboration or simulation,
because the $sdf_annotate task references the Standard
Delay Format Output File without using a full path. If you are
invoking an elaboration or simulation from a different directory,
you can either comment out the $sdf_annotate and annotate
the Standard Delay Format Output File with the GUI, or add the
full path of the Standard Delay Format Output File.

Altera Corporation 4–29
October 2007 Preliminary

Gate-Level Timing Simulation

Refer to “Elaborate Your Design” on page 4–15 for step-by-step
instructions on elaboration.

For VHDL, the Quartus II software-generated VHDL netlist file does not
contain system task calls to locate your SDF file; therefore, you must
compile the Standard Delay Format Output File manually. Refer to
“Compiling the Standard Delay Output File (VHDL Only) in Command-
Line Mode” and “Compiling the Standard Delay Output File (VHDL
Only) in GUI Mode” for information about compiling the Standard Delay
Format Output File.

Compiling the Standard Delay Output File (VHDL Only)
in Command-Line Mode

To annotate the Standard Delay Format Output File timing data from the
command line, perform the following steps:

1. Compile the Standard Delay Format Output File using the ncsdfc
program by typing the following command at the command
prompt:

ncsdfc <project name>_vhd.sdo –output <output name> r

The ncsdfc program generates an <output name>.sdf.X compiled
SDO.

1 If you do not specify an output name, ncsdfc uses
<project name>.sdo.X.

2. Specify the compiled Standard Delay Format Output File for the
project by adding the following command to an ASCII SDF
command file for the project:

COMPILED_SDF_FILE = "<project name>.sdf.X" SCOPE = <instance path>

The following code shows an example of an SDF command file:

// SDF command file sdf_file
COMPILED_SDF_FILE = "lpm_ram_dp_test_vhd.sdo.X",
SCOPE = :tb,
MTM_CONTROL = "TYPICAL",
SCALE_FACTORS = "1.0:1.0:1.0",
SCALE_TYPE = "FROM_MTM";

After you compile the Standard Delay Format Output File, run the
following command to elaborate the design:

ncelab worklib.<project name>:entity –SDF_CMD_FILE <SDF Command File> r

4–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Compiling the Standard Delay Output File (VHDL Only) in GUI Mode

To annotate the SDO file timing data in the GUI, perform the following
steps in the NCLaunch window:

1. On the Tools menu, click SDF Compiler. The Compile SDF dialog
box appears.

2. In the SDF File box, type in the name of the Standard Delay Format
Output File (.sdo) for the project.

3. Click OK.

When the Standard Delay Format Output File compilation is
complete, you can elaborate the design. Refer to “Elaboration in GUI
Mode” on page 4–16 for step-by-step instructions.

1 If you are performing a VHDL gate-level simulation, you
must create an SDF command file before you begin
elaboration. To create the SDF command file, perform steps
5 through 11.

4. On the Tools menu, click Elaborator. The Elaborate dialog box
appears.

5. Click Advanced Options.

6. Click Annotation.

7. Turn on Use SDF File.

8. Click Edit.

9. Browse to the location of the SDF command file name.

10. Click Add and browse to the location of the Standard Delay Format
Output File in the Compiled SDF File box and click OK.

11. Click OK to save and exit the SDF Command File dialog box.

Add Signals to View

Refer to the section “Add Signals to View” on page 4–17 for information
about adding signals to view.

Altera Corporation 4–31
October 2007 Preliminary

Simulating Designs that Include Transceivers

Simulate Your Design

Simulate your design using the ncsim program as described in “Simulate
Your Design” on page 4–20.

f For the design examples to run gate-level timing simulation, refer to
www.altera.com/support/examples/ncsim/exm-ncsim.html.

Simulating
Designs that
Include
Transceivers

If your design includes a Stratix II GX or Stratix GX transceiver, you must
compile additional library files to perform functional or timing
simulations.

Stratix GX Functional Simulation

To perform a functional simulation of your design that instantiates the
altgxb megafunction, enabling the gigabit transceiver block (GXB) on
Stratix GX devices, compile the stratixgx_mf model file into the altgxb
library.

1 The stratixgx_mf model file references the lpm and sgate
libraries, so you will need to create these libraries to perform a
simulation.

Example of Compiling Library Files for Functional Stratix GX Simulation in
Verilog HDL

To compile the libraries necessary for a functional simulation of a Verilog
HDL design targeting a Stratix GX device, type the following commands
at the NC Sim command prompt:

ncvlog -work lpm 220model.v r
ncvlog -work altera_mf altera_mf.v r
ncvlog -work sgate sgate.v r
ncvlog -work altgxb stratixgx_mf.v r
ncsim work.<my design> r

Example of Compiling Library Files for Functional Stratix GX Simulation in
VHDL

To compile the libraries necessary for functional simulation of a VHDL
design targeting a Stratix GX device, type the following commands at the
NC-Sim command prompt:

ncvhdl -work lpm 220pack.vhd 220model.vhd r
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd r
ncvhdl -work sgate sgate_pack.vhd sgate.vhd r
ncvhdl -work altgxb stratixgx_mf.vhd stratixgx_mf_components.vhd r

4–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

ncsim work.<my design> r

Stratix GX Post-Fit (Timing) Simulation

To perform a post-fit timing simulation of your design that includes a
Stratix GX transceiver, compile the stratixgx_atoms and
stratixgx_hssi_atoms model files into the stratixgx and stratixgx_gxb
libraries, respectively.

1 You need to create these libraries to perform a simulation
because the stratixgx_hssi_atoms model file references the lpm
and sgate libraries.

Example of Compiling Library Files for Timing Stratix GX Simulation in
Verilog HDL

To compile the libraries necessary to timing simulation of a Verilog HDL
design targeting a Stratix GX device, type the following commands at the
NC-Sim command prompt:

ncvlog -work lpm 220model.v r
ncvlog -work altera_mf altera_mf.v r
ncvlog -work sgate sgate.v r
ncvlog -work stratixgx stratixgx_atoms.v r
ncvlog -work stratixgx_gxb stratixgx_hssi_atoms.v r
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 \
-PULSE_INT_R 0 r

Example of Compiling Library Files for Timing Stratix GX Simulation in
VHDL

To compile the libraries necessary for timing simulation of a VHDL
design targeting a Stratix GX device, type the following commands at the
NC-Sim command prompt:

ncvhdl -work lpm 220pack.vhd 220model.vhd r
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd r
ncvhdl -work sgate sgate_pack.vhd sgate.vhd r
ncvhdl -work stratixgx stratixgx_atoms.vhd stratixgx_components.vhd r
ncvhdl -work stratixgx_gxb stratixgx_hssi_atoms.vhd \
stratixgx_hssi_components.vhd r
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0 r

Altera Corporation 4–33
October 2007 Preliminary

Simulating Designs that Include Transceivers

Stratix II GX Functional Simulation

To perform a post-fit timing simulation of your design that instantiates
the alt2gxb megafunction, edit your cds.lib file so that all the libraries
point to the work library, and compile the stratixiigx_hssi model file into
the stratixiigx_hssi library. When compiling the library files, you can
safely ignore the following warning message:

"Multiple logical libraries mapped to a single location"

The following example is of the cds.lib file.

Example 4–1. Example of a cds.lib File
SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvhdl.lib
SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvlog.lib
DEFINE work ./ncsim_work
DEFINE stratixiigx_hssi ./ncsim_work
DEFINE stratixiigx ./ncsim_work
DEFINE lpm ./ncsim_work
DEFINE sgate ./ncsim_work

1 The stratixiigx_hssi_atoms model file references the lpm and
sgate libraries, so you will need to create these libraries to
perform a simulation.

Generate a functional simulation netlist by turning on Create a
simulation library for this design in the last page of the alt2gxb
MegaWizard (Figure 4–7). The <alt2gxb entity name>.vho or <alt2gxb
module name>.vo is generated in the current project directory.

4–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 4–7. alt2gxb MegaWizard

1 The Quartus II generated alt2gxb functional simulation library
file references stratixiigx_hssi wysiwyg atoms.

Example of Compiling Library Files for Functional Stratix II GX Simulation
in Verilog HDL

To compile the libraries necessary to functional simulation of a Verilog
HDL design targeting a Stratix II GX device, type the following
commands at the NC-Sim command prompt:

ncvlog -work lpm 220model.v r
ncvlog -work altera_mf altera_mf.v r
ncvlog -work sgate sgate.v r
ncvlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v r

Altera Corporation 4–35
October 2007 Preliminary

Simulating Designs that Include Transceivers

ncvlog -work work <alt2gxb module name>.vo r
ncelab work.<my design> r

Example of Compiling Library Files for Functional Stratix II GX Simulation
in VHDL

To compile the libraries necessary for functional simulation of a VHDL
design targeting a Stratix II GX device, type the following commands at
the NC-Sim command prompt:

ncvhdl -work lpm 220pack.vhd 220model.vhd r
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd r
ncvhdl -work sgate sgate_pack.vhd sgate.vhd r
ncvhdl -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd r
ncvhdl -work work <alt2gxb entity name>.vho r
ncelab work.<my design> r

Stratix II GX Post-Fit (Timing) Simulation

To perform a post-fit timing simulation of your design that includes the
alt2gxb megafunction, edit your cds.lib file so that all the libraries point
to the work library and compile stratixiigx_atoms and
stratixiigx_hssi_atoms into the stratixiigx and stratixiigx_hssi
libraries, respectively. When compiling the library files, you can safely
ignore the following warning message:

"Multiple logical libraries mapped to a single location"

For an example of a cds.lib file, refer to “Stratix II GX Functional
Simulation” on page 4–33.

1 The stratixiigx_hssi_atoms model file references the lpm and
sgate libraries, so you will need to create these libraries to
perform a simulation.

Example of Compiling Library Files for Timing Stratix II GX Simulation in
Verilog HDL

To compile the libraries necessary to timing simulation of a Verilog HDL
design targeting a Stratix II GX device, type the following commands at
the NC-Sim command prompt:

ncvlog -work lpm 220model.v r
ncvlog -work altera_mf altera_mf.v r
ncvlog -work sgate sgate.v r
ncvlog -work stratixiigx stratixiigx_atoms.v r
ncvlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v r

4–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0 r

Example of Compiling Library Files for Timing Stratix II GX Simulation in
VHDL

To compile the libraries necessary for timing simulation of a VHDL
design targeting a Stratix II GX device, type the following commands at
the NC-Sim command prompt:

ncvhdl -work lpm 220pack.vhd 220model.vhd r
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd r
ncvhdl -work sgate sgate_pack.vhd sgate.vhd r
ncvhdl -work stratixiigx stratixiigx_atoms.vhd \
stratixiigx_components.vhd r
ncvhdl -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd r
ncvhdl -work work <alt2gxb>.vho r
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0 r

Pulse Reject Delays

By default, the NCSim software filters out all pulses that are shorter than
the propagation delay between primitives. Setting the pulse reject delays
(similar to transport delays) options in the NC-Sim software prevents the
simulation tool from filtering out these pulses. Use the following options
to ensure that all signal pulses are seen in the simulation results.

-PULSE_R

Use this option when the pulses in your simulation are shorter than the
delay within a gate-level primitive. The argument is the percentage of
delay for pulse reject limit for the path.

-PULSE_INT_R

Use this option when the pulses in your simulation are shorter than the
interconnect delay between gate-level primitives. The argument is the
percentage of delay for pulse reject limit for the path. The -PULSE_R and
-PULSE_INT_R options are also used by default in the NativeLink®
feature for gate-level timing simulation.

The following NC-Sim software command describes the command-line
syntax to perform a gate-level timing simulation with the device family
library:

ncelab worklib.<project name>:entity –SDF_CMD_FILE <SDF Command File> \
-TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0

Altera Corporation 4–37
October 2007 Preliminary

Using the NativeLink Feature with NC-Sim

Using the
NativeLink
Feature with
NC-Sim

The NativeLink feature in the Quartus II software facilitates the seamless
transfer of information between the Quartus II software and EDA tools
and allows you to run NC-Sim within the Quartus II software.

Setting Up NativeLink

To run NC-Sim automatically from the Quartus II software using the
NativeLink feature, you must specify the path to your simulation tool by
performing the following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, select EDA Tool Options. The EDA Tool
Options page is shown.

3. Double-click the entry under the Location of executable column
beside the name of your EDA Tool, and type or browse to the
directory containing the executables of your EDA tool.

4. Click OK.

You can also specify the path to the simulator’s executables by using the
set_user_option TCL command:

set_user_option –name EDA_TOOL_PATH_NCSIM <path to executables>

Performing an RTL Simulation Using NativeLink

To run a functional RTL simulation with the NC-Sim software
automatically in the Quartus II software, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears (Figure 4–8).

4–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 4–8. Simulation Page in the Settings Dialog Box

3. In the Tool name list, select NCSim.

4. If your design is written entirely in Verilog HDL or in VHDL, the
NativeLink feature automatically chooses the correct language and
Altera simulation libraries. If your design is written with mixed
languages, the NativeLink feature uses the default language
specified in the Format for output netlist list. To change the default

Altera Corporation 4–39
October 2007 Preliminary

Using the NativeLink Feature with NC-Sim

language when there is a mixed language design, under EDA
Netlist Writer options, in the Format for output netlist list, select
VHDL or Verilog. Table 4–8 shows the design languages for output
netlists and simulation models.

1 For mixed language simulation, choose the same language that
was used to generate your megafunctions to ensure correct
parameter passing between the megafunctions and the Altera
libraries. For example, if your altsyncram megafunction was
generated in VHDL, choose VHDL as the format for output
netlist.

For mixed language simulations, it is important to be aware of
the following conditions:

• VHDL designs instantiating Verilog user-defined
primitives (UDPs) are not supported.

• Parameters cannot be passed in Verilog modules that
instantiate VHDL components.

5. If you have testbench files or macro scripts, enter the information
under NativeLink settings.

For more information about setting up a testbench with NativeLink,
refer to the section “Setting Up a Testbench” on page 4–40.

6. Click OK.

7. On the Processing menu, point to Start and click Start Analysis and
Elaboration to perform an analysis and elaboration. This command
collects all your file name information and builds your design
hierarchy in preparation for simulation.

8. On the Tools menu, point to EDA Simulation Tool and click Run
EDA RTL Simulation to automatically run NC-Sim, compile all
necessary design files, and complete a simulation.

Table 4–8. NativeLink Design Languages

Design File Format for Output Netlist Simulation Models Used

Verilog Any Verilog

VHDL Any VHDL

Mixed Verilog Verilog

Mixed VHDL VHDL

4–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Performing a Gate Level Simulation Using NativeLink

To run a gate-level timing simulation with the NC-Sim software in the
Quartus II software, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation appears
(Figure 4–8 on page 4–38).

3. In the Tool name list, select NCSim.

4. Under EDA Netlist Writer options, in the Format for output netlist
list, choose VHDL or Verilog. You can also modify where you want
the post-synthesis netlist generated by editing or browsing to a
directory in the Output directory box.

5. To perform a gate level simulation after each full compilation, turn
on Run Gate Level Simulation automatically after compilation.

6. If you have testbench files or macro scripts, enter the information
under NativeLink settings.

7. Click OK.

8. On the Processing menu, point to Start and click Start EDA Netlist
Writer to generate a simulation netlist of your design.

9. On the Tools menu, point to EDA Simulation Tool and click Run
EDA Gate Level Simulation to automatically run NC-Sim, compile
all necessary design files, and complete a simulation.

1 A Tcl File (*.tcl) is generated in the
<project_directory>\simulation\ncsim directory when you run
NativeLink. This TCL File enables you to simulate the design
with the following command without using NativeLink:

quartus_sh -t <project_directory>\simulation\ncsim\<generated_do_file>.tcl

Setting Up a Testbench

You can compile your design files and testbench files, and run EDA
simulation tools to perform a simulation automatically using the
NativeLink feature.

Altera Corporation 4–41
October 2007 Preliminary

Using the NativeLink Feature with NC-Sim

To setup NativeLink with a testbench, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Simulation. The Simulation page
appears.

3. Under NativeLink settings, select None or Compile test bench
(Table 4–9).

4. If you select Compile test bench, select your testbench setup from
the Compile test bench list. You can use different testbench setups
to specify different testbench files for different test scenarios. If there
are no testbench setups entered, create a testbench setup by
performing the following steps:

a. Click Test Benches. The Test Benches dialog box appears.

b. Click New. The New Test Bench Settings dialog box appears.

c. In the Test Bench name box, type in the testbench setup name
which is used to identify the different testbench setups.

d. In the Test bench entity box, type in the top-level entity name.
For example, for a Quartus II generated VHDL testbench, type
filtref_vhd_vec_tst.

e. In the Instance box, type in the full instance path to the top
level of your FPGA design. For example, for a Quartus II
generated VHDL testbench, type i1.

f. Under Simulation period, select Run simulation until all
vector stimuli are used. If you select End simulation at, specify
the simulation end time and the time unit.

Table 4–9. NativeLink Settings

Settings Description

None Compile simulation models and design files.

Compile test bench NativeLink compiles simulation models, design files, testbench files, and starts
simulation.

4–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

g. Under Test bench files, browse and add all your testbench files
in the File name box. Use the Up and Down button to reorder
your files. The script used by NativeLink compiles the files in
the order from top to the bottom.

1 You can also specify the library name and the HDL version to
compile the testbench file. NativeLink compiles the testbench to
the library name of the HDL specified version.

h. Click OK.

i. In the Test Benches dialog box, click OK.

5. Under NativeLink settings, you can turn on Use script to setup
simulation and browse to your script. You can write a script to
setup your waveforms before running the simulation.

1 The script should be a valid NC-Sim tcl script. NativeLink
passes the script to ncsim command with command-line
arguments to set up and run simulation.

Creating a Testbench

In the Quartus II software, you can create a Verilog HDL or VHDL
testbench from a Vector Waveform File. The generated testbench includes
the behavior of the input stimulus and applies it to your instantiated
top-level FPGA design.

1. On the File menu, click Open. The Open dialog box appears.

2. Click the Files of type arrow and select Waveform/Vector Files.
Select your file.

3. Click Open.

4. On the File menu, click Export. The Export dialog box.

5. Click the Save as type arrow and select VHDL Test Bench File
(*.vht) or Verilog Test Bench File (*.vt).

6. You can turn on Add self-checking code to file to check your
simulation results against your Vector Waveform File.

7. Click Export.

Altera Corporation 4–43
October 2007 Preliminary

Incorporating PLI Routines

Incorporating
PLI Routines

Designers frequently use PLI routines in Verilog HDL testbenches to
perform user- or design-specific functions that are beyond the scope of
the Verilog HDL language. Cadence NC simulators include the PLI
wizard, which helps you incorporate your PLI routines.

For example, if you are using the Quartus II software version 5.0 and
earlier, and you are using a Hexadecimal (Intel-Format) File for memory,
you can convert it for use with NC tools using the Altera-provided
convert_hex2ver function. To use this function, you must build it and
place it in your project directory using the PLI wizard.

This section describes how to dynamically link, dynamically load, and
statically link a PLI library using the convert_hex2ver function as an
example. The following convert_hex2ver source files are located in the
<path to Quartus II installation>/eda/cadence/verilog-xl directory:

■ convert_hex2ver.c
■ veriuser.c

Dynamically Link a PLI Library

To create a PLI dynamic library (.so or .sl), perform the following steps:

1. Run the PLI wizard by typing pliwiz at the command prompt.

2. In the Config Session Name and Directory page, type the name of
the session in the Config Session Name box and type the directory
in which the file should be built in the Config Session Directory
box.

3. Click Next.

4. In the Select Simulator/Dynamic Libraries page, turn on the
Dynamic Libraries Only option.

5. Click Next.

6. In the Select Components page, select the PLI 1.0 Applications
option, and then select libpli.

7. Click Next.

8. In the Select PLI 1.0 Application Input page, select Existing
VERIUSER (source/object file).

9. Select Source File and click Browse to locate the veriuser.c file
provided with the Quartus II software.

4–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The veriuser.c file is located in the following directory:

<path to Quartus II installation>/eda/cadence/verilog-xl

10. Click Next.

11. In the PLI 1.0 Application page, click Browse under PLI Source
Files to locate the convert_hex2ver.c file.

12. Click Next.

13. In the Select Compiler page, choose your C compiler from the
Select Compiler list box.

1 gcc is an example of a C compiler. To allow the PLIWIZ
wizard to find your C compiler, ensure your path variable
is set correctly.

14. Click Next.

15. Click Finish.

16. To build your targets now, click Yes.

17. Compilation creates the file libpli.so (libpli.dll for PCs), which is
your PLI dynamic library, in your session directory. When you
elaborate your design, the elaborator looks through the path
specified in the LD_LIBRARY_PATH (UNIX) or PATH (PCs)
environment variable, searches for the .so and .dll files, and loads
them when needed.

1 You must modify LD_LIBRARY_PATH or PATH to include the
directory location of your .so and .dll files.

Dynamically Load a PLI Library

To create a PLI library to be loaded with the NC-Sim software, perform
the following steps:

1. Open the veriuser.c file located in the following directory:

<path to Quartus II installation>/eda/cadence/verilog-xl

The following two examples are sections of the original and
modified veriuser.c file. The first example is the original veriuser.c
file packaged with the Quartus II software. The second example is a
veriuser.c file modified for dynamic loading.

Altera Corporation 4–45
October 2007 Preliminary

Incorporating PLI Routines

Original veriuser.c File

s_tfcell veriusertfs[] =
{
 /*** Template for an entry:
 { usertask|userfunction, data,
 checktf(), sizetf(), calltf(), misctf(),
 "$tfname", forwref?, Vtool?, ErrMsg? },
 Example:
 {usertask, 0, my_check, 0, my_func, my_misctf, "$my_task" },
 ***/
/*** add user entries here ***/
 /* This Handles Binary bit patterns */
 {usertask, 0, 0, 0, convert_hex2ver, 0, "$convert_hex2ver",
1},

 {0} /*** final entry must be 0 ***/
};

Modified veriuser.c File

p_tfcell my_bootstrap ()
 {

static s_tfcell my_tfs[] =
/*s_tfcell veriusertfs[] = */
{
 /*** Template for an entry:
 { usertask|userfunction, data,
 checktf(), sizetf(), calltf(), misctf(),
 "$tfname", forwref?, Vtool?, ErrMsg? },
 Example:
 { usertask, 0, my_check, 0, my_func, my_misctf, "$my_task" },
 ***/
/*** add user entries here ***/
 /* This Handles Binary bit patterns */
 {usertask, 0, 0, 0, convert_hex2ver, 0, "$convert_hex2ver",
1},

 {0} /*** final entry must be 0 ***/
};
return(my_tfs);
 }

2. Run the PLI wizard by typing pliwiz at a command prompt, or on
the Utilities menu by clicking PLI Wizard in the NCLaunch
window.

3. In the Config Session Name and Directory page, type the name of
the session in the Config Session Name box and type the directory
in which the file should be built in the Config Session Directory
box.

4. Click Next.

4–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

5. In the Select Simulator/Dynamic Libraries page, select the
Dynamic Libraries Only option.

6. Click Next.

7. In the Select Components page, turn on the PLI 1.0 Applications
option, and select loadpli1.

8. Click Next.

9. Type a name into the Bootstrap Function(s) box.

For example, type my_bootstrap into the Bootstrap Function(s)
box.

10. Type the name of your generated dynamic library into the Dynamic
Library box.

For example, type convert_dyn_lib into the Dynamic Library
box to generate a dynamic library named convert_dyn_lib.so.

11. In the PLI 1.0 Application page, click Browse under PLI Source
Files to locate the convert_hex2ver.c file and the modified
veriuser.c file.

12. Click Next.

13. In the Select Compiler page, select your C compiler from the Select
Compiler list box.

gcc is an example of a C compiler. To allow the PLIWIZ wizard to
find your C compiler, ensure your Path variable is set correctly.

14. Click Next.

15. Click Finish.

16. To build your targets now, click Yes.

Altera Corporation 4–47
October 2007 Preliminary

Incorporating PLI Routines

Compilation generates your dynamic library, cmd_file.nc, and
cmd_file.xl files into your local directory. The cmd_file.nc and
cmd_file.xl files contain command line options to use with your newly
generated dynamic library file.

■ Use the cmd_file.nc command file with ncelab to perform your
simulations, as shown in the following example:

ncelab worklib.mylpmrom -FILE cmd_file.nc r
■ Use the cmd_file.xl command file with verilog-xl or ncverilog to

perform your simulations, as shown in the following example:

ncverilog -f cmd_file.xl r
verilog -f cmd_file.xl r

Statically Link the PLI Library with NC-Sim

To statically link the PLI library with NC-Sim software, perform the
following steps:

1. Run the PLI wizard by typing pliwiz at the command prompt, or
on the Utilities menu by clicking PLI Wizard in the NCLaunch
window.

2. In the Config Session Name and Directory page, type the name of
the session in the Config Session Name box and type the directory
in which the file should be built in the Config Session Directory
box.

3. Click Next.

4. Select NC Simulators and select NC-verilog.

5. Click Next.

6. In the Select Components page, turn on the PLI 1.0 Applications
option and select Static.

7. In the Select PLI 1.0 Application Input page, select Existing
VERIUSER (source/object file).

4–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

8. Select Source File and click Browse to locate the veriuser.c file
provided with the Quartus II software.

The veriuser.c file is found in the following location:

<path to Quartus II installation>/eda/cadence/verilog-xl

9. Click Next.

10. In the PLI 1.0 Application page, click Browse under PLI Source
Files to locate the convert_hex2ver.c file.

11. Click Next.

12. In the Select Compiler page, select your C compiler from the Select
Compiler list box.

gcc is an example of a C compiler. To allow the PLIWIZ to find your
C compiler, ensure your Path variable is set correctly.

13. Click Next.

14. Click Finish.

15. To build your targets now, click Yes.

Compilation generates ncelab and ncsim executables into your local
directory. These executables replace the original ncelab and ncsim
executables.

ncverilog users can use the following command to perform simulation
with the newly generated ncelab and ncsim executables.

ncverilog +ncelabexe+<path to ncelab> +ncsimexe+<path to ncelab> <design files> r

The following example shows how an ncverilog users can perform a
simulation with the newly generated ncelab and ncsim executables:

ncverilog +ncelabexe+./ncelab +ncsimexe+./ncsim my_ram.vt my_ram.v -v altera_mf.v r

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r

Altera Corporation 4–49
October 2007 Preliminary

Conclusion

The Scripting Reference Manual includes the same information in PDF
format.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter
in volume 2 of the Quartus II Handbook. Refer to the Quartus II Settings
File Reference Manual for information about all settings and constraints in
the Quartus II software. For more information about command-line
scripting, refer to the Command-Line Scripting chapter in volume 2 of the
Quartus II Handbook.

Generate NC-Sim Simulation Output Files

You can generate Verilog Output File and Standard Delay Format Output
File simulation output files with Tcl commands or at a command prompt.

For more information about generating Verilog Output File simulation
output files and Standard Delay Format Output File simulation output
files, refer to “Quartus II Simulation Output Files” on page 4–22.

Tcl Commands:

The following three assignments cause a Verilog HDL netlist to be written
out when you run the Quartus II netlist writer. The netlist has a 1 ps
timing resolution for the NC-Sim Simulation software.

set_global_assignment -name EDA_OUTPUT_DATA_FORMAT VERILOG -section_id eda_simulation
set_global_assignment -name EDA_TIME_SCALE "1 ps" -section_id eda_simulation
set_global_assignment -name EDA_SIMULATION_TOOL "NC-Verilog (Verilog)"

Use the following Tcl command to run the Quartus II netlist writer:

execute_module -tool eda

Command Prompt

Use the following command to generate a simulation output file for the
Cadence NC-Sim software simulator. Specify Verilog HDL or VHDL for
the format.

quartus_eda <project name> --simulation --format=<verilog|vhdl> --tool=ncsim r

Conclusion The Cadence NC family of simulators work within an Altera FPGA
design flow to perform functional/RTL, post-synthesis, and gate-level
timing simulation, easily and accurately.

4–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera provides functional models of LPM and Altera-specific
megafunctions that you can compile with your testbench or design. For
timing simulation, use the atom netlist file generated by Quartus II
compilation.

The seamless integration of the Quartus II software and Cadence NC
tools make this simulation flow an ideal method for fully verifying an
FPGA design.

Referenced
Documents

This chapter references the following documents:

■ SDF Annotate Guide and Cadence NC-Sim User Manual from Cadence
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook
■ Quartus II Settings File Reference Manual
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook

Document
Revision History

Table 4–10 shows the revision history for this chapter.

Table 4–10. Document Revision History (Part 1 of 2)

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

● Updated Table 4–1.
● Updated “Operating Condition Example: Generate All Timing

Models for Stratix III and Cyclone III Devices” on page 4–26.

Updated for the
Quartus II software

version 7.2.

May 2007
v7.1.0

● Updated “Software Requirements” on page 4–1.
● Updated “Generating a Gate-Level Timing Simulation

Netlist” on page 4–24.
● Added “Perform Timing Simulation Using Post-Synthesis

Netlist” on page 4–27.
● Updated “Pulse Reject Delays” on page 4–37.
● Updated “Performing a Gate Level Simulation Using

NativeLink” on page 4–41.
● Updated procedure in “Setting Up a Testbench” on

page 4–41.
● Added “Referenced Documents” on page 4–51.

—

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

http://cadence.com/
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Altera Corporation 4–51
October 2007 Preliminary

Document Revision History

November 2006
v6.1.0

● Added new software versions to Table 4-1.
● Several other minor changes.

Updated for the
Quartus II software
version 6.1.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Added a section about setting VCS as the Simulation Tool
● Updated EDA Tools Settings in the GUI.
● Updated the Synopsys Design Constraints File information.
● Added pulse_e and pulse_r information to simulation

sections.
● Added Quartus II-Generated Testbench information
● Updated megafunction information.

—

December 2005
v5.1.1

● Removed reference to convert_hex2ver.obj. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

● Updated information.
● Added Using NativeLink with NC-Sim section.
● New functionality for Quartus II software 5.0.

—

December 2004
v3.0

Reorganized chapter and updated information. —

August 2004
v2.1

● New functionality for Quartus II software 4.1 SP1. —

June 2004
v2.0

● Updates to tables and figures.
● New functionality for Quartus II software 4.1.

—

February 2004
v1.0

Initial release. —

Table 4–10. Document Revision History (Part 2 of 2)

Date and
Document Version Changes Made Summary of Changes

4–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 5–1
October 2007

5. Simulating Altera IP in
Third-Party Simulation Tools

Introduction The capacity and complexity of Altera® FPGAs continues to increase as
the need for intellectual property (IP) becomes increasingly critical. Using
IP megafunctions reduces the design and verification time, allowing you
to focus on design customization. Altera and the Altera Megafunction
Partners Program (AMPPSM) offer a broad portfolio of IP megafunctions
optimized for Altera FPGAs. Through parameterization, these reusable
blocks of IP can be customized to meet your design requirements.

Even when the IP source code is encrypted or otherwise restricted,
Altera’s Quartus® II software allows you to easily simulate designs that
contain Altera IP. With the Quartus II software, you can custom configure
IP designs, then generate a VHDL or Verilog HDL functional simulation
model to use with your choice of simulation tools.

This chapter provides an overview of the process for instantiating the IP
megafunctions in your design and simulating its’ functional simulation
model in an Altera-supported, third-party simulation tool. In this
chapter, IP megafunctions refer to Altera megafunctions, IP MegaCore®
functions and IP AMPP megafunctions. All IP MegaCore functions come
with IP functional simulations (IPFS) models to support functional
simulation. Some Altera megafunctions and some AMPP megafunctions
also require IPFS models for functional simulation.

IP Functional
Simulation Flow

The IP megafunction’s MegaWizard® interface allows you to quickly and
easily view documentation, specify parameters, generate an IP functional
simulation (IPFS) model, and output the files necessary to integrate a
parameterized IP megafunction into your design. Within the Quartus II
software, the MegaWizard Plug-In Manager can be used to select and
parameterize your choice of IP megafunctions. The Quartus II software
generates an IP megafunction’s variation file that is included in your
Quartus II project. For IP megafunctions that require IPFS models,
Quartus II software can also generate a Verilog Output File (.vo) or
VHDL Output File (.vho) that contains a Register Transfer Level (RTL)
IPFS model after you have parameterized the megafunction. IPFS models
are written to the Quartus II project directory.

QII53014-7.2.0

5–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Most Altera megafunctions and IP MegaCore functions support
functional simulation in Verilog and VHDL for all Altera supported
third-party simulators. Simulation libraries are required to simulate IP
megafunctions. Refer to Table 5–2 on page 5–10 for a subset of simulation
libraries supplied with the Quartus II software.

Figure 5–1 shows a typical simulation flow for Altera IP with third-party
simulators.

Figure 5–1. IP Functional Simulation (IPFS) Model Design Flow

Verilog and VHDL IP Functional Simulation (IPFS) Models

Some IP megafunctions require IPFS models to support functional
simulation. These IPFS models are written in high-level Register Transfer
Level (RTL) HDL. These high-level RTL models in Verilog or VHDL
format differ from the low-level synthesized netlist in Verilog or VHDL
format generated by the Quartus II software for post-synthesis or post
place-and-route simulations. The IPFS models generated by the

Quartus II Design Environment

Parameterize IP Megafunction

Instantiate IP in your Design

Perform Simulation in an
Altera-Supported VHDL/Verilog HDL

Simulator

Simulation
Libraries

Generate IPFS Model
and Variation File

Altera Corporation 5–3
October 2007

Simulating Altera IP in Third-Party Simulation Tools

Quartus II software are much faster than the low-level post-synthesis or
post place-and-route netlists of your design because they are mapped to
higher-level primitives such as adders, multipliers, and multiplexers.
These IPFS models can be simulated together with the rest of your design
in any Altera-supported simulator. Altera recommends that you generate
IPFS models in the same hardware language as the IP megafunction's
variation file hardware language.

c You can use an IPFS model for simulation only, and not for
synthesis or any other purpose. Attempting to synthesize an
IPFS model will result in a nonfunctional design.

1 Generating an IPFS model for Altera MegaCore functions does
not require a license. However, generating an IPFS model for
AMPP megafunctions may require a license. For more
information on licensing requirements, contact the IP
megafunction vendor.

For details about how to parameterize and generate an IP, refer to the
applicable IP user guide.

Instantiate the
IP in Your
Design

For each IP megafunction in your design, you must instantiate the
corresponding entity or module in your design. Each IP megafunction
entity or module name is defined in its Quartus II generated
megafunction variation file. After instantiating the IP megafunction in
your design, you do not need to edit your design for synthesis or
simulation.

To synthesize your design using the Quartus II software, add the
Quartus II-generated Verilog HDL or VHDL variation file to your
Quartus II project. When you create new variation files for a Quartus II
project, they are added to the current open project when the
megafunction is generated.

To synthesize your design using a third-party EDA tool, add the
Quartus II-generated CMP file (<megafunction variation>.cmp) for your
VHDL design or the Verilog HDL black box file (<megafunction
variation>_bb.v) for your Verilog HDL design to your third-party
synthesis project.

f For more information about synthesis and compilation with the
Quartus II software, refer to the applicable chapters in volume 1 of the
Quartus II Handbook.

5–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Perform
Simulation

To perform simulation, in addition to adding your design files and
testbench files, you also have to add the IP megafunction's variation file
or IPFS model to your simulation project. If the IP megafunction does not
require an IPFS model for simulation, add the megafunctions’ variation
file to your simulation project. If the IP megafunction you are simulating
requires an IPFS model, then add the IPFS model to your simulation
project. Your simulation project will also require Altera-supplied libraries
for successful simulation. Figure 5–2 shows how the Altera libraries are
used in IP functional simulation.

Figure 5–2. IP Functional Simulation Library Usage

The Quartus II software contains all the libraries required for setting up
and running a successful simulation of Altera IP. You can use the
Quartus II NativeLink feature to set up your simulation if the IP
megafunction you are using supports Quartus II NativeLink. Refer to the
applicable IP megafunction user guide to determine if the IP
megafunction supports the NativeLink feature in the Quartus II software.
Alternatively, you can simulate Altera IP with third-party simulators
directly.

Simulating Altera IP Using the Quartus II NativeLink Feature

The Quartus II NativeLink feature eases the task of setting up and
running a simulation. The NativeLink feature lets you launch the
third-party simulator to perform simulation from within the Quartus II
software. The NativeLink feature automates the compilation and
simulation of testbenches.

My RTL Design

My Testbench

sgate Library

IP Functional
Simulation Model

220model and
altera_mf Libraries

Altera Corporation 5–5
October 2007

Simulating Altera IP in Third-Party Simulation Tools

The following list briefly describes the steps to simulate IP megafunctions
with third-party simulators using the Quartus II NativeLink feature.
Each of these steps is described in more detail in the sections that follow.

1. Set up a Quartus II Project.

2. Select the Third-Party Simulation Tool.

3. Specify the Path for the Third-Party Simulator.

4. Specify the Testbench Settings.

5. Analyze and Elaborate the Quartus II Project.

6. Run RTL Functional Simulation.

Set up a Quartus II Project

To simulate IP megafunctions with the Quartus II NativeLink feature,
you must open an existing project or create a new project in the Quartus II
software. You can create and parameterize the IP you want to use in your
design using MegaWizard Plug-In Manager within the Quartus II
software. Altera IP megafunction variation files are added to your
Quartus II project when you create and parameterize the IP. You can also
add any other required design files to your Quartus II project. If you are
using the Quartus II NativeLink feature and your Quartus II project
contains IP megafunctions that require IPFS models for simulation, you
do not have to manually add the IPFS models to the Quartus II project for
these IP megafunctions. When the Quartus II NativeLink feature
launches the third-party simulator tool and starts the simulation, it
automatically adds the IPFS model files required for simulation as long
as they are present in the Quartus II project directory.

Select the Third-Party Simulation Tool

You can select the third-party simulation tool from the Project Settings
menu, as shown in Figure 5–3.

5–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 5–3. Selecting Third-Party Simulator Tools

Table 5–1 lists the third-party simulators supported by the Quartus II
NativeLink feature.

Table 5–1. Third-Party Simulator Support with the Quartus II NativeLink Feature

Third-Party Simulator Can be Launched from
Quartus II Testbench Support Mixed Design (Verilog

and VHDL)

ModelSim PE/SE Yes Yes Yes

ModelSim Altera Edition Yes Yes No

Synopsys VCS Yes(1) Yes No

Synopsys VCS-MX Yes(1) Yes Yes

Cadence NC-Sim Yes(1) Yes Yes

Aldec Yes Yes Yes

Note to Table 5–1:
(1) If the simulator is run on UNIX or Linux platforms, the Quartus II software must be running on the same platform

to launch the simulator tool.

Altera Corporation 5–7
October 2007

Simulating Altera IP in Third-Party Simulation Tools

Specify the Path for the Third-Party Simulator

To launch the third-party simulation tool, the absolute path for the
selected simulator must be provided in the Options page under the Tools
menu. See Figure 5–4. Double click the Location of executable field to
change or specify the absolute path.

Figure 5–4. Specifying the Simulator Path

Specify the Testbench Settings

Specify the applicable testbench settings as follows:

1. Under the NativeLink Settings in the Settings dialog box
(Figure 5–3), select the Compile Test Bench radio button and click
Test Benches to display the Test Benches dialog box. See Figure 5–5.

5–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 5–5. Test Bench Dialog Box

2. Click New to display the New Test Bench Settings dialog box
(shown in Figure 5–6).

Figure 5–6. New Test Bench Settings Dialog Box

3. In the New Test Bench Settings dialog box, set the appropriate
fields with the names for the testbenches.

Altera Corporation 5–9
October 2007

Simulating Altera IP in Third-Party Simulation Tools

f For specific instructions about specifying testbench settings for your
MegaCore function, refer to your MegaCore function user guide.

4. After specifying the testbench files, close the New Test Bench
Settings, Test Benches, and Settings dialog boxes.

Analyze and Elaborate the Quartus II Project

Before starting the simulation using the NativeLink feature, make sure
that each IP megafunctions’ variation files are included in your design
project. On the Quartus II Processing menu, point to Start, then click Start
Analysis & Elaboration.

Run RTL Functional Simulation

After the design is analyzed and elaborated, you can start the simulation
by clicking Run EDA-RTL Simulation from the Tools menu. See
Figure 5–7. During RTL functional simulation, the IPFS models are
compiled and used by the simulator.

Figure 5–7. Running Functional Simulation for IP using NativeLink

Simulating Altera IP Without the Quartus II NativeLink Feature

You can also simulate Altera IP directly with third-party simulators. If
your design instantiates an IP megafunction, add its variation file to your
simulation project. If the IP megafunction requires IPFS model files, do
not add the megafunctions’ variation file to your simulation project.
Rather, add its’ IPFS model files (either Verilog or VHDL) to your
simulation project. The IPFS model generated by the Quartus II software
instantiates high-level primitives such as adders, multipliers, and
multiplexers, as well as the library of parameterized modules (LPM)
functions and Altera megafunctions.

5–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

To properly compile, load, and simulate the IP megafunctions, you must
first compile the following libraries in your simulation tool:

■ sgate—includes the definition of the high-level primitives (needed
for IPFS models)

■ altera_mf—includes the definition of Altera megafunctions
■ 220model—includes the definition of LPM functions

You can use these library files with any Altera-supported simulation tool.
If you are using the ModelSim® Altera software, the libraries are
precompiled and mapped.

f To simulate a design containing a Nios® processor or Avalon®
peripherals, refer to AN 189 Simulating Nios Embedded Processor Designs.

Table 5–2 lists the simulation library files, where <path> is the directory
where the Quartus II software is installed.

Table 5–2. Simulation Library Files

Location HDL Language Description

<path>/eda/sim_lib/sgate.v Verilog HDL Libraries that contain simulation models
for IP functional models<path>/eda/sim_lib/sgate.vhd VHDL

<path>/eda/sim_lib/sgate_pack.vhd VHDL Libraries that contain VHDL component
declarations for the sgate.vhd library

<path>/eda/sim_lib/220model.v Verilog HDL Libraries that contain simulation models
for the Altera LPM version 2.2.0<path>/eda/sim_lib/220model.vhd VHDL

<path>/eda/sim_lib/220pack.vhd VHDL Libraries that contain VHDL component
declarations for the 220model.vhd
library

<path>/eda/sim_lib/altera_mf.v Verilog HDL Libraries that contain simulation models
for Altera-specific megafunctions<path>/eda/sim_lib/altera_mf.vhd VHDL

<path>/eda/sim_lib/altera_mf_components.vhd VHDL Libraries that contain VHDL component
declarations for the altera_mf.vhd library

Altera Corporation 5–11
October 2007

Simulating Altera IP in Third-Party Simulation Tools

Design
Language
Examples

The following design language examples explain how to simulate IP
megafunctions directly with third-party simulator tools. These design
examples describe simulation with:

■ ModelSim Verilog
■ ModelSim VHDL
■ NC-VHDL
■ VCS

Verilog HDL Example: Simulating the IPFS Model in the
ModelSim Software

The following example shows the process of simulating a Verilog
HDL-based megafunction. The example assumes that the megafunction
variation and the IPFS model are generated.

1. Create a ModelSim project by performing the following steps:

a. In the ModelSim software, on the File menu, point to New and
click Project. The Create Project dialog box is shown.

b. Specify the name of your simulation project.

c. Specify the desired location for your simulation project.

d. Specify the default library name and click OK.

e. Add relevant files to your simulation project:

• Your design files
• The IPFS model generated by the Quartus II software (if

you are using the ModelSim-Altera software, skip to step 5)
• The sgate.v, 220model.v, and altera_mf.v library files

2. Create the required simulation libraries by typing the following
commands at the ModelSim prompt:

vlib sgate r
vlib lpm r
vlib altera_mf r

5–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

3. Map to the required simulation libraries by typing the following
commands at the ModelSim prompt:

vmap sgate sgate r
vmap lpm lpm r
vmap altera_mf altera_mf r

4. Compile the HDL into libraries by typing the following commands
at the ModelSim prompt:

vlog -work altera_mf altera_mf.v r
vlog -work sgate sgate.v r
vlog -work lpm 220model.v r

5. Compile the IPFS model by typing the following command at the
ModelSim prompt:

vlog -work work <my_IP>.vo r
6. Compile your RTL by typing the following command at the

ModelSim prompt:

vlog -work work <my_design>.v r
7. Compile the testbench by typing the following command at the

ModelSim prompt:

vlog -work work <my_testbench>.v r
8. Load the testbench by typing the following command at the

ModelSim prompt:

vsim -L <altera_mf library_path> -L <lpm_library_path>
-L <sgate_library_path> work.<my_testbench> r

VHDL Example: Simulating the IPFS Model in the ModelSim
Software

The following example shows the process of performing a functional
simulation of a VHDL-based, megafunction IPFS model. The example
assumes that the megafunction’s variation and the IPFS model are
generated.

Altera Corporation 5–13
October 2007

Simulating Altera IP in Third-Party Simulation Tools

1. Create a ModelSim project by performing the following steps:

a. In the ModelSim software, on the File menu, point to New and
click Project. The Create Project dialog box appears.

b. Specify the name for your simulation project.

c. Specify the desired location for your simulation project.

d. Specify the default library name and click OK.

e. Add the relevant files to your simulation project:

• Add your design files
• Add the IPFS model generated by the Quartus II software

(if you are using the ModelSim-Altera software, skip to step
5)

• Add the sgate.vhd, sgate_pack.vhd, 220model.vhd,
220pack.vhd, altera_mf.vhd, and
altera_mf_components.vhd library files

2. Create the required simulation libraries by typing the following
commands at the ModelSim prompt:

vlib sgate r
vlib lpm r
vlib altera_mf r

3. Map to the required simulation libraries by typing the following
commands at the ModelSim prompt:

vmap sgate sgate r
vmap lpm lpm r
vmap altera_mf altera_mf r

4. Compile the HDL into libraries by typing the following commands
at the ModelSim prompt:

vcom -work altera_mf -93 -explicit
altera_mf_components.vhd r
vcom -work altera_mf -93 -explicit altera_mf.vhd r

5–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

vcom -work lpm -93 -explicit 220pack.vhd r
vcom -work lpm -93 -explicit 220model.vhd r
vcom -work sgate -93 -explicit sgate_pack.vhd r
vcom -work sgate -93 -explicit sgate.vhd r

5. Compile the IPFS model by typing the following command at the
ModelSim prompt:

vcom -work work -93 -explicit <output_netlist>.vho r
6. Compile the RTL by typing the following command at the

ModelSim prompt:

vcom -work work -93 -explicit <RTL>.vhd r
7. Compile the testbench by typing the following command at the

ModelSim prompt:

vcom -work work -93 -explicit <my_testbench>.vhd r
8. Load the testbench by typing the following command at the

ModelSim prompt:

vsim work.my_testbench r

NC-VHDL Example: Simulating the IPFS Model in the NC-VHDL
Software

The following example shows the process of performing a functional
simulation of an NC-VHDL-based, megafunction IP
functional-simulation model. The example assumes that the
megafunction’s variation and the IPFS model are generated.

1. Create a cds.lib file by typing the following entries:

DEFINE worklib ./worklib

DEFINE sgate ./sgate

DEFINE altera_mf ./altera_mf

DEFINE lpm ./lpm

Altera Corporation 5–15
October 2007

Simulating Altera IP in Third-Party Simulation Tools

2. Compile library files into appropriate libraries by typing the
following commands at the command prompt:

ncvhdl –V93 –WORK lpm 220pack.vhd r
ncvhdl –V93 –WORK lpm 220model.vhd r
ncvhdl –V93 –WORK altera_mf
altera_mf_components.vhd r
rncvhdl –V93 –WORK altera_mf altera_mf.vhd r
ncvhdl –V93 –WORK sgate sgate_pack.vhd r
ncvhdl –V93 –WORK sgate sgate.vhd r

3. Compile source code and testbench files by typing the following
commands at the command prompt:

ncvhdl –V93 –WORK worklib <my_design>.vhd r
ncvhdl –V93 –WORK worklib <my_testbench>.vhd r
ncvhdl –V93 –WORK worklib
<my_IPtoolbench_output_netlist>.vho r

4. Elaborate the design by typing the following command at the
command prompt:

ncelab worklib.<my_testbench>:entity r

Verilog HDL Example: Simulating Your IPFS Model in VCS

The following example illustrates the process of performing a functional
simulation of a design that contains a Verilog HDL-based, megafunction
IPFS model. This example assumes that the megafunction variation and
the IPFS model are generated.

Single-Step Process

For the single-step process, type the following at the command prompt:

vcs <testbench>.v <RTL>.v <output_netlist>.v -v 220model.v
altera_mf.v sgate.v -R r

5–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Two-Step Process (Compilation and Simulation)

For compilation and simulation, perform the following steps:

1. Compile your design files by typing the following at the command
prompt:

vcs <testbench>.v <RTL>.v <output_netlist>.v -v 220model.v
altera_mf.v sgate.v -o simulation_out r

2. Load your simulation by typing the following at a command
prompt:

source simulation_out r
f For more information about simulating a design in VCS, refer to the

chapter Synopsys VCS Support in volume 3 of the Quartus II Handbook.

Conclusion Altera Quartus II software provides full support for simulating IP
megafunction’s with third party tools either directly or using its
NativeLink feature. Using the Quartus II software, you can also generate
IPFS models for supported megafunctions that enhances and simplifies
design verification. Using an IPFS model is transparent, requiring only
the addition of different files in which to synthesize and simulate projects.

Referenced
Documents

This chapter references the following documents:

■ Synopsys VCS Support in volume 3 of the Quartus II Handbook
■ Volume 1 of the Quartus II Handbook

http://www.altera.com/literature/quartus2/lit-qts-synthesis.jsp
http://www.altera.com/literature/hb/qts/qts_qii53002.pdf

Altera Corporation 5–17
October 2007

Simulating Altera IP in Third-Party Simulation Tools

Document
Revision History

Table 5–3 shows the revision history for this chapter.

Table 5–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 5–16. —

May 2007
v7.1.0

● Updated Figure 5–6
● Added “Referenced Documents” section.

Minor updates to support the
Quartus II software, version
7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. —

November 2006
v6.1.0

● Added Quartus II NativeLink feature information
● Updated Figure 5-1, 5-2
● Added Figure 5-3, 5-4, 5-7
● Added Table 5-1

Chapter updates to support
the Quartus II NativeLink
feature.

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

Chapter 4 was formerly in Section I, Vol 3 in 4.2. —

December 2004
v1.0.0

Initial release. —

5–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Altera Corporation Section II–i
Preliminary

Section II. Timing Analysis

As designs become more complex, the need for advanced timing analysis
capability grows. Static timing analysis is a method of analyzing,
debugging, and validating the timing performance of a design. The
Quartus® II software provides the features necessary to perform
advanced timing analysis for today’s system-on-a-programmable-chip
(SOPC) designs.

Synopsys PrimeTime is an industry standard sign-off tool, used to
perform static timing analysis on most ASIC designs. The Quartus II
software provides a path to enable you to run PrimeTime on your
Quartus II software designs, and export a netlist, timing constraints, and
libraries to the PrimeTime environment.

This section explains the basic principles of static timing analysis, the
advanced features supported by the Quartus II Timing Analyzer, and
how you can run PrimeTime on your Quartus designs.

This section includes the following chapters:

■ Chapter 6, The Quartus II TimeQuest Timing Analyzer
■ Chapter 7, Switching to the Quartus II TimeQuest Timing Analyzer
■ Chapter 8, Quartus II Classic Timing Analyzer
■ Chapter 9, Synopsys PrimeTime Support

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section II–ii Altera Corporation
Preliminary

Timing Analysis Quartus II Handbook, Volume 3

Altera Corporation 6–1
October 2007

6. The Quartus II TimeQuest
Timing Analyzer

Introduction The Quartus® II TimeQuest Timing Analyzer is a powerful ASIC-style
timing analysis tool that validates the timing performance of all logic in
your design using an industry-standard constraint, analysis, and
reporting methodology. Use the Quartus II TimeQuest Timing Analyzer’s
GUI or command-line interface to constrain, analyze, and report results
for all timing paths in your design.

Before running the Quartus II TimeQuest Timing Analyzer, you must
specify initial timing constraints that describe the clock characteristics,
timing exceptions, and signal transition arrival and required times. You
can specify timing constraints in the Synopsys Design Constraints (SDC)
file format using the GUI or command-line interface. The Quartus II Fitter
optimizes the placement of logic to meet your constraints.

During timing analysis, the Quartus II TimeQuest Timing Analyzer
analyzes the timing paths in the design, calculates the propagation delay
along each path, checks for timing constraint violations, and reports
timing results as slack in the Report pane and in the Console pane. If the
Quartus II TimeQuest Timing Analyzer reports any timing violations,
you can customize the reporting to view precise timing information about
specific paths, and then constrain those paths to correct the violations.
When your design is free of timing violations, you can be confident that
the logic will operate as intended in the target device.

the Quartus II TimeQuest Timing Analyzer is a complete static timing
analysis tool that you can use as a sign-off tool for Altera® FPGAs and
structured ASICs.

This chapter contains the following sections:

■ “Getting Started with the Quartus II TimeQuest Timing Analyzer”
■ “Compilation Flow with the Quartus II TimeQuest Timing Analyzer

Guidelines” on page 6–3
■ “Timing Analysis Overview” on page 6–7
■ “Specify Design Timing Requirements” on page 6–19
■ “The Quartus II TimeQuest Timing Analyzer Flow Guidelines” on

page 6–22
■ “Collections” on page 6–23
■ “Constraints Files” on page 6–25
■ “Clock Specification” on page 6–28
■ “I/O Specifications” on page 6–45

 QII53018-7.2.0

6–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ “Timing Exceptions” on page 6–48
■ “Constraint and Exception Removal” on page 6–57
■ “Timing Reports” on page 6–58
■ “Timing Analysis Features” on page 6–77
■ “The TimeQuest Timing Analyzer GUI” on page 6–82
■ “Conclusion” on page 6–95

Getting Started
with the
Quartus II
TimeQuest
Timing Analyzer

The Quartus II TimeQuest Timing Analyzer caters to the needs of the
most basic to the most advanced designs for FPGAs.

This section provides a brief overview of the Quartus II TimeQuest
Timing Analyzer, including the necessary steps to properly constrain a
design, perform a full place-and-route, and perform reporting on the
design.

Setting Up the Quartus II TimeQuest Timing Analyzer

The Quartus II software version 7.2 supports two native timing analysis
tools: Quartus II TimeQuest Timing Analyzer and the Quartus II Classic
Timing Analyzer. When you specify the Quartus II TimeQuest Timing
Analyzer as the default timing analysis tool, the Quartus II TimeQuest
Timing Analyzer guides the Fitter and analyzes timing results after
compilation.

To specify the Quartus II TimeQuest Timing Analyzer as the default
timing analyzer, on the Assignments menu, click Settings. In the Settings
dialog box, in the Category list, select Timing Analysis Settings, and turn
on Use TimeQuest Timing Analyzer during compilation.

To add the TimeQuest icon to the Quartus II toolbar, on the Tools menu,
click Customize. In the Customize dialog box, click the Toolbars tab, turn
on Processing, and click Close.

Altera Corporation 6–3
October 2007 Preliminary

Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines

Compilation
Flow with the
Quartus II
TimeQuest
Timing Analyzer
Guidelines

When you enable the Quartus II TimeQuest Timing Analyzer as the
default timing analyzer, everything from constraint validation to timing
verification is performed by the Quartus II TimeQuest Timing Analyzer.
Figure 6–1 shows the recommended design flow steps to maximize and
leverage the benefits the Quartus II TimeQuest Timing Analyzer. Details
about each step are provided after the figure.

Figure 6–1. Design Flow with the Quartus II TimeQuest Timing Analyzer

■ Create Quartus II Project and Specify Design Files—Creates a
project before you can compile design files. In this step you specify
the target FPGA, any EDA tools used in the design cycle, and all
design files.

You can also modify existing design files for design optimization and
add additional design files. For example, you can add HDL files or
schematics to the project.

■ Perform Initial Compilation—Creates an initial design database
before you specify timing constraints for your design. Perform
Analysis and Synthesis to create a post-map database, or perform a
full compilation to create a post-fit database.

Creating a post-map database for the initial compilation is faster than
creating a post-fit database, and a post-map database is sufficient for
the initial database.

Creating a post-fit database is recommended only if you previously
created and specified an SDC file for the project. A post-map
database is sufficient for the initial compilation.

Create Quartus II Project
& Specify Design Files

Perform Initial Compilation

Specify Design Requirements

Perform Compilation

Verify Timing

6–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Specify Design Requirements—Timing requirements guide the
Fitter as it places and routes your design.

You must enter all timing constraints and exceptions in an SDC file.
This file must be included as part of the project. To add this file to
your project, on the Project menu, click Add/Remove Files in
Project, and add the SDC file in the Files dialog box.

1 Refer to “Specify Timing Constraints” on page 6–20 for a list of
timing constraints and exceptions.

■ Perform Compilation—Synthesizes, places, and routes your design
into the target FPGA.

When compilation is complete, the TimeQuest Timing Analyzer
generates summary clock setup and clock hold, recovery, and
removal reports for all defined clocks in the design.

■ Verify Timing—Verifies timing in your design with the Quartus II
TimeQuest Timing Analyzer

Running the Quartus II TimeQuest Timing Analyzer

You can run the Quartus II TimeQuest Timing Analyzer in one of the
following modes:

■ Directly from the Quartus II software
■ Stand-alone mode
■ Command-line mode

This section describes each of the modes, and the behavior of the
Quartus II TimeQuest Timing Analyzer.

Directly from the Quartus II Software

To run the Quartus II TimeQuest Timing Analyzer from the Quartus II
software, on the Tools menu, click TimeQuest Timing Analyzer. The
Quartus II TimeQuest Timing Analyzer is available after you have
created a database for the current project. The database can be either a
post-map or post-fit database; perform Analysis and Synthesis to create a
post-map database, or a full compilation to create a post-fit database.

1 After a database is created in the Quartus II software, you can
create a timing netlist based on that database. If you create a
post-map database, you cannot create a post-fit timing netlist in
the Quartus II TimeQuest Timing Analyzer.

Altera Corporation 6–5
October 2007 Preliminary

Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines

When you launch the TimeQuest Timing Analyzer directly from the
Quartus II software, the current project opens by default.

Stand-Alone Mode

To run the Quartus II TimeQuest Timing Analyzer in stand-alone mode,
type the following command at the command prompt:

quartus_staw r
In stand-alone mode, you can perform static analysis on any project that
contains either a post-map or post-fit database. To open a project,
double-click Open Project in the Tasks pane.

Command-Line Mode

Use the command-line mode for easy integration with scripted design
flows. Using the command-line mode avoids interaction with the user
interface provided by the Quartus II TimeQuest Timing Analyzer, but
allows the automation of each step of the static timing analysis flow.
Table 6–1 provides a summary of the options available in the
command-line mode.

Table 6–1. Summary of Command Line Options (Part 1 of 2)

Command Line Option Description

-h | --help Provides help information on quartus_sta.

-t <script file> |
--script=<script file>

Sources the <script file>.

-s | --shell Enters shell mode.

--tcl_eval <tcl command> Evaluates the Tcl command <tcl command>.

--do_report_timing Runs the command:
report_timing -npaths 1 -to_clock $clock for all clocks in the
design.

--force_dat Forces the Delay Annotator to annotate the new delays from the recently
compiled design to the compiler database.

--lower_priority Lowers the computing priority of the quartus_sta process.

--post_map Uses the post-map database results.

--qsf2sdc Converts assignments from the Quartus II Settings File (.qsf) format to the
Synopsys Design Constraints File format.

--sdc=<SDC file> Specifies the SDC file to read.

--fast_model Uses the fast corner delay models.

--report_script=<script> Specifies a custom report script to be called.

--speed=<value> Specifies the device speed grade to be used for timing analysis.

6–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

To run the Quartus II TimeQuest Timing Analyzer in command-line
mode, type the following command at the command prompt:

quartus_sta <options> r

--tq2hc Generate temporary files to convert the Quartus II TimeQuest Timing Analyzer
SDC file(s) to a PrimeTime SDC file that can be used by the HardCopy Design
Center (HCDC).

--tq2pt Generate temporary files to convert the Quartus II TimeQuest Timing Analyzer
SDC file(s) to a PrimeTime SDC file.

-f <argument file> Specifies a file containing additional command-line arguments.

-c <revision name> |
--rev=<revision_name>

Specifies which revision and its associated Quartus II Settings File (.qsf) to
use.

--multicorner Specifies that all slack summary reports be generated for both the slow and
fast corners.

Table 6–1. Summary of Command Line Options (Part 2 of 2)

Command Line Option Description

Altera Corporation 6–7
October 2007 Preliminary

Timing Analysis Overview

Timing Analysis
Overview

This section provides an overview of the Quartus II TimeQuest Timing
Analyzer concepts. Understanding these concepts allows you to take
advantage of the powerful timing analysis features available in the
Quartus II TimeQuest Timing Analyzer.

the Quartus II TimeQuest Timing Analyzer follows the flow shown in
Figure 6–2 when it analyzes your design. Table 6–2 lists the most
commonly used commands for each step.

Figure 6–2. The the Quartus II TimeQuest Timing Analyzer Flow

Create Timing Netlist
create_timing_netlist

Create Timing Netlist
create_timing_netlist

Constrain the Design

UpdateTiming Netlist
update_timing_netlist

Verify Static Timing
Analysis Results

Open Project
project_open

create_clock
set_clock_uncertainty
set_clock_latency

create_generated_clock
derive_pll_clocks
set_input_delay
set_output_delay, ...

report_sdc
report_timing
report_clocks
report_min_pulse_width
report_ucp

report_clocks_transfers
report_min_pulse_width
report_net_timing

6–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 6–2 describes the Quartus II TimeQuest Timing Analyzer
terminology.

The Quartus II TimeQuest Timing Analyzer requires a timing netlist
before it can perform a timing analysis on any design. For example, for
the design shown in Figure 6–3, the Quartus II TimeQuest Timing
Analyzer generates a netlist equivalent to the one shown in Figure 6–4.

Figure 6–3. Sample Design

Table 6–2. The Quartus II TimeQuest Timing Analyzer Terms

Terminology Definition

Nodes Most basic timing netlist unit. Use to represent ports, pins, registers, and keepers.

Keepers Ports or registers. (1)

Cells Look-up table (LUT), registers, DSP blocks, TriMatrix® memory, IOE, and so on. (2)

Pins Inputs or outputs of cells.

Nets Connections between pins.

Ports Top-level module inputs or outputs; for example, device pins.

Clocks Abstract objects outside of the design.

Notes to Table 6–2:
(1) Pins can indirectly refer to keepers. For example, when the value in the -from field of a constraint is a clock pin to

a dedicated memory. In this case, the clock pin refers to a collection of registers.

(2) For Stratix® devices and other early device families, the LUT and registers are contained in logic elements (LE) and
act as cells for these device families.

data1 and_inst

data2

clk

reg1

reg2

reg3

Altera Corporation 6–9
October 2007 Preliminary

Timing Analysis Overview

Figure 6–4. The Quartus II TimeQuest Timing Analyzer Timing Netlist

Figure 6–4 shows various cells, pins, nets, and ports. Sample cell names
are reg1, reg2, and and_inst; sample pins are data1|combout,
reg1|regout, and and_inst|combout; sample net names are
data1~combout, reg1, and and_inst; and sample port names are
data1, clk, and data_out.

Paths connect two design nodes, such as the output of a register to the
input of another register. Timing paths play a significant role in timing
analysis. Understanding the types of timing paths is important to timing
closure and optimization. The following list shows some of the
commonly analyzed paths that are described in this section:

■ Edges—the connections from ports-to-pins, from pins-to-pins, and
from pins-to-ports.

■ Clock paths—the edges from device ports or internally generated
clock pins to the clock pin of a register.

■ Data paths—the edges from a port or the data output pin of a
sequential element to a port or the data input pin of another
sequential element.

■ Asynchronous paths—the edges from a port or sequential element
to the asynchronous set or clear pin of a sequential element.

Figure 6–5 shows some of these commonly analyzed path types.

data1
reg1

combout

combout

outclk

inclk0]

datain

clk

regout

regout

datac

datad
datain

data_out
reg3

and_inst

data2 reg2

clk clk~clkctrl

Cell

Port

Pin

Pin

Port

Cells

Cell

6–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 6–5. Path Types

Once the Quartus II TimeQuest Timing Analyzer identifies the path type,
it can report data and clock arrival times for valid register-to-register
paths. The Quartus II TimeQuest Timing Analyzer calculates data arrival
time by adding the delay from the clock source to the clock pin of the
source register, the micro clock-to-out (μtCO) of the source register, and the
delay from the source register’s Q pin to the destination register’s D pin,
where the μtCO is the intrinsic clock-to-out for the internal registers in the
FPGA. The Quartus II TimeQuest Timing Analyzer calculates clock
arrival time by adding the delay from the clock source to the destination
register’s clock pin. Figure 6–6 shows a data arrival path and a clock
arrival path. The Quartus II TimeQuest Timing Analyzer calculates data
required time by accounting for the clock arrival time and the micro setup
time (μtSU) of the destination register, where the μtSU is the intrinsic setup
for the internal registers in the FPGA.

Figure 6–6. Data Arrival and Clock Arrival

In addition to identifying various paths in a design, the Quartus II
TimeQuest Timing Analyzer analyzes clock characteristics to compute
the worst-case requirement between any two registers in a single register-
to-register path. You should constrain all clocks in your design before
performing this analysis.

CLRN

D Q

Clock Path Data Path

Asynchronous Clear Path

clk

rst

CLRN

D Q

D QD Q

Data Arrival

Clock Arrival

Altera Corporation 6–11
October 2007 Preliminary

Timing Analysis Overview

The launch edge is an active clock edge that sends data out of a sequential
element, acting as a source for the data transfer. A latch edge is the active
clock edge that captures data at the data port of a sequential element,
acting as a destination for the data transfer.

Figure 6–7 shows a single-cycle system that uses consecutive clock edges
to transfer and capture data, a register-to-register path, and the
corresponding launch and latch edges timing diagram. In this example,
the launch edge sends the data out of register reg1 at 0 ns, and register
reg2 latch edge captures the data at 5 ns.

Figure 6–7. Launch Edge and Latch Edge

The Quartus II TimeQuest Timing Analyzer validates clock setup and
hold requirements relative to the launch and latch edges.

Clock Analysis

A comprehensive static timing analysis includes analysis of
register-to-register, I/O, and asynchronous reset paths. The Quartus II
TimeQuest Timing Analyzer uses data required times, data arrival times,
and clock arrival times to verify circuit performance and detect possible
timing violations. The Quartus II TimeQuest Timing Analyzer
determines the timing relationships that must be met for the design to
correctly function, and checks arrival times against required times to
verify timing.

Clock Setup Check

To perform a clock setup check, the Quartus II TimeQuest Timing
Analyzer determines a setup relationship by analyzing each launch and
latch edge for each register-to-register path. For each latch edge at the
destination register, the Quartus II TimeQuest Timing Analyzer uses the
closest previous clock edge at the source register as the launch edge. In

D QD Q

clk

clk

reg1 reg2

0 ns 5 ns 15 ns10 ns

Latch Edge at Destination Register reg2
Launch Edge at Source Register reg1

6–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 6–8, two setup relationships are defined and are labeled Setup A
and Setup B. For the latch edge at 10 ns, the closest clock that acts as a
launch edge is at 3 ns and is labeled Setup A. For the latch edge at 20 ns,
the closest clock that acts as a launch edge is 19 ns, and is labeled Setup B.

Figure 6–8. Setup Check

The Quartus II TimeQuest Timing Analyzer reports the result of clock
setup checks as slack values. Slack is the margin by which a timing
requirement is met or not met. Positive slack indicates the margin by
which a requirement is met, and negative slack indicates the margin by
which a requirement is not met. The Quartus II TimeQuest Timing
Analyzer determines clock setup slack, as shown in Equation 1, for
internal register-to-register paths.

(1)

If the data path is from an input port to a internal register, the Quartus II
TimeQuest Timing Analyzer uses the equations shown in Equation 2 to
calculate the setup slack time.

(2)

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 30 ns

Source Clock

Destination Clock

Clock Setup Slack Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register ++=

μtCO Register-to-Register Delay+

Data Required Clock Arrival Time μtSU Setup Uncertainty––=

Clock Arrival Time Latch Edge Clock Network Delay to Destination Register+=

Clock Setup Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay ++=

Input Maximum Delay of Pin Pin-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtSU–+=

Altera Corporation 6–13
October 2007 Preliminary

Timing Analysis Overview

If the data path is an internal register to an output port, the Quartus II
TimeQuest Timing Analyzer uses the equations shown in Equation 3 to
calculate the setup slack time.

(3)

Clock Hold Check

To perform a clock hold check, the Quartus II TimeQuest Timing
Analyzer determines a hold relationship for each possible setup
relationship that exists for all source and destination register pairs. The
Quartus II TimeQuest Timing Analyzer checks all adjacent clock edges
from all setup relationships to determine the hold relationships. The
Quartus II TimeQuest Timing Analyzer performs two hold checks for
each setup relationship. The first hold check determines that the data
launched by the current launch edge is not captured by the previous latch
edge. The second hold check determines that the data launched by the
next launch edge is not captured by the current latch edge. Figure 6–9
shows two setup relationships labeled setup A and setup B. The first hold
check is labeled hold check A1 and hold check B1 for setup A and setup
B, respectively. The second hold check is labeled hold check A2 and hold
check B2 for setup A and setup B, respectively.

Figure 6–9. Hold Checks

From the possible hold relationships, The Quartus II TimeQuest Timing
Analyzer selects the hold relationship that is the most restrictive. The
hold relationship with the largest difference between the latch and launch
edges (that is, latch – launch and not the absolute value of latch and

Clock Setup Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register ++=

μtCO Register-to-Pin Delay+

Data Required Time Latch Edge Clock Network Delay Output Maximum Delay of Pin–+=

Setup A

0 ns 8 ns 16 ns 24 ns 30 ns

Source Clock

Destination Clock

Setup BHold
Check A1

Hold
Check B2

Hold
Check A2

Hold
Check B1

6–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

launch) is selected because this determines the minimum allowable delay
for the register-to-register path. For Figure 6–9, the hold relationship
selected is hold check A2.

The Quartus II TimeQuest Timing Analyzer determines clock hold slack
as shown in Equation 4.

(4)

If the data path is from an input port to an internal register, the Quartus II
TimeQuest Timing Analyzer uses the equations shown in Equation 5 to
calculate the setup slack time.

(5)

If the data path is an internal register to an output port, the Quartus II
TimeQuest Timing Analyzer uses the equations shown in Equation 6 to
calculate the setup slack time.

(6)

Clock Hold Slack Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register μtCO+ + +=

Register-to-Register Delay

Data Required Time Clock Arrival Time μtH Hold Uncertainty+ +=

Clock Arrival Time Latch Edge Clock Network Delay to Destination Register+=

Clock Setup Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay + +=

Input Minimum Delay of Pin Pin-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtH+ +=

Clock Setup Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Latch Edge Clock Network Delay to Source Register μtCO+ + +=

Register-to-Pin Delay

Data Required Time Latch Edge Clock Network Delay Output Minimum Delay of Pin–+=

Altera Corporation 6–15
October 2007 Preliminary

Timing Analysis Overview

Recovery and Removal

Recovery time is the minimum length of time the de-assertion of an
asynchronous control signal, for example, clear and preset, must be
stable before the next active clock edge. The recovery slack time
calculation is similar to the clock setup slack time calculation, but it
applies to asynchronous control signals. If the asynchronous control
signal is registered, the Quartus II TimeQuest Timing Analyzer uses
Equation 7 to calculate the recovery slack time.

(7)

If the asynchronous control is not registered, the Quartus II TimeQuest
Timing Analyzer uses the equations shown in Equation 8 to calculate the
recovery slack time.

(8)

1 If the asynchronous reset signal is from a port (device I/O), you
must make an Input Maximum Delay assignment to the
asynchronous reset port for the Quartus II TimeQuest Timing
Analyzer to perform recovery analysis on that path.

Removal time is the minimum length of time the de-assertion of an
asynchronous control signal must be stable after the active clock edge.
The Quartus II TimeQuest Timing Analyzer removal time slack
calculation is similar to the clock hold slack calculation, but it applies
asynchronous control signals. If the asynchronous control is registered,
the Quartus II TimeQuest Timing Analyzer uses the equations shown in
Equation 9 to calculate the removal slack time.

(9)

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register+ +=

μtCO Register-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtSU–+=

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay Maximum Input Delay+ + +=

Port-to-Register Delay

Data Required Time Latch Edge Clock Network Delay to Destination Register Delay μtSU–+=

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register+ +=

μtCO of Source Register Register-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtH+ +=

6–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If the asynchronous control is not registered, the Quartus II TimeQuest
Timing Analyzer uses the equations shown in Equation 10 to calculate the
removal slack time.

(10)

+

1 If the asynchronous reset signal is from a device pin, you must
specify the Input Minimum Delay constraint to the
asynchronous reset pin for the Quartus II TimeQuest Timing
Analyzer to perform a removal analysis on this path.

Multicycle Paths

Multicycle paths are data paths that require more than one clock cycle to
latch data at the destination register. For example, a register may be
required to capture data on every second or third rising clock edge.
Figure 6–10 shows an example of a multicycle path between a
multiplier’s input registers and output register where the destination
latches data on every other clock edge.

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay Input Minimum Delay of Pin+ +=

Minimum Pin-to-Register Delay

Data Required Time Latch Edge Clock Network Delay to Destination Register μtH+ +=

Altera Corporation 6–17
October 2007 Preliminary

Timing Analysis Overview

Figure 6–10. Example Diagram of a Multicycle Path

Figure 6–11 shows a register-to-register path where the source clock,
src_clk, has a period of 10 ns and the destination clock, dst_clk, has
a period of 5 ns.

Figure 6–11. Register-to-Register Path

Figure 6–12 shows the respective timing diagrams for the source and
destination clocks and the default setup and hold relationships. The
default setup relationship is 5 ns and the default hold relationship is 0 ns.

D Q

ENA

D Q

D Q

ENA

2 cycles

D Q

ENA

D Q D Qdata_in

dst_clk

src_clk

reg reg

data_out

6–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 6–12. Default Setup and Hold Timing Diagram

The default setup and hold relationships can be modified with the
set_multicycle_path command to accommodate the system
requirements.

Table 6–3 shows the commands used to modify either the launch or latch
edge times that the Quartus II TimeQuest Timing Analyzer Timing
Analyzer uses to determine a setup relationship or hold relationship.

Figure 6–13 shows the timing diagram after a multicycle setup of two has
been applied. The command moves the latch edge time to 10 ns from the
default 5 ns.

Figure 6–13. Modified Setup Diagram

0 10 20 30

setup
hold

Table 6–3. Commands to Modify Edge Times

Command Description of Modification

set_multicycle_path -setup -end Latch edge time of the setup relationship

set_multicycle_path -setup -start Launch edge time of the setup relationship

set_multicycle_path -hold -end Latch edge time of the hold relationship

set_multicycle_path -hold -start Latch edge time of the hold relationship

0 10 20 30

 new setup
default setup

Altera Corporation 6–19
October 2007 Preliminary

Specify Design Timing Requirements

Specify Design
Timing
Requirements

Next, specify timing constraints and exceptions for your design.

Timing requirements guide the Fitter as it places and routes your design.
You must enter all timing constraints and exceptions in an SDC file. This
file must be included as part of the project. To add this file to your project,
on the Project menu, click Add/Remove Files in Project, and add the SDC
file in the Files dialog box.

1 Refer to “Specify Timing Constraints” on page 6–20 for a list of
timing constraints and exceptions.

After you create the initial database, follow these steps to create timing
requirements:

1. Launch the Quartus II TimeQuest Timing Analyzer.

2. Create a Timing Netlist.

3. Specify Timing Constraints.

4. Generate SDC Constraint Reports.

1 You cannot use the Assignment Editor to specify timing
requirements for the TimeQuest timing analyzer.

Create a Timing Netlist

The TimeQuest timing analyzer requires a timing netlist before you can
specify timing requirements. The TimeQuest timing analyzer creates a
timing netlist based upon the netlist generated in the compilation step. It
annotates the timing netlist with either the post-map or post-fit delay
results.

You can create a timing netlist in the following ways:

■ In the Tasks pane, double-click Create Timing Netlist.

1 By default, the Create Timing Netlist command generates
a timing netlist based on the post-fit database. An error
message displays if the initial database is a post-map
database.

or

■ On the Netlist menu, click Create Timing Netlist. The Create Timing
Netlist dialog box appears (Figure 6–14).

6–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 6–14. Create Timing Netlist Dialog Box

In the Create Timing Netlist dialog box, specify the input netlist type
and the delay model, and click OK.

or

■ To create a timing netlist in the Console pane, type the following
command at a Tcl prompt:

create_timing_netlist r
You can use the -post_map option to specify that the timing netlist
is based on a post-map database. For example, you can type the
following command:

create_timing_netlist -post_map r

Specify Timing Constraints

Use the SDC Editor to create and edit your timing constraints and
exceptions. The following constraints are available:

■ Create Clock
■ Create Generated Clock
■ Set Clock Latency
■ Set Clock Uncertainty
■ Set Input Delay
■ Set Output Delay
■ Set False Path
■ Set Multicycle Path
■ Set Maximum Delay
■ Set Minimum Delay

Altera Corporation 6–21
October 2007 Preliminary

Specify Design Timing Requirements

For more information on the SDC Editor, refer to “SDC Editor” on
page 6–94.

The specified constraints and exceptions guide the Fitter as it places and
routes your design. After you have specified all timing constraints and
exceptions, save the SDC file.

Generate SDC Constraint Reports

You can generate initial timing reports to verify that all constraints and
exceptions have been entered. Because the constraints and exceptions
have not been processed by the Fitter, do not use this step to verify that
your timing requirements have been met.

You should verify the following items before continuing:

■ All clocks are constrained
■ Any invalid clock-to-clock transfers have been removed
■ All paths are constrained

You can double-click the Report Clocks command in the Tasks pane, or
type the report_clocks command in the Console pane to verify that
all clocks have been properly defined and applied to the proper nodes in
the design.

You can double-click the Report Clock Transfers command in the Tasks
pane, or type the report_clock_transfers command in the Console
pane to verify all clock-to-clock transfers.

You can double-click the Report Unconstrained Paths command in the
Tasks pane, or type the report_ucp command in the Console pane to
verify that all paths in the design have been properly constrained.

6–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Quartus II
TimeQuest
Timing Analyzer
Flow Guidelines

Use the steps shown in Figure 6–15 to verify timing in the TimeQuest
timing analyzer.

Figure 6–15. Timing Verification in the TimeQuest Timing Analyzer

The following sections describe each of the steps shown in Figure 6–15.

Create a Timing Netlist

After you perform a full compilation, you must create a timing netlist
based on the fully annotated database from the post-fit results.

To create the timing netlist, double-click Create Timing Netlist in the
Tasks pane, or type the following command in the Console pane:

create_timing_netlist r

Read the Synopsys Design Constraints File

After you create a timing netlist, you must read an SDC file. This step
reads all constraints and exceptions defined in the SDC file.

You can read the SDC file from either the Task pane or the Console pane.

To read the SDC file from the Tasks pane, double-click the Read SDC File
command.

1 The Read SDC File task reads the <current revision>.sdc file.

To read the SDC file from the Console pane, type the following command
in the Console pane:

read_sdc r

Create a Timing Netlist

Read Synopsys Design Constraints File

Update Timing Netlist

Generate Timing Reports

Altera Corporation 6–23
October 2007 Preliminary

Collections

Update Timing Netlist

You must update the timing netlist after you read an SDC file. The
TimeQuest timing analyzer applies all constraints to the netlist for
verification, and removes any invalid or false paths in the design from
verification.

To update the timing netlist, double-click Update Timing Netlist in the
Tasks pane, or type the following command in the Console pane:

update_timing_netlist r

Generate Timing Reports

You can generate timing reports for all critical paths in your design. The
Tasks pane contains the commonly used reporting commands.
Individual or custom reports can be generated for your design.

For more information about reporting, refer to the section “Timing
Reports” on page 6–58.

f For a full list of available report APIs, refer to the SDC & TimeQuest API
Reference Manual.

As you verify timing, you may encounter failures along critical paths. If
this occurs, you can refine the existing constraints or create new ones to
change the effects of existing constraints. If you modify, remove, or add
constraints, you should perform a full compilation. This allows the Fitter
to re-optimize the design based upon the new constraints, and brings you
back to the Perform Compilation step in the process. This iterative
process allows you to resolve your timing violations in the design.

f For a sample Tcl script to automate the timing analysis flow, refer to the
TimeQuest Quick Start Tutorial.

Collections The Quartus II TimeQuest Timing Analyzer supports collection APIs that
provide easy access to ports, pins, cells, or nodes in the design. Use
collection APIs with any valid constraints or Tcl commands specified in
the Quartus II TimeQuest Timing Analyzer.

6–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 6–4 describes the collection commands supported by the Quartus II
TimeQuest Timing Analyzer.

Table 6–5 describes the SDC extension collection commands supported
by the Quartus II TimeQuest Timing Analyzer.

Table 6–4. Collection Commands

Command Description

all_clocks Returns a collection of all clocks in the design.

all_inputs Returns a collection of all input ports in the design.

all_outputs Returns a collection of all output ports in the design.

all_registers Returns a collection of all registers in the design.

get_cells Returns a collection of cells in the design. All cell names in the collection match the
specified pattern. Wildcards can be used to select multiple cells at the same time.

get_clocks Returns a collection of clocks in the design. When used as an argument to another
command, such as the -from or -to of set_multicycle_path, each node in the
clock represents all nodes clocked by the clocks in the collection. The default uses the
specific node (even if it is a clock) as the target of a command.

get_nets Returns a collection of nets in the design. All net names in the collection match the
specified pattern. You can use wildcards to select multiple nets at the same time.

get_pins Returns a collection of pins in the design. All pin names in the collection match the
specified pattern. You can use wildcards to select multiple pins at the same time.

get_ports Returns a collection of ports (design inputs and outputs) in the design.

Table 6–5. SDC Extension Collection Commands (Part 1 of 2)

Command Description

get_fanouts <filter> Returns a collection of fan-out nodes starting from <filter>.

get_keepers <filter> Returns a collection of keeper nodes (non-combinational nodes) in the
design.

get_nodes <filter> Returns a collection of nodes in the design. The get_nodes collection cannot
be used when specifying constraints or exceptions.

get_partitions <filter> Returns a collection of partitions matching the <filter>.

get_registers <filter> Returns a collection of registers in the design.

get_fanins <filter> Returns a collection of fan-in nodes starting from <filter>.

derive_pll_clocks Automatically create generated clocks on the outputs of PLL. The generated
clock properties reflect the PLL properties that have been specified by the

MegaWizard® Plug-In Manager.

Altera Corporation 6–25
October 2007 Preliminary

Constraints Files

f For more information about collections, refer to the SDC file and the
SDC and TimeQuest API Reference Manual.

Application Examples

Example 6–1 shows various uses of the create_clock and
create_generated_clock commands and specific design structures.

Example 6–1. create_clock and create_generate_clock Commands and Specific Design Structures
Create a simple 10 ns with clock with a 60 % duty cycle
create_clock -period 10 -waveform {0 6} -name clk [get_ports clk]
The following multicycle applies to all paths ending at registers
clocked by clk
set_multicycle_path -to [get_clocks clk] 2

Constraints Files The Quartus II TimeQuest Timing Analyzer stores all timing constraints
in an SDC file. You can create an SDC file with different constraints for
place-and-route and for timing analysis.

1 The SDC file should contain only SDC and Tcl commands.
Commands to manipulate the timing netlist or control the
compilation flow should not be included in the SDC file.

The Quartus II software does not automatically update SDC files. You
must explicitly write new or updated constraints in the TimeQuest GUI.
Use the write_sdc command, or, in the Quartus II TimeQuest Timing
Analyzer, on the Constraints menu, click Write SDC File to write your
constraints to an SDC file.

get_assignment_groups
<filter>

Returns either a collection of keepers, ports, or registers that have been
saved to the Quartus Settings File (QSF) with the Assignment (Time) Groups
option.

remove_clock <clock list> Removes the list of clocks specified by <clock list>.

set_scc_mode <size> Allows you to set the maximum Strongly Connected Components (SCC) loop
size or force the Quartus II TimeQuest Timing Analyzer to always estimate
delays through SCCs.

set_time_format Sets time format, including time unit and decimal places.

Table 6–5. SDC Extension Collection Commands (Part 2 of 2)

Command Description

6–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Fitter and Timing Analysis SDC Files

You can specify the same or different SDC files for the Quartus II Fitter for
place-and-route, and the Quartus II TimeQuest Timing Analyzer for
static timing analysis. Using different SDC files allows you to have one set
of constraints for place-and-route, and another set of constraints for final
timing sign-off in the Quartus II TimeQuest Timing Analyzer.

Specifying SDC Files for Place-and-Route

To specify an SDC file for the Fitter, you must add the SDC file to your
Quartus II project. To add the file to your project, use the following
command in the Tcl console:

set_global_assignment -name SDC_FILE <SDC file name>

Or, in the Quartus II GUI, on the Project menu, click Add/Remove Files
in Project.

The Fitter optimizes your design based on the requirements in the SDC
files in your project.

The results shown in the timing analysis report located in the
Compilation Report are based on the SDC files added to the project.

1 You must specify the Quartus II TimeQuest Timing Analyzer as
the default timing analyzer to make the Fitter read the SDC file.

Specifying SDC Files for Static Timing Analysis

After you create a timing netlist in the Quartus II TimeQuest Timing
Analyzer, you must specify timing constraints and exceptions before you
can perform a timing analysis. The timing requirements do not have to be
identical to those provided to the Fitter. You can specify your timing
requirements manually or you can read a previously created SDC file.

To manually enter your timing requirements, you can use constraint entry
dialog boxes or SDC commands. If you have an SDC file that contains
your timing requirements, you can use this file to apply your timing
requirements. To specify the SDC file for timing analysis in the Quartus II
TimeQuest Timing Analyzer, use the following command:

read_sdc [<SDC file name>]

If you use the TimeQuest GUI to apply SDC file for timing analysis, in the
Quartus II TimeQuest Timing Analyzer, on the Constraints menu, click
Read SDC File.

Altera Corporation 6–27
October 2007 Preliminary

Constraints Files

1 By default, the Read SDC File command in the Tasks pane
reads the SDC files specified in the Quartus II Settings File (.qsf)
(QSF), which are the same SDC files used by the Fitter.

Synopsys Design Constraints File Precedence

The Quartus II Fitter and the Quartus II TimeQuest Timing Analyzer
reads the SDC files from the files list in the QSF file in the order they are
listed, from top to bottom.

The Quartus II software searches for an SDC file, as shown in Figure 6–16.

Figure 6–16. Synopsys Design Constraints File Order of Precedence

Note to Figure 6–16:
(1) This occurs only in the Quartus II TimeQuest Timing Analyzer, and not during

compilation in the Quartus II software. The Quartus II TimeQuest Timing
Analyzer has the ability to automate the conversion of the QSF timing assignments
to SDC if no SDC file exists when the Quartus II TimeQuest Timing Analyzer is
opened.

1 If you type the read_sdc command at the command line
without any arguments, the precedence order shown in
Figure 6–16 is followed.

Is the SDC File
Specified in the Add Files to

Project Dialog Box?

No

Yes

Does the SDC File
<current revision>.sdc

Exist?

No

Yes

Compilation Flow

Manually create SDC File <current revision>.sdc
Based on the Current Quartus Settings File (1)

6–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Clock
Specification

The specification of all clocks and any associated clock characteristics in
your design is essential for accurate static timing analysis results. The
Quartus II TimeQuest Timing Analyzer supports many SDC commands
that accommodate various clocking schemes and any clock
characteristics.

This section describes the SDC file API available to create and specify
clock characteristics.

Clocks

Use the create_clock command to create a clock at any register, port,
or pin. You can create each clock with unique characteristics. Example 6–2
shows the create_clock command and options.

Example 6–2. create_clock Command
create_clock
-period <period value>
[-name <clock name>]
[-waveform <edge list>]
[-add]
<targets>

Table 6–6 describes the options for the create_clock command.

Table 6–6. create_clock Command Options

Option Description

-period <period value> Specifies the clock period. You can also specify the clock period in units of
frequency, such as -period <num>MHz. (1)

-name <clock name> Name of the specific clock, for example, sysclock. If you do not specify the
clock name, the clock name is the same as the node to which it is assigned.

-waveform <edge list> Specifies the clock’s rising and falling edges. The edge list alternates between
rising edge and falling edge. For example, a 10 ns period where the first rising
edge occurs at 0 ns and the first falling edge occurs at 5 ns would be written
as -waveform {0 5}. The difference must be within one period unit, and
the rise edge must come before the fall edge. The default edge list is
{0 <period>/2}, or a 50% duty cycle.

-add Allows you to specify more than one clock to the same port or pin.

<targets> Specifies the port(s) or pin(s) to which the assignment applies. If source
objects are not specified, the clock is a virtual clock. Refer to “Virtual Clocks”
on page 6–32 for more information.

Note to Table 6–6:
(1) The default time unit in the Quartus II TimeQuest Timing Analyzer is nanoseconds (ns).

Altera Corporation 6–29
October 2007 Preliminary

Clock Specification

Example 6–3 shows how to create a 10 ns clock with a 50% duty cycle,
where the first rising edge occurs at 0 ns applied to port clk.

Example 6–3. 100MHz Clock Creation
create_clock –period 10 –waveform { 0 5 } clk

Example 6–4 shows how to create a 10 ns clock with a 50% duty cycle that
is phase shifted by 90 degrees applied to port clk_sys.

Example 6–4. 100MHz Shifted by 90 Degrees Clock Creation
create_clock –period 10 –waveform { 2.5 7.5 } clk_sys

Clocks defined with the create_clock command have a default source
latency value of zero. The Quartus II TimeQuest Timing Analyzer
automatically computes the clock’s network latency for non-virtual
clocks.

Generated Clocks

The Quartus II TimeQuest Timing Analyzer considers clock dividers,
ripple clocks, or circuits that modify or change the characteristics of the
incoming or master clock as generated clocks. You should define the
output of these circuits as generated clocks. This definition allows the
Quartus II TimeQuest Timing Analyzer to analyze these clocks and
account for any network latency associated with them.

Use the create_generated_clock command to create generated
clocks. Example 6–5 shows the create_generated_clock command
and the available options.

Example 6–5. create_generated_clock Command
create_generated_clock
[-name <clock name>]
-source <master pin>
[-edges <edge list>]
[-edge_shift <shift list>]
[-divide_by <factor>]
[-multiply_by <factor>]
[-duty_cycle <percent>]
[-add]
[-invert]
[-master_clock <clock>]
[-phase <phase>]
[-offset <offset>]
<targets>

6–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 6–7 describes the options for the create_generated_clock
command.

Source latencies are based on clock network delays from the master clock
(not necessarily the master pin). You can use the set_clock_latency
-source command to override the source latency.

Table 6–7. create_generated_clock Command Options

Option Description

-name <clock name> Name of the generated clock, for example, clk_x2. If you do not specify the clock
name, the clock name is the same as the first node to which it is assigned.

-source <master pin> The <master pin> specifies the node in the design from which the clock settings
derive.

-edges <edge list> |
-edge_shift <shift list>

The -edges option specifies the new rising and falling edges with respect to the
master clock’s rising and falling edges. The master clock’s rising and falling edges
are numbered 1..<n> starting with the first rising edge, for example, edge 1. The
first falling edge after that is edge number 2, the next rising edge number 3, and
so on. The <edge list> must be in ascending order. The same edge may be used
for two entries to indicate a clock pulse independent of the original waveform’s
duty cycle.

-edge_shift specifies the amount of shift for each edge in the <edge list>. The
-invert option can be used to invert the clock after the -edges and
-edge_shifts are applied. (1)

-divide_by <factor> |
-multiply_by <factor>

The -divide_by and -multiply_by factors are based on the first rising edge
of the clock, and extend or contract the waveform by the specified factors. For
example, a -divide_by 2 is equivalent to -edges {1 3 5}. For multiplied
clocks, the duty cycle can also be specified. The Quartus II TimeQuest Timing
Analyzer supports specifying multiply and divide factors at the same time.

-duty_cycle <percent> Specifies the duty cycle of the generated clock. The duty cycle is applied last.

-add Allows you to specify more than one clock to the same pin.

-invert Inversion is applied at the output of the clock after all other modifications are
applied, except duty cycle.

-master_clock <clock> -master_clock is used to specify the clock if multiple clocks exist at the master
pin.

-phase <phase> Specifies the phase of the generated clock.

-offset <offset> Specifies the offset of the generated clock.

<targets> Specifies the port(s) or pin(s) to which the assignment applies.

Note to Table 6–7:
(1) The Quartus II TimeQuest Timing Analyzer supports a maximum of three edges in the edge list.

Altera Corporation 6–31
October 2007 Preliminary

Clock Specification

Figure 6–17 shows how to create an inverted generated clock based on a
10 ns clock.

Figure 6–17. Generating an Inverted Clock

create_clock -period 10 [get_ports clk]
create_generated_clock -divide_by 1 -invert -source [get_registers clk] \

[get_registers gen|clkreg]

Figure 6–18 shows how to modify the generated clock using the -edges
and -edge_shift options.

Figure 6–18. Edges and Edge Shifting a Generated Clock

create_clock -period 10 -waveform { 0 5} [get_ports clk]
Creates a divide-by-t clock
create_generated_clock -source [get_ports clk] -edges {1 3 5 } [get_registers \
clkdivA|clkreg]
Creates a divide-by-2 clock independent of the master clocks’ duty cycle (now 50%)
create_generated_clock -source [get_ports clk] -edges {1 1 5} -edge_shift { 0 2.5 0 } \
[get_registers clkdivB|clkreg]

0 10 20 30

1 2 3 4 5 6 7 8Edges

clk

gen|clkreg

Time

0 10 20 30

1 2 3 4 5 6 7 8Edges

clk

clkdivA|clkreg

clkdivB|clkreg

Time

6–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 6–19 shows the effect of the -multiply_by option on the
generated clock.

Figure 6–19. Multiplying a Generated Clock

create_clock -period 10 -waveform { 0 5 } [get_ports clk]
Creates a multiply-by-2 clock
create_generated_clock -source [get_ports clk] -multiply_by 2 [get_registers \
clkmult|clkreg]

Virtual Clocks

A virtual clock is a clock that does not have a real source in the design or
that does not interact directly with the design. For example, if a clock
feeds only an external device’s clock port, and not a clock port in the
design, and the external device then feeds (or is fed by) a port in the
design, it is considered a virtual clock.

Use the create_clock command to create virtual clocks, with no value
specified for the source option.

1 You can use virtual clocks for set_input_delay and
set_output_delay constraints.

Figure 6–20 shows an example where a virtual clock is required for the
Quartus II TimeQuest Timing Analyzer to properly analyze the
relationship between the external register and those in the design.
Because the oscillator labeled virt_clk does not interact with the Altera
device, but acts as the clock source for the external register, the clock
virt_clk must be declared. Example 6–6 shows the command to create
a 10 ns virtual clock named virt_clk with a 50% duty cycle where the
first rising edge occurs at 0 ns. The virtual clock is then used as the clock
source for an output delay constraint.

0 10 20 30

clk

clkmult|clkreg

Time

Altera Corporation 6–33
October 2007 Preliminary

Clock Specification

Figure 6–20. Virtual Clock Board Topology

After you create the virtual clock, you can perform register-to-register
analysis between the register in the Altera device and the register in the
external device.

Example 6–6. Virtual Clock Example 1
#create base clock for the design
create_clock -period 5 [get_ports system_clk]
#create the virtual clock for the external register
create_clock -period 10 -name virt_clk -waveform { 0 5 }
#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports dataout]

Example 6–7 shows the command to create a 10 ns virtual clock with a
50% duty cycle that is phase shifted by 90 degrees.

Example 6–7. Virtual Clock Example 2
create_clock -name virt_clk –period 10 –waveform { 2.5 7.5 }

Multi-Frequency Clocks

Certain designs have more than one clock source feeding a single clock
port in the design. The additional clock may act as a low power clock,
with a lower frequency than the primary clock. To analyze this type of
design, the create_clock command supports the –add option that
allows you to add more than one clock to a clock node.

Example 6–8 shows the command to create a 10 ns clock applied to clock
port clk, and then add an additional 15 ns clock to the same clock port.
The Quartus II TimeQuest Timing Analyzer uses both clocks when it
performs timing analysis.

Example 6–8. Multi-Frequency Example
create_clock –period 10 –name clock_primary –waveform { 0 5 } [get_ports clk]
create_clock –period 15 –name clock_secondary –waveform { 0 7.5 } [get_ports clk] -add

reg_b

External Device
datain

reg_a

Altera FPGA

dataout

system_clk virt_clk

6–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Automatic Clock Detection

To create clocks for all clock nodes in your design automatically, use the
derive_clocks command. This command creates clocks on ports or
registers to ensure every register in the design has a clock.

Example 6–9 shows the derive_clocks command and options.

Example 6–9. derive_clocks Command
derive_clocks
[-period <period value>]
[-waveform <edge list>]

Table 6–8 describes the options for the derive_clocks command.

1 The derive_clocks command does not create clocks for the
outputs of the PLLs.

The derive_clocks command is equivalent to using create_clock
for each register or port feeding the clock pin of a register.

1 The use of the derive_clocks command for final timing
sign-off is not recommended. You should create clocks for all
clock sources using the create_clock and
create_generated_clock commands.

Table 6–8. derive_clocks Command Options

Option Description

-period <period value> Creates the clock period. You can also specify the frequency as
-period <num>MHz. (1)

-waveform <edge list> Creates the clock’s rising and falling edges. The edge list alternates between
rising edge and falling edge. For example, for a 10 ns period where the first
rising edge occurs at 0 ns and first falling edge occurs at 5 ns, the edge list is
waveform {0 5}. The difference must be within one period unit, and the
rising edge must come before the falling edge. The default edge list is
{0 period/2}, or a 50% duty cycle.

Note to Table 6–8:
(1) This option uses the default time unit nanoseconds (ns).

Altera Corporation 6–35
October 2007 Preliminary

Clock Specification

Derive PLL Clocks

PLLs are used for clock management and synthesis in Altera devices. You
can customize the clocks generated from the outputs of the PLL based on
the design requirements. Because a clock should be created for all clock
nodes, all outputs of the PLL should have an associated clock.

You can manually create a clock for each output of the PLL with the
create_generated_clock command, or you can use the
derive_pll_clocks command, which automatically searches the
timing netlist and creates generated clocks for all PLL outputs according
to the settings specified for each PLL output.

Use the derive_pll_clocks command to automatically create a clock
for each output of the PLL, as shown in the following list:

derive_pll_clocks
[-use_tan_name]

Table 6–9 describes the options for the derive_pll_clocks command.

The derive_pll_clocks command calls the
create_generated_clock command to create generated clocks on
the outputs of the PLL. The source for the create_generated_clock
command is the input clock pin of the PLL. Before or after the
derive_pll_clocks command has been issued, you must manually
create a base clock for the input clock port of the PLL. If a clock is not
defined for the input clock node of the PLL, no clocks are reported for the
PLL outputs. Instead, the Quartus II TimeQuest Timing Analyzer issues
a warning message similar to Figure 6–10 when the timing netlist is
updated.

Example 6–10. Warning Message
Warning: The master clock for this clock assignment could not be derived.
Clock: <name of PLL output clock pin name> was not created.

You can include the derive_pll_clocks command in your SDC file,
which allows the derive_pll_clocks command to automatically
detect any changes to the PLL. With the derive_pll_clocks

Table 6–9. derive_pll_clocks Command Options

Option Description

-use_tan_name By default, the clock name is the output clock name. This option uses the net name
similar to the names used by the Quartus II Classic Timing Analyzer.

6–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

command in your SDC file, each time the file is read, the appropriate
create_generated_clock command for the PLL output clock pin is
generated. If you use the write_sdc command after the
derive_pll_clock command, the new SDC file contains the
individual create_generated_clock commands for the PLL output
clock pins and not the derive_pll_clocks command. Any changes to
the properties of the PLL are not automatically reflected in the new SDC
file. You must manually update the create_generated_clock
commands in the new SDC file written by the derive_pll_clocks
command, to reflect the changes to the PLL.

1 The derive_pll_clocks constraint will also constrain any
LVDS transmitters or LVDS receivers in the design by adding the
appropriate multicycle constraints to account for any
deserialization factors.

For example, Figure 6–21 shows a simple PLL design with a
register-to-register path.

Figure 6–21. Simple PLL Design

Use the derive_pll_clocks command to automatically constrain the
PLL. When this command is issued for the design shown in Figure 6–21,
the messages shown in Example 6–11 are generated.

Example 6–11. derive_pll_clocks Generated Messages
Info:
Info: Deriving PLL Clocks:
Info: create_generated_clock -source pll_inst|altpll_component|pll|inclk[0] -divide_by 2 -name
pll_inst|altpll_component|pll|CLK[0] pll_inst|altpll_component|pll|clk[0]
Info:

The node name pll_inst|altpll_component|pll|inclk[0] used
for the source option refers to the input clock pin of the PLL. In addition,
the name of the output clock of the PLL is the name of the PLL output
clock node, pll_inst|altpll_component|pll|clk[0].

reg1

pll_inclk
pll_inst

reg2 dataout

Altera Corporation 6–37
October 2007 Preliminary

Clock Specification

1 If the PLL is in clock switchover mode, multiple clocks are
created for the output clock of the PLL; one for the primary
input clock (for example, inclk[0]), and one for the secondary
input clock (for example, inclk[1]). In this case, you should
cut the primary and secondary output clocks using the
set_clock_groups command with the -exclusive option.

Before you can generate any reports for this design, you must create a
base clock for the PLL input clock port. Use a command similar to the
following:

create_clock -period 5 [get_ports pll_inclk]

1 You do not have to generate the base clock on the input clock pin
of the PLL: pll_inst|altpll_component|pll|inclk[0].
The clock created on the PLL input clock port propagates to all
fan-outs of the clock port, including the PLL input clock pin.

Default Clock Constraints

To provide a complete clock analysis, the Quartus II TimeQuest Timing
Analyzer, by default, automatically creates clocks for all detected clock
nodes in your design that have not be constrained, if there are no base
clock constraints in the design. The Quartus II TimeQuest Timing
Analyzer creates a base clock with a 1 GHz requirement to unconstrained
clock nodes, using the following command:

derive_clocks -period 1

1 Individual clock constraints (for example, create_clock,
create_generated_clock) should be made for all clocks in
the design. This results in a thorough and realistic analysis of the
design’s timing requirements. The use of derive_clocks
should be avoided for final timing sign-off.

The default clock constraint is only applied when the Quartus II
TimeQuest Timing Analyzer detects that all synchronous elements have
no clocks associated with them. For example, if a design contains two
clocks and only one clock has constraints, the default clock constraint will
not be applied. However, if both clocks have not been constrained, the
default clock constraint will be applied.

Clock Groups

Many clocks can exist in a design, however, not all of the clocks interact
with one another, and certain clock interactions are not possible.
Asynchronous clocks are unrelated clocks (asynchronous clocks have

6–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

different ideal clock sources). Exclusive clocks are not active at the same
time (for example, multiplexed clocks). The mutual exclusivity must be
declared to the Quartus II TimeQuest Timing Analyzer to prevent it from
analyzing these clock interactions.

Use the set_clock_groups command to specify clocks that are
exclusive or asynchronous. Example 6–12 shows the
set_clock_groups command and options.

Example 6–12. set_clock_groups Command
set_clock_groups
[-asynchronous | -exclusive]
-group <clock name>
[-group <clock name>]
[-group <clock name>] ...

Table 6–10 describes the options for the set_clock_groups command.

Example 6–13 shows a set_clock_groups command and the
equivalent set_false_path commands.

Example 6–13. set_clock_groups Example
Clocks A and C are never active when clocks B and D are active
set_clock_groups -exclusive -group {A C} -group {B D}

Equivalent specification using false paths
set_false_path -from [get_clocks A] -to [get_clocks B]
set_false_path -from [get_clocks A] -to [get_clocks D]
set_false_path -from [get_clocks C] -to [get_clocks B]
set_false_path -from [get_clocks C] -to [get_clocks D]
set_false_path -from [get_clocks B] -to [get_clocks A]
set_false_path -from [get_clocks B] -to [get_clocks C]
set_false_path -from [get_clocks D] -to [get_clocks A]
set_false_path -from [get_clocks D] -to [get_clocks C]

Table 6–10. set_clock_groups Command Options

Option Description

-asynchronous Asynchronous clocks—when the two clocks have no phase relationship and are
active at the same time.

-exclusive Exclusive clocks—when only one of the two clocks will be active at any given time.
An example of an exclusive clock group is when two clocks feed a 2-to-1 MUX.

-group <clock name> Specifies valid destination clock names that are mutually exclusive. <clock name> is
used to specify the clock names.

Altera Corporation 6–39
October 2007 Preliminary

Clock Specification

Clock Effect Characteristics

The create_clock and create_generated_clock commands
create ideal clocks that do not account for any board effects. This section
describes how to account for clock effect characteristics with clock latency
and clock uncertainty.

Clock Latency

There are two forms of clock latency: source and network. Source latency
is the propagation delay from the origin of the clock to the clock definition
point (for example, a clock port), and network latency is the propagation
delay from a clock definition point to a register’s clock pin. The total
latency (or clock propagation delay) at a register’s clock pin is the sum of
the source and network latencies in the clock path.

1 The set_clock_latency command supports only source
latency. The -source option must be specified when using the
command.

Use the set_clock_latency command to specify source latency to any
clock ports in the design. Example 6–14 shows the
set_clock_latency command and options.

Example 6–14. set_clock_latency Command
set_clock_latency
-source
[-clock <clock_list>]
[-rise | -fall]
[-late | -early]
<delay>
<targets>

Table 6–11 describes the options for the set_clock_latency
command.

Table 6–11. set_clock_latency Command Options (Part 1 of 2)

Option Description

-source Specifies a source latency.

-clock <clock list> Specifies the clock to use if the target has more than one clock assigned to it.

6–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Quartus II TimeQuest Timing Analyzer automatically computes
network latencies; therefore, the set_clock_latency command
specifies only the source latencies.

Clock Uncertainty

The set_clock_uncertainty command specifies clock uncertainty or
skew for clocks or clock-to-clock transfers. Specify the uncertainty
separately for setup and hold, and you can specify separate rising and
falling clock transitions. The Quartus II TimeQuest Timing Analyzer
subtracts the setup uncertainty from the data required time for each
applicable path, and adds the hold uncertainty to the data required time
for each applicable path.

Use the set_clock_uncertainty command to specify any clock
uncertainty to the clock port. Example 6–15 shows the
set_clock_uncertainty command and options.

Example 6–15. set_clock_uncertainty Command and Options
set_clock_uncertainty
[-rise_from <rise from clock> | -fall_from <fall from clock> |
-from <from clock>]
[-rise_to <rise to clock> | -fall_to <fall to clock> | -to <to clock>]
[-setup | -hold]
<value>

-rise | -fall Specifies the rising or falling delays.

-late | -early Specifies the earliest or the latest arrival times to the clock.

<delay> Specifies the delay value.

<targets> Specifies the clocks or clock sources if a clock is clocked by more than one clock.

Table 6–11. set_clock_latency Command Options (Part 2 of 2)

Option Description

Altera Corporation 6–41
October 2007 Preliminary

Clock Specification

Table 6–12 describes the options for the set_clock_ uncertainty
command.

Derive Clock Uncertainty

Use the derive_clock_uncertainty command to automatically
apply inter-clock, intra-clock, and I/O interface uncertainties. Both setup
and hold uncertainties are calculated for each clock-to-clock transfer.
Example 6–16 shows the derive_clock_uncertainty command and
options.

Example 6–16. derive_clock_uncertainty Command
derive_clock_uncertainty
[-overwrite]
[-dtw]

Table 6–13 describes the options for the derive_clock_uncertainty
command.

The Quartus II TimeQuest Timing Analyzer automatically applies clock
uncertainties to clock-to-clock transfers in the design.

Table 6–12. Options Description for set_clock_uncertainty

Option Description

-from <from clock> Specifies the from clock.

-rise_from <rise from clock> Specifies the rise from clock.

-fall_from <fall from clock> Specifies the fall from clock.

-to <to clock> Specifies the to clock.

-rise_to <rise to clock> Specifies the rise to clock.

-fall_to <fall to clock> Specifies the fall to clock.

-setup | -hold Specifies setup or hold.

<value> Uncertainty value.

Table 6–13. derive_clock_uncertainty Command Options

Option Description

-overwrite Overwrites previously performed clock uncertainty assignments

-dtw Creates the PLLJ-PLLSPE_INFO.txt file

6–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Any clock uncertainty constraints that have been applied to source and
destination clock pairs with the set_clock_uncertainty command
have a higher precedence than the clock uncertainties derived from the
derive_clock_uncertainty command for the same source and
destination clock pairs. For example, if the set_clock_uncertainty
command is called first to specify clock uncertainties between the source
clock CLKA and destination clock CLKB. Then the
derive_clock_uncertainty command is called second, the clock
uncertainty calculated by the derive_clock_uncertainty command
is ignored for the source clock CLKA to destination clock CLKB.

The clock uncertainty value that would have been used, however, is still
reported for informational purposes. You can use the -overwrite
command to overwrite previous clock uncertainty assignments, or
remove them manually with the remove_clock_uncertainty
command.

In the following types of clock-to-clock transfers, clock certainties can
arise. They are modeled by the derive_clock_uncertainty
command automatically.

■ Inter-clock
■ Intra-clock
■ I/O Interface

Inter-Clock Transfers

Inter-clock transfers occur when the register-to-register transfer happens
in the core of the FPGA and source and destination clocks come from the
same PLL output pin or clock port. An example of an inter-clock transfer
is shown in Figure 6–22.

Figure 6–22. Inter-Clock Transfer

D Q D Qdata_in

data_out PLL

clk0

Source Register Destination Register

Altera Corporation 6–43
October 2007 Preliminary

Clock Specification

Intra-Clock Transfers

Intra-clock transfers occur when the register-to-register transfer happens
in the core of the FPGA and source and destination clocks come from a
different PLL output pin or clock port. An example of an intra-clock
transfer is shown in Figure 6–23.

Figure 6–23. Intra-Clock Transfer

I/O Interface Clock Transfers

I/O interface clock transfers occur when data transfers from an I/O port
to the core of the FPGA (input) or from the core of the FPGA to the I/O
port (output). An example of an I/O interface clock transfer is shown in
Figure 6–24.

Figure 6–24. Interface-Clock Transfer

For I/O interface uncertainty, you must create a virtual clock and
constrain the input and output ports with the set_input_delay and
set_output_delay commands that reference the virtual clock. The
virtual clock is required to prevent the derive_clock_uncertainty
command from applying clock certainties for either intra- or inter-clock
transfers on an I/O interface clock transfer when the set_input_delay
or set_output_delay commands reference a clock port or PLL output.
If a virtual clock is not referenced in the set_input_delay or
set_output_delay commands to clock uncertainty for the I/O
interface clock, transfers will result in a pessimistic analysis.

D Q D Qdata_in

clk_in PLL

clk0

Source Register Destination Register

data_out

D Qdata_in

clk_in

reg1

data_out

6–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The virtual clock should be created with the same properties as the
original clock that is driving the I/O port. For example, Figure 6–25
shows a typical input I/O interface with the clock specifications.

Figure 6–25. I/O Interface Specifications

Example 6–17 shows the SDC commands to constrain the I/O Interface
shown in Figure 6–25.

Example 6–17. SDC Commands to Constrain the I/O Interface
Create the base clock for the clock port
create_clock –period 10 –name clk_in [get_ports clk_in]
Create a virtual clock with the same properties of the base clock driving
the source register
create_clock –period 10 –name virt_clk_in
Create the input delay referencing the virtual clock and not the base
clock
DO NOT use set_input_delay –clock clk_in <delay_value>
[get_ports data_in]
set_input_delay –clock virt_clk_in <delay value> [get_ports data_in]

data_in

clk_in

D Q

reg1

D Q

reg1

External Device Altera FPGA

100 MHz

Altera Corporation 6–45
October 2007 Preliminary

I/O Specifications

I/O
Specifications

The Quartus II TimeQuest Timing Analyzer supports Synopsys Design
Constraints that constrain the ports in your design. These constraints
allow the Quartus II TimeQuest Timing Analyzer to perform a system
static timing analysis that includes not only the FPGA timing, but also
any external device timing and board timing parameters.

Input and Output Delay

Use input and output delay constraints to specify any external device or
board timing parameters. When you apply these constraints, the
Quartus II TimeQuest Timing Analyzer performs static timing analysis
on the entire system.

Set Input Delay

The set_input_delay constraint specifies the data arrival time at a
port (a device I/O) with respect to a given clock. Figure 6–26 shows an
input delay path.

Figure 6–26. Set Input Delay

Use the set_input_delay command to specify input delay constraints
to ports in the design. Example 6–18 shows the set_input_delay
command and options.

Example 6–18. set_input_delay Command
set_input_delay
-clock <clock name>
[-clock_fall]
[-rise | -fall]
[-max | -min]
[-add_delay]
[-reference_pin <target>]
[-source_latency_included]
<delay value>
<targets>

External Device

Oscillator

Altera Device

6–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 6–14 describes the options for the set_input_delay command.

1 A warning message appears if you specify only a –max or –min
value for the input delay value. The input minimum delay
default value is the input maximum delay, and the input
maximum delay default value is the input minimum delay, if
only one is specified. Similarly, a warning message appears if
you specify only a -rise or -fall value for the delay value,
and the delay defaults in the same manner as the input
minimum and input maximum delays.

The maximum value is used for setup checks, and the minimum value is
used for hold checks.

By default, a set of input delays (min/max, rise/fall) is allowed for only
one clock, -clock_fall, -reference_pin combination. Specifying an
input delay on the same port for a different clock, -clock_fall, or
-reference_pin removes any previously set input delays, unless you
specify the -add_delay option. When you specify the -add_delay
option, the worst-case values are used.

The -rise and -fall options are mutually exclusive. The -min and
-max options are also mutually exclusive.

Table 6–14. set_input_delay Command Options

Option Description

-clock <clock name> Specifies the source clock.

-clock_fall Specifies the arrival time with respect to the falling edge of the clock.

-rise | -fall Specifies either the rise or fall delay at the port.

-max | -min Specifies the minimum or maximum data arrival time.

-add_delay Adds another delay, but does not replace the existing delays assigned
to the port.

-reference_pin <target> Specifies a pin or port in the design from which to determine source
and network latencies. This is useful to specify input delays relative to
an output port fed by a clock.

-source_latency_ included Specifies that the input delay value includes the source latency delay
value, and therefore any source clock latency assigned to the clock will
be ignored.

<delay value> Specifies the delay value.

<targets> Specifies the destination ports or pins.

Altera Corporation 6–47
October 2007 Preliminary

I/O Specifications

Set Output Delay

The set_output_delay command specifies the data required time at a
port (the device pin) with respect to a given clock.

Use the set_output_delay command to specify output delay
constraints to ports in the design. Figure 6–27 shows an output delay
path.

Figure 6–27. Output Delay

Example 6–19 shows the set_output_delay command and options.

Example 6–19. set_output_delay Command
set_output_delay
-clock <clock name>
[-clock_fall]
[-rise | -fall]
[-max | -min]
[-add_delay]
[-reference_pin <target>]
<delay value>
<targets>

Table 6–15 describes the options for the set_output_delay command.

External DeviceAltera Device

Oscillator

Table 6–15. set_output_delay Command Options (Part 1 of 2)

Option Description

-clock <clock name> Specifies the source clock.

-clock_fall Specifies the required time with respect to the falling edge of the clock.

-rise | -fall Specifies either the rise or fall delay at the port.

-max | -min Specifies the minimum or maximum data arrival time.

-add_delay Adds another delay, but does not replace the existing delays assigned to
the port.

6–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 A warning message appears if you specify only a –max or –min
value for the output delay value. The output minimum delay
default value is the output maximum delay, and the output
maximum delay default value is the output minimum delay, if
only one is specified.

The maximum value is used for setup checks, and the minimum value is
used for hold checks.

By default, a set of output delays (min/max, rise/fall) is allowed for only
one clock, -clock_fall, port combination. Specifying an output delay
on the same port for a different clock or -clock_fall removes any
previously set output delays, unless you specify the -add_delay option.
When you specify the -add_delay option, the worst-case values are
used.

The -rise and -fall options are mutually exclusive, as are the -min
and -max options.

Timing
Exceptions

Timing exceptions modify the default analysis that is performed by the
Quartus II TimeQuest Timing Analyzer. This section describes the
following available timing exceptions:

■ False path
■ Minimum delays
■ Maximum delays
■ Multicycle path

-reference_pin <target> Specifies a pin or port in the design from which to determine source and
network latencies. Use this option to specify input delays relative to an
output port fed by a clock.

-source_latency_included Specifies that the input delay value includes the source latency delay
value, and therefore any source clock latency assigned to the clock will
subsequently be ignored.

<delay value> Specifies the delay value.

<targets> Specifies the destination ports or pins.

Table 6–15. set_output_delay Command Options (Part 2 of 2)

Option Description

Altera Corporation 6–49
October 2007 Preliminary

Timing Exceptions

Precedence

If a conflict of node names occurs between timing exceptions, the
following order of precedence applies:

1. False path
2. Minimum delays and maximum delays
3. Multicycle path

The false path timing exception has the highest precedence. Within each
category, assignments to individual nodes have precedence over
assignments to clocks. Finally, the remaining precedence for additional
conflicts is order-dependent, such that the last assignments overwrite (or
partially overwrite) earlier assignments.

False Path

False paths are paths that can be ignored during timing analysis.

Use the set_false_path command to specify false paths in the design.
Example 6–20 shows the set_false_path command and options.

Example 6–20. set_false_path Command
set_false_path
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-hold]
[-setup]
[-through <names>]
<delay>

Table 6–16 describes the options for the set_false_path command.

Table 6–16. set_false_path Command Options (Part 1 of 2)

Option Description

-fall_from <clocks> The <names> is a collection or list of objects in the design. Specifies false path
begins at the fall from <clocks>.

-fall_to <clocks> The <names> is a collection or list of objects in the design. Specifies false path ends
at the fall to <clocks>.

-from <names> The <names> is a collection or list of objects in the design. Specifies false path
begins at the <names>.

-hold Specifies the false path is valid during the hold analysis only.

-rise_from <clocks> The <names> is a collection or list of objects in the design. Specifies false path
begins at the rise from <clocks>.

6–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

When the objects are timing nodes, the false path only applies to the path
between the two nodes. When an object is a clock, the false path applies
to all paths where the source node (-from) or destination node (-to) is
clocked by the clock.

Minimum Delay

Use the set_min_delay command to specify an absolute minimum
delay for a given path. The following list shows the set_min_delay
command and options.

Example 6–21. set_min_delay Command
set_min_delay
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-through <names>]
<delay>

-rise_to <clocks> The <names> is a collection or list of objects in the design. Specifies false path ends
at the rise to <clocks>.

-setup Specifies the false path is valid during the setup analysis only.

-through <names> The <names> is a collection or list of objects in the design. Specifies false path
passes through <names>.

-to <names> The <names> is a collection or list of objects in the design. Specifies false path ends
at <names>.

<delay> Specifies the delay value.

Table 6–16. set_false_path Command Options (Part 2 of 2)

Option Description

Altera Corporation 6–51
October 2007 Preliminary

Timing Exceptions

Table 6–17 describes the options for the set_min_delay command.

If the source or destination node is clocked, the clock paths are taken into
account, allowing more or less delay on the data path. If the source or
destination node has an input or output delay, that delay is also included
in the minimum delay check.

When the objects are timing nodes, the minimum delay applies only to
the path between the two nodes. When an object is a clock, the minimum
delay applies to all paths where the source node (-from) or destination
node (-to) is clocked by the clock.

You can apply the set_min_delay command exception to an output
port that does not use a set_output_delay constraint. In this case, the
setup summary and hold summary report the slack for these paths.
Because there is no clock associated with the output port, no clock is
reported for these paths and the Clock column is empty. In this case, you
cannot report timing for these paths.

1 To report timing using clock filters for output paths with the
set_min_delay command, you must use the
set_output_delay command for the output port with a
value of 0. You can use an existing clock from the design or a
virtual clock as the clock reference in the set_output_delay
command.

Table 6–17. set_min_delay Command Options

Option Description

-fall_from <clocks> The <names> is a collection or list of objects in the design. Specifies the minimum
delay begins at the falling edge of <clocks>.

-fall_to <clocks> The <names> is a collection or list of objects in the design. Specifies the minimum
delay ends at the falling of <clocks>.

-from <names> The <names> is a collection or list of objects in the design. The <names> acts as the
start point of the path.

-rise_from <clocks> The <names> is a collection or list of objects in the design. Specifies the minimum
delay at the rising edge of <clocks>.

rise_to <clocks> The <names> is a collection or list of objects in the design. Specifies the minimum
delay at the rising edge of <clocks>.

-through <names> The <names> is a collection or list of objects in the design. The <names> acts as the
through point of the path.

-to <names> The <names> is a collection or list of objects in the design. The <names> acts as the
end point of the path.

<delay> Specifies the delay value.

6–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Maximum Delay

Use the set_max_delay command to specify an absolute maximum
delay for a given path. Example 6–22 shows the set_max_delay
command and options.

Example 6–22. set_max_delay Command
set_max_delay
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-through <names>]
<delay>

Table 6–18 describes the options for the set_max_delay command.

If the source or destination node is clocked, the clock paths are taken into
account, allowing more or less delay on the data path. If the source or
destination node has an input or output delay, that delay is also included
in the maximum delay check.

When the objects are timing nodes, the maximum delay only applies to
the path between the two nodes. When an object is a clock, the maximum
delay applies to all paths where the source node (-from) or destination
node (-to) is clocked by the clock.

Table 6–18. or set_max_delay Command Options

Option Description

-fall_from <clocks> The <names> is a collection or list of objects in the design. Specifies the maximum
delay begins at the falling edge of <clocks>.

-fall_to <clocks> The <names> is a collection or list of objects in the design. Specifies the maximum
delay ends at the falling of <clocks>.

-from <names> The <names> is a collection or list of objects in the design. The <names> acts as the
start point of the path.

-rise_from <clocks> The <names> is a collection or list of objects in the design. Specifies the maximum
delay at the rising edge of <clocks>.

rise_to <clocks> The <names> is a collection or list of objects in the design. Specifies the maximum
delay at the rising edge of <clocks>.

-through <names> The <names> is a collection or list of objects in the design. The <names> acts as the
thru point of the path

-to <names> The <names> is a collection or list of objects in the design. The <names> acts as the
end point of the path

<delay> Specifies the delay value.

Altera Corporation 6–53
October 2007 Preliminary

Timing Exceptions

You can apply the set_max_delay command exception to an output
port that does not use a set_output_delay constraint. In this case, the
setup summary and hold summary report the slack for these paths.
Because there is no clock associated with the output port, no clock is
reported for these paths and the Clock column is empty. In this case, you
cannot report timing for these paths.

1 To report timing using clock filters for output paths with the
set_max_delay command, you must use the
set_output_delay command for the output port with a
value of 0. You can use an existing clock from the design or a
virtual clock as the clock reference in the set_output_delay
command.

Multicycle Path

By default, the Quartus II TimeQuest Timing Analyzer uses a single-cycle
analysis. When analyzing a path, the setup launch and latch edge times
are determined by finding the closest two active edges in the respective
waveforms. For a hold analysis, the timing analyzer analyzes the path
against two timing conditions for every possible setup relationship, not
just the worst-case setup relationship. Therefore, the hold launch and
latch times may be completely unrelated to the setup launch and latch
edges.

A multicycle constraint relaxes setup or hold relationships by the
specified number of clock cycles based on the source (-start) or
destination (-end) clock. An end multicycle constraint of 2 extends the
worst-case setup latch edge by one destination clock period.

Hold multicycle constraints are based on the default hold position (the
default value is 0). An end hold multicycle constraint of 1 effectively
subtracts one destination clock period from the default hold latch edge.

6–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Use the set_multicycle_path command to specify the multicycle
constraints in the design. Example 6–23 shows the
set_multicycle_path command and options.

Example 6–23. set_multicycle_path Command
set_multicycle_path
[-end]
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-hold]
[-setup]
[-start]
[-through <names>]
<path multiplier>

Table 6–19 describes the options for the set_multicycle_path
command.

Table 6–19. set_multicycle_path Command Options

Option Description

fall_from <clocks> The <names> is a collection or list of objects in the design. Specifies the multicycle
begins at the falling edge of <clocks>.

fall_to <clocks> The <names> is a collection or list of objects in the design. Specifies the multicycle
ends at the falling of <clocks>.

-from <names> The <names> is a collection or list of objects in the design. The <names> acts as the
start point of the path.

-hold | -setup Specifies the type of multicycle to be applied.

-rise_from <clocks> The <names> is a collection or list of objects in the design. Specifies the multicycle at
the rising edge of <clocks>.

-rise_to <clocks> The <names> is a collection or list of objects in the design. Specifies the multicycle
ends at the rising edge of <clocks>.

-start | -end Specifies whether the start or end clock acts as the source or destination for the
multicycle.

-through <names> The <names> is a collection or list of objects in the design. Specifies multicycle
passes through <names>.

-to <names> The <names> is a collection or list of objects in the design. The <names> acts as the
end point of the path.

<path multiplier> Specifies the multicycle multiplier value.

Altera Corporation 6–55
October 2007 Preliminary

Timing Exceptions

When the objects are timing nodes, the multicycle constraint only applies
to the path between the two nodes. When an object is a clock, the
multicycle constraint applies to all paths where the source node (-from)
or destination node (-to) is clocked by the clock.

Clock-as-Data Analysis

The Quartus II TimeQuest Timing Analyzer has the ability to analyze
clock paths as data paths. This analysis plays an important part when
determining arrival and required times for source synchronous
interfaces, or where clock path is used as a data path (for example, a clock
captured by a register. Figure 6–28 shows a typical source synchronous
interface.

Figure 6–28. Simple Source Synchronous Circuit

To constrain the path from port clk, through the PLL, to port clk_out
you can use a set_output_delay to the clk_out port, or you can use
the set_max_delay exception to the clk_out port (optionally
specifying the PLL clock or PLL output pin as the -from). Without the
clock as data analysis, this constraint will lose the phase shift associated
with the PLL.

With the clock as data analysis the path from port clk to port clk_out
will be analyzed as data path and includes the PLL phase shift. Two paths
are reported per analysis: one from the rising edge of the clock source and
one from the falling edge of the clock source.

Application Examples

This section describes specific examples for the set_multicycle_path
command.

Figure 6–29 shows a register-to-register path where the source clock,
src_clk, has a period of 10 ns and the destination clock, dst_clk, has
a period of 5 ns.

D Q DATA_OUT

CLK_OUT

DATA

CLK PLL

6–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 6–29. Register-to-Register Path

Figure 6–30 shows the respective timing diagrams for the source and
destination clocks and the default setup and hold relationships. The
default setup relationship is 5 ns and the default hold relationship is 0 ns.

Figure 6–30. Default Setup and Hold Timing Diagram

The default setup and hold relationships can be modified with the
set_multicycle_path command to accommodate the system
requirements.

Table 6–20 shows the commands used to modify either the launch or latch
edge times that the TimeQuest Timing Analyzer uses to determine a setup
relationship or hold relationship.

D Q D Qdata_in

dst_clk

src_clk

reg reg

data_out

0 10 20 30

setup
hold

Table 6–20. Commands to Modify Edge Times

Command Description of Modification

set_multicycle_path -setup -end Latch edge time of the setup relationship

set_multicycle_path -setup -start Launch edge time of the setup relationship

set_multicycle_path -hold -end Latch edge time of the hold relationship

set_multicycle_path -hold -start Latch edge time of the hold relationship

Altera Corporation 6–57
October 2007 Preliminary

Constraint and Exception Removal

Figure 6–31 shows the command used to modify the setup latch edge and
the resulting timing diagram. The command moves the latch edge time to
10 ns from the default 5 ns.

Figure 6–31. Modified Setup Diagram

latch every 2nd edge
set_multicycle_path -from [get_clocks src_clk] -to [get_clocks dst_clk] -setup -end 2

Constraint and
Exception
Removal

When using the Quartus II TimeQuest Timing Analyzer interactively, it is
usually necessary to remove a constraint or exception. In cases where
constraints and exceptions either become outdated or have been
erroneously entered, the Quartus II TimeQuest Timing Analyzer
provides a convenient way to remove them.

Table 6–21 lists commands that allow you to remove constraints and
exceptions from a design.

0 10 20 30

 new setup
default setup

Table 6–21. Constraint and Exception Removal

Command Description

remove_clock [-all] [<clock list>] Removes any clocks specified by <clock list> that have been
previously created. The -all option removes all declared clocks.

remove_clock_groups -all Removes all clock groups previously created. Specific clock
groups cannot be removed.

remove_clock_latency -source
<targets>

Removes the clock latency constraint from the clock specified by
<targets>.

remove_clock_uncertainty -from
<from clock> -to <to clock>

Removes the clock uncertainty constraint from <from clock> to
<to clock>.

remove_input_delay <targets> Removes the input delay constraint from <targets>.

remove_output_delay <targets> Removes the output delay constraint from <targets>.

reset_design Removes all constraints and exceptions in the design.

6–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Timing Reports The Quartus II TimeQuest Timing Analyzer provides real-time static
timing analysis result reports. Reports are generated only when
requested. Each report can be customized to display specific timing
information, excluding those fields not required.

This section describes the various report generation commands
supported by the Quartus II TimeQuest Timing Analyzer.

report_timing

Use the report_timing command to generate a setup, hold, recovery,
or removal report. Example 6–24 shows the report_timing command
and options.

Example 6–24. report_timing Command
report_timing
[-append]
[-detail <summary|path_only|path_and_clock|full_path>]
[-from <names>]
[-to <names>]
[-file <name>]
[-fall_from_clock <names> | -rise_from_clock <names> -from_clock <names>]
[-hold]
[-less_than_slack <slack limit>]
[-npaths <number>]
[-nworst <number>]
[-recovery]
[-removal]
[-setup]
[-stdout]
[-through <names>]
[-through <names>]
[-to_clock <names>]
[-panel_name <name>]
[-fall_to_clock <names> | -rise_to_clock <names>]

Table 6–22 describes the options for the report_timing command.

Table 6–22. report_timing Command Options (Part 1 of 2)

Option Description

-append Specifies that the current report be appended to the file specified by
the -file option.

-file <name> Indicates that the current report is written to the file <name>.

Altera Corporation 6–59
October 2007 Preliminary

Timing Reports

Example 6–25 shows a sample report that results from typing the
following command:

report_timing -from_clock clk_async -to_clock clk_async -setup -npaths 1 r

-detail
<summary|path_only|path_and_clock|
full_path>

Specifies whether or not the clock path detail is reported.
Path Only: Clock network delay is lumped together
Summary: Lists each individual path
Path and Clock: Clock network delay is shown in detail
Full Path: More clock network details, in particular for generated
clocks

-fall_from_clock <names> Specifies the falling edge of the <names> from the source register to be
analyzed. The options from_clock, fall_from_clock, and
rise_from_clock are mutually exclusive.

-fall_to_clock <names> Specifies the falling edge of the <names> to the destination register to
be analyzed. The options to_clock, fall_to_clock, and
rise_to_clock are mutually exclusive.

-file <names> Indicates that the current report is written to the file <name>.

-hold Specifies a clock hold analysis.

-less_than_slack <slack limit> Limits the paths to be reported to those the <slack limit> value.

-npaths <number> Specifies the number of paths to report.

-nworst <number> Restricts the number of paths per endpoint.

-panel_name <names> Specifies the name of the panel in the Reports pane.

-recovery Specifies a recovery analysis.

-removal Specifies a removal analysis.

-rise_from_clock <names> Specifies the rising edge of the <names> from the source register to be
analyzed. The options from_clock, fall_from_clock, and
rise_from_clock are mutually exclusive.

-rise_to_clock <names> Specifies the rising edge of the <names> to the destination register to
be analyzed. The options to_clock, fall_to_clock, and
rise_to_clock are mutually exclusive.

-setup Specifies a clock setup analysis.

-stdout Indicates the report be sent to stdout.

-through <names> Specifies the through node for the analysis.

-to <names> Specifies the to node for the analysis.

-to_clock <names> Specifies the destination clock for the analysis.

-panel_name <names> Sends the results to the panel and specifies the name of the new
panel.

Table 6–22. report_timing Command Options (Part 2 of 2)

Option Description

6–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example 6–25. Sample report_timing Report
 Info:
===
 Info: To Node : dst_reg
 Info: From Node : src_reg
 Info: Latch Clock : clk_async
 Info: Launch Clock : clk_async
 Info:
 Info: Data Arrival Path:
 Info:
 Info: Total (ns) Incr (ns) Type Node
 Info: ========== ========= == ==== ==========================
 Info: 0.000 0.000 launch edge time
 Info: 2.237 2.237 R clock network delay
 Info: 2.410 0.173 uTco src_reg
 Info: 2.410 0.000 RR CELL src_reg|regout
 Info: 3.407 0.997 RR IC dataout|datain
 Info: 3.561 0.154 RR CELL dst_reg
 Info:
 Info: Data Required Path:
 Info:
 Info: Total (ns) Incr (ns) Type Node
 Info: ========== ========= == ==== ==========================
 Info: 10.000 10.000 latch edge time
 Info: 11.958 1.958 R clock network delay
 Info: 11.610 -0.348 uTsu dst_reg
 Info:
 Info: Data Arrival Time : 3.561
 Info: Data Required Time : 11.610
 Info: Slack : 8.049
 Info: ==

The report_timing command generates a report of the specified
analysis type—either setup, hold, recovery, or removal. Each report
contains various columns for the data arrival times and data required
time, specifically:

■ Total
■ Incr
■ RF
■ Type
■ Fanout
■ Location
■ Element

Altera Corporation 6–61
October 2007 Preliminary

Timing Reports

Each of the four column descriptions are described in the Table 6–23.

1 All columns appear only when a report panel is created. If the
report_timing output is directed to a file or the console, only
the Total, Incr, RF, Type and Node columns appear.

Table 6–24 provides a description of the possible node Type in the
report_timing reports.

Table 6–23. Timing Report Data

Column Name Description

Total Shows the accumulated time delay

Incr Shows the increment in delay

RF Shows the input and output transition of the element; this can be one of
the following: R, F, RR, RF, FR, FF

Type Shows the node type; refer to Table 6–24 of a description of the various
node types

Fanout Shows the number of fan-outs of the element

Location Shows the location of the element in the FPGA

Element Shows the name element

Table 6–24. Type Description

Type Name Description

CELL Indicates the element is either a register or a combinational element in the
FPGA; the CELL can be a register in the ALM, memory blocks, or DSP
blocks

COMP Indicates the PLL clock network compensation delay

IC Indicates the element is an interconnect delay

μtCO Indicates the element's micro clock-to-out time

μtSU Indicates the element’s micro setup time

μtH Indicates the element’s micro hold time

iEXT Indicates the element’s external input delay time

oEXT Indicates the element’s external output delay time

6–62 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

report_clock_transfers

Use the report_clock_transfers command to generate a report that
details all clock-to-clock transfers in the design. A clock-to-clock transfer
is reported if a path exists between two registers that are clocked by two
different clocks. Information such as the number of destinations and
sources is also reported.

Use the report_clock_transfers command to generate a setup,
hold, recovery, or removal report.

Example 6–26 shows the report_clock_transfers command and
options.

Example 6–26. report_clock_transfers Command
report_clock_transfers
[-append]
[-file <name>]
[-hold]
[-setup]
[-stdout]
[-recovery]
[-removal]
[-panel_name <name>]

Table 6–25 describes the options for the report_clock_transfers
command.

Table 6–25. report_clock_transfers Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-hold Creates a clock transfer summary for hold analysis.

-setup Creates a clock transfer summary for setup analysis.

-stdout Indicates the report be sent to stdout.

-recovery Creates a clock transfer summary for recovery analysis.

-removal Creates a clock transfer summary for removal analysis.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Altera Corporation 6–63
October 2007 Preliminary

Timing Reports

report_clocks

Use the report_clocks command to generate a report that details all
clocks in the design. The report contains information such as type, period,
waveform (rise and fall), and targets for all clocks in the design.

Example 6–27 shows the report_clocks command and options.

Example 6–27. report_clocks Command
report_clocks
[-append]
[-desc]
[-file <name>]
[-stdout]
[-panel_name <name>]

Table 6–26 describes the options for the report_clocks command.

report_min_pulse_width

A minimum pulse width checks that a clock high or low pulse is
sustained enough to recognize an actual change in the clock signal. A
failed minimum pulse width check indicates that the register may not
recognize the clock transition. Use the report_min_pulse_width
command to generate a report that details the minimum pulse width for
all clocks in the design. The report contains information for high and low
pulses for all clocks in the design.

The report_min_pulse_width command also reports minimum
period checks for RAM and DSP, as well as I/O edge rate limits for input
and output clock ports. For output ports, the port must either have a clock
(or generated clock) assigned to it or used as the -reference_pin for
an input/output delays.

Table 6–26. report_clocks Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-desc Specifies the clock names to sort in descending order. The default is ascending
order.

-stdout Indicates the report be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

6–64 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The report_min_pulse_width command checks the I/O edge rate
limits, but does not always perform the check for output clock ports. For
the report_min_pulse_width command to check the I/O edge rate
limits for output clock ports the output clock port must:

■ Have a clock or generated clock constraint assigned to it

or

■ Be used as a -reference_pin for an Input or Output delay
constraint

Each register in the design is reported twice per clock that clocks the
register: once for the high pulse and once for the low pulse. Example 6–28
shows the report_min_pulse_width command and options.

Example 6–28. report_min_pulse_width Command
report_min_pulse_width
[-append]
[-file <name>]
[-nworst <number>]
[-stdout]
[<targets>]
[-panel_name <name>]

Table 6–27 describes the options for the report_min_pulse_width
command.

Table 6–27. report_min_pulse_width Command Options

Option Description

-append If output is sent to a file, this option appends the result to that file. Otherwise, the file
is overwritten.

-file <name> Sends the results to a file.

-nworst <number> Specifies the number of pulse width checks to report. The default is 1.

-stdout Redirects the output to stdout via messages; only required if another output
format, such as a file, has been selected and is also to receive messages.

-targets Specifies registers.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Altera Corporation 6–65
October 2007 Preliminary

Timing Reports

report_net_timing

Use the report_net_timing command to generate a report that details
the delay and fan-out information about a net in the design. A net
corresponds to a cell’s output pin.

Example 6–29 shows the report_net_timing command and options.

Example 6–29. report_net_timing Command
report_net_timing
[-append]
[-file <name>]
[-nworst_delay <number>]
[-nworst_fanout <number>]
[-stdout]
[-panel_name <name>]

Table 6–28 describes the options for the report_net_timing
command.

Table 6–28. report_net_timing Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the
-file option.

-file <name> Indicates that the current report is written to the file <name>.

-nworst_delay <number> Specifies that <number> worst net delays be reported.

-nworst_fanout <number> Specifies that <number> worst net fan-outs be reported.

-stdout Indicates the report be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

6–66 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

report_sdc

Use the use the report_sdc command to generate a report of all the
Synopsys Design Constraints in the project.

Example 6–30 shows the report_sdc command and options.

Example 6–30. report_sdc Command
report_sdc
[-ignored]
[-append]
[-file]
[-stdout]
[-panel_name <name>]

Table 6–29 describes the options for the report_sdc command.

report_ucp

Use the report_ucp command to generate a report of all unconstrained
paths in the design.

Example 6–31 shows the report_ucp command and options.

Example 6–31. report_ucp Command
report_ucp
[-append]
[-file <name>]
[-hold]
[-setup]
[-stdout]
[-summary]
[-panel_name <name>]

Table 6–29. report_sdc Command Options

Option Description

-ignored Reports assignments that were ignored.

-append Specifies that the current report be appended to the file specified by the -file
option.

-file Indicates that the current report is written to the file <name>.

-stdout Indicates that the report is sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Altera Corporation 6–67
October 2007 Preliminary

Timing Reports

Table 6–30 describes the options for the report_ucp command.

Table 6–31 summarizes all reporting commands available in the
Quartus II TimeQuest Timing Analyzer.

Table 6–30. Option Descriptions for report_ucp

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-hold Report all unconstrained hold paths.

-setup Report all unconstrained setup paths.

-stdout Indicates the report be sent to stdout.

-summary Generates only the summary panel.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Table 6–31. Reports from the Tasks Pane and Tcl Commands (Part 1 of 2)

Task Pane Report Tcl Command Description

Report Setup Summary create_timing_summary -setup Generates a clock setup summary for
all defined clocks.

Report Hold Summary create_timing_summary -hold Generates a clock hold summary for all
defined clocks.

Report Recovery
Summary

create_timing_summary -recovery Generates a clock recovery summary
for all defined clocks.

Report Removal
Summary

create_timing_summary -removal Generates a clock removal summary
for all defined clocks.

Report Clocks report_clocks Generates a clock summary for all
defined clocks.

Report Clock Transfers report_clock_transfers Generates a clock transfer summary
for all clock-to-clock transfers in the
design.

Report SDC report_sdc Generates a summary of all SDC file
commands read.

Report Unconstrained
Paths

report_ucp Generates a summary of all
unconstrained paths in the design.

Report Timing report_timing Generates a detailed summary for
specific paths in the design.

Report Net Timing report_net_timing Generates a detailed summary for
specific nets in the design.

6–68 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

report_path

Use the report_path command to report the longest delay paths and
the corresponding delay value.

Example 6–32 shows the report_path command and options.

Example 6–32. report_path Command
report_path
[-append]
[-file <name>]
[-from <names>]
[-npaths <number>]
[-stdout]
[-through]
[-to <names>]
[-panel_name <name>]

Table 6–32 describes the options for the report_path command.

Report Minimum Pulse
Width

report_min_pulse_width Generates a detailed summary for
specific registers in the design.

Create Slack Histogram create_slack_histogram Generates a detailed histogram for a
specific clock in the design.

Table 6–31. Reports from the Tasks Pane and Tcl Commands (Part 2 of 2)

Task Pane Report Tcl Command Description

Table 6–32. report_path Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-from <names> Specifies the source node for the analysis.

-npaths <number> Specifies the number of paths to report.

-stdout Indicates the report be sent to stdout.

-through <name> Specifies the through node for the analysis.

-to <names> Specifies the destination node for the analysis.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Altera Corporation 6–69
October 2007 Preliminary

Timing Reports

report_datasheet

Use the report_datasheet command to generate a datasheet report
which summarizes the timing characteristics of the entire design. It
reports setup (tsu), hold (th), clock-to-output (tco), minimum
clock-to-output (mintco), propagation delay (tpd), and minimum
propagation delay (mintpd) times. Example 6–33 shows the
report_datasheet command and options.

Example 6–33. report_datasheet Command
report_datasheet
[-append]
[-file <name>]
[-stdout]
[panel_name <name>]

Table 6–33 describes the options for the report_datasheet command.

The delays are reported with respect to a base clock or port for which they
are relevant. If there is a case where there are multiple paths for a clock,
the maximum delay of the longest path is taken for the tsu, th, tco, and
tpd, and the minimum delay of the shortest path is taken for mintco and
mintpd.

Table 6–33. report_datasheet Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-stdout Indicates the report be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

6–70 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

report_rskm

Use the report_rskm command to generate a report that details the
receiver skew margin for LVDS receivers.

Example 6–34 shows the report_rskm command and options.

Example 6–34. report_rskm Command
report_rskm
[-append]
[-file <name>]
[-panel_name <name>]
[-stdout]

Table 6–34 describes the options for the report_rskm command.

report_tccs

Use the report_tccs command to generate a report that details the
channel-to-channel skew margin for LVDS transmitters.

Example 6–35 shows the report_tccs command and options.

Example 6–35. report_tccs Command
report_tccs
[-append]
[-file <name>]
[-panel_name <name>]
[-quiet]
[-stdout]

Table 6–34. report_rskm Command Options

Type Name Description

-append Specifies that the current report be appended to the file specified by the
–file option.

-file <name> Indicates that the current report is written to the file <name>.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-stdout Indicates the report be sent to stdout.

Altera Corporation 6–71
October 2007 Preliminary

Timing Reports

Table 6–35 describes the options for the report_tccs command.

report_path

Use the report_path command to generate a report that details the
longest delay paths between any two arbitrary keeper nodes.

Example 6–36 shows the report_path command and options.

Example 6–36. report_path Command
report_path
[-append]
[-file <name>]
[-from <names>]
[-min_path]
[-npaths <number>]
[-nworst <number>]
[-panel_name <name>]
[-stdout]
[-summary]
[-through <names>]
[-to <names>]

Table 6–36 describes the options for the report_path command.

Table 6–35. report_tccs Command Options

Type Name Description

-append Specifies that the current report be appended to the file specified by the
–file option.

-file <name> Indicates that the current report is written to the file <name>.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-quiet Specifies that nothing will be printed if there are no LVDS receivers in the
design.

-stdout Indicates the report be sent to stdout.

Table 6–36. report_path Command Options (Part 1 of 2)

Type Name Description

-append Specifies that the current report be appended to the file specified by the
-file option.

-file <name> Indicates that the current report is written to the file <name>.

6–72 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 The delay path reported cannot pass through a keeper node, for
example, a register or port. Instead, the delay path must be from
the output pin of a keeper node to the input pin of a keeper
node.

Figure 6–32 shows a simple design with a register-to-register path.

Figure 6–32. Simple Register-to-Register Path

Example 6–37 shows the report generated from the following command:

report_path -from [get_pins {reg1|regout}] -to [get_pins \
{reg2|datain}] -npaths 1 -panel_name "Report Path" –stdout

-from <names> The <names> is a collection or list of objects in the design. The <names>
acts as the start point of the path.

-min_path Displays the minimum delay paths.

-npaths <number> Specifies the number of paths to report.

-nworst <number> Specifies the maximum number of paths to report for each endpoint.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-stdout Indicates the report be sent to stdout.

-summary Creates a single table with a summary of each path found.

-through <names> The <names> is a collection or list of objects in the design. Specifies false
path passes through <names>.

-to <names> The <names> is a collection or list of objects in the design. The <names>
acts as the end point of the path.

Table 6–36. report_path Command Options (Part 2 of 2)

Type Name Description

reg1
D Q

reg
D Q

data_in_a

data_in_b

clk_i

c0

c1

PLL

and2 data_out

clk_out

Altera Corporation 6–73
October 2007 Preliminary

Timing Reports

Example 6–37. report_path from Keeper Output Pin to Keeper Input Pin
Info: ===

 Info: From Node : reg1|regout
 Info: To Node : reg2|datain
 Info:
 Info: Path:
 Info:
 Info: Total (ns) Incr (ns) Type Element
 Info: ========== ========= == ==== ===================
 Info: 0.000 0.000 reg1|regout
 Info: 0.206 0.206 RR IC and2|datae
 Info: 0.360 0.154 RR CELL and2|combout
 Info: 0.360 0.000 RR IC reg2|datain
 Info:
 Info: Total Path Delay : 0.360
 Info: ===

Example 6–38 shows the report generated from the following command:

> report_path -from [get_ports data_in_a] -to [get_pins \
{reg2|regout}] -npaths 1

Example 6–38. report_path from Keeper-to-Keeper Output Pin
Info: Report Path: No paths were found
0 0.000

No paths were reported in Example 6–38 because the destination passes
through an input pin of a keeper node.

check_timing

Use the check_timing command to generate a report on any potential
problem with the design or applied constraints. Not all check_timing
results are serious issues, and the results should be examined to see if the
results are desired. Example 6–39 shows the check_timing command
and options.

Example 6–39. check_timing Command
check_timing
[-append]
[-file <name>]
[-include <check_list>]
[-stdout]
[-panel_name <name>]

6–74 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 6–37 describes the options for the check_timing command.

Table 6–38 describes the possible checks.

Table 6–37. check_timing Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file option.

-file <name> Indicates that the current report is written to the file <name>.

-include Indicates that a check is to be performed with the <check_list>. Refer to Table 6–38 for a list
of checks.

-stdout Indicates the report be sent to stdout.

-panel_name
<name>

Sends the results to the panel and specifies the name of the new panel.

Table 6–38. Possible Checks (Part 1 of 2)

Option Description

no_clock Checks that registers have at least one clock at their clock pin, and that ports
determined to be clocks have a clock assigned to them.

multiple_clock Checks that registers have at most one clock at their clock pin. When multiple
clocks reach a register's clock pin, both clocks will be used for analysis.

generated_clock Checks that generated clocks are valid. Generated clocks must have a source
that is clocked by a valid clock. They must also not depend on each other in a
loop (clk1 cannot have clk2 as a source if clk2
already uses clk1 as a source).

no_input_delay Checks that every input port that is not determined to be a clock has an input
delay set on it.

no_output_delay Checks that every output port has an output delay set on it.

partial_input_delay Checks that input delays are complete. Makes sure that input delays have a
rise-min, fall-min, rise-max, and fall-max portion set.

partial_output_delay Checks that output delays are complete. Makes sure that output delays have a
rise-min, fall-min, rise-max, and fall-max portion set.

reference_pin Checks if reference pins specified in set_input_delay and
set_output_delay using the reference_pin option are valid. A
reference_pin is valid if the clock option specified in the same
set_input_delay/set_output_delay command matches the clock that
is in the direct fan-in of the reference_pin. Being in the direct fan-in of the
reference_pin means that there must be no keepers between the clock and
the reference_pin.

Altera Corporation 6–75
October 2007 Preliminary

Timing Reports

Example 6–40 shows how the check_timing command can be used.

Example 6–40. The check_timing Command
Constrain design
create_clock -name clk -period 4.000 -waveform { 0.000 2.000 } \

[get_ports clk]
set_input_delay -clock clk2 1.5 [get_ports in*]
set_output_delay -clock clk 1.6 [get_ports out*]
set_false_path -from [get_keepers in] -through [get_nets r1] -to \

[get_keepers out]

Check if there were any problems
check_timing -include {loops latches no_input_delay partial_input_delay}

report_clock_fmax_summary

Use the report_clock_fmax_summary to report potential fMAX for
every clock in the design, regardless of the user-specified clock periods.
fMAX is only computed for paths where the source and destination
registers or ports are driven by the same clock. Paths of different clocks,
including generated clocks, are ignored. For paths between a clock and its
inversion, fMAX is computed as if the rising and falling edges are scaled
along with fMAX, such that the duty cycle (in terms of a percentage) is
maintained.

latency_override Checks if the clock latency constraint that is set on a port or pin overrides the
more generic clock latency set on a clock. Clock latency can be set on a clock,
where the latency applies to all keepers clocked by the clock, whereas clock
latency can also be set on a port or pin, where the latency applies to registers in
the fan-out of the port or pin.

loops Checks that there are no strongly connected components in the design. These
loops prevent a design from being properly analyzed. Indicates that loops exist
but were marked so that they would not be traversed.

latches Checks if there are latches in the design. The Quartus II TimeQuest Timing
Analyzer warns the user that the latches exist and cannot be properly analyzed.

Table 6–38. Possible Checks (Part 2 of 2)

Option Description

6–76 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example 6–41 shows the report_clock_fmax_summary command
and options.

Example 6–41. report_clock_fmax_summary Command
report_clock_fmax_summary
[-append]
[-file <name>]
[-panel_name <name>]
[-stdout]

Table 6–39 describes the options for the
report_clock_fmax_summary command.

create_timing_summary

Reports the worst-case Clock Setup and Clock Hold slacks and endpoint
TNS (total negative slack) per clock domain. Total negative slack is the
sum of all slacks less than zero for each destination register or port in the
clock domain.

Example 6–42 shows the create_timing_summary command and
options.

Example 6–42. create_timing_summary Command
create_timing_summary
[-append]
[-file <name>]
[-hold]
[-panel_name <name>]
[-recovery]
[-removal]
[-setup]
[-stdout]

Table 6–39. report_clock_fmax_summary Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-stdout Indicates the report be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Altera Corporation 6–77
October 2007 Preliminary

Timing Analysis Features

Table 6–40 describes the options for the create_timing_summary
command.

Timing Analysis
Features

Multi-Corner Analysis

Multi-corner analysis allows a design to be verified under a variety of
operating conditions (voltage, process, and temperature) while
performing a static timing analysis on the design.

Use the set_operating_conditions command to change the
operating conditions of the device used for static timing analysis.

Example 6–43 shows the set_operating_conditions command and
options.

Example 6–43. set_operating_conditions Command
set_operating_conditions
[-model <fast|slow>]
[-speed <speed grade>]
[-temperature <value in ºC>]
[-voltage <value in mV>]
[<operating condition Tcl object>]

Table 6–40. create_timing_summary Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-hold Generates a clock hold check summary report.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-recovery Generates a recovery check summary report.

-removal Generates a removal check summary report.

-setup Generates a clock setup check summary report.

-stdout Indicates the report be sent to stdout.

6–78 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 6–41 describes the options for the report_net_timing
command.

1 If an operating condition Tcl object is used, the model, speed,
temperature, and voltage options are not required. If an
operating condition Tcl object is not used, the model must be
specified, and the -speed, -temperature, and -voltage options are
optional, using the appropriate defaults for the device where
applicable.

Table 6–42 shows the available operating conditions that can be set for
each device family.

1 Use the command
get_available_operating_conditions to obtain a list of
available operating conditions for the target device.

Table 6–41. report_net_timing Command Options

Option Description

-model <fast|slow> Specifies the timing model.

-speed <speed grade> Specifies the device speed grade.

-temperature <value in ºC> Specifies the operating temperature.

-voltage <value in mV> Specifies the operating voltage.

<operating condition Tcl object> Specifies the operating condition Tcl object that specifies the operating
conditions.

Table 6–42. Device Family Operating Conditions

Device Family
Available Conditions Operating Condition Tcl

ObjectsModel Voltage (mV) Temp (°C)

Stratix III Slow
Slow
Fast

1100
1100
1100

85
0
0

slow_1100mv_85c
slow_1100mv_0c
fast_1100mv_0c

Cyclone III Slow
Slow
Fast

1200
1200
1200

85
0
0

slow_1200mv_85c
slow_1200mv_0c
fast_1200mv_0c

Stratix II Slow
Fast

N/A N/A slow
fast

Cyclone II Slow
Fast

N/A N/A slow
fast

Altera Corporation 6–79
October 2007 Preliminary

Timing Analysis Features

Example 6–44 shows how to set the operating conditions for a Stratix III
design to the slow model, 1100 mV, and 85°C.

Example 6–44. Setting Operating Conditions with Individual Values
set_operating_conditions -model slow -temperature 85 -voltage 1100

Alternatively, the operating conditions in Example 6–44 can be set with
the Tcl object as shown in Example 6–45.

Example 6–45. Setting Operating Conditions with a Tcl Object
set_operating_conditions slow_1100mv_85c

Advanced I/O Timing and Board Trace Model Assignments

The Quartus II TimeQuest Timing Analyzer is able to use Advanced I/O
Timing and Board Trace Model assignments to model I/O buffer delays
in your design. The Advanced I/O Analysis feature can be turned ON or
OFF in the Settings dialog box under the TimeQuest Timing Analyzer
option.

If you turn ON or OFF the Advanced I/O Timing or change Board Trace
Model assignments and do not recompile before you analyze timing, you
must use the -force_dat option when you create the timing netlist.
Type the following command at the Tcl console of the Quartus II
TimeQuest Timing Analyzer:

create_timing_netlist -force_dat r
If you turn ON or OFF the Advanced I/O Timing or change Board Trace
Model assignments and do recompile before you analyze timing, you do
not need to use the -force_dat option when you create the timing
netlist. You can create the timing netlist with the
create_timing_netlist command, or with the Create Timing
Netlist task in the Tasks pane.

f For more information about the Advanced I/O Timing feature, refer to
the I/O Management chapter in volume 2 of the Quartus II Handbook.

Wildcard Assignments and Collections

To simplify the task of applying constraints to many nodes in a design,
the Quartus II TimeQuest Timing Analyzer accepts the “*” and “?”
wildcard characters. Use these wildcard characters to reduce the number
of individual constraints you must specify in your design.

6–80 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The “*” wildcard character matches any string. For example, given an
assignment made to a node specified as reg*, the Quartus II TimeQuest
Timing Analyzer searches for and applies the assignment to all design
nodes that match the prefix reg with none, one, or several characters
following, such as reg1, reg[2], regbank, and reg12bank.

The “?” wildcard character matches any single character. For example,
given an assignment made to a node specified as reg?, the Quartus II
TimeQuest Timing Analyzer searches and applies the assignment to all
design nodes that match the prefix “reg” and any single character
following, for example, reg1, rega, and reg4.

Both the collection commands get_cells and get_pins have three
options that allow you to refine searches that include the wildcard
character. To refine your search results, select the default behavior, the
-hierarchical option, or the -compatibility option.

1 The pipe character is used to separate one hierarchy level from
the next in the Quartus II TimeQuest Timing Analyzer. For
example, <absolute full cell name>|<pin suffix> represents a
hierarchical pin name with the “|” separating the hierarchy
from the pin name.

When you use the collection commands get_cells and get_pins
without an option, the default search behavior is performed on a
per-hierarchical level of the pin name, that is, the search is performed
level by level. A full hierarchical name may contain multiple hierarchical
levels where a “|” is used to separate the hierarchical levels, and each
wildcard character represents only one hierarchical level. For example,
”*” represents the first hierarchical level and “*|*” represents the first
and second hierarchical levels.

When you use the collection commands get_cells and get_pins with
the -hierarchical option, a recursive match is performed on the
relative hierarchical path name of the form <short cell name>|<pin name>.
The search is performed on the node name, for example, the last hierarchy
of the name, and not the hierarchy path. Unlike the default behavior, this
option does not limit the search to each hierarchy level represented by the
pipe character.

1 The pipe character cannot be used in the search with the
get_cells -hierarchical option. The pipe character can
be used with the get_pins collection search.

Altera Corporation 6–81
October 2007 Preliminary

Timing Analysis Features

When you use the collection commands get_cells and get_pins with
the -compatibility option, the search performed is similar to that of
the Quartus II Classic Timing Analyzer. This option searches the entire
hierarchical path, and pipe characters are not treated as special
characters.

Assuming the following cells exist in a design:

foo
foo|bar

and the following pin names:

foo|dataa
foo|datab
foo|bar|datac
foo|bar|datad

Table 6–43 shows the results of using these search strings.

Resetting a Design

Use the reset_design command to remove all timing constraints and
exceptions from the design under analysis. The command removes all
clocks, generated clocks, derived clocks, input delays, output delays,
clock latency, clock uncertainty, clock groups, false paths, multicycle
paths, min delays, and max delays.

Table 6–43. Sample Search Strings and Search Results

Search String Search Result

get_pins *|dataa foo|dataa

get_pins *|datac <empty>

get_pins *|*|datac foo|bar|datac

get_pins foo*|* foo|dataa, foo|datab

get_pins -hierarchical *|*|datac <empty> (1)

get_pins -hierarchical foo|* foo|dataa, foo|datab

get_pins -hierarchical *|datac foo|bar|datac

get_pins -hierarchical foo|*|datac <empty> (1)

get_pins -compatibility *|datac foo|bar|datac

get_pins -compatibility *|*|datac foo|bar|datac

Note to Table 6–43:
(1) Due to the additional *|*| in the search string, the search result is <empty>.

6–82 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

This command provides a convenient way to return to the initial state of
analysis without the need to delete and re-create a new timing netlist.

The TimeQuest
Timing Analyzer
GUI

The Quartus II TimeQuest Timing Analyzer provides an intuitive and
easy-to-use GUI that allows you to efficiently constrain and analyze your
designs. The GUI consists of the following panes:

■ “The Quartus II Software Interface and Options” described on
page 6–83

■ “View Pane” described on page 6–85
■ “Tasks Pane” described on page 6–87
■ “Console Pane” described on page 6–90
■ “Report Pane” described on page 6–90
■ “Constraints” described on page 6–90
■ “Name Finder” described on page 6–92
■ “Target Pane” described on page 6–94
■ “SDC Editor” described on page 6–94

Altera Corporation 6–83
October 2007 Preliminary

The TimeQuest Timing Analyzer GUI

Each pane provides features that enhance productivity (Figure 6–33).

Figure 6–33. The TimeQuest GUI

The Quartus II Software Interface and Options

The Quartus II software allows you to configure various options for the
Quartus II TimeQuest Timing Analyzer report generation that are
generated in the Compilation Report for the design.

The TimeQuest Timing Analyzer settings, in the Settings dialog box,
allow you to configure the options shown in Table 6–44.

Table 6–44. The Quartus II TimeQuest Timing Analyzer Settings (Part 1 of 2)

Options Description

SDC files to include in the project Adds and removes SDC files associated with the project

Enable Advanced I/O Timing Generates advanced I/O timing results from board trace models
specified for each pin

6–84 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 The options shown in Table 6–44 only control the reports
generated in the Compilation Report, and do not control the
reports generated in the Quartus II TimeQuest Timing Analyzer.

Figure 6–34 shows the TimeQuest Timing Analyzer setting.

Figure 6–34. TimeQuest Timing Analyzer Settings

Enable multicorner timing analysis during
compilation

Generates multiple reports for all available operating conditions of
the target device

Report worst-case paths during compilation Generates worst-case path reports per clock domain

Tcl Script File for customizing report during
compilation

Specifies any custom scripts to be sourced for any custom report
generation

Table 6–44. The Quartus II TimeQuest Timing Analyzer Settings (Part 2 of 2)

Options Description

Altera Corporation 6–85
October 2007 Preliminary

The TimeQuest Timing Analyzer GUI

View Pane

The View pane is the main viewing area for the timing analysis results.
Use the View pane to view summary reports, custom reports, or
histograms. Figure 6–35 shows the View pane after you select the
Summary (Setup) report from the Report pane.

Figure 6–35. Summary (Setup) Report

View Pane: Splitting

For the proper analysis of timing results, comparison of multiple reports
is extremely important. To facilitate multiple report viewing, the View
pane supports window splitting. Window splitting divides the View
pane into multiple windows, allowing you to view different reports
side-by-side.

You can split the View pane into multiple windows using the split icon
located in the upper right hand corner of the View pane. Drag the icon in
different directions to generate additional window views in the View
pane. For example, if you drag the split icon to the left, the View pane
creates a new window to the right of the current window (Figure 6–36).

Figure 6–36. Splitting the View Pane to the Left (Before and After Split Left)

6–86 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If you drag the split icon diagonally, the View pane creates three new
windows in the View pane (Figure 6–37).

Figure 6–37. Splitting the View Pane Diagonally (Before and After Diagonal Split)

Drag the split icon downward to create a new window directly below the
current window.

View Pane: Removing Split Windows

You can remove windows that you create in the View pane using the split
icon by dragging the border of the window over the window you wish to
remove (Figure 6–38).

Altera Corporation 6–87
October 2007 Preliminary

The TimeQuest Timing Analyzer GUI

Figure 6–38. Removing a Split Window (Before and After Split is Removed)

Tasks Pane

Use the Tasks pane to access common commands such as netlist setup
report generation.

Common commands are located in the Tasks pane: Open Project and
Write SDC File, and Reset Design. The other commands, including
timing netlist setup and the generation of reports, are contained in the
following folders:

■ Netlist Setup
■ Reports

1 Each command in the Tasks pane has an equivalent Tcl
command that is displayed in the Console pane when the
command runs.

Opening a Project and Writing a Synopsys Design Constraints File

To open a project in the Quartus II TimeQuest Timing Analyzer,
double-click the Open Project task. If you launch the Quartus II
TimeQuest Timing Analyzer from the Quartus II software GUI, the
project opens automatically.

6–88 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

You can add or remove constraints from the timing netlist after the
Quartus II TimeQuest Timing Analyzer reads the initial SDC file. After
the file is read, the initial SDC file becomes outdated compared to the
constraints in the Quartus II TimeQuest Timing Analyzer. Use the Write
SDC File command to generate an SDC file that is up-to-date and reflects
the current state of constraints in the Quartus II TimeQuest Timing
Analyzer.

Netlist Setup Folder

The Netlist Setup folder contains tasks that are used to set up the timing
netlist for timing analysis. The three tasks located in this folder are Create
Timing Netlist, Read SDC File, and Update Timing Netlist.

Use the Create Timing Netlist task to create a netlist that the Quartus II
TimeQuest Timing Analyzer uses to perform static timing analysis. This
netlist is used only for timing analysis by the Quartus II TimeQuest
Timing Analyzer.

1 You must always create a timing netlist before you perform
static timing analysis with the Quartus II TimeQuest Timing
Analyzer.

Use the Read SDC File command to apply constraints to the timing
netlist. By default, the Read SDC File command reads the
<current revision>.sdc file.

1 Use the read_sdc command to read an SDC file that is not
associated with the current revision of the design.

Use the Update Timing Netlist command to update the timing netlist
after you enter constraints. You should use this command if any
constraints are added or removed from the design.

Reports Folder

The Reports folder contains commands to generate timing summary
reports of the static timing analysis results. The nine commands located
in this folder are summarized in Table 6–45.

Table 6–45. Reports Folder Commands (Part 1 of 2)

Report Task Description

Report fMAX Summary Generates a fMAX summary report for all clocks in the design.

Report Setup Summary Generates a clock setup summary report for all clocks in the design.

Altera Corporation 6–89
October 2007 Preliminary

The TimeQuest Timing Analyzer GUI

Macros Folder

The Macros folder contains commands that perform custom tasks
available in the Quartus II TimeQuest Timing Analyzer utility package.
These commands are: Report All Summaries, Report Top Failing Paths,
and Create All Clock Histograms.

Table 6–46 describes the commands available in the Macros folder.

Report Hold Summary Generates a clock hold summary report for all clocks in the design.

Report Recovery Summary Generates a recovery summary report for all clocks in the design.

Report Removal Summary Generates a removal summary report for all clocks in the design.

Report Clocks Generates a summary report of all created clocks in the design.

Report Clock Transfers Generates a summary report of all clock transfers detected in the design.

Report Minimum Pulse Width Generates a summary report of all minimum pulse widths in the design.

Report SDC Generates a summary report of the constraints read from the SDC file.

Report Unconstrained Paths Generates a summary report of all unconstrained paths in the design.

Report Ignored Constraints Generates a summary report of all ignored SDC constraints for the design.

Report Datasheet Generates a datasheet report for the design.

Table 6–45. Reports Folder Commands (Part 2 of 2)

Report Task Description

Table 6–46. Macros Folder Commands

Macro Task Description

Report All Summaries This command runs the Report Setup Summary, Report Hold Summary,
Report Recovery Summary, Report Removal Summary, and Minimum Pulse
Width commands to generate all summary reports.

Report Top Failing Paths This command generates a report containing a list of top failing paths.

Create All Clock Histograms This command runs the Create Slack Histogram command to generate a clock
histogram for all clocks in the design.

Report All I/O Timings This command generates a report of all timing paths that start or end at a device
port.

Report All Core Timings This command generates a report of all timing paths that start and end at the
device register.

6–90 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Console Pane

The Console pane is both a message center for the Quartus II TimeQuest
Timing Analyzer, and an interactive Tcl. The Console pane has two tabs:
the Console tab and the History tab. All messages, such as info and
warning messages, appear in this pane. Also, the Console tab allows you
to enter and run Synopsys Design Constraints and Tcl commands. The
Console tab shows the Tcl equivalent of all commands that you run in the
Tasks pane. The History tab records all the Synopsys Design Constraints
and Tcl commands that are run.

1 To run the commands located in the History tab after the timing
netlist has been updated, right-click the command, and click
Rerun.

You can copy Tcl commands from the Console and History tabs to easily
generate Tcl scripts to perform timing analysis.

Report Pane

Use the Report pane to access all reports generated from the Tasks pane,
and by any custom report commands. When you select a report in the
Report pane, the report is shown in the active window in the View pane.

1 If a report is out-of-date with respect to the current constraints,
a “?” icon is shown next to the report.

Constraints

Use the Constraints menu to access commonly used constraints,
exceptions, and commands. The following commands are available on
the Constraints menu:

■ Create Clock
■ Create Generated Clock
■ Set Clock Latency
■ Set Clock Uncertainty
■ Set Clock Groups
■ Remove Clock

For example, use the Create Clock dialog box to create clocks in your
design. Figure 6–39 shows the Create Clock dialog box.

Altera Corporation 6–91
October 2007 Preliminary

The TimeQuest Timing Analyzer GUI

Figure 6–39. Create Clock Dialog Box

The following commands specify timing exceptions, and are available on
the Constraints menu:

■ Set False Path
■ Set Multicycle Path
■ Set Maximum Delay
■ Set Minimum Delay

All the dialog boxes used to specify timing constraints or exceptions from
commands have an SDC command field. This field contains the SDC
command that is run when you click OK.

1 All commands and constraints created in the Quartus II
TimeQuest Timing Analyzer user interface are echoed in the
Console pane.

The constraints specified with Constraints menu commands are not
saved to the current SDC file automatically. You must run the Write SDC
File command to save your constraints.

The following commands are available on the Constraints menu in the
Quartus II TimeQuest Timing Analyzer:

■ Generate SDC File from QSF
■ Read SDC File
■ Write SDC File

6–92 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Generate SDC File from QSF command runs a Tcl script that
converts the Quartus II Classic Timing Analyzer constraints in a QSF file
to an SDC file for the Quartus II TimeQuest Timing Analyzer. The file
<current revision>.sdc is created by this command.

f For information about the Generate SDC File from QSF command, refer
to the Switching to the Quartus II TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook.

The Generate SDC File from QSF command attempts to convert all
timing constraints and exceptions in the QSF file to their equivalent SDC
file constraints. However, not all QSF file constraints are convertible to
SDC file constraints. Review the SDC file after it is created to ensure that
all constraints have been successfully converted.

The Read SDC File command reads the <current revision>.sdc file.

When you select the Write SDC File command, an up-to-date SDC file
that reflects the current state of constraints in the Quartus II TimeQuest
Timing Analyzer is generated.

Name Finder

Use the Name Finder dialog box to select the target for any constraints or
exceptions in the Quartus II TimeQuest Timing Analyzer GUI. The Name
Finder allows you to specify collections, filters, and filter options. The
Collections field in the Name Finder dialog box allows you to specify the
type of name to select. To select the type, in the Collection list, select the
desired collection API including:

■ get_cells
■ get_clocks
■ get_keepers
■ get_nets
■ get_nodes
■ get_pins
■ get_ports
■ get_registers

For more information about the various collection APIs, refer to
“Collections” on page 6–23.

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

Altera Corporation 6–93
October 2007 Preliminary

The TimeQuest Timing Analyzer GUI

The Filter field allows you to filter names based on your own criteria
including wildcards characters. You can further refine your results using
the following filter options.

■ Case-insensitive
■ Hierarchical
■ Compatibility mode

For more information about the filter options, refer to “Wildcard
Assignments and Collections” on page 6–79.

The Name Finder dialog box also provides an SDC command field that
displays the currently selected name search command. You can copy the
value from this field and use it for other constraint target fields. The
Name Finder dialog box is shown in Figure 6–40.

Figure 6–40. Name Finder Dialog Box

6–94 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Target Pane

When using the TimeQuest GUI, you have the ability to split the View
pane into multiple windows. The splitting feature allows you to display
multiple reports in the View pane. After splitting the View pane, the last
active window is updated with any new reports. You can change this
behavior by changing the state of each split window. You can do this by
clicking on the target circle in the upper right-hand corner (Figure 6–41).
Table 6–47 describes the state of each window.

Figure 6–41. Target Pane

Clicking on the circle in the upper right-hand corner of an active window
changes the state of the window.

SDC Editor

The TimeQuest GUI also provides an SDC editor. The SDC editor
provides an easy and convenient way to write, edit, and read SDC files
directly from the tool. The SDC editor is context sensitive. After an SDC
constraint or exception has been entered, a tooltip appears that shows the
options and format for the constraint or exception, as shown in
Figure 6–42.

View Pane Window State

Table 6–47. View Pane Window State

State Description

Partially Filled Red Circle Indicates that the active window will display any new reports.

Fully Filled Red Circle Indicates that the window, independent of it being the active window, will display
any new reports.

Empty Circle Indicates that the window will not display any new reports.

Altera Corporation 6–95
October 2007 Preliminary

Conclusion

Figure 6–42. SDC Editor

1 The Constraints menu, on the menu bar, allows you to bring up
the Constraints dialog box. After you have finished entering all
required parameters, the SDC is inserted at the current cursor
position.

Conclusion The Quartus II TimeQuest Timing Analyzer caters to the needs of
complex designs, resulting in increased productivity and efficiency
through its intuitive user interface, support of industry-standard
constraints format, and scripting capabilities. The Quartus II TimeQuest
Timing Analyzer is a next-generation timing analysis tool that supports
the industry-standard SDC format and allows designers to create,
manage, and analyze complex timing constraints, and to perform
advanced timing verification.

Referenced
Documents

This chapter references the following documents:

■ Introduction to Quartus II Manual
■ I/O Management chapter in volume 2 of the Quartus II Handbook
■ SDC and TimeQuest API Reference Manual
■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in

volume 3 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/mnl-sdctmq.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

6–96 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 6–48 shows the revision history for this chapter.

Table 6–48. Document Revision History

Date and
Version Changes Made Summary of Changes

October 2007
v7.2.0

Updated for the Quartus II software version 7.1, including:
● Updated organization flow of the Compilation Flow with

TimeQuest Guidelines, Timing Analysis Overview, and
Specify Design Timing Requirements sections

● Added new information on Clock as Data Analysis

Updated for the Quartus II software
version 7.2.

May 2007
v7.1.0

Updated for the Quartus II software version 7.1, including:
● Added support of report_path in “Timing Reports”

on page 6–57
● Added report_timing information, especially on

page 6-11
● Added new information under the following headings:

● “Derive Clock Uncertainty” on page 6–40
● “report_rskm” on page 6–69
● “report_tccs” on page 6–69
● “report_path” on page 6–70

● Replaced the “Fast Timing Model Analysis” section with
“Multi-Corner Analysis” on page 6–76

● Performed general 7.1 updates

Updated for the Quartus II software
version 7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No
other changes made to chapter.

—

November
2006 v6.1.0

Updated for the Quartus II software version 6.1, including:
● New “Getting Started” section, including descriptions of

the Create Clock and Create Generated Clock dialog
boxes/commands, sections on Specifying Clock
Requirements, Specifying Input and Output Port
Requirements, and Reporting

● SDC Editor
● Usability enhancements to the GUI
● Updated SDC support
● Numerous changes throughout chapter

Updated for the Quartus II software
version 6.1.

July 2006
v6.0.1

Updated for the Quartus II software version 6.0.1:
● Fixed typo in report_clock_transfers command on page

6-15.

—

May 2006
v6.0.0

Initial release. —

Altera Corporation 7–1
October 2007

7. Switching to the Quartus II
TimeQuest Timing Analyzer

Introduction The Quartus II TimeQuest Timing Analyzer provides more powerful
timing analysis features than the Quartus II Classic Timing Analyzer.
This chapter describes the benefits of switching to the Quartus II
TimeQuest Timing Analyzer, the differences between the Quartus II
TimeQuest and Quartus II Classic Timing Analyzers, and the process you
should follow to switch a design from using the Quartus II Classic Timing
Analyzer to the Quartus II TimeQuest Timing Analyzer.

Benefits of Switching to the Quartus II TimeQuest Analyzer

Increasing design complexity requires a timing analysis tool with greater
capabilities and flexibility. The Quartus II TimeQuest Timing Analyzer
offers the following benefits:

■ Industry-standard Synopsys Design Constraint (SDC) support
increases productivity.

■ Simple, flexible reporting uses industry-standard terminology and
makes timing sign-off faster.

f For more detailed information about the features and capabilities of the
Quartus II TimeQuest Timing Analyzer, refer to the Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

These features ease constraint and analysis of modern, complex designs.
SDC constraints support complex clocking schemes, high-speed
interfaces, and more logic. An example includes designs that have
multiplexed clocks, regardless of whether they are switched on or off
chip. Designs with source-synchronous interfaces, such as DDR memory
interfaces, are much simpler to constrain and analyze with the Quartus II
TimeQuest Timing Analyzer.

There are three main differences between the Quartus II Classic and
Quartus II TimeQuest Timing Analyzers. Unlike the Quartus II Classic
Timing Analyzer, the Quartus II TimeQuest Timing Analyzer has the
following three benefits:

■ All clocks are related by default. (Refer to “Related and Unrelated
Clocks” on page 7–13.)

■ The default hold multicycle value is zero. (Refer to “Hold
Multicycle” on page 7–24.)

QII53019-7.2.0

7–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ You must constrain all ports and ripple clocks. (Refer to “Automatic
Clock Detection” on page 7–19.)

Chapter Contents

“Switching to the Quartus II TimeQuest Analyzer” describes the
four-step process you should follow to switch a design to the Quartus II
TimeQuest Timing Analyzer.

“Differences Between Quartus II TimeQuest and Quartus II Classic
Timing Analyzers” on page 7–5 covers terminology, constraints, clocks,
hold multicycle, and other differences.

“Timing Assignment Conversion” on page 7–33 is a comprehensive
guide to converting Quartus II Classic QSF timing assignments to
Quartus II TimeQuest SDC constraints.

“Conversion Utility” on page 7–55 describes a utility that helps you
convert Classic QSF timing assignments toQuartus II TimeQuest SDC
constraints.

“Notes” on page 7–68 includes notes about support for specific features
in the current version of the Quartus II TimeQuest Timing Analyzer.

Switching to the
Quartus II
TimeQuest
Analyzer

You should use the following process to switch a design from the
Quartus II Classic Timing Analyzer to the Quartus II TimeQuest Timing
Analyzer. The process is composed of the following steps, which are
described in detail in the next sections:

1. Compile your design and perform timing analysis with the
Quartus II Classic Timing Analyzer (page 7–2).

2. Create an SDC file that contains timing constraints (page 7–3).

3. Perform timing analysis with the Quartus II TimeQuest Timing
Analyzer and examine the reports (page 7–4).

4. Set the default timing analyzer to TimeQuest (page 7–4).

Compile Your Design

To begin, compile your design with the Quartus® II software. You should
run the Quartus II Classic Timing Analyzer during compilation because
it is easier to convert your assignments to SDC constraints when you
create an SDC file. To run the Quartus II Classic Timing Analyzer in the
Quartus II GUI, on the Processing menu, click Start, then click Start

Altera Corporation 7–3
October 2007 Preliminary

Switching to the Quartus II TimeQuest Analyzer

Timing Analyzer. To run the Quartus II Classic Timing Analyzer if you
are a command-line user, type quartus_tan <project> r at a system
command prompt.

Create an SDC File

The Quartus II TimeQuest Timing Analyzer supports SDC format
constraints. If you are familiar with SDC terminology, you can create an
SDC file with any text editor and skip to “Perform Timing Analysis with
the Quartus II TimeQuest Timing Analyzer” on page 7–4. Name the SDC
file <revision>.sdc (<revision> is the current revision of your project) and
save it in your project directory.

f Refer to the SDC and TimeQuest Tcl API Reference Manual for a TimeQuest
SDC command reference.

Alternately, you can use a Quartus II TimeQuest conversion utility to help
you convert the timing assignments in an existing QSF file to
corresponding SDC constraints.

Conversion Utility

To run the Quartus II TimeQuest conversion utility, click Generate SDC
file from QSF on the Constraints menu. You can also run the conversion
utility by typing either of the following commands at a system command
prompt:

v quartus_tan --qsf2sdc <project name> r

or

v quartus_sta --qsf2sdc <project name> r
The SDC file created by the conversion utility is named <revision>.sdc.

For information about how to run the Quartus II TimeQuest Timing
Analyzer, refer to “Run the Quartus II TimeQuest Analyzer” on page 7–4.

1 If you use the conversion utility, you must review the SDC file to
ensure it is correct and complete, and make changes if necessary.
Refer to “Constraint File Priority” on page 7–10 for the
recommended way to make changes.

The conversion utility cannot convert some types of Quartus II Classic
assignments for the following reasons:

■ No corresponding SDC constraint exists

7–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Multiple SDC constraints are valid, so correct conversion requires
knowledge of the intended function of your design

You must manually convert any such assignments based on the
guidelines in “Timing Assignment Conversion” on page 7–33.

Perform Timing Analysis with the Quartus II TimeQuest Timing
Analyzer

When your SDC file is complete, use the reporting capabilities in the
Quartus II TimeQuest Timing Analyzer. If you use the Quartus II
TimeQuest GUI, double-click any of the reports listed in the Task pane.
You can also type commands in the Quartus II TimeQuest Tcl shell to
generate reports.

You should also review “Notes” on page 7–68 to ensure the Quartus II
TimeQuest Timing Analyzer supports all stages of your design flow.

f For complete information about how to use the Quartus II TimeQuest
Timing Analyzer, and descriptions of commands and reports, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook, and the SDC and TimeQuest Tcl API Reference
Manual.

Run the Quartus II TimeQuest Analyzer

If you are using the Quartus II software, to open the Quartus II
TimeQuest GUI, on the Tools menu, click TimeQuest Timing Analyzer.
The Quartus II TimeQuest GUI automatically opens the project you have
open in the Quartus II GUI.

If you use the system command prompt to open the Quartus II
TimeQuest Timing Analyzer, type quartus_staw r to open the
Quartus II TimeQuest GUI, or type quartus_sta -s r to start the
Quartus II TimeQuest Timing Analyzer in Tcl shell mode. Use the
project_open command to open your project, or, on the File menu, click
Open Project.

Set the Default Timing Analyzer

To use the Quartus II TimeQuest Timing Analyzer as the default timing
analyzer for your project, turn on Use TimeQuest Timing Analyzer
during compilation. In the Quartus II GUI, on the Assignments menu,
click Settings, then click the Timing Analysis Settings category, and
select Use TimeQuest Timing Analyzer during compilation. You can
make the same setting in your project's QSF file with the following Tcl
command:

Altera Corporation 7–5
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

set_global_assignment -name \
USE_TIMEQUEST_TIMING_ANALYZER ON

This setting directs the Quartus II software to use the Quartus II
TimeQuest Timing Analyzer instead of the Quartus II Classic Timing
Analyzer.

The setting to make the Quartus II TimeQuest Timing Analyzer the
default Timing Analyzer is specific to each project, so you can decide on
a per-project basis whether to use the Quartus II TimeQuest Timing
Analyzer or the Quartus II Classic Timing Analyzer.

If you want to use the Quartus II Classic Timing Analyzer instead of the
Quartus II TimeQuest timing analyzer, ensure Use Classic Timing
Analyzer during compilation is selected. You can delete the
<revision>.sdc file, because the Quartus II Classic Timing Analyzer does
not use it.

In the Quartus II software, a timing analyzer performs two functions:

■ Processing timing constraints and exceptions that affect how your
design is placed and routed

■ Reporting after place and route is complete so you know whether the
design meets timing requirements

Although you can use one timing analyzer to process timing constraints
during place and route and the other for reporting, you should use the
same timing analyzer for both. The Quartus II Classic Timing Analyzer
uses assignments in the QSF file, and theQuartus II TimeQuest Timing
Analyzer uses constraints in the SDC file. Any differences between the
timing assignments in the two files may cause inconsistent results.

Differences
Between
Quartus II
TimeQuest and
Quartus II
Classic Timing
Analyzers

TheQuartus II TimeQuest Timing Analyzer is different from the
Quartus II Classic Timing Analyzer in the following ways:

■ Terminology (page 7–5)
■ Constraints (page 7–7)
■ Clocks (page 7–13)
■ Hold Multicycle (page 7–24)
■ Fitter Behavior (page 7–27)
■ Reporting (page 7–27)
■ Scripting API (page 7–32)

Terminology

This section introduces the industry-standard SDC terminology that the
Quartus II TimeQuest Timing Analyzer uses.

7–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more detailed information about this terminology, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

Netlist

The Quartus II TimeQuest Timing Analyzer uses SDC naming
conventions for netlists. Netlists consist of cells, pins, nets, ports, and
clocks.

■ Cells are instances of fundamental hardware elements in Altera®
FPGAs (such as logic elements, look-up tables, and registers).

■ Pins are inputs and outputs of cells.
■ Nets are connections between output pins and input pins.
■ Ports are top-level module inputs and outputs (device inputs and

outputs).
■ Clocks are abstract objects outside the netlist.

1 The terminology of pins and ports is opposite to that of the
Quartus II Classic Timing Analyzer. In the Quartus II Classic
Timing Analyzer, ports are inputs and outputs of cells, and pins
are top-level module inputs and outputs (device inputs and
outputs).

Figure 7–1 shows a simple design, and Figure 7–2 shows the Quartus II
TimeQuest netlist representation of the design. Netlist elements in
Figure 7–2 are labeled to illustrate the SDC terminology.

Figure 7–1. Sample Design

ina

clk

inb

inrega

inregb

ab
outreg out

Altera Corporation 7–7
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

Figure 7–2. Quartus II TimeQuest Timing Analyzer Netlist

Collections

In addition to standard SDC collections, the Quartus II TimeQuest Timing
Analyzer supports the following Altera-specific collection types:

■ Keepers—Non-combinational nodes in a netlist
■ Nodes—Nodes can be combinational, registers, latches, or ports

(device inputs and outputs)
■ Registers—Registers or latches in the netlist

You can use the get_keepers, get_nodes, or get_registers commands to
access these collections.

Constraints

The Quartus II Classic and Quartus II TimeQuest Timing Analyzers store
constraints in different files, support different methods for constraint
entry, and prioritize constraints differently. The following sections detail
these differences.

Constraint Files

The Quartus II TimeQuest Timing Analyzer stores all SDC timing
constraints in SDC files. The Quartus II Classic Timing Analyzer stores all
timing assignments in your project’s Quartus II Settings File (QSF) file.
The QSF file contains all your project’s assignments and settings except
for the Quartus II TimeQuest Timing Analyzer constraints. The

inb

outreg

combout datain

clk clk~clkctrl

ina inrega

inregb

clk

regout

ab

out

datain

cell=atom/wysiwygpin = iterm
pin = oterm

inclk[0]

combout port = I/O

Sample Pin Names:
 ina|combout
 inrega|datain
 inrega|clk
 inrega|regout
 ab|combout
 ab|datac

Sample Net Names:
 ina~combout
 ab
 clk~clkctrl
 inrega

7–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Quartus II TimeQuest Timing Analyzer ignores the timing assignments
in your QSF file except when the conversion utility converts Quartus II
Quartus II Classic QSF timing assignments to Quartus II TimeQuest SDC
constraints. There is no automatic process that keeps timing constraints
synchronized between your QSF and SDC files. If you want to keep the
constraints synchronized, you must convert them manually.

Constraint Entry

In the Quartus II Classic Timing Analyzer, you enter timing assignments
with the Settings dialog box, the Assignment Editor, or with commands
in Tcl scripts. The Quartus II TimeQuest Timing Analyzer does not use the
Assignment Editor for its constraints, and you cannot use the Assignment
Editor to enter SDC constraints. You must use one of the following
methods to enter Quartus II TimeQuest constraints:

■ Enter constraints at the Tcl prompt in the Quartus II TimeQuest
Timing Analyzer

■ Enter constraints in an SDC file with a text editor or SDC editor
■ Use the constraint entry commands on the Constraints menu in the

Quartus II TimeQuest GUI

You can enter timing assignments for the Quartus II Classic Timing
Analyzer even if no timing netlist exists for your design. The Quartus II
TimeQuest Timing Analyzer requires that a netlist exist for interactive
constraint entry. Each Quartus II TimeQuest Timing Analyzer constraint
is a Tcl command evaluated in real-time, if entered directly in the Tcl
console. As part of this evaluation, the Quartus II TimeQuest Timing
Analyzer validates all names. To do this, SDC commands can only be
evaluated after a netlist is created. An SDC file can be created at any time
using the Quartus II TimeQuest Timing Analyzer or any other text editor,
but a netlist is required before an SDC file can be sourced. You must create
a timing netlist in the Quartus II TimeQuest Timing Analyzer before you
can enter constraints with either of the following interactive methods:

■ At the Tcl console of the Quartus II TimeQuest Timing Analyzer
■ With commands on the Constraints menu in the Quartus II

TimeQuest GUI

If you enter constraints with a text editor separate from the Quartus II
TimeQuest Timing Analyzer, no timing netlist is required.

To create a timing netlist in the Quartus II TimeQuest Timing Analyzer,
use the create_timing_netlist command, or double-click Create Timing
Netlist in the Task pane of the Quartus II TimeQuest GUI.

Altera Corporation 7–9
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

If you have never compiled your design, and you want to use the
Quartus II TimeQuest Timing Analyzer to enter constraints interactively,
you must synthesize your design before you create a timing netlist. To
synthesize your design, type quartus_map <project name> r at a system
command prompt, or, if you use the Quartus II GUI, ensure that your
project is open, then click Start on the Processing menu, and click Start
Analysis and Synthesis.

To create the netlist, open the Quartus II TimeQuest Timing Analyzer.
Then, on the Netlist menu, click Create Timing Netlist..., select Post-map,
and click OK. Alternately, type create_timing_netlist
-post_map r at the Tcl Console.

Time Units
Enter time values are in default time units of nanoseconds (ns) with up to
three decimal places. Note that the Quartus II TimeQuest Timing
Analyzer does not display the default time unit when it displays time
values.

You can specify a different default time unit with the
set_time_format -unit <default time unit> command, or specify another
unit when you enter a time value, for example, 300ps.

1 Specifying time units with the value is not part of the standard
SDC format. This is a Quartus II TimeQuest extension.

You can specify clock constraints with period or frequency in the
Quartus II TimeQuest Timing Analyzer. For example, you can use either
of the following constraints:

■ create_clock -period 10.000
(assuming default units and decimal places)

■ create_clock -period "100 MHz"
■ create_clock -period "10 ns"

MegaCore Functions
If you change any MegaCore function settings and regenerate the core
after you convert your timing assignments to SDC constraints, you must
manually update the SDC constraints or reconvert your assignments. You
must update or reconvert, because changes to MegaCore function
settings can affect timing assignments embedded in the hardware
description language files of the core. The timing assignments are not
converted automatically when the core settings change.

7–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 You should make a backup copy of your SDC file before
reconverting assignments. If you made changes to the SDC file,
you can manually copy the updated MegaCore timing
constraints to your SDC file.

Bus Name Format
In the Quartus II Classic Timing Analyzer, you can make a timing
assignment to all bits in a bus with the bus name (or the bus name
followed by an asterisk enclosed in square brackets) as the target. For
example, to make an assignment to all bits of a bus called address, use
address or address[*] as the target of the assignment.

In the Quartus II TimeQuest Timing Analyzer, you must use the bus name
followed by square brackets enclosing an asterisk, like this: address[*].

Constraint File Priority

The Quartus II TimeQuest Timing Analyzer searches for SDC files with a
specific priority, as shown in Figure 7–3.

Figure 7–3. SDC File Search Order

Are any

SDC files specified in
the Add Files project

dialog box?

No

Yes

Does the SDC file
<revision>.sdc

exist?

No

Yes

Continue with the chosen
SDC file(s)

The TimeQuest Timing
Analyzer

does not create nor
convert any constraints

Altera Corporation 7–11
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

If you specify constraints in multiple SDC files, or if you use a single SDC
file with a name other than <revision>.sdc, you must add the files to your
project so the Quartus II TimeQuest Timing Analyzer can find them. If
you use the Quartus II software, click Add/Remove Files in Project on
the Project menu, and add the appropriate SDC files. You can also add
SDC files to your project with the following Tcl command in your QSF
file, repeated once for each SDC file:

set_global_assignment -name SDC_FILE <SDC file name>

The Quartus II TimeQuest Timing Analyzer reads constraint files from
the files list in the order they are listed, first to last.

1 If you use an SDC file created by the conversion utility, you
should place it before all other SDC files in the list of files. When
conflicting constraints apply to the same node, the last
constraint has the highest priority. Therefore, SDC files with
your additions or changes should be listed after the SDC file
created by the conversion utility, so your constraints have higher
priority.

Beginning with version 6.1, the Quartus II TimeQuest Timing Analyzer
does not run the conversion utility automatically when it cannot find an
SDC file according to the priority shown in Figure 7–3. It may prompt you
to run the conversion utility from the Constraints menu in the Quartus II
TimeQuest GUI.

1 You must review the SDC file as you would when manually
running the conversion utility. Refer to “Reviewing Conversion
Results” on page 7–64 for information about how to review the
converted constraints.

If no SDC file exists when you run the Quartus II Fitter, and you have
turned on Use TimeQuest Timing Analyzer during compilation, the
Fitter does not create an SDC file automatically, but it attempts to meet a
default 1 GHz constraint on all clocks in your design.

Constraint Priority

The Quartus II Classic Timing Analyzer prioritizes assignments based on
the specificity of the nodes to which they are assigned. The more specific
an assignment is, the higher its priority. The Quartus II TimeQuest
Timing Analyzer simplifies these precedence rules. When overlaps occur
in the nodes to which the constraints apply, constraints at the bottom of
the file take priority over constraints at the top of the file.

7–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

As an example, in the Quartus II Classic Timing Analyzer, point-to-point
multicycle assignments have higher priority than single point multicycle
assignments. The two assignments in Example 7–1 result in a multicycle
assignment of 2 between A_reg and all nodes beginning with B,
including B_reg. The single point assignment does not apply to paths
from A_reg to B_reg, because the specific point-to-point assignment
takes priority over the general single point assignment.

Example 7–1. Quartus II Classic Timing Analyzer Multicycle Assignments
set_instance_assignment -name MULTICYCLE -from A_reg -to B* 2
set_instance_assignment -name MULTICYCLE -to B_reg 3

Example 7–2 shows SDC versions of the Quartus II Classic Timing
Analyzer timing assignments above. However, the Quartus II TimeQuest
Timing Analyzer evaluates the constraints top to bottom (regardless of
point-to-point or single point), so the path from A_reg to B_reg receives
a multicycle exception of 3 because it is second in order.

Example 7–2. Quartus II TimeQuest Timing Analyzer Multicycle Exceptions
set_multicycle_path -from [get_keepers A_reg] -to [get_keepers B*] 2
set_multicycle_path -to [get_keepers B_reg] 3

Ambiguous Constraints

Because of new capabilities in the Quartus II TimeQuest Timing
Analyzer, some Quartus II Classic assignments can be ambiguous after
conversion by the conversion utility. These assignments require manual
updating based on your knowledge of your design.

Figure 7–4 shows a ripple clock circuit. The explanation that follows
shows an ambiguous constraint for that circuit, and how to edit the
constraint to remove the ambiguity in the Quartus II TimeQuest Timing
Analyzer.

Figure 7–4. Ripple Clock Circuit

reg_dreg_c

clk_a clk_b

Altera Corporation 7–13
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

In the Quartus II Classic Timing Analyzer, the following QSF multicycle
assignment from clk_a to clk_b with a value of 2 applies to paths
transferring data from the clk_a domain to the clk_b domain.

set_instance_assignment -name MULTICYCLE -from clk_a -to clk_b 2

In Figure 7–4, this assignment applies to the path from reg_c to reg_d.
In the Quartus II TimeQuest Timing Analyzer, the use of the clock node
names in the following equivalent multicycle exception is ambiguous.

set_multicycle_path -setup -from clk_a -to clk_b 2

The exception could apply to the path between clk_a and clk_b, or it
could apply to paths from one ripple clock domain to the other ripple
clock domain (reg_c to reg_d).

The Quartus II TimeQuest exceptions shown in Example 7–3 are not
ambiguous because they use collections to explicitly specify the targets of
the exception.

Example 7–3. Unambiguous Quartus II TimeQuest Timing Analyzer Exceptions
Applies to path from reg_c to reg_d
set_multicycle_path -setup -from [get_clocks clk_a] \

-to [get_clocks clk_b] 2
Applies to path from clk_a to clk_b
set_multicycle_path -setup -from [get_registers clk_a] \

-to [get_registers clk_b] 2

Clocks

The Quartus II Classic and Quartus II TimeQuest Timing Analyzers
detect, analyze, and report clocks differently. The following sections
describe these differences.

Related and Unrelated Clocks

In the Quartus II TimeQuest Timing Analyzer, all clocks are related by
default, and you must add assignments to indicate unrelated clocks.
However, in the Quartus II Classic Timing Analyzer, all base clocks are
unrelated by default. All derived clocks of a base clock are related to each
other, but are unrelated to other base clocks and their derived clocks.

7–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 You can change the default behavior of the Quartus II Classic
Timing Analyzer to treat all clocks as related clocks. On the
Assignments menu, click Timing Analysis Settings. Click More
Settings and then select Cut paths between unrelated clock
domains. Ensure that the setting is off.

Figure 7–5 on page 7–14 shows a simple circuit with a path between two
clock domains. The Quartus II TimeQuest Timing Analyzer analyzes the
path from reg_a to reg_b because all clocks are related by default. The
Quartus II Classic Timing Analyzer does not analyze the path from
reg_a to reg_b by default.

Figure 7–5. Cross Clock Domain Path

To make clocks unrelated in the Quartus II TimeQuest Timing Analyzer,
use the set_clock_groups command with the -exclusive option. For
example, the following command makes clock_a and clock_b
unrelated, so the Quartus II TimeQuest Timing Analyzer does not
analyze paths between the two clock domains.

set_clock_groups -exclusive -group {clock_a} -group {clock_b}

Clock Offset

In the Quartus II TimeQuest Timing Analyzer, clocks can have non-zero
values for the rising edge of the waveform, a feature that the Quartus II
Classic Timing Analyzer does not support. To specify an offset for your
clock, use the waveform option for the create_clock command to specify
the rising and falling edge times, as shown in this example:

-waveform {<rising edge time> <falling edge time>}

data_out

clock_a

data_a
reg_a

clock_b

reg_b

Altera Corporation 7–15
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

Figure 7–6 shows a clock constraint with an offset in the Quartus II
TimeQuest Timing Analyzer GUI.

Figure 7–6. Create Clock Screen

Clock offset affects setup and hold relationships. Launch and latch edges
are evaluated after offsets are applied. Depending on the offset, the setup
relationship can be the offset value, or the difference between the period
and offset. You should not use clock offset to emulate latency. You should
use the clock latency constraint instead. Refer to “Offset and Latency
Example” on page 7–15 for an example that illustrates the different effects
of offset and latency.

Clock Latency

The Quartus II TimeQuest Timing Analyzer does not ignore early clock
latency and late clock latency differences when the clock source is the
same, as the Quartus II Classic Timing Analyzer does. When you specify
latencies, you should take common clock path pessimism into account
and use uncertainty to control pessimism differences for clock-to-clock
data transfers. Unlike clock offset, clock latency affects skew, and launch
and latch edges are evaluated before latencies are applied, so the setup
relationship is always equal to the period.

Offset and Latency Example

Figure 7–7 shows a simple register-to-register circuit used to illustrate the
different effects of offset and latency. The examples show why you should
not use clock offset to emulate clock latency. You should always turn on

7–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

the Enable Clock Latency option in the Quartus II Classic Timing
Analyzer. This option is in the More Settings box of the Timing Settings
dialog box.

Figure 7–7. Simple Circuit for Offset and Latency Examples

The period for clk is 10 ns, and the period for the PLL output is 10 ns.
The PLL compensation value is –2 ns. The network delay from the PLL to
reg_a equals the network delay from clk to reg_b. Finally, the delay
from reg_a to reg_b is 3 ns.

Clock Offset Scenario
Treat the PLL compensation value of –2 ns as a clock offset of –2 ns with
a clock skew of 0 ns. Launch and latch edges are evaluated after offsets
are applied, so the setup relationship is 2 ns (Figure 7–8).

Figure 7–8. Setup Relationship Using Offset

reg_breg_a

clk

in out
3 ns

PLL

PLL

clk

0 2 10 12 20 22

Setup Relationship Using Offset

Altera Corporation 7–17
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

Equation 1 shows how to calculate the slack value for the path from
reg_a to reg_b.

(1)

The negative slack requires a multicycle assignment with a value of 2 and
a hold multicycle assignment with a value of 1 to correct. With these
assignments from reg_a to reg_b, the setup relationship is then 12 ns,
resulting in a slack of 9 ns.

Clock Latency Scenario
Treat the PLL compensation value of –2 ns as latency with a clock skew of
2 ns. Because launch and latch edges are evaluated before latencies are
applied, the setup relationship is 10 ns (the period of clk and the PLL)
(Figure 7–9).

Figure 7–9. Setup Relationship Using Latency

Equation 2 shows how to calculate the slack value for the path from
reg_a to reg_b.

(2)

The slack of 9 ns is identical to the slack computed in the previous
example, but because this example uses latency instead of offset, no
multicycle assignment is required.

slack clock arrival data arrival–=

slack setup relationship clock skew reg_to_reg delay–+=

slack 2ns 0ns 3ns–+=

slack 1ns–=

PLL

clk

0 2 10 12 20 22

Setup Relationship Using Latency

slack clock arrival data arrival–=

slack setup relationship clock skew reg_to_reg delay–+=

slack 10ns 2ns 3ns–+=

slack 9ns=

7–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Clock Uncertainty

The Quartus II Classic Timing Analyzer ignores Clock Setup Uncertainty
and Clock Hold Uncertainty assignments when you specify a setup or
hold relationship between two clocks. However, the Quartus II
TimeQuest Timing Analyzer does not ignore clock uncertainty when you
specify a setup or hold relationship between two clocks. Figures 7–10 and
7–11 illustrate the different behavior between the Quartus II TimeQuest
and Quartus II Classic Timing Analyzers.

In both figures, the constraints are identical. There is a 20-ns period for
clk_a and clk_b. There is a setup relationship (a set_max_delay
exception in the Quartus II TimeQuest Timing Analyzer) of 7 ns from
clk_a to clk_b, and a clock setup uncertainty constraint of 1 ns from
clk_a to clk_b. The actual setup relationship in the Quartus II
TimeQuest Timing Analyzer is 1 ns less than in the Quartus II Classic
Timing Analyzer because of the way they analyze clock uncertainty.

Figure 7–10. Quartus II Classic Timing Analyzer Behavior

Figure 7–11. Quartus II TimeQuest Timing Analyzer Behavior

0 ns 7 ns 10 ns

Setup Relationship with & without Uncertainty

0 7 106

Setup Relationship with Uncertainty

Setup Relationship without Uncertainty

Clock Setup Uncertainty

Altera Corporation 7–19
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

Derived and Generated Clocks

Generated clocks in the Quartus II TimeQuest Timing Analyzer are
different than derived clocks in the Quartus II Classic Timing Analyzer.
In the Quartus II Classic Timing Analyzer, the source of a derived clock
must be a base clock. However, in the Quartus II TimeQuest Timing
Analyzer, the source of a generated clock can be any other clock in the
design (including virtual clocks), or any node to which a clock propagates
through the clock network. Because generated clocks are related through
the clock network, you can specify generated clocks for isolated modules,
such as IP, without knowing the details of the clocks outside of the
module.

In the Quartus II TimeQuest Timing Analyzer, you can specify generated
clocks relative to specific edges and edge shifts of a master clock, a feature
that the Quartus II Classic Timing Analyzer does not support.

Figure 7–12 shows a simple ripple clock that you should constrain with
generated clocks in the Quartus II TimeQuest Timing Analyzer.

Figure 7–12. Generated Clocks Circuit

The Quartus II TimeQuest Timing Analyzer constraints shown in
Example 7–4 constrain the clocks in the circuit above. Note that the source
of each generated clock can be the input pin of the register itself, not the
name of another clock.

Example 7–4. Generated Clock Constraints
create_clock –period 10 –name clk clk
create_generated_clock –divide_by 2 –source reg_a|CLK -name reg_a reg_a
create_generated_clock –divide_by 2 –source reg_b|CLK -name reg_b reg_b

Automatic Clock Detection

The Quartus II Classic and Quartus II TimeQuest Timing Analyzers
identify clock sources of registers that do not have a defined clock source.
The Quartus II Classic Timing Analyzer traces back along the clock

clk

reg_a reg_b

7–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

network, through registers and logic, until it reaches a top-level port in
your design. The Quartus II TimeQuest Timing Analyzer also traces back
along the clock network, but it stops at registers.

You can use two SDC commands in the Quartus II TimeQuest Timing
Analyzer to automatically detect and create clocks for unconstrained
clock sources:

■ derive_clocks—creates clocks on sources of clock pins that do not
already have at least one clock sourcing the clock pin

■ derive_pll_clocks—identifies PLLs and creates generated clocks on
the clock output pins

derive_clocks Command
Figure 7–13 shows a simple circuit with a divide-by-2 register and
indicates the clock network delays as A, B, and C. The following
explanation describes how the Quartus II Classic and Quartus II
TimeQuest Timing Analyzers detect the clocks in Figure 7–13.

Figure 7–13. Circuit for derive_clocks Example

The Quartus II Classic Timing Analyzer detects that clk is the clock
source for registers reg_a, reg_b, and reg_c. It detects that clk is the
clock source for reg_c because it traces back along the clock network for
reg_c through reg_a, until it finds the clk port. The Quartus II Classic
Timing Analyzer computes the clock arrival time for reg_c as A + C.

The derive_clocks command in the Quartus II TimeQuest Timing
Analyzer creates two base clocks, one on the clk port and one on reg_a,
because the command does not trace through registers on the clock
network. The clock arrival time for reg_c is C because the clock starts at
reg_a.

reg_creg_b

reg_a

clk

A

B

C

Altera Corporation 7–21
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

To make theQuartus II TimeQuest Timing Analyzer compute the same
clock arrival time (A + C) as the Quartus II Classic Timing Analyzer for
reg_c, make the following modifications to the clock constraints created
by the derive_clocks command:

■ Change the base clock named reg_a to a generated clock
■ Make the source the clock pin of reg_a (reg_a|clk) or the

port clk
■ Add a -divide_by 2 option

These modifications cause the clock arrival times to reg_c to match
between the Quartus II Classic Timing Analyzer and the Quartus II
TimeQuest Timing Analyzer. However, the clock for reg_c is shown as
reg_a instead of clk, and the launch and latch edges may change for
some paths due to the divide-by-2.

You can use the derive_clocks command at the beginning of your design
cycle when you do not know all of the clock constraints for your design,
but you should not use it during timing sign-off. Instead, you should
constrain each clock in your design with the create_clock or
create_generated_clocks commands.

The derive_clocks command detects clocks in your design using the
following rules:

1. An input clock port is detected as a clock only if there are no other
clocks feeding the destination registers.

a. Input clock ports are not detected automatically if they feed
only other base clocks.

b. If other clocks feed the port’s register destinations, the port is
assumed to be an enable or data port for a gated clock.

c. When no clocks are defined, and multiple clocks feed a
destination register, the auto-detected clock is selected
arbitrarily.

2. All ripple clocks (registers in a clock path) are detected as clocks
automatically using the same rules for input clock ports. If both an
input port and a register feed register clock pins, the input port is
selected as the clock.

7–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The following examples show how the derive_clocks command detects
clocks in the simple circuit, shown in Figure 7–14.

Figure 7–14. Simple Circuit 1

■ If you do not make any clock settings, and then you run
derive_clocks, it detects a_in as a clock according to rule 1, because
there are no other clocks feeding the register.

■ If you create a clock with b as its target, and then you run
derive_clocks, it does not detect a_in as a clock according to rule 1a,
because a_in feeds only another clock.

The following examples show how the derive_clocks command detects
clocks in the simple circuit shown in Figure 7–15.

Figure 7–15. Simple Circuit 2

■ If you do not make any clock settings and then you run
derive_clocks, it selects a clock arbitrarily, according to rule 1c.

■ If you create a clock with a_in as its target and then you run
derive_clocks, it does not detect b_in as a clock according to rule 1b,
because another clock (a_in) feeds the register.

derive_pll_clocks Command
The derive_pll_clocks command names the generated clocks according
to the names of the PLL output pins by default, and you cannot change
these generated clock names. If you want to use your own clock names,
you must use the create_generated_clock command for each PLL output
clock and specify the names with the -name option.

If you use the PLL clock-switchover feature, the derive_pll_clocks
command creates additional generated clocks on each output clock pin of
the PLL based on the secondary clock input to the PLL. This may require
set_clock_groups or set_false_path commands to cut the primary and
secondary clock outputs. For information about how to make clocks
unrelated, refer to “Related and Unrelated Clocks” on page 7–13.

ba_in

a_in
b_in

Altera Corporation 7–23
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

Hold Relationship

The Quartus II TimeQuest and Quartus II Classic Timing Analyzers
choose the worst-case hold relationship differently. Refer to Figure 7–16
for sample waveforms to illustrate the different effects.

Figure 7–16. Worst-Case Hold

The Quartus II Classic Timing Analyzer first identifies the worst-case
setup relationship. The worst-case setup relationship is Setup B. Then the
Quartus II Classic Timing Analyzer chooses the worst-case hold
relationship (Hold Check B1 or Hold Check B2) for that specific setup
relationship, Setup B. The Quartus II Classic Timing Analyzer chooses
Hold Check B2 for the worst-case hold relationship.

However, the Quartus II TimeQuest Timing Analyzer calculates worst-
case hold relationships for all possible setup relationships and chooses
the absolute worst-case hold relationship. The Quartus II TimeQuest
Timing Analyzer checks two hold relationships for every setup
relationship:

■ Data launched by the current launch edge not captured by the
previous latch edge (Hold Check A1 and Hold Check B1)

■ Data launched by the next launch edge not captured by the current
latch edge (Hold Check A2 and Hold Check B2)

The Quartus II TimeQuest Timing Analyzer chooses Hold Check A2 as
the absolute worst-case hold relationship.

Clock Objects

The Quartus II Classic Timing Analyzer treats nodes with clock settings
assigned to them as special objects in the timing netlist. Any node in the
timing netlist with a clock setting is treated as a clock object, regardless of
its actual type, such as a register. When a register has a clock setting

0 ns 8 ns 16 ns 24 ns 30 ns

Source Clock

Destination Clock

Hold
Check A1

Hold
Check B2

Setup A Setup B
Hold

Check A2
Hold

Check B1

7–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

assigned to it, the Quartus II Classic Timing Analyzer does not analyze
register-to-register paths beginning or ending at that register. Figure 7–17
shows a circuit that illustrates this situation.

Figure 7–17. Clock Objects

With no clock assignments on any of the registers, the Quartus II Classic
Timing Analyzer analyzes timing on the path from reg_a to reg_b, and
from reg_c to reg_d. If you make a clock setting assignment to reg_b,
reg_b is no longer considered a register node in the netlist, and the path
from reg_a to reg_b is no longer analyzed.

In the Quartus II TimeQuest Timing Analyzer, clocks are abstract objects
that are associated with nodes in the timing netlist. The Quartus II
TimeQuest Timing Analyzer analyzes the path from reg_a to reg_b
even if there is a clock assigned to reg_b.

Hold Multicycle

The hold multicycle value numbering scheme is different in the
Quartus II Classic and Quartus II TimeQuest Timing Analyzers. Also,
you can choose between two values for the default hold multicycle value
in the Quartus II Classic Timing Analyzer but you cannot change the
default value in the Quartus II TimeQuest Timing Analyzer. The hold
multicycle value specifies which clock edge is used for hold analysis
when you change the latch edge with a multicycle assignment.

In the Quartus II Classic Timing Analyzer, the hold multicycle value is
based on 1, and is the number of clock cycles away from the setup edge.
In the Quartus II TimeQuest Timing Analyzer, the hold multicycle value
is based on zero, and is the number of clock cycles away from the default
hold edge. In the Quartus II TimeQuest Timing Analyzer, the default hold
edge is one edge before or after the setup edges. Subtract 1 from any hold
multicycle value in theQuartus II Classic Timing Analyzer to compute the
equivalent value for the Quartus II TimeQuest Timing Analyzer.

clk

reg_a reg_b

reg_c reg_d

Altera Corporation 7–25
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

In the Quartus II Classic Timing Analyzer, you can set the default value
of the hold multicycle assignment to One or Same as Multicycle. The
default value applies to any multicycle assignment in your design that
does not also have a multicycle hold assignment. Figure 7–18 illustrates
the difference between One and Same as Multicycle for a multicycle
assignment of 2 using the Quartus II Classic Timing Analyzer.

Figure 7–18. Difference Between One and Same As Multicycle

If the default value is One, the Quartus II Classic Timing Analyzer uses
the clock edge one before the setup edge for hold analysis. If the default
value is Same as Multicycle, the Quartus II Classic Timing Analyzer uses
the clock edge that is <value of multicycle assignment> edges back from the
setup edge.

Figure 7–19 shows simple waveforms for a cross-clock domain transfer
with the indicated setup and hold edges.

Figure 7–19. First Relationship Example

In the Quartus II TimeQuest Timing Analyzer, only a multicycle
exception of 2 is required to constrain the design for the indicated setup
and hold relationships.

Hold Edge for Value of
Same as Multicycle

Hold Edge for Value of One Setup Edge for Multicycle = 2

Hold Edge Setup Edge

7–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

In the Quartus II Classic Timing Analyzer, if the Default Hold Multicycle
value is One, only a multicycle assignment of 2 is required to constrain
the design.

In the Quartus II Classic Timing Analyzer, if the Default Hold Multicycle
value is Same as Multicycle, you must make two assignments to
constrain the design:

■ A multicycle assignment of 2
■ A hold multicycle assignment of 1 to override the default value

Figure 7–20 shows simple waveforms for a different cross-clock domain
transfer with indicated setup and hold edges. The following explanation
shows what exceptions to apply to achieve the desired setup and hold
relationships.

Figure 7–20. Second Relationship Example

In the Quartus II TimeQuest Timing Analyzer, you must use the
following two exceptions:

■ A multicycle exception of 2
■ A hold multicycle exception of 1, because the hold edge is one edge

behind the default hold edge, which is one edge after the setup edge.

In the Quartus II Classic Timing Analyzer, if the Default Hold Multicycle
value is One, you must make two assignments to constrain the design:

■ A multicycle assignment of 2
■ A hold multicycle assignment of 2 to override the default value

In the Quartus II Classic Timing Analyzer, if the Default Hold Multicycle
value is Same as Multicycle, only a multicycle assignment of 2 is required
to constrain the design.

Hold Edge Setup Edge

Altera Corporation 7–27
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

1 You should always add a hold multicycle assignment for every
multicycle assignment to ensure the correct exceptions are
applied regardless of the timing analyzer you use, or, for the
Quartus II Classic Timing Analyzer, the Default Hold
Multicycle setting.

Fitter Behavior

The behavior for one value of the Optimize hold time Fitter assignment
differs between the Quartus II TimeQuest Timing Analyzer and the
Quartus II Classic Timing Analyzer. When you set the Quartus II
TimeQuest Timing Analyzer as the default timing analyzer, the I/O Paths
and Minimum TPD Paths value directs the Fitter to optimize all hold
time paths, which has the same affect as the All Paths value.

Fitter Performance

If you use the Quartus II TimeQuest Timing Analyzer as your default
timing analyzer, the Fitter memory use and compilation time may
increase. However, the timing analysis time may decrease.

Reporting

The Quartus II TimeQuest Timing Analyzer provides a more flexible and
powerful interface for reporting timing analysis results than the
Quartus II Classic Timing Analyzer. Although the interface and
constraints are more flexible and powerful, both analyzers use the same
device timing models, except for device families that support rise/fall
analysis. The Quartus II Classic Timing Analyzer does not support
rise/fall analysis, but the Quartus II TimeQuest Timing Analyzer does.
Therefore, you may see slightly different delays on identical paths in
device families that support rise/fall analysis if you analyze timing in
both analyzers.

This means that both analyzers report identical delays along identically
constrained paths in your design. The Quartus II TimeQuest Timing
Analyzer allows you to constrain some paths that you could not constrain
with the Quartus II Classic Timing Analyzer. Differently constrained
paths result in different reported values, but for identical paths in your
design that are constrained the same way, the delays are exactly the same.
Both timing analyzers use the same timing models.

f For information about reporting with the Quartus II TimeQuest Timing
Analyzer, refer to the Quartus II TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook.

7–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Paths and Pairs

In reporting, the most significant difference between the two analyzers is
that the Quartus II TimeQuest Timing Analyzer reports paths, while the
Quartus II Classic Timing Analyzer reports pairs. Path reporting means
that the analyzer separately reports every path between two registers.
Pair reporting means that the analyzer reports only the worst-case path
between two registers. One benefit of path reporting over pair reporting
is that you can more easily identify common points in failing paths that
may be good targets for optimization.

If your design does not meet timing constraints, this reporting difference
can give the impression that there are many more timing failures when
you use the Quartus II TimeQuest Timing Analyzer. Figure 7–21 shows a
sample circuit followed by a description of the differences between path
and pair reporting.

Figure 7–21. Failing Paths

There is an 8-ns period constraint on clk, resulting in two paths that fail
timing: regA → C → regB and regA → D → regB. The Quartus II
Classic Timing Analyzer reports only worst-case path regA → C→ regB.
The Quartus II TimeQuest Timing Analyzer reports both failing paths
regA → C → regB and regA → D → regB. It also reports path
regA → E → regB with positive slack.

Default Reports

The Quartus II TimeQuest Timing Analyzer generates only a small
number of reports by default, as compared to the Quartus II Classic
Timing Analyzer, which generates every report by default. With the
Quartus II TimeQuest Timing Analyzer, you generate desired reports on
demand.

clk

node C
regA

node D

node E

10 ns

9 ns

7 ns

regB

Altera Corporation 7–29
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

f To learn how to create custom reports, refer to the Quartus II Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Netlist Names

The Quartus II Classic Timing Analyzer uses register names in reporting,
but theQuartus II TimeQuest Timing Analyzer uses register pin names
(with the exception of port names of the top-level module). Buried nodes
or register names are used when necessary.

Example 7–5 shows how register names are used in Quartus II Classic
Timing Analyzer reports.

Example 7–5. Netlist Names in the Quartus II Classic Timing Analyzer
Info: + Shortest register to register delay is 0.538 ns

Info: 1: + IC(0.000 ns) + CELL(0.000 ns) = 0.000 ns; Loc. =
LCFF_X1_Y5_N1;
Fanout = 1; REG Node = 'inst'

Info: 2: + IC(0.305 ns) + CELL(0.149 ns) = 0.454 ns; Loc. =
LCCOMB_X1_Y5_N20; Fanout = 1; COMB Node = 'inst3~feeder'

Info: 3: + IC(0.000 ns) + CELL(0.084 ns) = 0.538 ns; Loc. =
LCFF_X1_Y5_N21; Fanout = 1; REG Node = 'inst3'

Info: Total cell delay = 0.233 ns (43.31 %)
Info: Total interconnect delay = 0.305 ns (56.69 %)

Example 7–6 shows the same information as presented in a Quartus II
TimeQuest Timing Analyzer report. In this example, register pin names
are used in place of register names.

Example 7–6. Netlist Names in the Quartus II TimeQuest Timing Analyzer
Info: 3.788 0.250 uTco inst

 Info: 3.788 0.000 RR CELL inst|regout
 Info: 4.093 0.305 RR IC inst3~feeder|datad
 Info: 4.242 0.149 RR CELL inst3~feeder|combout
 Info: 4.242 0.000 RR IC inst3|datain
 Info: 4.326 0.084 RR CELL inst3

Non-Integer Clock Periods

In some cases when related clock periods are not integer multiples of each
other, a lack of precision in clock period definition in the Quartus II
TimeQuest Timing Analyzer can result in reported setup or hold
relationships of a few picoseconds. In addition, launch and latch times for
the relationships can be very large. If you experience this, use the
set_max_delay and set_min_delay exceptions to specify the correct

7–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

relationships. The Quartus II Classic Timing Analyzer can maintain
additional information about clock frequency that mitigates the lack of
precision in clock period definition.

When the clock period cannot be expressed as an integer in terms of
picoseconds, then you have the problem detailed in Figure 7–22. This
figure shows two clocks: clk_a has a 10 ns period, and clk_b has a
6.667 ns period.

Figure 7–22. Very Small Setup Relationship

There is a 1 ps setup relationship at 20 ns because you cannot specify the
6.667 ns period beyond picosecond precision. You should apply the
maximum and minimum delay exceptions shown in Example 7–7
between the two clocks to specify the correct relationships.

Example 7–7. Minimum and Maximum Delay Exceptions
set_max_delay -from [get_clocks clk_a] -to [get_clocks clk_b] 3.333
set_min_delay -from [get_clocks clk_a] -to [get_clocks clk_b] 0

Other Features

The Quartus II TimeQuest Timing Analyzer reports time values without
units. By default, the units are nanoseconds, and three decimal places are
displayed. You can change the default time unit and decimal places with
the set_time_format command.

When you use the Quartus II TimeQuest Timing Analyzer in a Tcl shell,
output is ASCII-formatted, and columns are aligned for easy reading on
80-column consoles. Example 7–8 shows sample output from a
report_timing command from the Quartus II TimeQuest Timing
Analyzer.

clk_a

clk_b
0 6.667 13.334 20.001

20100

Altera Corporation 7–31
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

Example 7–8. ASCII-Formatted Quartus II TimeQuest Timing Analyzer Report
tcl> report_timing -from inst -to inst5
Info: Report Timing: Found 1 setup paths (0 violated). Worst case slack is 3.634
 Info: -from [get_keepers inst]
 Info: -to [get_keepers inst5]
Info: Path #1: Slack is 3.634
 Info: ===
 Info: From Node : inst
 Info: To Node : inst5
 Info: Launch Clock : clk_a
 Info: Latch Clock : clk_b
 Info:
 Info: Data Arrival Path:
 Info:
 Info: Total (ns) Incr (ns) Type Node
 Info: ========== ========= == ==== ===================================
 Info: 0.000 0.000 launch edge time
 Info: 2.347 2.347 R clock network delay
 Info: 2.597 0.250 uTco inst
 Info: 2.597 0.000 RR CELL inst|regout
 Info: 3.088 0.491 RR IC inst6|datac
 Info: 3.359 0.271 RR CELL inst6|combout
 Info: 3.359 0.000 RR IC inst5|datain
 Info: 3.443 0.084 RR CELL inst5
 Info:
 Info: Data Required Path:
 Info:
 Info: Total (ns) Incr (ns) Type Node
 Info: ========== ========= == ==== ===================================
 Info: 4.000 4.000 latch edge time
 Info: 7.041 3.041 R clock network delay
 Info: 7.077 0.036 uTsu inst5
 Info:
 Info: Data Arrival Time : 3.443
 Info: Data Required Time : 7.077
 Info: Slack : 3.634
 Info: ===
 Info:
1 3.634

7–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Scripting API

In versions of the Quartus II software earlier than 6.0, the
::quartus::project Tcl package contained the following SDC-like
commands for making timing assignments:

■ create_base_clock
■ create_relative_clock
■ get_clocks
■ set_clock_latency
■ set_clock_uncertainty
■ set_input_delay
■ set_multicycle_assignment
■ set_output_delay
■ set_timing_cut_assignment

These commands are not SDC-compliant. Beginning with version 6.0,
these commands are in a new package called
::quartus::timing_assignment. To ensure backward compatibility with
existing Tcl scripts, the ::quartus::timing_assignment package is loaded
by default in the following executables:

■ quartus
■ quartus_sh
■ quartus_cdb
■ quartus_sim
■ quartus_stp
■ quartus_tan

The ::quartus::timing_assignment package is not loaded by default in the
quartus_sta executable. The ::quartus::sdc Tcl package includes
SDC-compliant versions of the commands listed above. That package is
available only in the quartus_sta executable, and it is loaded by default.

Altera Corporation 7–33
October 2007 Preliminary

Timing Assignment Conversion

Timing
Assignment
Conversion

This section describes Quartus II Classic QSF timing assignments and
their equivalent Quartus II TimeQuest constraints. You can convert many
Quartus II Classic timing assignments to SDC constraints. Some
Quartus II Classic timing assignments can be converted to two different
SDC constraints, and you must understand the intended functionality of
the design to make an appropriate conversion. You cannot convert some
Quartus II Classic timing assignments because there is no equivalent SDC
constraint.

This section includes the following topics, arranged alphabetically:

Clock Enable Multicycle . 7–38
Clock Latency . 7–34
Clock Settings . 7–37
Clock Uncertainty . 7–34
Cut Timing Path. 7–52
Default Required fMAX Assignment . 7–35
Hold Relationship . 7–34
Input and Output Delay . 7–39
Inverted Clock . 7–35
Maximum Clock Arrival Skew . 7–53
Maximum Data Arrival Skew . 7–53
Maximum Delay. 7–52
Minimum Delay . 7–52
Minimum tCO Requirement . 7–48
Minimum tPD Requirement . 7–51
Multicycle . 7–37
Not a Clock . 7–35
Setup Relationship. 7–33
tCO Requirement. 7–45
tH Requirement. 7–43
tPD Requirement . 7–50
tSU Requirement . 7–40
Virtual Clock Reference . 7–36

Setup Relationship

The Setup Relationship assignment overrides the setup relationship
between two clocks. By default, the Quartus II Classic Timing Analyzer
automatically calculates the setup relationship based on your clock
settings. The QSF variable for the Setup Relationship assignment is
SETUP_RELATIONSHIP. In the Quartus II TimeQuest Timing Analyzer,
use the set_max_delay command to specify the maximum setup
relationship for a path.

7–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The setup relationship value is the time between latch and launch edges
before the Quartus II TimeQuest Timing Analyzer accounts for clock
latency, source μtCO, or destination μtSU.

Hold Relationship

The Hold Relationship assignment overrides the hold relationship
between two clocks. By default, the Quartus II Classic Timing Analyzer
automatically calculates the hold relationship based on your clock
settings. The QSF variable for the Hold Relationship assignment is
HOLD_RELATIONSHIP. In the Quartus II TimeQuest Timing Analyzer,
use the set_min_delay command to specify the minimum hold
relationship for a path.

Clock Latency

Table 7–1 shows the equivalent SDC constraints for each of these
Quartus II Classic assignments.

For more information about clock latency support in the Quartus II
TimeQuest Timing Analyzer, refer to “Clock Latency” on page 7–15.

Clock Uncertainty

This section describes the conversion for the following Quartus II Classic
assignments:

■ Clock Setup Uncertainty
■ Clock Hold Uncertainty

Table 7–1. Quartus II Classic and SDC Equivalent Constraints

Quartus II Classic Timing Assignment
SDC Constraint

Assignment Name QSF Variable

Early Clock Latency EARLY_CLOCK_LATENCY set_clock_latency -source -late

Late Clock Latency LATE_CLOCK_LATENCY set_clock_latency -source -early

Altera Corporation 7–35
October 2007 Preliminary

Timing Assignment Conversion

Table 7–2 shows the equivalent SDC constraints for each of these
Quartus II Classic assignments.

Inverted Clock

The Quartus II Classic Timing Analyzer detects inverted clocks
automatically when the clock inversion occurs at the input of the LCELL
that contains the register specified in the assignment. You must make an
Inverted Clock assignment in all other situations for Quartus II Classic
Timing Analyzer analysis. The QSF variable for the Inverted Clock
assignment is INVERTED_CLOCK. The Quartus II TimeQuest Timing
Analyzer detects inverted clocks automatically, regardless of the type of
inversion circuit, in designs that target device families that support
unateness: Stratix® II, Cyclone® II, and HardCopy® II. For designs that
target any other device family, you must create a generated clock with the
-invert option on the output of the cell that inverts the clock.

f For more information about unateness, refer to the Quartus II TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Not a Clock

The Not a Clock assignment directs the Quartus II Classic Timing
Analyzer that the specified node is not a clock source when it would
normally be detected as a clock because of a global fMAX requirement. The
QSF variable for the Not a Clock assignment is NOT_A_CLOCK. This
assignment is not supported in the Quartus II TimeQuest Timing
Analyzer and there is no equivalent constraint. Appropriate clock
constraints are created in the Quartus II TimeQuest Timing Analyzer
only.

Default Required fMAX Assignment

The Default Required fMAX assignment allows you to specify an fMAX

requirement for the Quartus II Classic Timing Analyzer for all
unconstrained clocks in your design. The QSF variable for the Default
Required fMAX assignment is FMAX_REQUIREMENT. You can use the

Table 7–2. Quartus II Classic and SDC Equivalent Constraints

Quartus II Classic Timing Assignment
SDC Constraint

Assignment Name QSF Variable

Clock Setup Uncertainty CLOCK_SETUP_UNCERTAINTY set_clock_uncertainty -setup

Clock Hold Uncertainty CLOCK_HOLD_UNCERTAINTY set_clock_uncertainty -hold

7–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

derive_clocks command to create clocks on sources of clock pins in your
design that do not already have clocks assigned to them. You should
constrain each individual clock in your design with the create_clock or
created_generated_clock command, not the derive_clocks command.
Refer to “Automatic Clock Detection” on page 7–19 to learn why you
should constrain individual clocks in your design.

Virtual Clock Reference

The Virtual Clock Reference assignment allows you to define timing
characteristics of a reference clock outside the FPGA. The QSF variable for
the Virtual Clock Reference assignment is
VIRTUAL_CLOCK_REFERENCE. The Quartus II TimeQuest Timing
Analyzer supports virtual clocks by default, while the Quartus II Classic
Timing Analyzer requires the Virtual Clock Reference assignment to
indicate that a clock setting is for a virtual clock. To create a virtual clock
in the Quartus II TimeQuest Timing Analyzer, use the create_clock or
create_generated_clock commands with the -name option and no
targets.

Figure 7–23 shows a simple circuit that requires a virtual clock, and the
following example shows how to constrain the circuit. The circuit shows
data transfer between an Altera FPGA and another device, and the clocks
for the two devices are not related. You can constrain the path with an
output delay assignment, but that assignment requires a virtual clock that
defines the clock characteristics of the destination device.

Figure 7–23. Virtual Clock Sample Circuit

Assume the circuit has the following assignments in the Quartus II
Classic Timing Analyzer:

■ Clock period of 10 ns on system_clk (clock for the Altera FPGA)
■ Clock period of 8 ns on virt_clk (clock for the other device)
■ Virtual Clock Reference setting for virt_clk is on (indicates that

virt_clk is a virtual clock)

reg_b

Other Device
d_in

clk_b
clk_b

reg_a

Altera FPGA

d_out

clk_a
clk_a

Altera Corporation 7–37
October 2007 Preliminary

Timing Assignment Conversion

■ Output Maximum Delay of 5 ns on dataout with respect to
virt_clk (constrains the path between the two devices)

The SDC commands shown in Example 7–9 constrain the circuit the same
way.

Example 7–9. SDC Constraints
Clock for the Altera FPGA
create_clock -period 10 -name system_clk [get_ports system_clk]
Virtual clock for the other device, with no targets
create_clock -period 8 -name virt_clk
Constrains the path between the two devices
set_output_delay -clock virt_clk 5 [get_ports dataout]

Clock Settings

The Quartus II Classic Timing Analyzer includes a variety of assignments
to describe clock settings. These include duty cycle, fMAX, offset, and
others. In the Quartus II TimeQuest Timing Analyzer, use the
create_clock and create_generated_clock commands to constrain clocks.

Multicycle

Table 7–3 shows the equivalent SDC exceptions for each of these
Quartus II Classic Timing Analyzer timing assignments.

The default value and numbering scheme for the hold multicycle value is
different in the Quartus II Classic and Quartus II TimeQuest Timing
Analyzers. Refer to “Hold Multicycle” on page 7–24 for more information

Table 7–3. Quartus II Classic and SDC Equivalent Exceptions

Quartus II Classic Timing Assignment
SDC Exception

Assignment Name QSF Variable

Multicycle (1) MULTICYCLE set_multicycle_path -setup -end

Source Multicycle (2) SRC_MULTICYCLE set_multicycle_path -setup -start

Multicycle Hold (3) HOLD_MULTICYCLE set_multicycle_path -hold -end

Source Multicycle Hold SRC_HOLD_MULTICYCLE set_multicycle_path -hold -start

Notes to Table 7–3:
(1) A multicycle assignment is also known as a “destination multicycle setup” assignment.
(2) A source multicycle assignment is also known as a “source multicycle setup” assignment.
(3) A multicycle hold is also known as a “destination multicycle hold “assignment.

7–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

about the difference between the default value and numbering scheme
for the hold multicycle value in the Quartus II Classic and Quartus II
TimeQuest Timing Analyzers.

f For more information about how to convert the hold multicycle value,
see the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

Clock Enable Multicycle

The Quartus II Classic Timing Analyzer supports the following clock
enable multicycle assignments. Corresponding types of multicycle
assignments are applied to all registers enabled by the targets of the
specified clock.

■ Clock Enable Multicycle
■ Clock Enable Source Multicycle
■ Clock Enable Multicycle Hold
■ Clock Enable Source Multicycle Hold

The Quartus II TimeQuest Timing Analyzer supports clock-enabled
multicycle constraints with the get_fanouts command. Use the
get_fanouts command to create a collection of nodes that have a common
source signal, such as a clock enable.

I/O Constraints

FPGA I/O timing assignments have typically been made with
FPGA-centric tSU and tCO requirements for the Quartus II Classic Timing
Analyzer. However, the Quartus II Classic Timing Analyzer also supports
input and output delay assignments to accommodate industry-standard,
system-centric timing constraints. Where possible, you should use
system-centric constraints to constrain your designs for the Quartus II
TimeQuest Timing Analyzer. Table 7–4 includes Quartus II Classic I/O
assignments, the equivalent FPGA-centric SDC constraints, and
recommended system-centric SDC constraints.

For setup checks (tSU and tCO), <latch − launch> equals the clock period for
same-clock transfers. For hold checks (tH and Minimum tCO), <latch −
launch> equals 0 for same clock transfers. Conversions from Quartus II
Classic assignments to set_input_delay and set_output_delay
constraints work well only when the source and destination registers’
clocks are the same (same clock and polarity). If the source and

Altera Corporation 7–39
October 2007 Preliminary

Timing Assignment Conversion

destination registers’ clocks are different, the conversion may not be
straightforward and you should take extra care when converting to
set_input_delay and set_output_delay constraints.

Input and Output Delay

Table 7–5 shows the equivalent SDC exceptions for each of these
Quartus II Classic Timing Analyzer timing assignments.

Table 7–4. Quartus II Classic and Quartus II TimeQuest Timing Analyzers Equivalent I/O Constraints

Classic FPGA-centric SDC System-centric SDC

tSU Requirement set_max_delay <tSU requirement> set_input_delay -max <latch −
launch − tSU requirement>

tH Requirement set_min_delay − <tH requirement> (1) set_input_delay -min <latch −
launch + tH requirement>

tCO Requirement set_max_delay <tCO requirement> set_output_delay -max <latch −
launch − tCO requirement>

Minimum tCO Requirement set_min_delay <minimum tCO requirement> set_output_delay -min <latch −
launch − minimum tCO requirement>

tPD Requirement set_max_delay <tPD requirement> (2)

Minimum tPD Requirement set_min_delay <minimum tPD requirement> (2)

Notes to Table 7–4:
(1) Refer to “tH Requirement” on page 7–43 for an explanation about why this exception uses the negative tH

requirement.
(2) The input and output delays can be used for tPD paths, such that they will be analyzed as a system fMAX path. This

is a feature unique to the Quartus II TimeQuest Timing Analyzer.

Table 7–5. Quartus II Classic and SDC Equivalent Exceptions

Quartus II Classic Timing Assignment
SDC Exception

Assignment Name QSF Variable

Input Maximum Delay INPUT_MAX_DELAY set_input_delay -max

Input Minimum Delay INPUT_MIN_DELAY set_input_delay -min

Output Maximum Delay OUTPUT_MAX_DELAY set_output_delay -max

Output Minimum Delay OUTPUT_MIN_DELAY set_output_delay -min

7–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

In some circumstances, you may receive the following warning message
when you update the SDC netlist:

Warning: For set_input_delay/set_output_delay, port
"<port>" does not have delay for flag (<rise|fall>,
<min|max>)

This warning occurs whenever port constraints have maximum or
minimum delay assignments, but not both. In the Quartus II Classic
Timing Analyzer, device inputs can have Input Maximum Delay
assignments, Input Minimum Delay assignments, or both, and device
outputs can have Output Maximum Delay assignments, Output
Minimum Delay assignments, or both.

To avoid receiving the warning, your SDC file must specify both the -max
and -min options for each port, or specify neither. If a device I/O in your
design includes both the maximum and minimum delay assignments in
the Quartus II Classic Timing Analyzer, the conversion utility converts
both, and no warning appears about that device I/O. If a device I/O has
only maximum or minimum delay assignments in the Quartus II Classic
Timing Analyzer, you have the following options:

■ Add the missing minimum or maximum delay assignment to the
device I/O before performing the conversion.

■ Modify the SDC constraint after the conversion to add appropriate
-max or -min values.

■ Modify the SDC constraint to remove the -max or -min option so the
value is used for both by default.

tSU Requirement

The tSU Requirement assignment specifies the maximum acceptable
clock setup time for the input (data) pin. The QSF variable for the tSU
Requirement assignment is TSU_REQUIREMENT. You can convert the
tSU Requirement assignment to the set_max_delay command or the
set_input_delay command with the -max option. The delay value for the
set_input_delay command is <latch − launch − tSU requirement>. Refer to
the labeled paths in Figure 7–24 to understand the names in Equations 3
and 4.

Altera Corporation 7–41
October 2007 Preliminary

Timing Assignment Conversion

Figure 7–24. Path Names

Equation 3 shows the derivation of this conversion.

(3)

clk

dst.utsu

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk

required arrival 0>–

required latch board.dstclk dst.clk dst.utsu–+ +=

arrival launch board.srcclk src.clk src.utco src.out srctodst dst.in+ + + + + +=

input_delay board.srcclk src.clk src.utcu src.out srctodst board.dstclk–+ + + +=

required latch dst.clk dst.utsu–+=

arrival launch input_delay dst.in+ +=

latch dst.clk dst.utsu–+() launch input_delay dst.in+ +() 0>–

tsu requirement actual tsu– 0>

actual tsu dst.in dst.utsu dst.clk–+=

tsu requirement dst.in dst.utsu dst.clk–+()– 0>

tsu requirement latch launch input_delay––=

input_delay latch launch– tsurequirement–=

7–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The delay value is the difference between the period of the clock source
of the register and the tSU Requirement value, as shown in Figure 7–25.

Figure 7–25. tSU Requirement

The delay value for the set_max_delay command is the tSU Requirement
value. Equation 4 shows the derivation of this conversion.

(4)

FPGAOther Device

Input Delay

tsu

clk

required arrival 0>–

required latch board.dstclk dst.clk dst.utsu–+ +=

arrival launch board.srcclk src.clk src.utco src.out srctodst dst.in+ + + + + +=

max_delay latch board.dstclk launch board.srcclk–– src.clk– src.out– srctodst–+ +=

required max_delay dst.clk dst.utsu–+=

arrival dst.in=

max_delay dst.clk dst.utsu–+() dst.in()– 0>

tsu requirement tsu– 0>

actual tsu dst.in dst.utsu dst.clk–+=

tsu requirement dst.in dst.utsu dst.clk–+()– 0>

set_max_delay tsu requirement=

Altera Corporation 7–43
October 2007 Preliminary

Timing Assignment Conversion

Table 7–6 shows the different ways you can make tSU assignments in the
Quartus II Classic Timing Analyzer, and the corresponding options for
the set_max_delay exception.

To convert a global tSU assignment to an equivalent SDC exception, use
the command shown in Example 7–10.

Example 7–10. Converting a Global tSU Assignment to an Equivalent SDC Exception
set_max_delay -from [all_inputs] -to [all_registers] <tSU value>

tH Requirement

The tH Requirement specifies the maximum acceptable clock hold time
for the input (data) pin. The QSF variable for the tH Requirement
assignment is TH_REQUIREMENT. You can convert the tH Requirement
assignment to the set_min_delay command, or the set_input_delay
command with the -min option. The delay value for the set_input_delay
command is <latch − launch + tH requirement>. Refer to the labeled paths in
Figure 7–26 to understand the names in Equations 5 and 6.

Figure 7–26. Path Names

Table 7–6. tSU Requirement and set_max_delay Equivalence

tSU Requirement Options set_max_delay Options

-to <pin> -from [get_ports <pin>] -to [get_registers *]

-to <clock> -from [get_ports *] -to [get_clocks <clock>]

-to <register> -from [get_ports *] -to [get_registers <register>]

-from <pin> -to <register> -from [get_ports <pin>] -to [get_registers <register>]

-from <clock> -to <pin> -from [get_ports <pin>] -to [get_clocks <clock>] (1)

Notes to Table 7–6:
(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,

-to <pin>. If the pin feeds registers clocked by different clocks, use set_input_delay to constrain the paths
properly.

clk

dst.uth

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk

7–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Equation 5 shows the derivation of this calculation.

(5)

The delay value for the set_min_delay command is the tH Requirement
value. Equation 6 shows the derivation of this conversion.

(6)

arrival required– 0>
arrival launch board.srcclk src.clk src.utco src.out srctodst dst.in+ + + + + +=

required latch board.dstclk dst.clk dst.uth+ + +=

input_delay board.srcclk src.clk srcutcu src.out srctodst board.dstclk–+ + + +=

arrival launch input_delay dst.in+ +=

required latch dst.clk dst.uth+ +=

launch input_delay dst.in+ +() latch dst.clk dst.uth+ +()– 0>

tH requirement actual tH – 0>

actual tH dst.clk dst.uth dst.in–+=

tH requirement dst.clk dst.uth dst.in–+()– 0>

tH requirement launch latch input_delay+–=

input_delay latch launch tH requirement+–=

arrival required– 0>
arrival dst.in=

required min_delay dst.clk dst.uth+ +=

dst.in min_delay dst.clk dst.uth+ +()–

tH requirement actual tH – 0>

actual tH dst.clk dst.uth dst.in–+=

tH requirement dst.clk dst.uth dst.in–+()– 0>

set_min_delay tH requirement–=

Altera Corporation 7–45
October 2007 Preliminary

Timing Assignment Conversion

Table 7–7 shows the different ways you can make tH assignments in the
Quartus II Classic Timing Analyzer, and the corresponding options for
the set_min_delay command.

To convert a global tH assignment to an equivalent SDC exception, use the
command shown in Example 7–11.

Example 7–11. Converting a Global tH Assignment to an Equivalent SDC Exception
set_min_delay -from [all_inputs] -to [all registers] <negative tH value>

tCO Requirement

The tCO Requirement assignment specifies the maximum acceptable
clock to output delay to the output pin. The QSF variable for the tCO
Requirement assignment is TCO_REQUIREMENT. You can convert the
tCO Requirement assignment to the set_max_delay command or the
set_output_delay with the -max option. The delay value for the
set_output_delay command is <latch − launch + tCO requirement>. Refer to
the labeled paths in Figure 7–27 to understand the names in Equations 7
and 8.

Table 7–7. tH Requirement and set_min_delay Equivalence

tH Requirement Options set_min_delay Options

-to <pin> -from [get_ports <pin>] -to [get_registers *]

-to <clock> -from [get_ports *] -to [get_clocks <clock>]

-to <register> -from [get_ports *] -to [get_registers <register>]

-from <pin> -to <register> -from [get_ports <pin>] -to [get_registers <register>]

-from <clock> -to <pin> -from [get_ports <pin>] -to [get_clocks <clock>] (1)

Notes to Table 7–7:
(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,

-to <pin>. If the pin feeds registers clocked by different clocks, use set_input_delay to constrain the paths
properly. Refer to“Input and Output Delay” on page 7–39 for additional information.

7–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 7–27. Path Names

Equation 7 shows the derivation of this conversion.

(7)

The delay value is the difference between the period of the clock source
of the register and the tCO Requirement value, as illustrated in
Figure 7–28.

Figure 7–28. tCO Requirement

clk

dst.utsu

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk

required arrival– 0>
required latch output_delay–=

arrival launch src.clk src.utco src.out+ + +=

output_delay srctodst dst.in dst.utsu dst.clk– board.dstc.k board.srcclk+–+ +=

latch output_delay–() launch src.clk src.utco src.out+ + +()– 0>

tco requirement actual tco– 0>

actual tco launch src.clk src.utco src.out+ + +=

tco requirement src.clk src.utco src.out+ +()– 0>

tco requirement latch launch output_delay––=

output_delay latch launch tco requirement––=

FPGA Other Device

Output Delay

tco

clk

Altera Corporation 7–47
October 2007 Preliminary

Timing Assignment Conversion

The delay value for the set_max_delay command is the tCO Requirement
value. Equation 8 shows the derivation of this conversion.

(8)

Table 7–8 shows the different ways you can make tCO assignments in the
Quartus II Classic Timing Analyzer, and the corresponding options for
the set_max_delay exception.

To convert a global tCO assignment to an equivalent SDC exception, use
the command in Example 7–12.

Example 7–12. Converting a Global tCO Assignment to an Equivalent SDC Exception
set_max_delay -from [all registers] -to [all_outputs] <tCO value>

required arrival– 0>
required set_max_delay=

arrival src.clk src.utco src.out+ +=

set_max_delay src.clk src.utco src.out+ +()– 0>

tco requirement actual tco– 0>

actual tco src.clk src.utco src.out+ +=

tco requirement src.clk src.utco src.out+ +()– 0>

set_max_delay tco requirement=

Table 7–8. tCO Requirement and set_max_delay Equivalence

tCO Requirement Options set_max_delay Options

-to <pin> -from [get_registers *] -to [get_ports <pin>]

-to <clock> -from [get_clocks <clock>] -to [get_ports *]

-to <register> -from [get_registers <register>] -to [get_ports *]

-from <register> -to <pin> -from [get_registers <register>] -to [get_ports <pin>]

-from <clock> -to <pin> -from [get_clocks <clock>] -to [get_ports <pin>] (1)

Notes to Table 7–8:
(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,

-to <pin>. If the pin feeds registers clocked by different clocks, you should use set_output_delay to constrain the
paths properly.

7–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Minimum tCO Requirement

The Minimum tCO Requirement assignment specifies the minimum
acceptable clock to output delay to the output pin. The QSF variable for
the Minimum tCO Requirement assignment is
MIN_TCO_REQUIREMENT. You can convert the Minimum tCO
Requirement assignment to the set_min_delay command or the
set_output_delay command with the -min option. The delay value for
the set_output_delay command is <latch − launch + minimum tCO
requirement>. Refer to the labeled paths in Figure 7–29 to understand the
names in Equations 9 and 10.

Figure 7–29. Path Names

Equation 9 shows the derivation of this conversion.

(9)

clk

dst.uth

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk

arrival required+ 0>
arrival launch src.clk src.utco src.out+ + +=

required latch output_delay–=

output_delay srctodst dst.in dst.uth– dst.clk– board.dstclk– board.srcclk+ +=

launch src.clk src.utco src.out+ + +() latch output_delay–()– 0>

minimum tco minimum tcorequirement– 0>

minimum tco launch src.clk src.utco src.out+ + +=

launch src.clk src.utco src.out+ + +() minimum tco requirement– 0>

minimum tco requirement latch launch– output_delay–=

output_delay latch launch– minimum tco requirement–=

Altera Corporation 7–49
October 2007 Preliminary

Timing Assignment Conversion

The delay value for the set_min_delay command is the Minimum tCO
Requirement. Equation 10 shows the derivation of this conversion.

(10)

Table 7–9 shows the different ways you can make minimum tCO
assignments in the Quartus II Classic Timing Analyzer, and the
corresponding options for the set_min_delay exception.

To convert a global Minimum tCO Requirement to an equivalent SDC
exception, use the command shown in Example 7–13.

Example 7–13. Converting a Global minimum tCO Requirement to an Equivalent SDC Exception
set_min_delay -from [all_registers] -to [all_outputs] <minimum tCO value>

arrival required– 0>
arrival src.clk src.utco src.out+ +=

required min_delay=

src.clk src.utco src.out+ +() set_min_delay()– 0>

minimum tco minimum tco requirement– 0>

minimum tco src.clk src.utco src.out+ +=

src.clk src.utco src.out+ +() minimum tcorequirement– 0>

set_min_delay minimum tco requirement=

Table 7–9. Minimum tCO Requirement and set_min_delay Equivalence

Minimum tCO Requirement Options set_min_delay Options

-to <pin> -from [get_registers *] -to [get_ports <pin>]

-to <clock> -from [get_clocks <clock>] -to [get_ports *]

-to <register> -from [get_registers <register>] -to [get_ports *]

-from <register> -to <pin> -from [get_registers <register>] -to [get_ports <pin>]

-from <clock> -to <pin> -from [get_clocks <clock>] -to [get_ports <pin>] (1)

Notes to Table 7–9:
(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,

-to <pin>. If the pin feeds registers clocked by different clocks, you should use set_output_delay to constrain
the paths properly.

7–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

tPD Requirement

The tPD Requirement assignment specifies the maximum acceptable
input to non-registered output delay, that is, the time required for a signal
from an input pin to propagate through combinational logic and appear
at an output pin. The QSF variable for the tPD Requirement assignment is
TPD_REQUIREMENT. You can use the set_max_delay command in the
Quartus II TimeQuest Timing Analyzer as an equivalent constraint as
long as you account for input and output delays. The tPD Requirement
assignment does not take into account input and output delays, but the
set_max_delay exception does, so you must modify the set_max_delay
value to take into account input and output delays.

Combinational Path Delay Scenario
Figure 7–30 shows a simple circuit followed by an example of a tPD
Requirement to set_max_delay conversion.

Figure 7–30. tPD Example

Assume the circuit has the following assignments in the Quartus II
Classic Timing Analyzer:

■ Clock period of 10 ns
■ tPD Requirement from a_in to comb_out of 10 ns
■ Input Max Delay on a_in relative to clk of 2 ns
■ Output Max Delay on comb_out relative to clk of 2 ns

The path from a_in to comb_out is not affected by the input and output
delays. The slack is equal to the <tPD Requirement from a_in to
comb_out> − <path delay from a_in to comb_out>.

Assume the circuit has the SDC constraints shown in Example 7–14 in the
Quartus II TimeQuest Timing Analyzer:

clk

reg_out

comb_out

b_in

a_in

Altera Corporation 7–51
October 2007 Preliminary

Timing Assignment Conversion

Example 7–14. SDC Constraints
create_clock -period 10 –name clk [get_ports clk]
set_max_delay -from a_in -to comb_out 10
set_input_delay -clk clk 2 [get_ports a_in]
set_output_delay –clk clk 2 [get_ports comb_out]

The path from a_in to comb_out is affected by the input and output
delays. The slack is equal to:

<set_max_delay value from a_in to comb_out> − <input delay> − <output delay> − <path delay from
a_in to comb_out>

To convert a global tPD Requirement assignment to an equivalent SDC
exception, use the command shown in Example 7–15. You should add the
input and output delays to the value of your converted tPD Requirement
(set_max_delay exception value) to achieve an equivalent SDC exception.

Example 7–15. Converting a Global tPD Requirement Assignment to an Equivalent SDC Exception
set_max_delay -from [all_inputs] -to [all_outputs] <value>

Minimum tPD Requirement

The Minimum tPD Requirement assignment specifies the minimum
acceptable input to non-registered output delay, that is, the minimum
time required for a signal from an input pin to propagate through
combinational logic and appear at an output pin. The QSF variable for the
Minimum tPD Requirement assignment is MIN_TPD_REQUIREMENT.
You can use the set_min_delay command in the Quartus II TimeQuest
Timing Analyzer as an equivalent constraint as long as you account for
input and output delays. The Minimum tPD Requirement assignment
does not take into account input and output delays, but the
set_min_delay exception does.

Refer to “Combinational Path Delay Scenario” on page 7–50 to see how
input and output delays affect minimum and maximum delay
exceptions.

To convert a global Minimum tPD Requirement assignment to an
equivalent SDC exception, use the following command:

Example 7–16. Converting a Global Minimum tPD Requirement Assignment to an Equivalent SDC Exception
set_min_delay -from [all_inputs] -to [all_outputs] <value>

7–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Cut Timing Path

The Cut Timing Path assignment in the Quartus II Classic Timing
Analyzer is equivalent to the set_false_path command in the Quartus II
TimeQuest Timing Analyzer. The QSF variable for the Cut Timing Path
assignment is CUT.

Maximum Delay

The Maximum Delay assignment specifies the maximum required delay
for the following types of paths:

■ Pins to registers
■ Registers to registers
■ Registers to pins

The QSF variable for the Maximum Delay assignment is MAX_DELAY.
This requirement overwrites the requirement computed from the clock
setup relationship and clock skew. There is no equivalent constraint in the
Quartus II TimeQuest Timing Analyzer.

1 The Maximum Delay assignment for the Quartus II Classic
Timing Analyzer is not related to the set_max_delay exception
in the Quartus II TimeQuest Timing Analyzer.

Minimum Delay

The Minimum Delay assignment specifies the minimum required delay
for the following types of paths:

■ Pins to registers
■ Registers to registers
■ Registers to pins

The QSF variable for the Minimum Delay assignment is MIN_DELAY.
This requirement overwrites the requirement computed from the clock
hold relationship and clock skew. There is no equivalent constraint in the
Quartus II TimeQuest Timing Analyzer.

1 The Minimum Delay assignment for the Quartus II Classic
Timing Analyzer is not related to the set_min_delay exception
in the Quartus II TimeQuest Timing Analyzer.

Altera Corporation 7–53
October 2007 Preliminary

Timing Assignment Conversion

Maximum Clock Arrival Skew

The Maximum Clock Arrival Skew assignment specifies the maximum
clock skew between a set of registers. The QSF variable for the Maximum
Clock Arrival Skew assignment is MAX_CLOCK_ARRIVAL_SKEW. In the
Quartus II Classic Timing Analyzer, this assignment is specified between
a clock node name and a set of registers. Maximum Clock Arrival Skew
is not supported in the Quartus II TimeQuest Timing Analyzer.

Maximum Data Arrival Skew

The Maximum Data Arrival Skew assignment specifies the maximum
data arrival skew between a set of registers, pins, or both. The QSF
variable for the Maximum Data Arrival Skew assignment is
MAX_DATA_ARRIVAL_SKEW. In this case, the data arrival delay
represents the tCO from the clock to the given register, pin, or both. This
assignment is specified between a clock node and a set of registers, pins,
or both.

The Quartus II TimeQuest Timing Analyzer does not support a constraint
to specify maximum data arrival skew, but you can specify setup and
hold times relative to a clock port to constrain an interface like this.
Figure 7–31 shows a simplified source-synchronous interface used in the
following example.

Figure 7–31. Source-Synchronous Interface Diagram

Constraining Skew on an Output Bus
This example constrains the interface so that all bits of the data_out bus
go off-chip between 2 and 3 ns after the clk_out signal. Assume that
clock_in and clock_out have a period of 8 ns.

data_in Input Controller Output Controller

clk_in PLL

data_out

clk_out

7–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The following equations and example shows how to create timing
requirements that satisfy the timing relationships shown in Figure 7–32.

Figure 7–32. Source-Synchronous Timing Diagram

Equation 11 shows how to compute the value for the
set_output_delay -min command that creates the 2 ns hold requirement
on the destination. For hold requirement calculations in which source and
destination clocks are the same, <latch> – <launch> = 0.

(11)

Equation 12 shows how to compute the value for the set_output_delay
command that creates the 3 ns setup requirement on the destination. For
setup requirement calculations in which source and destination clocks are
the same, <latch> – <launch> = clock period.

(12)

Refer to “I/O Constraints” on page 7–38 for an explanation of the above
equations.

clk_out

data_out

0 2 3 4 8 10 11 12

latch launch– 0ns=

output delay latch launch– 2ns–=

output delay 2ns–=

latch launch– 8ns=

output delay latch launch– 3ns–=

output delay 5ns=

Altera Corporation 7–55
October 2007 Preliminary

Conversion Utility

Example 7–17 shows the three constraints together.

Example 7–17. Constraining a DDR Interface
set period 8.000
create_clock -period $period \

-name clock_in \
clock_in

derive_pll_clocks
set_output_delay -add_delay \

-clock ddr_pll_1_inst|altpll_component|pll|CLK[0] \
-reference_pin clk_out \
-min -2.000 \
[get_ports data_out*]

set_output_delay -add_delay \
-clock ddr_pll_1_inst|altpll_component|pll|CLK[0] \
-reference_pin clk_out \
-max [expr $period - 3.000] \
[get_ports data_out*]

Conversion
Utility

The Quartus II TimeQuest Timing Analyzer includes a conversion utility
to help you convert Quartus II Classic timing assignments in a QSF file to
SDC constraints in an SDC file. The utility can use information from your
project report database (in the \db folder), if it exists, so you should
compile your design before the conversion.

1 The conversion utility ignores all disabled QSF assignments.
Disabled assignments say No in the Enabled? column of the
Assignment Editor, and include the -disable option in the
QSF file.

Refer to “Conversion Utility” on page 7–3 to learn how to run the
conversion utility.

7–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Unsupported Global Assignments

The conversion utility checks whether any of the global timing
assignments in Table 7–10 exist in your project. Any global assignments
not supported by the conversion utility are ignored during the
conversion. Refer to the indicated page for information about each
assignment, and how to manually convert these global assignments to
SDC commands.

Recommended Global Assignments

Once any unsupported assignments have been identified, the conversion
utility checks the global assignments in Table 7–11 to ensure they match
the specified values.

Table 7–10. Global Timing Assignments

Assignment Name QSF Variable More Information

tSU Requirement TSU_REQUIREMENT page 7–40

tH Requirement TH_REQUIREMENT page 7–43

tCO Requirement TCO_REQUIREMENT page 7–45

Minimum tCO Requirement MIN_TCO_REQUIREMENT page 7–48

tPD Requirement TPD_REQUIREMENT page 7–50

Minimum tPD Requirement MIN_TPD_REQUIREMENT page 7–51

Table 7–11. Recommended Global Assignments

Quartus II Classic Assignment Name QSF Variable Value

Cut off clear and preset signal paths CUT_OFF_CLEAR_AND_PRESET_PATHS ON

Cut off feedback from I/O pins CUT_OFF_IO_PIN_FEEDBACK ON

Cut off read during write signal paths CUT_OFF_READ_DURING_WRITE_PATHS ON

Analyze latches as synchronous elements ANALYZE_LATCHES_AS_SYNCHRONOUS_ELEMENTS ON

Enable Clock Latency ENABLE_CLOCK_LATENCY ON

Display Entity Name PROJECT_SHOW_ENTITY_NAME ON

Altera Corporation 7–57
October 2007 Preliminary

Conversion Utility

The following assignments are checked to ensure the functionality of the
Quartus II Classic Timing Analyzer with the specified values
corresponds to the behavior of the Quartus II TimeQuest Timing
Analyzer.

■ Cut off clear and preset signal paths—Quartus II The TimeQuest
Timing Analyzer does not support this functionality. You should use
Recovery and Removal analysis instead to analyze register control
paths. The Quartus II Classic Timing Analyzer does not support this
option.

■ Cut off feedback from I/O pins—The Quartus II TimeQuest Timing
Analyzer does not match the functionality of the Quartus II Classic
Timing Analyzer when this assignment is OFF.

■ Cut off read during write signal paths—The Quartus II TimeQuest
Timing Analyzer does not match the functionality of the Quartus II
Classic Timing Analyzer when this assignment is OFF.

■ Analyze latches as synchronous elements—The Quartus II
TimeQuest Timing Analyzer analyzes latches as synchronous
elements by default and does not match the functionality of the
Quartus II Classic Timing Analyzer when this assignment is OFF.
Beginning with version 5.1 of the Quartus II software, the Quartus II
Classic Timing Analyzer analyzes latches as synchronous elements
by default.

■ Enable Clock Latency—The Quartus II TimeQuest Timing Analyzer
includes clock latency in its calculations. The Quartus II TimeQuest
Timing Analyzer does not match the functionality of the Quartus II
Classic Timing Analyzer when this assignment is OFF. Latency on a
clock can be viewed as a simple delay on the clock path, and affects
clock skew. This is in contrast to an offset, which alters the setup and
hold relationship between two clocks. Refer to “Offset and Latency
Example” on page 7–15 for an example of the different effects of
offset and latency. When you turn on Enable Clock Latency in the
Quartus II Classic Timing Analyzer, it affects the following aspects of
timing analysis:
● Early Clock Latency and Late Clock Latency assignments are

honored
● The compensation delay of a PLL is analyzed as latency
● For clock settings where you do not specify an offset, the

automatically computed offset is treated as latency.
■ Display Entity Name—Any entity-specific assignments are ignored

in the Quartus II TimeQuest Timing Analyzer because they do not
include the entity name when this option is ON.

If your design meets timing requirements in the Quartus II Classic Timing
Analyzer without all of the settings recommended in Table 7–11 on
page 7–56, you should perform one of the following actions.

7–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Change the settings and re-constrain and re-verify as necessary.
or

■ Add or modify SDC constraints as appropriate because analysis in
the Quartus II TimeQuest Timing Analyzer may be different after
conversion.

Clock Conversion

Next, the conversion utility adds the derive_pll_clocks command to the
SDC file. This command creates generated clocks on all PLL outputs in
your design each time the SDC file is read. The command does not add a
clock on the FPGA port that drives the PLL input.

The conversion utility includes the derive_pll_clocks -use_tan_name
command in the SDC file it creates. The -use_tan_name option
overrides the default clock naming behavior (the PLL pin name) so the
clock name is the same as the net name in the Quartus II Classic Timing
Analyzer.

Including the -use_tan_name option ensures that the conversion
utility converts clock-to-clock exceptions properly. If you remove the
-use_tan_name option, you must also edit references to the clock
names in other SDC commands so that they match the PLL pin names.

If your design includes a global fMAX assignment, the assignment is
converted to a derive_clocks command. The behavior of a global fMAX
assignment is different from the behavior of clocks created with the
derive_clocks command, and you should use the report_clocks
command when you review conversion results to evaluate the clock
settings. Refer to “Automatic Clock Detection” on page 7–19 for an
explanation of the differences. As soon as you know the appropriate clock
settings, you should use create_clock or create_generated_clock
commands instead of the derive_clocks command.

1 The conversion utility adds a post_message command before
the derive_clocks command to remind you that the clocks are
derived automatically. The Quartus II TimeQuest Timing
Analyzer displays the reminder the first time it reads the SDC
file. Remove or comment out the post_message command to
prevent the message from displaying.

Next, the conversion utility identifies and converts clock settings in the
QSF file. If a project database exists, the utility also identifies and converts
any additional clocks in the report file that are not in the QSF, such as PLL
base clocks.

Altera Corporation 7–59
October 2007 Preliminary

Conversion Utility

1 If you change the PLL input frequency, you must modify the
SDC constraint manually.

The conversion utility ignores clock offsets on generated clocks. Refer to
“Clock Offset” on page 7–14 for information about how to use offset
values in the Quartus II TimeQuest Timing Analyzer.

Instance Assignment Conversion

Next, the conversion utility converts the following instance assignments
in Table 7–12. Refer to the indicated page for information about each
assignment.

Depending on input and output delay assignments, you may receive a
warning message when the SDC file is read. The message warns that the
set_input_delay commands, set_output_delay commands, or both are

Table 7–12. Instance Timing Assignments

Assignment Name QSF Variable More Information

Late Clock Latency LATE_CLOCK_LATENCY
page 7–34

Early Clock Latency EARLY_CLOCK_LATENCY

Clock Setup Uncertainty CLOCK_SETUP_UNCERTAINTY
page 7–34

Clock Hold Uncertainty CLOCK_HOLD_UNCERTAINTY

Multicycle (1) MULTICYCLE

page 7–37
Source Multicycle (2) SRC_MULTICYCLE

Multicycle Hold (3) HOLD_MULTICYCLE

Source Multicycle Hold SRC_HOLD_MULTICYCLE

Clock Enable Multicycle CLOCK_ENABLE_MULTICYCLE

page 7–38
Clock Enable Source Multicycle CLOCK_ENABLE_SOURCE_MULTICYCLE

Clock Enable Multicycle Hold CLOCK_ENABLE_MULTICYCLE_HOLD

Clock Enable Source Multicycle Hold CLOCK_ENABLE_SOURCE_MULTICYCLE_HOLD

Cut Timing Path CUT page 7–52

Input Maximum Delay INPUT_MAX_DELAY

page 7–39
Input Minimum Delay INPUT_MIN_DELAY

Output Maximum Delay OUTPUT_MAX_DELAY

Output Minimum Delay OUTPUT_MIN_DELAY

Notes to Table 7–12:
(1) A multicycle assignment can also be known as a “destination multicycle setup” assignment.
(2) A source multicycle assignment can also be known as a “source multicycle setup” assignment.
(3) A multicycle hold can also be known as a “destination multicycle hold” assignment.

7–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

missing the -max option, -min option, or both. Refer to “Input and
Output Delay” on page 7–39 for an explanation of why the warning
occurs and how to avoid it.

Beginning in version 7.1 of the Quartus II software, the conversion utility
automatically adds multicycle hold exceptions for each multicycle setup
assignment. The value of each multicycle hold exception depends on the
Default hold multicycle assignment value in your project. If the value is
One, the conversion utility uses a value of 0 (zero) for each multicycle
hold exception it adds. If the value is Same as multicycle, the conversion
utility uses a value one less than the corresponding multicycle setup
assignment value for each multicycle hold exception it adds. Refer to
“Hold Multicycle” on page 7–24 for more information on hold multicycle
differences between the Quartus II Classic and Quartus II TimeQuest
Timing Analyzers.

Next, the conversion utility converts the following instance assignments
in Table 7–13. Refer to the indicated page for information about each
assignment. If the tPD and minimum tPD assignment targets also have
input or output delays that apply to them, the tPD and minimum tPD
conversion values may be incorrect. This is described in more detail on
the indicated pages for the appropriate assignments.

Table 7–13. Instance Timing Assignments

Assignment Name QSF Variable More Information

tPD Requirement (1) TPD_REQUIREMENT page 7–50

Minimum tPD Requirement (1) MIN_TPD_REQUIREMENT page 7–51

Setup Relationship SETUP_RELATIONSHIP page 7–33

Hold Relationship HOLD_RELATIONSHIP page 7–34

Note to Table 7–13:
(1) Refer to “tPD and Minimum tPD Requirement Conversion” on page 7–71 for more information about how the

conversion utility converts single-point tPD and minimum tPD assignments.

Altera Corporation 7–61
October 2007 Preliminary

Conversion Utility

The conversion utility converts Quartus II Classic I/O timing
assignments to FPGA-centric SDC constraints. Table 7–14 includes
Quartus II Classic assignments, the equivalent FPGA-centric SDC
constraints, and recommended system-centric SDC constraints.

The conversion utility can convert Quartus II Classic I/O timing
assignments only to the FPGA-centric constraints without additional
information about your design. Making system-centric constraints
requires information about the external circuitry interfacing with the
FPGA such as external clocks, clock latency, board delay, and clocking
exceptions. You cannot convert Quartus II Classic timing assignments to
system-centric constraints without that information. If you use the
conversion utility, you can modify the SDC constraints to change the
FPGA-centric constraints to system-centric constraints as appropriate.

PLL Phase Shift Conversion

The conversion utility does not account for PLL phase shifts when it
converts values of the following FPGA-centric I/O timing assignments:

■ tSU Requirement
■ tH Requirement
■ tCO Requirement
■ Minimum tCO Requirement

If any of your paths go through PLLs with a phase shift, you must correct
the converted values for those paths according to the following formula:

(13)

Table 7–14. Quartus II Classic and Quartus II TimeQuest Equivalent Constraints

Quartus II Classic FPGA-Centric SDC System-Centric SDC More Information

tSU Requirement (1) set_max_delay set_input_delay -max page 7–40

tH Requirement (1) set_min_delay set_input_delay -min page 7–43

tCO Requirement (2) set_max_delay set_output_delay -max page 7–45

Minimum tCO Requirement (2) set_min_delay set_output_delay -min page 7–48

Notes to Table 7–14:
(1) Refer to “tPD and Minimum tPD Requirement Conversion” on page 7–71 for more information about how the

conversion utility converts this type of assignment.
(2) Refer to “tCO Requirement Conversion” on page 7–62 for more information about how the conversion utility

converts this type of assignment.

<correct value> <converted value> <pll output period> <phase shift>×()
360

--–=

7–62 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example 7–18 shows the incorrect conversion result for a tCO assignment
and how to correct it. For the example, assume the PLL output frequency
is 200 MHz (period is 5 ns), the phase shift is 90 degrees, the tCO
Requirement value is 1 ns, and it is made to data[0]. The QSF file
contains the following assignment:

Example 7–18. Assignment
set_instance_assignment -name TCO_REQUIREMENT -to data[0] 1.0

The conversion utility generates the SDC command shown in
Example 7–19.

Example 7–19. SDC Command
set_max_delay -from [get_registers *] -to [get_ports data[0]] 1.0

To correct the value, use the formula and values above, as shown in the
following example:

Then, change the value so the SDC command looks like Example 7–20.

Example 7–20. SDC Command with Correct Values
set_max_delay -from [get_registers *] -to [get_ports data[0]] -0.25

tCO Requirement Conversion

The conversion utility uses a special process to convert tCO Requirement
and Minimum tCO Requirement assignments. In addition to the
set_max_delay or set_min_delay commands, the conversion utility adds
a set_output_delay constraint relative to a virtual clock named N/C (Not
a Clock). It also creates the virtual clock named N/C with a period of
10 ns. Adding the virtual clock allows you to report timing on the output
paths. Without the virtual clock N/C, the clock used for reporting would
be blank. Example 7–21 shows how the conversion utility converts a tCO
Requirement assignment of 5.0 ns to data[0].

Example 7–21. Converting a tCO Requirement Assignment of 5.0 ns to data[0]
set_max_delay -from [get_registers *] -to [get_ports data[0]]
set_output_delay -clock "N/C" 0 [get_ports data[0]]

1.0 5 90×()
360

--------------------– 0.25–=

Altera Corporation 7–63
October 2007 Preliminary

Conversion Utility

Entity-Specific Assignments

Next, the conversion utility converts the entity-specific assignments
listed in Table 7–15 that exist in the Timing Analyzer Settings report
panel. This usually occurs if you have any timing assignments in your
Verilog HDL or VHDL source, which can include MegaCore function
files. These entity-specific assignments cannot be automatically
converted unless your project is compiled and a \db directory exists.

1 You must manually convert all other entity-specific timing
assignments.

Paths between Unrelated Clock Domains

Beginning in version 7.1 of the Quartus II software, the conversion utility
can create exceptions that cut paths between unrelated clock domains,
which matches the default behavior of the Quartus II Classic Timing
Analyzer. When Cut paths between unrelated clock domains is on, the
conversion utility creates clock groups with the set_clock_groups
command and uses the -exclusive option to cut paths between the
clock groups.

Table 7–15. Entity-Specific Timing Assignments

Quartus II Classic QSF Variable More Information

Multicycle MULTICYCLE

page 7–37
Source Multicycle SRC_MULTICYCLE

Multicycle Hold HOLD_MULTICYCLE

Source Multicycle Hold SRC_HOLD_MULTICYCLE

Setup Relationship SETUP_RELATIONSHIP page 7–33

Hold Relationship HOLD_RELATIONSHIP page 7–34

Cut Timing Path CUT page 7–52

7–64 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Unsupported Instance Assignments

Finally, the conversion utility checks for the following unsupported
instance assignments listed in Table 7–16 and warns you if any exist.
Refer to the indicated page for information about each assignment.

1 You can manually convert some of the assignments to SDC
constraints.

Reviewing Conversion Results

You must review the messages that are generated during the conversion
process, and review the SDC file for correctness and completeness.
Warning and critical warning messages identify significant differences
between the Quartus II Classic Timing Analyzer and Quartus II
TimeQuest Timing Analyzer behaviors. In some cases, warning messages
indicate that the conversion utility ignored assignments because it could
not determine the intended functionality of your design. You must add to
or modify the SDC constraints as necessary based on your knowledge of
the design.

The conversion utility creates an SDC file with the same name as your
current revision, <revision>.sdc, and it overwrites any existing
<revision>.sdc file. If you use the conversion utility to create an SDC file,
you should make additions or corrections in a separate SDC file, or a copy
of the SDC file created by the conversion utility. That way, you can re-run
the conversion utility later without overwriting your additions and
changes. If you have constraints in multiple SDC files, refer to“Constraint
File Priority” on page 7–10 to learn how to add constraints to your project.

Warning Messages

The conversion utility may generate any of the following warning
messages. Refer to the information provided for each warning message to
learn what to do in that instance.

Table 7–16. Instance Timing Assignments

Assignment Name QSF Variable More Information

Inverted Clock INVERTED_CLOCK page 7–35

Maximum Clock Arrival Skew MAX_CLOCK_ARRIVAL_SKEW page 7–53

Maximum Data Arrival Skew MAX_DATA_ARRIVAL_SKEW page 7–53

Maximum Delay MAX_DELAY page 7–52

Minimum Delay MIN_DELAY page 7–52

Virtual Clock Reference VIRTUAL_CLOCK_REFERENCE page 7–36

Altera Corporation 7–65
October 2007 Preliminary

Conversion Utility

Ignored QSF Variable <assignment>
The conversion utility ignored the specified assignment. Determine
whether an equivalent constraint is necessary and manually add one if
appropriate. Refer to “Timing Assignment Conversion” on page 7–33 for
information about conversions for all QSF timing assignments.

Global <name> = <value>
The conversion utility ignored the global assignment <name>. Manually
add an equivalent constraint if appropriate. Refer to “Unsupported
Global Assignments” on page 7–56 for information about conversions for
these assignments.

QSF: Expected <name> to be set to <expected value> but it is set to
<actual value>
The behavior of the Quartus II TimeQuest Timing Analyzer is closest to
the Quartus II Classic Timing Analyzer when the value for the specified
assignment is the expected value. Because the actual assignment value is
not the expected value in your project, the Quartus II TimeQuest Timing
Analyzer analysis may be different from the Quartus II Classic Timing
Analyzer analysis. Refer to “Recommended Global Assignments” on
page 7–56 for an explanation about the indicated QSF variable names.

QSF: Found Global Fmax Requirement. Translation will be done using
derive_clocks
Your design includes a global fMAX requirement, and the requirement is
converted to the derive_clocks command. Refer to “Default Required
fMAX Assignment” on page 7–35 for information about how to convert to
an SDC constraint.

TAN Report Database not found. HDL based assignments will not be
migrated
You did not analyze your design with the Quartus II Classic Timing
Analyzer before running the conversion utility. As a result, the
conversion utility did not convert any timing assignments in your HDL
source code to SDC constraints. If you have timing assignments in your
HDL source code, you must find and convert them manually, or analyze
your design with the Quartus II Classic Timing Analyzer and rerun the
conversion utility.

Ignored Entity Assignment (Entity <entity>): <variable> = <value>
-from <from> -to <to>
The conversion utility ignored the specified entity assignment because
the utility cannot automatically convert the assignment. Table 7–15 on
page 7–63 lists the entity-specific assignments the script can convert
automatically.

7–66 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Refer to “Timing Assignment Conversion” on page 7–33 for information
about how to convert the entity assignment manually.

Ignoring OFFSET_FROM_BASE_CLOCK assignment for clock
<clock>
In some cases, this assignment is used to work around a limitation in how
the Quartus II Classic Timing Analyzer handles some forms of clock
inversion. The conversion script ignores the assignment because it cannot
determine whether the assignment is used as a workaround. Review your
clock setting and add the assignment in your SDC file if appropriate.
Refer to “Clock Offset” on page 7–14 for more information about
converting clock offset.

Clock <clock> has no FMAX_REQUIREMENT - No clock was
generated
The conversion utility did not convert the clock named <clock> because it
has no fMAX requirement. You should add a clock constraint with an
appropriate period to your SDC file.

No Clock Settings defined in QSF file
If your QSF file has no clock settings, ignore this message. You must add
clock constraints in your SDC file manually.

Clocks

Ensure that the conversion utility converted all clock assignments
correctly. Run report_clocks, or double-click Report Clocks in the Tasks
pane in the Quartus II TimeQuest Timing Analyzer GUI. Make sure that
the right number of clocks is reported. If any clock constraints are
missing, you must add them manually with the appropriate SDC
commands (create_clock or create_generated_clock). Confirm that each
option for each clock is correct.

The Quartus II TimeQuest Timing Analyzer can create more clocks, such
as:

■ derive_clocks selecting ripple clocks
■ derive_pll_clocks, adding

● Extra clocks for PLL switchover
● Extra clocks for LVDS pulse-generated clocks (~load_reg)

Clock Transfers

After you confirm that all clock assignments are correct, run
report_clock_transfers, or double-click Report Clock Transfers in the
Tasks pane in the Quartus II TimeQuest Timing Analyzer GUI. The

Altera Corporation 7–67
October 2007 Preliminary

Conversion Utility

command generates a summary table with the number of paths between
each clock domain. If the number of cross-clock domain paths seems
high, remember that all clock domains are related in the Quartus II
TimeQuest Timing Analyzer. You must cut unrelated clock domains.
Refer to “Related and Unrelated Clocks” on page 7–13 for information
about how to cut unrelated clock domains.

Path Details

If you have unexpected differences between the Quartus II Classic and
Quartus II TimeQuest Timing Analyzers on some paths, follow these
steps to identify the cause of the difference.

1. List the path in the Quartus II Classic Timing Analyzer.

2. Report timing on the path in the Quartus II TimeQuest Timing
Analyzer.

3. Compare slack values.

4. Compare source and destination clocks.

5. Compare the launch/latch times in the Quartus II TimeQuest
Timing Analyzer to the setup/hold relationship in the Quartus II
Classic Timing Analyzer. The times are absolute in the Quartus II
TimeQuest Timing Analyzer and relative in the Quartus II Classic
Timing Analyzer.

6. Compare clock latency values.

Unconstrained Paths

Next, run report_ucp, or double-click Report Unconstrained Paths in
the Tasks pane in the Quartus II TimeQuest Timing Analyzer GUI. This
command generates a series of reports that detail any unconstrained
paths in your design. If your design was completely constrained in the
Quartus II Classic Timing Analyzer but there are unconstrained paths in
the Quartus II TimeQuest Timing Analyzer, some assignments may not
have been converted properly. Also, some of the assignments could be
ambiguous. The Quartus II TimeQuest Timing Analyzer analyzes more
paths than the Quartus II Classic Timing Analyzer does, so any
unconstrained paths might be paths you could not constrain in the
Quartus II Classic Timing Analyzer.

7–68 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Bus Names

If your design includes Quartus II Classic Timing Analyzer timing
assignments to buses, and the bus names do not include square brackets
enclosing an asterisk, such as: address[*], you should review the SDC
constraints to ensure the conversion is correct. Refer to “Bus Name
Format” on page 7–10 for more information.

Other

Review the notes listed in “Conversion Utility” on page 7–71.

Re-Running the Conversion Utility

You can force the conversion utility to run even if it can find an SDC file
according to the priority described in “Constraint File Priority” on
page 7–10. Any method described in “Conversion Utility” on page 7–3
forces the conversion utility to run even if it can find an SDC file.

Notes This section describes notes for the Quartus II TimeQuest Timing
Analyzer.

Output Pin Load Assignments

The Quartus II TimeQuest Timing Analyzer takes Output Pin Load
values into account when it analyzes your design. If you change Output
Pin Load assignments and do not recompile before you analyze timing,
you must use the -force_dat option when you create the timing netlist.
Type the following command at the Tcl console of the Quartus II
TimeQuest Timing Analyzer:

create_timing_netlist -force_dat r
If you change Output Pin Load assignments and recompile before you
analyze timing, do not use the -force_dat option when you create the
timing netlist. You can create the timing netlist with the
create_timing_netlist command, or with the Create Timing Netlist task
in the Tasks pane.

Also note that the SDC set_output_load command is not supported,
so you must make all output load assignments in the Quartus II Settings
File (.qsf).

Altera Corporation 7–69
October 2007 Preliminary

Notes

Constraint Target Types

In version 6.0 of the Quartus II software, the Quartus II TimeQuest
Timing Analyzer did not support constraints between clocks and
non-clocks. Beginning with version 6.1, the Quartus II TimeQuest Timing
Analyzer supports mixed exception types; you can apply an exception of
any clock/node combination.

DDR Constraints with the DDR Timing Wizard

The DDR Timing Wizard (DTW) creates an SDC file that contains
constraints for a DDR interface. You can use that SDC file with the
Quartus II TimeQuest Timing Analyzer to analyze only the DDR interface
part of a design.

You should use the SDC file created by DTW for constraining a DDR
interface in the Quartus II TimeQuest Timing Analyzer. Additionally,
your QSF should not contain timing assignments for the DDR interface if
you plan to use the conversion utility to create an SDC file. You should
run the conversion utility before you use DTW, and you should choose
not to apply assignments to the QSF.

However, if you used DTW and chose to apply assignments to a QSF,
before you used the conversion utility, you should remove the
DTW-generated QSF timing assignments and re-run the conversion
utility. The conversion utility creates some incompatible SDC constraints
from the DTW QSF assignments.

HardCopy Stratix Device Handoff

If you target the HardCopy device family, you should not use the
Quartus II TimeQuest Timing Analyzer. The Quartus II TimeQuest
Timing Analyzer is not supported for the HardCopy Stratix design
process. The Quartus II TimeQuest Timing Analyzer supports
HardCopy II series devices.

Unsupported SDC Features

Some SDC commands and features are not supported by the current
version of the Quartus II TimeQuest Timing Analyzer. The following
commands are included:

■ The get_designs command, because the Quartus II software
supports a single design, so this command is not necessary

■ True latch analysis with time-borrowing feature; it can, however,
convert latches to negative-edge-triggered registers

■ The case analysis feature

7–70 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Loads, clock transitions, input transitions, and other features

Constraint Passing

The Quartus II software can read constraints generated by other EDA
software, and write constraints to be read by other EDA software.

Other synthesis software can generate constraints that target the QSF file.
If you change timing constraints in synthesis software after creating an
SDC file for the Quartus II TimeQuest Timing Analyzer, you must update
the SDC constraints. You can use the conversion utility, or update the SDC
file manually.

Optimization

Gate-level re-timing is not supported if you turn on the Quartus II
TimeQuest Timing Analyzer as your default timing analyzer.

If you use physical synthesis with the Quartus II TimeQuest Timing
Analyzer, the design may have lower performance.

Clock Network Delay Reporting

In the Quartus II software version 6.0, the Quartus II TimeQuest Timing
Analyzer reports delay on the clock network as a single number, rather
than node-to-node segments, as the Quartus II Classic Timing Analyzer
does. Beginning with version 6.0 SP1, the TimeQuest Timing Analyzer
reports delay on the clock network by node-to-node segments.

PowerPlay Power Analysis

You must perform the following steps to generate an Early Power
Estimator output file when you use the Quartus II TimeQuest Timing
Analyzer and your design targets one of the following device families:

■ Cyclone
■ Stratix
■ HardCopy Stratix

To generate an Early Power Estimator output file for designs targeting
those families, you must perform the following steps.

1. Turn off the Quartus II TimeQuest Timing Analyzer. Refer to “Set
the Default Timing Analyzer” on page 7–4 to learn how to turn off
the Quartus II TimeQuest Timing Analyzer.

Altera Corporation 7–71
October 2007 Preliminary

Notes

2. Manually convert your Quartus II TimeQuest Timing Analyzer
timing constraints in the SDC file to Quartus II Classic Timing
Analyzer timing assignments. You can use the Assignment Editor to
enter your Quartus II Classic Timing Analyzer timing assignments
in your QSF file.

3. Perform Quartus II Classic timing analysis.

4. Generate an Early Power Estimator output file.

5. Turn on the Quartus II TimeQuest Timing Analyzer.

Project Management

If you use the project_open Tcl command in the Quartus II TimeQuest
Timing Analyzer to open a project compiled with an earlier version of the
Quartus II software, the Quartus II TimeQuest Timing Analyzer
overwrites the compilation results (\db folder) without warning.
Opening a project any other way results in a warning, and you can choose
not to open the project.

Conversion Utility

This section describes the notes for the QSF assignment to SDC constraint
conversion utility.

tPD and Minimum tPD Requirement Conversion

The conversion utility treats the targets of single-point tPD and minimum
tPD assignments as device outputs. It does not correctly convert targets of
single-point tPD and minimum tPD assignments that are device inputs.
The following QSF assignment applies to an a device input named d_in:

set_intance_assignment -name TPD_REQUIREMENT -to d_in "3 ns"

The conversion utility creates the following SDC command, regardless of
whether d_in is a device input or device output:

set_max_delay "3 ns" -from [get_ports *] -to [get_ports d_in]

You must update any incorrect SDC constraints manually.

7–72 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Referenced
Documents

This chapter references the following documents:

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

■ SDC and TimeQuest Tcl API Reference Manual

Document
Revision History

Table 7–17 shows the revision history for this chapter.

Table 7–17. Document Revision History (Part 1 of 2)

Date and
Version Changes Made Summary of Changes

October 2007
v7.2.0

No changes were made to the content. —

May 2007
v.7.1.0

Updated chapter for Quartus II software version 7.1, including:
● Minor changes to the “Timing Assignment Conversion”

section, including:
● Updated data on Table 7–6 on page 7–43
● Updated data on Table 7–7 on page 7–45
● Updated data on Table 7–8 on page 7–47
● Updated data on Table 7–9 on page 7–49
● Updated data on Table 7–12 on page 7–59
● Added multicycle_hold information on pages 7–60 and

7–60
● Added new section “Paths between Unrelated Clock

Domains” on page 7–63
● Added new section “Ignored Entity Assignment (Entity

<entity>): <variable> = <value> -from <from> -to <to>” on
page 7–65.

Changes made to this
chapter reflect the software
changes made in version
7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No
other changes made to chapter.

—

November 2006
v6.1.0

Minor changes made to reflect the Quartus II software version
6.1.0, including:
● Changed wording on pages 7–4 and 7–5, regarding setting

the default timing analyzer.
● Changed Figure 7–3 on page 7–10 to reflect that the

TimeQuest Timing Analyzer does not create nor convert any
constraints.

● Changed explanation of Figure 7–3 to reflect that
TimeQuest does not create nor convert any constraints.

● Changed wording in “Constraint Target Types” to reflect that
the TimeQuest Timing Analyzer now supports mixed
exception types.

Changes made to this
chapter reflect the software
changes made in version
6.1, GUI changes that were
made to select the default
timing analyzer, and
support for mixed exception
types.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/manual/mnl-sdctmq.pdf

Altera Corporation 7–73
October 2007 Preliminary

Document Revision History

July 2006
v6.0.1

Updated for the Quartus II software version 6.0.1:
● Added section on Clock Objects on page 7-24.
● Added examples of Netlist Names on page 7-29.
● Replaced figure 7-23 and example 7-9 on page 7-36.
● Added note 4 to table 7-6 on page 7-43.
● Added “Display Entity Name” to table 7-11 on page 7-57.
● Added information to Clock Conversion on pages 7-58 and

7-59.
● Added note 3 to table 7-12 on page 7-60.
● Added information to Clocks section on page 7-67.
● Added Path Details and Unconstrained Paths sections on

page 7-68.
● Added information to Clock Network Delay Reporting on

page 7-72.
● Added hand paragraph in Conversion Utility section on

page 7-73.
● Changed “constraint” to “exception” in many places.

—

May 2006
v6.0.0

Initial release. —

Table 7–17. Document Revision History (Part 2 of 2)

Date and
Version Changes Made Summary of Changes

7–74 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 8–1
October 2007

8. Quartus II Classic Timing
Analyzer

Introduction Static timing analysis is a method for analyzing, debugging, and
validating the timing performance of a design. The classic timing
analyzer analyzes the delay of every design path and analyzes all timing
requirements to ensure correct circuit operation. Static timing analysis,
used in conjunction with functional simulation, allows you to verify
overall design operation.

f For information about switching to the Quartus II TimeQuest Timing
Analyzer, refer to the Switching to the Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

As part of the compilation flow, the Quartus® II software automatically
performs a static timing analysis so that you do not need to launch a
separate timing analysis tool. The Quartus II Classic Timing Analyzer
checks every path in the design against your timing constraints for timing
violations and reports results in the Timing Analysis reports, giving you
immediate access to the data.

This chapter assumes you have some Tcl expertise; Tcl commands are
used throughout this chapter to describe alternative methods for making
timing analysis assignments. Refer to “Timing Analysis Using the
Quartus II GUI” on page 8–43 for GUI-equivalent timing constraints.

This chapter details the following aspects of timing analysis:

■ “Timing Analysis Tool Setup” on page 8–2
■ “Static Timing Analysis Overview” on page 8–2
■ “Clock Settings” on page 8–8
■ “Clock Types” on page 8–9
■ “Clock Uncertainty” on page 8–11
■ “Clock Latency” on page 8–12
■ “Timing Exceptions” on page 8–15
■ “I/O Analysis” on page 8–26
■ “Asynchronous Paths” on page 8–30
■ “Skew Management” on page 8–34
■ “Generating Timing Analysis Reports with report_timing” on

page 8–36
■ “Other Timing Analyzer Features” on page 8–38
■ “Timing Analysis Using the Quartus II GUI” on page 8–43
■ “Scripting Support” on page 8–52
■ “MAX+PLUS II Timing Analysis Methodology” on page 8–58

QII53004-7.2.0

8–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Timing Analysis
Tool Setup

The Quartus II software version 6.0 and above supports two static timing
analysis tools namely, the classic timing analyzer and the Quartus II
TimeQuest Timing Analyzer. Use the Timing Analysis option under the
Settings menu to set the Timing Analyzer that is used in the compilation
process.

1 Arria GX is not supported by the Quartus II Classic Timing
Analyzer. To perform a static timing analysis for Arria GX, the
Quartus II TimeQuest Timing Analyzer must be enabled.

The following steps set the classic timing analyzer as the default timing
analysis tool in the Quartus II software.

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, click the icon next to Timing Analysis
Settings to expand the folder.

3. Select the Use Classic Timing Analyzer during compilation radio
button.

f Refer to the Quartus II TimeQuest Timing Analyzer chapter of the
Quartus II Handbook for more information about the Quartus II
TimeQuest Timing Analyzer.

Static Timing
Analysis
Overview

This section provides information about static timing analysis concepts
used throughout this chapter and used by the Quartus II Classic Timing
Analyzer. A complete understanding of the concepts presented in this
section allows you to take advantage of the powerful static timing
analysis features available in the Quartus II software.

Various paths exist within any given design which connect design
elements together, including the path from an output of a register to the
input of another register. Timing paths play a significant role during a
static timing analysis. Understanding the types of timing paths is
important for timing closure and optimization. Some of the commonly
analyzed paths are described in this section and are shown in Figure 8–1.

■ Clock paths—Clock paths are the paths from device pins or
internally generated clocks (nodes designated as a clock via a clock
setting) to the clock ports of sequential elements such as registers.

■ Data paths—Data paths are the paths from the data output port of a
sequential element to the data input port of another sequential
element.

Altera Corporation 8–3
October 2007

Static Timing Analysis Overview

■ Asynchronous paths—Asynchronous paths are paths from a node
to the asynchronous set or clear port of a sequential element.

Figure 8–1. Path Types

Once the path types are identified, the classic timing analyzer computes
data and clock arrival times for all valid register-to-register paths. Data
arrival time is the delay from the source clock to the destination register.
TheQuartus II Classic Timing Analyzer calculates this delay by adding
the clock path delay to the source register, the micro clock-to-out (μtCO) of
the source register, and the data path delay from the source register to the
destination register. Clock arrival time is the delay from the destination
clock node to the destination register. Figure 8–2 shows a data arrival
path and a clock arrival path.

Figure 8–2. Data Arrival and Clock Arrival

In addition to identifying various paths within a design, the Quartus II
Classic Timing Analyzer analyzes clock characteristics to compute the
worst-case requirement between any two registers in a single register-to-
register path. You must use timing constraints to specify the
characteristics of all clock signals in the design before this analysis occurs.

The active clock edge that sends data out of a sequential element, acting
as a source for the data transfer, is the launch edge. The active clock edge
that captures data at the data port of a sequential element, acting as a
destination for the data transfer, is the latch edge.

CLRN

D Q

Clock Path Data Path

Async Path

clk

rst

CLRN

D Q

D QD Q

Data Arrival

Clock Arrival

8–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–3 shows a single-cycle system that uses consecutive clock edges
to transmit and capture data, a register-to-register path, and the
corresponding launch and latch edges timing diagram. In this example,
the launch edge sends the data out of register reg1 at 0 ns, and register
reg2 latch edge captures the data at 5 ns.

Figure 8–3. Launch Edge and Latch Edge

By analyzing specific paths relative to the launch and latch edges, the
Quartus II Classic Timing Analyzer performs clock setup and clock hold
checks, validating them against your timing assignments.

Clock Analysis

A comprehensive static timing analysis includes analysis of
register-to-register, I/O, and asynchronous reset paths. Static Timing
Analysis tools use data required times, data arrival times, and clock
arrival times to verify circuit performance and detect possible timing
violations. The Quartus II Classic Timing Analyzer determines the timing
relationships that must be met for the design to correctly function, and
checks arrival times against required times to verify timing.

Clock Setup Check

To determine if a design meets performance, the Quartus II Classic
Timing Analyzer calculates clock timing, timing requirements, and
timing exceptions to perform a clock setup check at each destination
register based on the source and destination clocks and timing
constraints, or exceptions that are applicable to those paths. A clock setup
check ensures that data launched by a source register is latched correctly
by the destination register. To perform a clock setup check, the Quartus II
Classic Timing Analyzer determines the clock arrival time and data
arrival time at the destination register by using the longest path for the

D QD Q

clk

reg1 reg2

0 ns 5 ns 15 ns10 ns

Latch Edge at Destination Register reg2
Launch Edge at Source Register reg1

clk

Altera Corporation 8–5
October 2007

Static Timing Analysis Overview

data arrival time and the shortest path for the clock arrival time. The
Quartus II Classic Timing Analyzer then checks that the difference is
greater than or equal to the micro setup (tSU) of the destination register as
shown in Equation 1.

(1)

1 By default, the Quartus II Classic Timing Analyzer assumes the
launched and latched edges happen on consecutive active clock
edges.

The results of clock setup checks are reported in terms of slack. Slack is
the margin by which a timing requirement is met or not met. Positive
slack indicates the margin by which a requirement is met, and negative
slack indicates the margin by which a requirement is not met. The
Quartus II Classic Timing Analyzer determines clock setup slack using
Equations 2 through 5.

(2)

(3)

(4)

(5) +

The Quartus II Classic Timing Analyzer reports clock setup slack using
Equations 6 through 9 (which are equivalent to Equations 2 through 5).

(6) –

(7)

(8)

(9) –

Both sets of equations can be used to determine the slack value of any
path.

Clock Arrival Time Data Arrival Time– micro tsu≥

Clock Setup Slack Data Required Time Data Arrival Time–=

Data Required Clock Arrival Time micro tsu Setup Uncertainty––=

Clock Arrival Time Latch Edge Shortest Clock Path to Destination Register+=

Data Arrival Time Launch Edge Longest Clock Path to Source Register+=
micro tco Longest Data Delay+

Clock Setup Slack Largest Register-to-Register Requirement=
Longest Register-to-Register Delay

Largest Register-to-Register Requirement Setup Relationship between Source and Destination
Largest Clock Skew micro tco of Source Register micro tsu of Destination Register––+

=

Setup Relationship between Source & Destination Register Latch Edge Launch Edge–=
Setup Uncertainty

Largest Clock Skew Shortest Clock Path to Destination Register=
Longest Clock Path to Source Register

8–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Clock Hold Check

To prevent hold violations, the Quartus II Classic Timing Analyzer
calculates clock timing, timing requirements, and timing exceptions to
perform a clock hold check at each destination register. A clock hold
check ensures data launched from the source register is not captured by
an active clock edge earlier than the setup latch edge, and that the
destination register does not capture data launched from the next active
launch edge. To perform a clock hold check, the Quartus II Classic Timing
Analyzer determines the clock arrival time and data arrival time at the
destination register using the shortest path for the data arrival time and
the longest path for the clock arrival time. The Quartus II Classic Timing
Analyzer checks that the difference is greater than or equal to the micro
hold time (tH) of the destination register, as shown in Equation 10.

(10)

The Quartus II Classic Timing Analyzer determines clock hold slack
using Equations 11 through 14.

(11)

(12)

(13)

(14)

The Quartus II Classic Timing Analyzer reports clock hold slack using
Equations 15 through 18.

(15) –

(16)

(17)

(18) –

These equations can be used to determine the slack value of any path.

Data Arrival Time Clock Arrival Time tH≥–

Clock Hold Slack Data Arrival Time Data Required Time–=

Data Required Time Clock Arrival Time micro tH Hold Uncertainty++=

Clock Arrival Time Latch Edge Longest Clock Path to Destination Register+=

Data Arrival Time Launch Edge Shortest Clock Path to Source Register micro tco
Shortest Data Delay
+ + +=

Clock Hold Slack Shortest Register-to-Register Delay=
Smallest Register-to-Register Requirement

Smallest Register-to-Register Requirement Hold Relationship between Source & Destination
Smallest Clock Skew micro tco of Source Register micro tH of Destination Register+–

+=

Hold Relationship between Source and Destination Register Latch Launch Hold Uncertainty+–=

Smallest Clock Skew Longest Clock Path from Clock to Destination Register=
Shortest Clock Path from Clock to Source Register

Altera Corporation 8–7
October 2007

Static Timing Analysis Overview

Multicycle Paths

Multicycle paths are data paths that require more than one clock cycle to
latch data at the destination register. For example, a register may be
required to capture data on every second or third rising clock edge.
Figure 8–4 shows an example of a multicycle path between a multiplier’s
input registers and output register where the destination latches data on
every other clock edge.

Refer to “Multicycle” on page 8–15 for more information about
multicycle exceptions.

Figure 8–4. Example Diagram of a Multicycle Path

Figure 8–5 shows the default clock setup analysis launch and latch edges
where multicycle assignment is equal to 1.

Figure 8–5. Default Clock Setup Analysis

D Q

ENA

D Q

ENA

D Q

D Q

ENA

2 cycles

src_clk

dst_clk

8–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–6 shows an analysis similar to Figure 8–5, but with a multicycle
of 2.

Figure 8–6. Multicycle = 2 Clock Setup Analysis

Clock Settings You can use individual and default clock settings to define the clocks in
your design. You can base these clock settings on other clock settings
already defined in your design.

1 To ensure the Quartus II Fitter achieves the desired performance
requirements and the Quartus II Classic Timing Analyzer
performs a thorough static timing analysis, you must specify all
timing assignments prior to compiling the design.

Individual Clock Settings

Individual clock settings allow you to specify clock properties including
performance requirements, offsets, duty cycles, and other properties for
individual clock signals in your design.

You can define individual clock settings using the create_base_clock
Tcl command. The following example defines an individual clock setting
named sys_clk with a requirement of 100 MHz (10 ns), and assigns it to
clock node clk.

create_base_clock -fmax 100MHz -target clk sys_clk

Default Clock Settings

You can assign a project-wide clock requirement to constrain all detected
clocks in a design that do not have individual clock settings.

The set_global_assignment -name FMAX_REQUIREMENT Tcl
command specifies a global default requirement assignment. The
following example defines a 100 MHz default clock requirement:

set_global_assignment -name FMAX_REQUIREMENT "100.0 MHz"

src_clk

dst_clk

Altera Corporation 8–9
October 2007

Clock Types

1 For best placement and routing results, apply individual clock
settings to all clocks in your design. All clocks adopting the
default FMAX are by default unrelated.

Clock Types This section describes the types of clocks recognized by the Timing
Analyzer:

■ Base clocks
■ Derived clocks
■ Undefined clocks
■ PLL clocks

Base Clocks

A base clock is independent of other clocks in a design. For example, a
base clock is typically a clock signal driven directly by a device pin. A
base clock is defined by individual clock settings, or automatically
detected using the default clock setting.

You can use the create_base_clock Tcl command to define a base
clock setting and assign the clock setting to a clock node. The following
Tcl command creates a clock setting called sys_clk with a requirement
of 5 ns (200 MHz) and applies the clock setting to clock node main_clk:

create_base_clock -fmax 5ns –target main_clk sys_clk

Derived Clocks

A derived clock is based on a previously defined base clock. For a derived
clock, you can specify the phase shift, offset, multiplication and division
factors, and duty cycle relative to the base clock.

You can use the create_relative_clock Tcl command to define and
assign a derived clock setting. The following example creates a derived
clock setting named system_clockx2 that is twice as fast as the base
clock system_clock applied to clock node clkx2.

create_relative_clock -base_clock system_clock -duty_cycle 50 \
-multiply 2 -target clkx2 system_clockx2

Undefined Clocks

The Quartus II Classic Timing Analyzer detects undeclared clocks in your
design and displays a warning similar to the following:

Warning: Found pins functioning as undefined clocks and/or memory
enables

8–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

 Info: Assuming node "clk_src" is an undefined clock
 Info: Assuming node "clk_dst" is an undefined clock

The Quartus II Classic Timing Analyzer reports actual data delay for
undefined clocks, but because no clock requirements exist for undefined
clocks, the Quartus II Classic Timing Analyzer does not report slack for
any register-to-register paths driven by an undefined clock.

PLL Clocks

Phase-locked loops (PLLs) are used for clock synthesis in Altera® devices.
This device feature is configured and connected to your design using the
altpll megafunction included with the Quartus II software. Using the
MegaWizard® Plug-In Manager, you can customize the input clock
frequency, multiplication factors, division factors, and other parameters
of the altpll megafunction.

f For more information about using the PLL feature in your design, refer
to the altpll Megafunction User Guide or the handbook for the targeted
device family.

For PLLs, the Quartus II Classic Timing Analyzer automatically creates
derived clock settings based on the parameterization of the PLL and
automatically creates a base clock setting for the input clock pin. For
example, if the input clock frequency to a PLL is 100 MHz and the
multiplication and division ratio is 5:2, the clock period of the PLL clock
is set to 4.0 ns and is automatically calculated by the Quartus II Classic
Timing Analyzer.

For the Stratix® and Cyclone® device families, you can override the PLL
input clock frequency by applying a clock setting to the input clock pin of
the PLL. For example, if the PLL input clock period is set to 10 ns
(100 MHz) with a multiplication and division ratio of 5:2, but a clock
setting of 20 ns (50 MHz) is applied to the input clock pin of the PLL, the
setup relationship is 8.0 ns (125 MHz) and not 4.0 ns (250 MHz). The
Quartus II Classic Timing Analyzer issues a message similar to the
following:

Warning: ClockLock PLL
"mypll_test:inst|altpll:altpll_component|_clk1" input frequency
requirement of 200.0 MHz overrides default required fmax of 100.0
MHz -- Slack information will be reported

1 You cannot override the PLL output clock frequency with a
clock setting in the Quartus II Classic Timing Analyzer.

Altera Corporation 8–11
October 2007

Clock Uncertainty

Clock
Uncertainty

You can use Clock Setup Uncertainty and Clock Hold Uncertainty
assignments to model jitter, skew, or add a guard band associated with
clock signals.

When a clock uncertainty assignment exists for a clock signal, the Timing
Analyzer performs the most conservative setup and hold checks. For
clock setup check, the setup uncertainty is subtracted from the data
required time. Figure 8–7 shows an example of clock sources with a clock
setup uncertainty applied.

Figure 8–7. Clock Setup Uncertainty

You can create clock uncertainty assignments using the Tcl command
set_clock_uncertainty. The set_clock_uncertainty
assignment used with the switch –setup specifies a clock setup
uncertainty assignment. The following example creates a Clock Setup
Uncertainty assignment with a value of 2 ns applied to clock signal clk:

set_clock_uncertainty -to clk -setup 2ns

For the clock hold check, the hold uncertainty is added to the data
required time. Figure 8–8 shows an example of clock setup check with a
clock setup uncertainty and clock hold uncertainty applied.

Clock Setup Check without Uncertainty
Clock Setup Check with Uncertainty

0 ns 5 ns 15 ns10 ns

Source Clock

Destination Clock

8–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–8. Clock Hold Uncertainty

You can use the set_clock_uncertainty Tcl command with the
option –hold to specify a Clock Hold Uncertainty assignment. The
following example creates a Clock Hold Uncertainty assignment with a
value of 2 ns for clock signal clk.

set_clock_uncertainty -to clk -hold 2ns

You can also apply the clock uncertainty assignments between two clock
sources. The following example creates a Clock Setup Uncertainty
assignment for clock setup checks where clk1 is the source clock and
clk2 is the destination clock:

set_clock_uncertainty -from clk1 -to clk2 -setup 2ns

Clock Latency You can use clock latency assignments to model delays from the clock
source. For example, you can use clock latency to model an external delay
from an ideal clock source, such as an oscillator, to the clock pin or port
of the device.

The Early Clock Latency assignment allows you to specify the shortest or
earliest delay of the clock source. Conversely, the Late Clock Latency
assignment allows you to specify the longest or latest delay of the clock
source.

During setup analysis, the Quartus II Classic Timing Analyzer adds the
Late Clock Latency assignment value to the source clock path delay and
adds the Early Clock Latency assignment value to the destination clock
path delay when determining clock skew for the path. During clock hold
analysis, the Quartus II Classic Timing Analyzer adds the Early Clock
Latency assignment value to the source clock path delay and adds the
Late Clock Latency assignment value to the destination clock path delay
when determining clock skew for the path.

Clock Setup Check without Uncertainty
Clock Setup Check with Uncertainty

0 ns 5 ns 15 ns10 ns

Source Clock

Destination Clock

Altera Corporation 8–13
October 2007

Clock Latency

The Early Clock Latency and Late Clock Latency assignments do not
change the latch and launch edges defined by the clock setting and
therefore does not change the setup or hold relationships between source
and destination clocks. The clock latency assignments add only delay to
the clock network and therefore only affects clock skew.

Figure 8–9 shows the clock edges used to calculate clock skew for a setup
check when the Early Clock Latency and Late Clock Latency
assignments are used.

Figure 8–9. Clock Setup Check Clock Skew

Figure 8–10 shows the clock edges used to calculate clock skew for a hold
check when the Early Clock Latency and Late Clock Latency
assignments are used.

Figure 8–10. Clock Hold Check Clock Skew

Source Clock

Destination Clock

Original Clock
Early Clock Latency
Late Clock Latency

Clock Skew Edges Without Latency
Clock Skew Edges With Latency

Source Clock

Destination Clock

Original Clock
Early Clock Latency
Late Clock Latency

Clock Skew Edges Without Latency
Clock Skew Edges With Latency

8–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

1 The Quartus II Classic Timing Analyzer ignores clock latency if
the clock signal at the source and destination registers are the
same.

You can use the set_clock_latency Tcl command with the switches
-early or -late to specify an Early Clock Latency assignment or Late
Clock Latency assignment, respectively. Example 8–1 specifies that the
clock signal at clk2 arrives as early as 1.8 ns and as late as 2.0 ns.

Example 8–1. Specifying Early or Late Clock Latency at clk2
set_clock_latency -early -to clk2 1.8ns
set_clock_latency -late -to clk2 2ns

1 The early clock latency default value is the same as the late clock
latency delay, and the late clock latency default value is the same
as the early clock latency delay, if only one is specified.

The Enable Clock Latency option must be set to ON for the Quartus II
Classic Timing Analyzer to analyze clock latency. When this option is set
to ON, the Quartus II Classic Timing Analyzer reports clock latency as
part of the clock skew calculation for either the source or destination clock
path depending upon the analysis performed. To set the Enable Clock
Latency option to ON, you can use the following Tcl command:

set_global_assignment -name ENABLE_CLOCK_LATENCY ON

When the Enable Clock Latency option is enabled, the Quartus II Classic
Timing Analyzer automatically calculates latencies for derived clocks
instead of automatically calculating offsets; for example, PLL
compensation delays. These clock path delays are accounted for as clock
skew instead of part of the setup or hold relationship as done with offsets.

f For more information about clock latency, refer to AN 411: Understanding
PLL timing for Stratix II Devices.

Altera Corporation 8–15
October 2007

Timing Exceptions

Timing
Exceptions

Timing exceptions allow you to modify the default behavior of the
Quartus II Classic Timing Analyzer. This section describes the following
timing exceptions:

■ Multicycle
■ Setup relationship and hold relationship
■ Maximum delay and minimum delay
■ False paths

1 Not all timing exceptions presented in this chapter are
applicable to the HardCopy® II devices. If you are designing for
the HardCopy II device family, refer to the Timing Constraint for
HardCopy II chapter in the HardCopy II Handbook.

Multicycle

By default, the Quartus II Classic Timing Analyzer performs a
single-cycle analysis for all valid register-to-register paths in the design.
Multicycle assignments specify the number of clock periods before a
source register launches the data or a destination register latches the data.
Multicycle assignments adjust the latch or launch edges, which relaxes
the required clock setup check or clock hold check between the source
and destination register pairs. You can specify multicycles separately for
setup and hold, and multicycles can be based on the source clock or
destination clock. Apply Multicycle exception to time groups, clock
nodes, or common clock enables.

Destination Multicycle Setup Exception

A destination multicycle setup, referred to as a Multicycle exception,
specifies the minimum number of clock cycles required before a register
should latch a value. A Multicycle exception changes the latch edge by
relaxing the required setup relationship. Figure 8–11 shows a timing
diagram for a multicycle path that exists in a design with related clocks,
and with the latch edge label for a clock setup check.

1 By default, the Multicycle exception value is 1.

8–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–11. Multicycle Setup

You can apply Multicycle exception between any two registers or
between any two clock domains. Use the Tcl command
set_multicycle_assingment, and the switch –setup and –end. For
example, to apply a Multicycle exception of 2 between all registers
clocked by source clock clk_src, and all registers clocked by destination
clock clk_dst, enter the following Tcl command:

set_multicycle_assignment –setup –end –from clk_src –to clk_dst 2

To apply a Multicycle exception of 2 between the source register reg1
and the destination register reg2, enter the following Tcl command:

set_multicycle_assignment –setup –end –from reg1 –to reg2 2

Destination Multicycle Hold Exception

A destination multicycle hold, referred to as a Multicycle Hold
exception, modifies the latch edge used for a clock hold check for the
register-to-register path based on the destination clock. A Multicycle
Hold exception changes the latch edge by relaxing the required hold
relationship. Figure 8–12 shows a timing diagram labeling the latching
edge for a clock setup check.

1 If no Multicycle Hold value is specified, the Multicycle Hold
value defaults to the value of the multicycle exception.

-20 ns -10 ns 20 ns10 ns0 ns 30 ns

Source Clock

Destination Clock

Default Clock Setup Check Latch Edge Multicycle = 2

Altera Corporation 8–17
October 2007

Timing Exceptions

Figure 8–12. Multicycle Hold

You can create Multicycle Hold exceptions with the Tcl command
set_multicycle_assingment and the switch –hold and –end. The
following example specifies a Multicycle Hold exception of 3 from
register reg1 to register reg2:

set_multicycle_assignment –hold –end –from reg1 –to reg2 3

By default, the hold multicycle is set to equal that of the setup multicycle
value along the same path. For example, if a setup multicycle of 2 has
been applied to a register-to-register path without a separate hold
multicycle, the hold multicycle value would be set to 2. The default hold
multicycle value can also be changed to a value of 1. This forces all paths
with a setup multicycle assignment to have a default hold multicycle of 1.
To change the default hold multicycle value, in the Settings dialog box,
click the More Timing Settings option.

If your design requires a hold multicycle value not equal to the setup
multicycle or 1, you must explicitly apply a hold multicycle assignment
to the path.

Source Multicycle Setup Exception

A source multicycle setup, referred to as Source Multicycle Setup
exception, is used to extend the required delay by adjusting the source
clock’s launch edge rather than the destination clock’s latch edge; for
example, multicycle setup. Source Multicycle exceptions are useful
when the source and destination registers are clocked by related clocks at
different frequencies. Figure 8–13 shows an example of a Source
Multicycle exception with the launch edge labeled for a clock setup
check.

-20 ns -10 ns 20 ns10 ns0 ns 30 ns

Source Clock

Destination Clock

Multicycle Hold = 2 Default Clock Hold
Check Latch Edge

8–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–13. Source Multicycle

You can create Source Multicycle Setup exceptions with the Tcl
command set_multicycle_assignment and the switches –setup
and –start. The following example specifies a Source Multicycle
exception of 3 from register reg1 to register reg2:

set_multicycle_assignment –setup –start –from reg1 –to reg2 3

By default, the hold multicycle is set to equal that of the setup multicycle
value along the same path. For example, if a setup multicycle of 2 has
been applied to a register-to-register path without a separate hold
multicycle, the hold multicycle value would be set to 2. The default hold
multicycle value can also be changed to a value of 1. This forces all paths
with a setup multicycle assignment to have a default hold multicycle of 1.
To change the default hold multicycle value, in the Settings dialog box,
click the More Timing Settings option.

If your design requires a hold multicycle value not equal to the setup
multicycle or 1, you must explicitly apply a hold multicycle assignment
to the path.

Source Multicycle Hold Exception

The Source Multicycle Hold exception modifies the latch edge used for
a clock hold check for the register-to-register path based on the source
clock. Source Multicycle Hold exceptions increase the required hold
delay by adding source clock cycles. Figure 8–14 shows an example of a
source multicycle hold with launch edge labeled for a clock hold check.

-20 ns -10 ns 20 ns10 ns0 ns

Source Clock

Destination Clock

Source Multicycle = 2
Default Launch Edge for a
Clock Setup Check

Altera Corporation 8–19
October 2007

Timing Exceptions

Figure 8–14. Source Multicycle Hold

You can create Source Multicycle Hold exceptions with the Tcl
command set_multicycle_assingment and the switch –setup and
–start. The following example specifies a Source Multicycle Hold
exception of 3 from register reg1 to register reg2:

set_multicycle_assignment –hold –start –from reg1 –to reg2 3

Default Hold Multicycle

The Quartus II Classic Timing Analyzer sets the hold multicycle value to
equal the multicycle value when a multicycle exception has been entered
without a corresponding hold multicycle. You can change the behavior
with the DEFAULT_HOLD_MULTICYCLE assignment. The value of the
assignment can either be "ONE" or "SAME AS MULTICYCLE".

The assignment has the following syntax:

set_global_assignment -name DEFAULT_HOLD_MULTICYCLE "<value>"

Clock Enable Multicycle

For all enable-driven registers, the setup relationship or hold relationship
can be modified with the Clock Enable Multicycle, Clock Enable
Multicycle Hold, Clock Enable Source Multicycle, or Clock Enable
Multicycle Source Hold.

The Clock Enable Multicycle modifies the latching edge when a clock
setup check is performed for all registers driven by the specified clock
enables, and the Clock Enable Multicycle Hold modifies the latching
edge when a clock hold check is performed for all registers driven by the
specified clock enable. The Clock Enable Source Multicycle modifies the
launching edge when a clock setup check is performed for all enabled
driven registers, and the Clock Enable Source Multicycle Hold modifies
the launching edge when a clock hold check is performed for all enabled
driven registers.

-20 ns -10 ns 20 ns10 ns0 ns

Source Clock

Destination Clock

Source Multicycle Hold = 2
Default Clock Hold

Check Launch Edge

8–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

1 Clock enable-based multicycle exceptions apply only to
registers using dedicated clock enable circuitry. If the enable is
synthesized into a logic cell; for example, due to signal
prioritization, the multicycle does not apply.

The Clock Enable Multicycle, Clock Enable Multicycle Hold, Clock
Enable Source Multicycle, and Clock Enable Multicycle Source Hold
can be either a single-point or a point-to-point assignment. Figure 8–15
shows an example of a single-point assignment. In this example, register
Reg A has the single-point assignment applied. This has the affect of
modifying a register-to-register latching edge whose enable port is driven
by register Reg A. All register-to-register paths with enables driven by
the single-point assignment are affected, even those driven by different
clock sources.

Figure 8–15. Single-Point Clock Enable Multicycle

Point-to-point assignments apply to all paths where the source registers’
enable ports are driven by the source (from) node and the destination
registers’ enable ports are driven by the destination (to) node.
Figure 8–16 shows an example of a point-to-point assignment made to
different source and destination registers. In this example, register Reg A
is specified as the source, and register Reg B is specified as the
destination for the assignment. Only register-to-register paths that have
their enables driven by the assigned point-to-point registers have their
latching edges modified.

D Q

ENA

Reg A

D Q

ENA

Reg C

D Q

ENA

Reg F
D Q

ENA

Reg E

D Q

ENA

Reg B

D Q

ENA

Reg D

D Q

ENA

Reg G

Assignment Affects all Enable-Driven Registers
Paths of Assigned Register:
 Reg C to Reg B
 Reg C to Reg D
 Reg F to Reg GSingle-Point

Assignment to Reg A

Altera Corporation 8–21
October 2007

Timing Exceptions

Figure 8–16. Different Source and Destination Point-to-Point Assignment Clock
Enable Multicycle

Figure 8–17 shows an example of a point-to-point assignment made to the
same source and destination register. In this example, register Reg A has
been specified as both the source and register for the assignment. Only
register-to-register paths that have both the source-enable port and
destination-enable port has the latching edge modified by the
assigned point-to-point assignment.

Figure 8–17. Same Source and Destination Point-to-Point Assignment Clock
Enable Multicycle

D Q

ENA

Reg A
D Q

ENA

Reg B

D Q

ENA

Reg C
D Q

ENA

Reg D

Point-to-point Assignment Made to Source & Destination
Register Feeding Enable-Driven Register(s)
 (Reg A to Reg B)

Affected Path: Reg C to Reg D

D Q

ENA

Reg A

D Q

ENA

Reg C

D Q

ENA

Reg F
D Q

ENA

Reg E

D Q

ENA

Reg B

D Q

ENA

Reg D

D Q

ENA

Reg G

Assignment Affects Paths in Which Both
Source & Destination are Controlled by
the Same Clock Enable Signal:
 Reg C to Reg B
 Reg C to Reg D

Point-to-Point Assignment
From Reg A to Reg A
(From Reg A to Reg A)

8–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

You can use the set_instance_assignment -name
CLOCK_ENABLE_MULTICYCLE and set_instance_assignment
-name CLOCK_ENABLE_MULTICYCLE_HOLD Tcl commands to specify
either a Clock Enable Multicycle or a Clock Enable Multicycle Hold
assignment, respectively. The following example specifies a single-point
Clock Enable Multicycle assignment of 2 ns to reg1:

set_instance_assignment -name CLOCK_ENABLE_MULTICYCLE 2 -to reg1

The following example specifies a point-to-point Clock Enable
Multicycle Hold assignment of 2 from register reg1 to register reg2:

set_instance_assignment -name CLOCK_ENABLE_MULTICYCLE_HOLD 2 \
-from reg1 -to reg2

You can use the set_instance_assignment -name
CLOCK_ENABLE_SOURCE_MULTICYCLE and
set_instance_assignment -name
CLOCK_ENABLE_MULTICYCLE_SOURCE_HOLD Tcl commands to specify
either a Clock Enable Multicycle or Clock Enable Multicycle Hold
assignment, respectively. The following example specifies a single-point
Clock Enable Multicycle assignment of 2 ns to reg1:

set_instance_assignment -name CLOCK_ENABLE_SOURCE_MULTICYCLE \
2 -to reg1

The following example specifies a point-to-point Clock Enable
Multicycle Hold assignment of 2 from register reg1 to register reg2:

set_instance_assignment -name \
CLOCK_ENABLE_SOURCE_MULTICYCLE_HOLD 2 -from reg1 -to reg2

Setup Relationship and Hold Relationship

By default, the Quartus II Classic Timing Analyzer determines all setup
and hold relationships based on clock settings. The Setup Relationship
and Hold Relationship exceptions allow you to override any default
setup or hold relationships. Example 8–2 shows the path details of a
register-to-register path that has a 10 ns clock setting applied to the clock
signal driving the 2 registers.

Altera Corporation 8–23
October 2007

Timing Exceptions

Example 8–2. Default Setup Relationship with 10 ns Clock Setting
Info: Slack time is 9.405 ns for clock "data_clk" between source register "reg9" and
destination register "reg10"
 Info: Fmax is restricted to 500.0 MHz due to tcl and tch limits
 Info: + Largest register to register requirement is 9.816 ns
 Info: + Setup relationship between source and destination is 10.000 ns
 Info: + Latch edge is 10.000 ns
 Info: - Launch edge is 0.000 ns
 Info: + Largest clock skew is 0.000 ns
 Info: - Micro clock to output delay of source is 0.094 ns
 Info: - Micro setup delay of destination is 0.090 ns
 Info: - Longest register to register delay is 0.411 ns

In Example 8–3, a 15 ns Setup Relationship exception is applied to the
register-to-register path, overriding the default 10 ns setup relationship.

Example 8–3. Setup Relationship Assignment of 15 ns
Info: Slack time is 14.405 ns for clock "data_clk" between source register "reg9" and
destination register "reg10"

Info: Fmax is restricted to 500.0 MHz due to tcl and tch limits
Info: + Largest register to register requirement is 14.816 ns
Info: + Setup relationship between source and destination is 15.000 ns
Info: Setup Relationship assignment value is 15.000 ns between source "reg9" and
destination "reg10"
Info: + Largest clock skew is 0.000 ns
Info: Total interconnect delay = 1.583 ns (51.31 %)

Info: - Micro clock to output delay of source is 0.094 ns
Info: - Micro setup delay of destination is 0.090 ns

Info: - Longest register to register delay is 0.411 ns

You can create a Setup Relationship exception with the Tcl command
set_instance_assignment -name SETUP_RELATIONSHIP. The
following example specifies a Setup Relationship exception of 5 ns from
register reg1 to register reg2:

set_instance_assignment -name SETUP_RELATIONSHIP 5ns -from reg1 \
-to reg2

You can use Hold Relationship exception to override the default hold
relationship of any register-to-register paths.

You can use the set_instance_assignment -name
HOLD_RELATIONSHIP Tcl command to specify a hold relationship
assignment. The following example specifies a Hold Relationship
exception of 1 ns from register reg1 to register reg2:

set_instance_assignment -name HOLD_RELATIONSHIP 1ns -from reg1 \
-to reg2

8–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Maximum Delay and Minimum Delay

You can use Maximum Delay and Minimum Delay assignments to
specify delay requirements for pin-to-register, register-to-register, and
register-to-pin paths. The Maximum Delay assignment overrides any
setup relationship for any path. The Minimum Delay assignment
overrides any hold relationship for any path.

1 The Quartus II Classic Timing Analyzer ignores the effects of
clock skew when checking a design against Maximum Delay
and Minimum Delay assignments.

You can use the set_instance_assignment –name MAX_DELAY and
set_instance_assignment –name –MIN_DELAY Tcl commands to
specify a Maximum Delay assignment or a Minimum Delay assignment,
respectively. The following example specifies a maximum delay of 2 ns
between source register reg1 and destination register reg2:

set_instance_assignment -name MAX_DELAY 2ns -from reg1 -to reg2

The following example specifies a minimum delay of 1 ns between input
pin data_in to destination register dst_reg:

set_instance_assignment -name MIN_DELAY 1ns -from data_in -to \
dst_reg

False Paths

A false path is any path that is not relevant to a circuit’s operation, such
as test logic. There are several global assignments to cut different classes
of paths, such as unrelated clock domains and paths through
bidirectional pins, but you can also cut an individual timing path to a
specific false path.

The Timing Analyzer provides the following three global options that
allow you to remove false paths from your design:

■ Cut off feedback from I/O pins
■ Cut off read-during-write signal paths
■ Cut paths between unrelated clock domains

You can use the set_global_assignment -name
CUT_OFF_IO_PIN_FEEDBACK ON Tcl command to cut the feedback
path when a bidirectional I/O pin is connected directly or indirectly to
both the input and output of a latch.

Altera Corporation 8–25
October 2007

Timing Exceptions

You can use the set_global_assignment -name
CUT_OFF_READ_DURING_WRITE_PATHS ON Tcl command to cut the
path from the write-enable register through memory element to a
destination register.

You can use the set_global_assignment -name
CUT_OFF_PATHS_BETWEEN_CLOCK_DOMAINS ON Tcl command to cut
paths between register-to-register where the source and destination
clocks are different.

You can use the set_timing_cut_assignment Tcl command to cut
specific timing paths. In Figure 8–18, the path from inst1 through the
multiplexer to inst2 is used only for design testing. This false path is not
required under normal operation and does not need to be analyzed
during static timing analysis. Figure 8–18 shows an example of a false
path.

Figure 8–18. False Path Signal

To cut the timing path from source register inst1 to destination register
inst2, enter the following Tcl command:

set_timing_cut_assignment -from inst1 -to inst2

You can also use the set_timing_cut_assignment Tcl command as
a single point assignment. When you use the single point assignment, all
fanout of the node is cut. For example, the following Tcl command cuts
all timing paths originating for node src_reg:

set_timing_cut_assignment -to src_reg

D Q

DFF

D Q

DFF

inst

inst1

BUSMX

inst3 sel

result[]
dataa[]

datab[]
0

1
D Q

DFF

Test Enable

Clock

8–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

I/O Analysis The I/O analysis performed by the Quartus II Classic Timing Analyzer
ensures your Altera FPGA design meets all timing specifications for
interfacing with external devices. This section describes assignments
relevant to I/O analysis and other I/O analysis features and options
available with the Quartus II Classic Timing Analyzer.

External Input Delay and Output Delay Assignments

External input and output delays represent delays from or to external
devices or boards traces. You can make Input Delay and Output Delay
assignments to ensure the Quartus II Classic Timing Analyzer can
perform a full system analysis. By providing Input Delays and Output
Delays, the Quartus II Classic Timing Analyzer is able to perform clock
setup and clock hold checks for these paths. This also allows other timing
assignments, such as multicycle or clock uncertainty, to be applied to
input and output paths.

1 Do not combine individual or global tSU, tH, tPD, tCO, minimum
tCO, or minimum tPD assignments with Input Delay or Output
Delay assignments.

Input Delay Assignment

External input delays are specified with either Input Maximum Delay or
Input Minimum Delay assignments. Make Input Maximum Delay
assignments to specify the maximum delay of a signal from an external
register to a specified input or bidirectional pin on the FPGA relative to a
specified clock source. Make Input Minimum Delay assignments to
specify the minimum delay of a signal from an external register to a
specified input or bidirectional pin on the FPGA relative to a specified
clock source.

When performing a clock setup check, the Quartus II Classic Timing
Analyzer adds the Input Maximum Delay assignment value to the data
arrival time (or subtracts the assignment value from the point-to-point
requirement).

When performing a clock hold check, the Quartus II Classic Timing
Analyzer adds the Input Minimum Delay assignment value to the data
arrival time (or subtracts the assignment value from the point-to-point
requirement).

The value of the input delay assignment usually represents the sum of the
tCO of the external device, the actual board delay to the input pin of the
Altera device, and the board clock skew.

Altera Corporation 8–27
October 2007

I/O Analysis

1 The Input Minimum Delay defaults to the Input Maximum
Delay and the Input Maximum Delay defaults to the Input
Minimum Delay if only one is specified.

For example, the Input Maximum Delay and Input Minimum Delay can
be used to model the delay associated with an external device driving into
an Altera FPGA. Figure 8–19 shows an example of the input delay path.
For Figure 8–19, the Input Maximum Delay can be calculated as shown in
Equation 19.

(19)

Figure 8–19. Input Delay

Use the Tcl command set_input_delay to specify an input delay. The
following example specifies an Input Maximum Delay assignment of
1.5 ns from clock node clk to input pin data_in:

set_input_delay -clk_ref clk -to "data_in" -max 1.5ns

The following example specifies an Input Minimum Delay assignment
of 1 ns from clock node clk to input pin data_in:

set_input_delay -clk_ref clk -to "data_in" -min 1ns

When using Input Delay assignments, specify a particular clock
reference. The clock reference is the clock that feeds the external register’s
clock port that feeds the Altera device. This allows the Quartus II Classic
Timing Analyzer to perform the proper analysis for the input path.

1 The tSU, tH, tPD, and min tPD timing paths reported for input pins,
where input delay internal to the Altera FPGA assignments has
been applied, include only the data delay from these pins and do
not account for any clock setup relationships, clock hold
relationships, or slack.

Input Maximum Delay External Device Board Clock Path External Device tco
External Device to Altera Device Board Delay External Clock Path to Altera Device–

+ +=

External Device

Oscillator

Altera Device

8–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Output Delay Assignment

You can specify external output delays with either Output Maximum
Delay or Output Minimum Delay assignments. Make Output
Maximum Delay assignments to specify the maximum delay of a signal
from the specified FPGA output pin to an external register, relative to a
specified clock source. Make Output Minimum Delay assignments to
specify the minimum delay of a signal from the specified FPGA output
pin to an external register relative to a specified clock source.

When performing a clock setup check, the Quartus II Classic Timing
Analyzer subtracts the Output Maximum Delay assignment value from
the data required time (or subtracts the assignment value from the point-
to-point requirement).

When performing a clock hold check, the Quartus II Classic Timing
Analyzer subtracts the Output Minimum Delay assignment value from
the data required time (or subtracts the assignment value from the point-
to-point requirement).

The value of this assignment usually represents the sum of the tSU of the
external device, the actual board delay from the output pin of the Altera
device, and the board clock skew.

1 The Output Minimum Delay default value is the same as the
Output Maximum Delay, and the Output Maximum Delay
default value is the same as the Output Minimum Delay if only
one is specified.

For example, use the Output Maximum Delay and Output Minimum
Delay to model the delay associated with outputs for an Altera FPGA
driving into an external device. Figure 8–20 shows an example of an
output delay path. For Figure 8–20 the Output Maximum Delay can be
calculated, as shown in Equation 20.

(20) Output Maximum Delay Altera Device to External Device Board Delay
External Device tsu External Clock Path to Altera Device

External Device Board Clock Path

–
+

+
=

Altera Corporation 8–29
October 2007

I/O Analysis

Figure 8–20. Output Delay

The Tcl command set_output_delay specifies an Output Delay
assignment. The following example specifies an Output Maximum
Delay assignment of 2 ns from clock clk to output pin data_out:

set_output_delay –clk_ref clk –to data_out –max 2ns

The following example specifies an Output Minimum Delay assignment
of 1 ns from clock clk to output pin data_out:

set_output_delay –clk_ref clk –to data_out –min 1ns

When using output delay assignments, specify a specific clock reference.
The clock reference is the clock that feeds the external register’s clock port
that is fed by the Altera device. This allows the Quartus II Classic Timing
Analyzer to perform the correct static timing analysis on the output path.

1 The tCO, minimum tCO, tPD, and minimum tPD timing paths
reported for output pins, where output delay assignments have
been applied include only the data delay internal to the Altera
FPGA to those pins, and do not account for any clock setup
relationships, clock hold relationships, or slack.

Virtual Clocks

You can use virtual clocks to model clock signals outside of the Altera
FPGA, that is, clocks that do not directly drive anything within the Altera
FPGA. For example, you can use a virtual clock to model a clock signal
feeding an external output register that feeds the Altera FPGA.

Using the –virtual option of the create_base_clock Tcl command
specifies a virtual clock assignment.

1 Before a you can use virtual clock for either an input or output
delay assignment, the virtual clock must have the Virtual Clock
Reference assignment enabled for the virtual clock setting.

External DeviceAltera Device

Oscillator

8–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

The code in Example 8–4 creates a virtual clock named virt_clk, with
a 200 MHz requirement, and uses the virtual clock setting as the clock
reference for the input delay assignment.

Example 8–4. Creating a Virtual Clock Named virt_clk
#create the virtual clock setting
create_base_clock -fmax 200MHz -virtual virt_clk

#enable the virtual clock reference for the virtual clock setting
set_instance_assignment -name VIRTUAL_CLOCK_REFERENCE On -to virt_clk

#use the virtual clock setting as the clock reference for the input delay assignment
set_input_delay –clk_ref virt_clk –to data_in –max 2ns

Asynchronous
Paths

The Quartus II Classic Timing Analyzer can analyze asynchronous
signals that connect to the clear, preset, or load ports of a register. This
section explains how the Quartus II Classic Timing Analyzer analyzes
asynchronous paths.

Recovery and Removal

Recovery time is the minimum length of time an asynchronous control
signal; for example, clear and preset, must be stable before the active
clock edge. Removal time is the minimum length of time an
asynchronous control signal must be stable after the active clock edge.
The Enable Recovery/Removal analysis option reports the results of
recovery and removal checks for paths that end at an asynchronous clear,
preset, or load signal of a register.

Enable the recovery and removal analysis with the following Tcl
command:

set_global_assignment -name ENABLE_RECOVERY_REMOVAL_ANALYSIS ON

With this option enabled, the Quartus II Classic Timing Analyzer reports
the result of the recovery analysis and removal analysis.

1 By default, the recovery and removal analysis is disabled. You
should enable his option for all designs that contain
asynchronous controls signals.

Altera Corporation 8–31
October 2007

Asynchronous Paths

Recovery Report

When you set ENABLE_RECOVERY_REMOVAL_ANALYSIS to ON, the
Quartus II Classic Timing Analyzer determines the recovery time as the
minimum amount of time required between an asynchronous control
signal becoming inactive and the next active clock edge, compares this to
your design, and reports the results as slack. The Recovery report alerts
you to conditions where an active clock edge occurs too soon after the
asynchronous input becomes inactive, rendering the register’s data
uncertain.

The recovery slack time calculation is similar to the calculation for clock
setup slack, which is based on data arrival time and data required time
except for asynchronous control signals. If the asynchronous control is
registered, the Quartus II Classic Timing Analyzer calculates the recovery
slack time using Equations 21 through 23.

(21)

(22)

(23) +

Example 8–5 shows recovery time as reported by the Timing Analyzer.

Example 8–5. Recovery Time Reporting for a Registered Asynchronous Reset Signal
Info: Slack time is 8.947 ns for clock "a_clk" between source register "async_reg1" and destination
register "reg_1"
 Info: Requirement is of type recovery
 Info: - Data arrival time is 4.028 ns
 Info: + Launch edge is 0.000 ns
 Info: + Longest clock path from clock "a_clk" to source register is 3.067 ns
 Info: + Micro clock to output delay of source is 0.094 ns
 Info: + Longest register to register delay is 0.867 ns
 Info: + Data required time is 12.975 ns
 Info: + Latch edge is 10.000 ns
 Info: + Shortest clock path from clock "a_clk" to destination register is 3.065 ns
 Info: - Micro setup delay of destination is 0.090 ns

If the asynchronous control is not registered, the Quartus II Classic
Timing Analyzer uses Equations 24 through Equations 26 to calculate the
recovery slack time.

(24)

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Longest Clock Path to Source Register
micro tco of Source Register Longest Register-to-Register Delay

+ +
+

=

Data Required Time Latch Edge Longest Clock Path to Source Register+=
micro tsu of Destination Register

Recovery Slack Time Data Required Time Data Arrival Time–=

8–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

(25)

(26)

Example 8–6 shows recovery time as reported by the Timing Analyzer.

Example 8–6. Recovery Time Reporting for a Non-Registered Asynchronous Reset Signal
Info: Slack time is 8.744 ns for clock "a_clk15" between source pin "a_arst2" and
destination register "inst5"
 Info: Requirement is of type recovery
 Info: - Data arrival time is 4.787 ns
 Info: + Launch edge is 0.000 ns
 Info: + Max Input delay of pin is 1.500 ns
 Info: + Max pin to register delay is 3.287 ns
 Info: + Data required time is 13.531 ns

Info: + Latch edge is 10.000 ns
Info: + Shortest clock path from clock "a_clk15" to destination register
is 3.542 ns

Info: - Micro setup delay of destination is 0.011 ns

1 If the asynchronous reset signal is from a device pin, an Input
Maximum Delay assignment must be made to the
asynchronous reset pin for the Quartus II Classic Timing
Analyzer to perform recovery analysis on that path.

Removal Report

When you set ENABLE_RECOVERY_REMOVAL_ANALYSIS to ON, the
Quartus II Classic Timing Analyzer determines the removal time as the
minimum amount of time required between an active clock edge that
occurs while an asynchronous input is active, and the deassertion of the
asynchronous control signal. The Quartus II Classic Timing Analyzer
then compares this to your design and reports the results as slack. The
Removal report alerts you to a condition in which an asynchronous input
signal goes inactive too soon after a clock edge, thus rendering the
register’s data uncertain.

The removal time slack calculation is similar to the one used to calculate
clock hold slack, which is based on data arrival time and data required
time except for asynchronous control signals. If the asynchronous control
is registered, the Quartus II Classic Timing Analyzer uses Equations 27
through 29 to calculate the removal slack time.

(27)

Data Arrival Time Launch Edge Maximum Input Delay Maximum Pin-to-Register Delay+ +=

Data Required Time Latch Edge Shortest Clock Path to Destination Register Delay
micro tSU of Destination Register

–+=

Removal Slack Time Data Arrival Time Data Required Time–=

Altera Corporation 8–33
October 2007

Asynchronous Paths

(28)

(29)

Example 8–7 shows removal time as reported by the Quartus II Classic
Timing Analyzer.

Example 8–7. Removal Time Reporting for a Registered Asynchronous Reset Signal
Info: Minimum slack time is 814 ps for clock "a_clk" between source register "async_reg1"
and destination register "reg_1"
 Info: Requirement is of type removal
 Info: + Data arrival time is 4.028 ns
 Info: + Launch edge is 0.000 ns
 Info: + Shortest clock path from clock "a_clk" to source register is 3.067 ns
 Info: + Micro clock to output delay of source is 0.094 ns
 Info: + Shortest register to register delay is 0.867 ns
 Info: - Data required time is 3.214 ns
 Info: + Latch edge is 0.000 ns
 Info: + Longest clock path from clock "a_clk" to destination register is 3.065 ns
 Info: + Micro hold delay of destination is 0.149 ns

If the asynchronous control is not registered, the Quartus II Classic
Timing Analyzer uses Equations 30 through 32 to calculate the removal
slack time.

(30)

(31)

(32)

Data Arrival Time Launch Edge Shortest Clock Path from Source Register Delay
micro t

+

co of Source Register Shortest Register-to-Register Delay+
+=

Data Required Time Latch Edge Longest Clock Path to Destination Register Delay
micro tH of Destination Register

+ +=

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Input Minimum Delay of Pin
Minimum Pin-to-Register Delay

+ +=

Data Required Time Latch Edge Longest Clock Path to Destination Register Delay
micro tH of Destination Register

+ +=

8–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Example 8–8 shows removal time as reported by the Quartus II Classic
Timing Analyzer.

Example 8–8. Removal Time Reporting for a Non-Registered Asynchronous Reset Signal
Info: Minimum slack time is 1.131 ns for clock "a_clk15" between source pin "a_arst2" and
destination register "inst5"
 Info: Requirement is of type removal
 Info: + Data arrival time is 4.787 ns

Info: + Launch edge is 0.000 ns
Info: + Min Input delay of pin is 1.500 ns
Info: + Min pin to register delay is 3.287 ns

 Info: - Data required time is 3.656 ns
Info: + Latch edge is 0.000 ns
Info: + Longest clock path from clock "a_clk15" to destination register
is 3.542 ns

Info: + Micro hold delay of destination is 0.114 ns

1 If the asynchronous reset signal is from a device pin, an Input
Minimum Delay assignment must be made to the
asynchronous reset pin for the Quartus II Classic Timing
Analyzer to perform a removal analysis on this path.

Skew
Management

Clock skew is the difference in the arrival times of a clock signal at two
different registers, which can be caused by path length differences
between two clock paths, or by using gated or rippled clocks. As clock
periods become shorter and shorter, the skew between data arrival times
and clock arrival times becomes more significant. The Quartus II Classic
Timing Analyzer provides two assignments for analyzing and
constraining skew for data and clock signals.

Maximum Clock Arrival Skew

Make Maximum Clock Arrival Skew assignments to specify the
maximum allowable clock arrival skew between a clock signal and
various destination registers. The Quartus II Classic Timing Analyzer
compares the longest clock path to the registers’ clock port and the
shortest clock path to the registers’ clock port to determine if your
maximum clock arrival skew is achieved. Maximum clock arrival skew is
calculated using Equation 33.

(33)

For example, if the delay from clock pin clk to the clock port of register
reg1 is 1.0 ns, and the delay from clock pin clk to the clock port of
register reg2 is 3.0 ns, as shown in Figure 8–21, the Quartus II Classic
Timing Analyzer provides a clock skew slack time of 2.0 ns.

Maximum Clock Arrival Skew Longest Clock Path Shortest Clock Path–=

Altera Corporation 8–35
October 2007

Skew Management

Figure 8–21. Clock Arrival Paths

1 You should apply the Maximum Clock Arrival Skew
assignment to a clock node and a group of registers. When you
make a Maximum Clock Arrival Skew assignment, the Fitter
attempts to satisfy the skew requirement.

You can use the set_instance_assignment -name
max_clock_arrival_skew Tcl command to specify a Maximum
Clock Arrival Skew assignment. The following example specifies a
maximum clock arrival skew of 1 ns from clock signal clk to the bank of
registers matching reg*:

set_instance_assignment -name max_clock_arrival_skew 1ns -from clk -to reg*

Maximum Data Arrival Skew

Make Maximum Data Arrival Skew assignments to specify the
maximum allowable data arrival skew to various destination registers or
pins. The Quartus II Classic Timing Analyzer compares the longest data
arrival path to the shortest data arrival path to determine if your specified
maximum data arrival skew is achieved. Maximum data arrival skew is
calculated using Equation 34.

(34)

For example, if the data arrival time to output pin out1 is 2.0 ns, the data
arrival time to output pin out2 is 1.5 ns, and the data arrival time to
output pin out3 is 1.0 ns, as shown in Figure 8–22, the Quartus II Classic
Timing Analyzer provides a maximum data arrival skew slack time of
1.0 ns.

data out1reg1 reg2

clk

Maximum Data Arrival Skew Longest Data Arrival Path Shortest Data Arrival Path–=

8–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–22. Data Arrival Paths

1 When you make a Maximum Data Arrival Skew assignment,
the Fitter attempts to satisfy the skew requirement.

You can use the set_instance_assignment -name
max_data_arrival_skew Tcl command to specify a maximum data
arrival skew value. The following example specifies a maximum data
arrival skew of 1 ns from clock signal clk to the bank of output pins
dout:

set_instance_assignment -name max_data_arrival_skew 1ns -from clk -to dout[*]

Generating
Timing Analysis
Reports with
report_timing

The Quartus II Classic Timing Analyzer includes the report_timing
Tcl command for generating text-based timing analysis reports. You can
customize the output of report_timing using multiple switches that
allow the generation of both detailed and general timing reports on any
path in the design.

1 The report_timing Tcl command is available in the
quartus_tan executable.

Prior to using the report_timing Tcl command, you must open a
Quartus II project and create a timing netlist. For example, the following
two Tcl commands accomplish this:

project_open my_project
create_timing_netlist

out3reg3

clk

out2reg2

out1reg1

Altera Corporation 8–37
October 2007

Generating Timing Analysis Reports with report_timing

The report_timing Tcl command provides -from and -to switches
for filtering specific source and destination nodes. For example, the
following report_timing Tcl command reports all clock setup paths,
with the switch –clock_setup, between registers src_reg* and
dst_reg*. The –npaths 20 switch limits the report to 20 paths.

report_timing –clock_setup –from src_reg* -to dst_reg* -npaths 20

The switches -clock_filter and -src_clock_filter are also
available for filtering based on specific clock sources. For example, the
following report_timing Tcl command reports all clock setup paths
where the destination registers are clocked by clk:

report_timing -clock_setup -clock_filter clk

The following example reports clock setup paths where the destination
registers are clocked by clk, and the source registers are clocked by
src_clock.

report_timing -clock_setup -clock_filter clk -src_clock_filter \
src_clk

Example 8–9 is an example script that can be sourced by the
quartus_tan executable:

Example 8–9. Source for the quartus_tan Executable
Open a project
project_open my_project
Always create the netlist first
create_timing_netlist
List clock setup paths for clock clk
from registers abc* to registers xyz*
report_timing -clock_setup -clock_filter clk -from abc* -to xyz*
List the top 5 pin-to-pin combinational paths
report_timing -tpd -npaths 5
List the top 5 pin-to-pin combinational paths and
write output to an out.tao file
report_timing -tpd -npaths 5 -file out.tao
Compute min tpd and append results to existing out.tao
report_timing -min_tpd -npaths 5 -file out.tao -append
Show longest path (register to register data path) between a* and b*
report_timing -longest_paths -npaths 1
delete_timing_netlist
project close

8–38 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Other Timing
Analyzer
Features

The Quartus II Classic Timing Analyzer provides many features for
customizing and increasing the efficiency of static timing analysis,
including:

■ Wildcard assignments
■ Assignment groups
■ Fast corner analysis
■ Early timing estimation
■ Timing constraint checker
■ Latch analysis

Wildcard Assignments

To simplify the tasks of making assignments to many node assignments,
the Quartus II software accepts the * and ? wildcard characters. Use these
wildcard characters to reduce the number of individual assignments you
need to make for your design.

The “*” wildcard character matches any string. For example, given an
assignment made to a node specified as reg*, the Quartus II Classic
Timing Analyzer searches and applies the assignment to all design nodes
that match the prefix reg with none, one, or several characters following,
such as reg1, reg[2], regbank, and reg12bank.

The “?” wildcard character matches any single character. For example,
given an assignment made to a node specified as reg?, the Quartus II
Classic Timing Analyzer searches and applies the assignment to all
design nodes that match the prefix reg and any single character
following, such as reg1, rega, and reg4.

Assignment Groups

Assignment groups, also known as time groups, allow you to define a
custom group of nodes to which you can assign timing assignments. You
can also exclude specific nodes, wildcards, and time groups from a time
group.

Use the timegroup Tcl command to create an assignment group. The
following example creates an assignment group srcgrp and adds nodes
with names that match src1* to the group:

timegroup srcgrp –add_member src1*

Altera Corporation 8–39
October 2007

Other Timing Analyzer Features

For example, Figure 8–23 has false paths between source register reg1
and destination register bank sram_reg, external_reg,
internal_reg, and cam_reg that need to be cut. Without the use of
assignment groups, the assignments required are:

set_timing_cut_assignment –from reg1 to sram_reg
set_timing_cut_assignment –from reg1 to external_reg
set_timing_cut_assignment –from reg1 to internal_reg
set_timing_cut_assignment –from reg1 to cam_reg

Figure 8–23. False Path

With an assignment group called dst_reg_bank, the assignments
required are:

#create a time group called dst_reg
timegroup dst_reg_bank –add_member sram_reg
timegroup dst_reg_bank –add_member external_reg
timegroup dst_reg_bank –add_member internal_reg
timegroup dst_reg_bank –add_member cam_reg
#cut timing paths
set_timing_cut_assignment –from reg1 to dst_reg_bank

Once an assignment group has been defined, applicable timing
assignment can be made to the time group without redefining the
assignment group.

1 Assigning individual nodes to time groups and applying timing
assignments to these time groups can improve the performance
of the Quartus II Classic Timing Analyzer.

reg1

sram_reg

external_reg

internal_reg

cam_reg

sram

external

internal

cam

clk

8–40 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Fast Corner Analysis

Fast Corner Analysis uses timing models generated under best-case
conditions (voltage, process, and temperature) for the fastest speed-grade
device.

1 Both Fast Corner and Slow Corner static timing analysis reports
are saved to the <project name>.tan.rpt file, potentially
overwriting previous timing analysis reports. To preserve a
copy of your reports, save the file with a new name before the
next compilation or static timing analysis, or use the Combined
Fast/Slow Analysis report feature.

The Quartus II software also reports minimum delay checks after a slow
corner (default) analysis. These results are generated by reporting
minimum delay checks using worst-case timing models.

To perform fast corner static timing analysis with the best-case timing
models, you can use the switch -–fast_model=on with the
quartus_tan executable. The following Tcl command enables the fast
timing models:

quartus_tan <project_name> --fast_model=on

Early Timing Estimation

The majority of Quartus II software compilation time is consumed by the
place-and-route process used to obtain optimal design results. To
accelerate the design process for large designs, the Quartus II software
provides Early Timing Estimation. This feature provides a quick static
timing analysis in a fraction of the time required for a full compilation by
performing a preliminary place-and-route on the design without full
optimizations, which reduces total compile time by up to five times
compared to a fully fitted design.

1 An Early Timing Estimate fit is not fully optimized or legally
routed. The timing delay report is only an estimate. Typically,
the estimated delays are within 10% of those obtained with a full
fit when the realistic setting is used.

Altera Corporation 8–41
October 2007

Other Timing Analyzer Features

The Early Timing Estimate has three settings for generating timing
estimates: Realistic, Optimistic, and Pessimistic. Table 8–1 describes these
settings.

To use the Early Timing Estimate feature, enter the following Tcl
command when performing a fit:

quartus_fit -–early_timing_estimate[=<realistic|optimistic|pessimistic>]

After Early Timing Estimate is complete, a full timing report is generated
based on the early placement and routing delays. In addition, you can
view the preliminary logic placement in the Timing Closure floorplan.
The early timing placement allows you to perform initial placement and
view the timing interaction of various placement topology.

Timing Constraint Checker

Altera recommends that you enter all timing constraints into the
Quartus II software prior to performing a full compilation. This ensures
that the Fitter targets the correct timing requirements and ensures that the
Quartus II Classic Timing Analyzer reports the correct violations for all
timing paths in the design. To ensure that all constraints have been
applied to design nodes, the Timing Constraint Check feature reports all
unconstraint paths in your design. Example 8–10 shows the timing
constraint check summary generated after a full compilation.

Table 8–1. Early Timing Estimate Setting Options

Setting Description

Realistic (default setting: estimates final
timing using standard fitting)

Generates timing estimates that are likely to be closest to full
compilation results.

Optimistic (estimates best-case final timing) Generates timing estimates that are unlikely to be exceeded by
full compilation.

Pessimistic (estimates worst-case final
timing)

Generates timing estimates that are likely to be exceeded by full
compilation.

8–42 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Example 8–10. Timing Constraint Check Summary
+---+
; Timing Constraint Check Summary ;
+--+--+
; Timing Constraint Check Status ; Analyzed - Tue Feb 28 11:42:31 2006 ;
; Quartus II Version ; 6.1 Internal Build 143 02/20/2006 SJ Full Version ;
; Revision Name ; test ;
; Top-level Entity Name ; Block1 ;
; Unconstrained Clocks ; 0 ;
; Unconstrained Paths (Setup) ; 22 ;
; Unconstrained Reg-to-Reg Paths (Setup) ; 0 ;
; Unconstrained I/O Paths (Setup) ; 22 ;
; Unconstrained Paths (Hold) ; 12 ;
; Unconstrained Reg-to-Reg Paths (Hold) ; 0 ;
; Unconstrained I/O Paths (Hold) ; 12 ;
+--+--+

To perform a timing constraint check, use the switch
–-check_constraints with the quartus_tan executable. The
following Tcl command performs a timing constraint check on both setup
and hold on the design system:

quartus_tan block1 –-check_constraints=both

Latch Analysis

Latches are implemented in the Quartus II software as look-up-tables
(LUTs) feeding back onto themselves. The Quartus II Classic Timing
Analyzer can analyze these latches as synchronous elements rather than
as combinational elements. The clock enables are analyzed as inverted
clocks. The Quartus II Classic Timing Analyzer reports the results of
setup and hold analysis on these latches.

You can turn on the Analyze Latches As Synchronous Elements option
with the following Tcl command:

set_global_assignment -name ANALYZE_LATCHES_AS_SYNCHRONOUS_ELEMENTS ON

Altera Corporation 8–43
October 2007

Timing Analysis Using the Quartus II GUI

Timing Analysis
Using the
Quartus II GUI

In addition to the extensive scripting support available in the Quartus II
Classic Timing Analyzer, the Quartus II software provides the
Assignment Editor and other user interface tools, giving you access to the
Quartus II Classic Timing Analyzer features and assignments.

Assignment Editor

The Assignment Editor is a spreadsheet-style interface used for adding,
modifying, and deleting timing assignments.

To make timing assignments in the Assignment Editor, choose Timing
from the category list to cause the Assignment Name column to display
only timing assignments. Double-click <<new>> in the Assignment
Name field, the Assignment Name list displays. Figure 8–24 shows the
Assignment Editor with the Assignment Name list displaying timing
assignment types.

Figure 8–24. Assignment Editor

f For more information about the Assignment Editor, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

8–44 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Timing Settings

You can specify delay requirements and clock settings with the Timing
Analysis Settings page of the Settings dialog box.

To access this page, on the Assignments menu, click Settings. In the
Category list, click the icon next to Timing Analysis Settings to
expand the folder. (Be sure that the Use Classic Timing Analyzer during
compilation radio button is turned on.) Click Classic Timing Analyzer
Settings. The Classic Timing Analysis Settings page displays
(Figure 8–25).

Figure 8–25. Timing Analysis Settings Dialog Box

Altera Corporation 8–45
October 2007

Timing Analysis Using the Quartus II GUI

Clock Settings Dialog Box

You can create or modify base clock settings or derived clock settings
using the Clock Settings dialog box. To access this page, on the
Assignments menu, click Settings. In the Category list, click the icon
next to Timing Analysis Settings to expand the folder. (Be sure that the
Use Classic Timing Analyzer during compilation radio button is turned
on.) Click on Classic Timing Analyzer Settings. The Timing Analysis
Settings page displays. Under Clock Settings, click Individual Clocks.
The Individual Clock dialog box is shown (Figure 8–26).

Figure 8–26. Individual Clocks Dialog Box

Click the New button in the Individual Clocks dialog box to access the
New Clock Settings dialog box and create a base or derived clock setting
(Figure 8–27).

8–46 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–27. New Settings Dialog Box

More Timing Settings Dialog Box

On the Timing Analysis Settings page of the Settings dialog box, click
More Settings to display the More Timing Settings dialog box
(Figure 8–28). The More Timing Settings dialog box provides access to
many global timing analysis options.

Altera Corporation 8–47
October 2007

Timing Analysis Using the Quartus II GUI

Figure 8–28. More Timing Settings Dialog Box

Timing Reports

The Quartus II Classic Timing Analyzer report is a section of the
Compilation Report containing the static timing analysis results. The
Quartus II Classic Timing Analyzer report includes clock setup and clock
hold measurements for all clock sources. The report also shows tCO for all
output pins, tSU and tH for all input pins, and tPD for any pin-to-pin
combinational paths in the design. Other reports are created for different
analyses and device features.

In the Settings dialog box, you can specify the range of information to be
reported in the timing analysis of the Compilation Report. To access this
page, on the Assignments menu, click Settings. In the Category list, click
the icon next to Timing Analysis Settings to expand the folder. (Be
sure that the Use Classic Timing Analyzer during compilation radio
button is turned on.) Click the icon next to Classic Timing Analyzer
Settings to expand the folder. Click Classic Timing Analyzer Reporting.
The Classic Timing Analyzer Reporting dialog box (Figure 8–29)
appears.

8–48 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–29. Classic Analyzer Reporting

If there are no timing assignments for the design, the Quartus II Classic
Timing Analyzer does not generate slack reports for any detected clock
nodes. The Quartus II Classic Timing Analyzer only reports slack
measurements for pins with individual or global tSU, tH, or tCO
assignments. A positive slack indicates the margin by which the path
surpasses the clock timing requirements. A negative slack indicates the
margin by which the path fails the clock timing requirements.

1 This Timing Analysis report is also available in text format
located in the design directory with the file name
<revision name>.tan.rpt.

In the Compilation Report, select an analysis type under the Timing
Analyzer folder to display the analysis report; for example, Clock Setup
or Clock Hold. Figure 8–30 shows an example of a Clock Setup report for
clock signal clk.

Altera Corporation 8–49
October 2007

Timing Analysis Using the Quartus II GUI

Figure 8–30. Timing Analysis Report

Advanced List Path

The Advanced List Paths dialog box provides detailed information about
a specific path, such as interconnect and cell delays between any two
valid register-to-register paths (Figure 8–31).

The Advanced List Paths dialog box allows you to select the type of paths
you want listed. For example, you can obtain detailed information for
Clock Setup and Clock Hold for a specific clock. In addition, the Tcl
command field in the window matches the equivalent Tcl command you
can use in either a custom Tcl script or in the Tcl console.

8–50 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–31. Advanced List Paths Dialog Box

You can perform a list path command directly from the Timing Analysis
report. To do this, right click a path and click List Path (Figure 8–32). To
launch the Advanced List Paths dialog box, right-click a path and in the
menu that appears, and select Advanced List Paths.

The Advanced List Paths dialog box displays only paths that are visible
in the Timing Analysis report. To increase the amount of paths reported
by the Quartus II Classic Timing Analyzer, on the Assignments menu,
click Timing Analysis Settings. In the Category list, expand Timing
Analysis Settings and select Timing Analyzer Reporting. In the Timing
Analyzer Reporting page, specify the range of information to be reported
by the Quartus II Classic Timing Analyzer.

1 Both the Advanced List Paths and the List Path commands
display the path information in the System message window.

Altera Corporation 8–51
October 2007

Timing Analysis Using the Quartus II GUI

Figure 8–32. List Path in the Message Window

1 If the Combined Fast/Slow Timing option is enabled, the List
Path Tcl command displays only path delays reported in the
Slow Model section.

Early Timing Estimate

To start an Early Timing Estimate, on the Processing menu, point to Start
and click Start Early Timing Estimate. To specify the Early Timing
Estimate mode, on the Assignments menu, click Settings. In the
Category list, select Compilation Processes Settings, select Early Timing
Estimate and click the desired timing estimate mode. For more
information about the Early Timing Estimate feature, refer to “Early
Timing Estimation” on page 8–40.

Assignment Groups

To define, modify, and delete assignment groups, also known as time
groups, from a single dialog box, on the Assignments menu, click
Assignment (Time) Groups. The Assignment Groups dialog box
displays (Figure 8–33).

8–52 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–33. Assignment Groups Dialog Box

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp

f Refer to the Scripting Reference Manual to view this information in PDF
form.

For more information about Tcl scripting, refer to the Tcl Scripting chapter
in volume 2 of the Quartus II Handbook. Refer to the Quartus II Settings File
Reference Manual for information about all settings and constraints in the
Quartus II software. For more information about command-line
scripting, refer to the Command-Line Scripting chapter in volume 2 of the
Quartus II Handbook.

Altera Corporation 8–53
October 2007

Scripting Support

Creating Clocks

There are two Tcl commands that allow you to define clocks in a design,
create_base clock and create_relative_clock.

Base Clocks

Use the create_base_clock Tcl command to define a base clock:

create_base_clock [-h | -help] [-long_help] -fmax <fmax> [-duty_cycle <integer>] \
[-virtual] [-target <name>] [-no_target] [-entity <entity>] [-disable] \
[-comment <comment>] <clock_name>

To define a base clock setting named sys_clk with a 100 MHz
requirement applied to node clk_src, enter the following Tcl command:

create_base_clock –fmax 100MHz –target clk_src sys_clk

Derived Clocks

Use the create_relative_clock Tcl command to define a relative
clock:

create_relative_clock [-h | -help] [-long_help] -base_clock <Base clock> \
[-duty_cycle <integer>] [-multiply <integer>] [-divide <integer>] [-offset <offset>] \
[-phase_shift <integer>] [-invert] [-virtual] [-target <name>] [-no_target] \
[-entity <entity>] [-disable] [-comment <comment>] <clock_name>

To define a relative clock named aux_clk based upon base clock setting
sys_clk with a multiplication factor of 2 applied to node rel_clk,
enter the following Tcl command:

create_relative_clock –base_clock sys_clk –multiply 2 –target rel_clk aux_clk

Clock Latency

You can use the set_clock_latency Tcl command to create either an
early or late clock latency assignment:

set_clock_latency [-h | -help] [-long_help] [-early] [-late] -to <to> [<value>]

To apply an early clock latency of 1 ns and a late clock latency of 2 ns to
clock node clk, enter the following Tcl commands:

set_clock_latency -early -to clk 2ns

8–54 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Clock Uncertainty

You can use the set_clock_uncertainty Tcl command to create
clock uncertainty assignments as shown in the following example:

set_clock_uncertainty [-h] [-help] [-long_help [-from <source clock name>] -to
<destination clock name> [-setup] [-hold] [-remove] [-disable] [-comment <comment>] <value>

To apply a clock setup uncertainty of 50 ps between source clock node
clk_src and destination clock node clk_dst, enter the following Tcl
command:

set_clock_uncertainty –from clk_src –to clk_dst –setup 50ps

To apply a clock hold uncertainty of 25 ps between to clock node
clk_sys, enter the following Tcl command:

set_clock_uncertainty –to clk_sys –setup 25ps

Cut Timing Paths

You can use the set_timing_cut_assignment Tcl command to create
cut timing assignments:

set_timing_cut_assignment [-h | -help] [-long_help] [-from <from_node_list>]
[-to <to_node_list>] [-remove] [-disable] [-comment <comment>]

To cut the timing path from source register reg1 to destination register
reg2, enter the following Tcl command:

set_timing_cut_assignment -from reg1 -to reg2

Input Delay Assignment

You can use the Tcl command set_input_delay to create input delay
assignments:

set_input_delay [-h | -help] [-long_help] [-clk_ref <clock>] -to <input_pin> [-min] [-max]
[-clock_fall] [-remove] [-disable] [-comment <comment>] [<value>]

To apply an input maximum delay of 2 ns to an input pin named
data_in that feeds a register clocked by clock source clk, enter the
following Tcl command:

set_input_delay -clk_ref clk -to data_in –max 2ns

Altera Corporation 8–55
October 2007

Scripting Support

Maximum and Minimum Delay

The following Tcl commands create the Maximum Delay and Minimum
Relationship assignments, respectively:

set_instance_assignment -name MAX_delay <value> -from <node> -to <node>
set_instance_assignment -name MIN_delay <value> -from <node> -to <node>

To apply a Maximum Delay of 8 ns and a minimum of 5 ns between
source register reg1 and destination register reg2, enter the following
Tcl command:

set_instance_assignment -name MAX_DELAY 8ns -from reg1 -to reg2
set_instance_assignment -name MIN_DELAY 5ns -from reg1 -to reg2

To apply a Maximum Delay of 10 ns for all paths from source clock
clk_src to destination clock clk_dst, enter the following Tcl
command:

set_instance_assignment -name MAX_DELAY 10ns -from clk_src -to clk_dst

Maximum Clock Arrival Skew

The following Tcl command defines the Maximum Clock Arrival Skew
assignment:

set_instance_assignment -name max_clock_arrival_skew <value> -from <clock> -to <node>

To apply a Maximum Clock Arrival Skew of 1 ns for clock source clk to
a predefined timegroup called reg_group, enter the following Tcl
command:

set_instance_assignment -name max_clock_arrival_skew 1ns -from clk -to reg_group

Maximum Data Arrival Skew

To create Maximum Data Arrival Skew assignments, use the Tcl
command set_instance_assignment -name
max_data_arrival:

set_instance_assignment -name max_data_arrival_skew <value> -from <clock> -to <node>

To apply a Maximum Data Arrival Skew of 1 ns for clock source clk to
a predefined timegroup of pins called pin_group, enter the following
Tcl command:

set_instance_assignment -name max_data_arrival_skew 1ns -from clk -to pin_group

8–56 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Multicycle

Use the set_multicycle_assignment Tcl command to create
Multicycle assignments:

set_multicycle_assignment [-h | -help] [-long_help] [-setup] [-hold] [-start] [-end]
[-from <from_list>] [-to <to_list>] [-remove] [-disable] [-comment <comment>]
<path_multiplier>

To apply a Multicycle Setup of 2 and a Hold Multicycle of 1 between
source register reg1 and destination register reg2, enter the following
Tcl commands:

set_multicycle_assignment –setup -end –from reg1 –to reg2 2
set_multicycle_assignment –hold -end –from reg1 –to reg2 1

To apply a Source Multicycle Setup of 2 between source register reg1
and destination register reg2, enter the following Tcl command:

set_multicycle_assignment –setup -start –from reg1 –to reg2 1

To apply a multicycle setup of 2 for all paths from source clock clk_src
to destination clock clk_dst, enter the following Tcl command:

set_multicycle_assignment –setup –end –from clk_src –to clk_dst 2

Output Delay Assignment

Use the Tcl command set_output_delay to create Output Delay
assignments:

set_output_delay [-h | -help] [-long_help] [-clk_ref <clock>] -to <output_pin> [-min]
[-max] [-clock_fall] [-remove] [-disable] [-comment <comment>] [<value>]

To apply an Output Maximum Delay of 3 ns to an output pin named
data_out that is fed to a register clocked by clock source clk, enter the
following Tcl command:

set_output_delay -clk_ref clk -to data_out –max 3ns

Altera Corporation 8–57
October 2007

Scripting Support

Report Timing

Use the report_timing Tcl command to generate timing reports:

report_timing [-h | -help] [-long_help] [-npaths <number>] [-tsu] [-th] [-tco] [-tpd] \
[-min_tco] [-min_tpd] [-clock_setup] [-clock_hold] [-clock_setup_io] [-clock_hold_io] \
[-clock_setup_core] [-clock_hold_core] [-recovery] [-removal] [-dqs_read_capture] \
[-stdout] [-file <name>] [-append] [-table <name>] [-from <names>] [-to <names>] \
[-clock_filter <names>] [-src_clock_filter <names>] [-longest_paths] [-shortest_paths] \
[-all_failures]

The following example generates a list of all clock setup paths for clock
source clk from registers src_reg* to registers dst_reg*:

report_timing -clock_setup -clock_filter clk -from src_reg* -to dst_reg*

Setup and Hold Relationships

The following Tcl commands create Setup Relationship and Hold
Relationship assignments, respectively:

set_instance_assignment -name SETUP_RELATIONSHIP <value> -from <node> -to <node>
set_instance_assignment -name HOLD_RELATIONSHIP <value> -from <node> -to <node>

To apply a Setup Relationship of 12 ns and a Hold Relationship of 2 ns
between source register reg1 and destination registers reg2, enter the
following Tcl command:

set_instance_assignment -name SETUP_RELATIONSHIP 12ns -from reg1 -to reg2
set_instance_assignment -name HOLD_RELATIONSHIP 2ns -from reg1 -to reg2

To apply a setup relationship of 10 ns for all paths from source clock
clk_src to destination clock clk_dst, enter the following Tcl
command:

set_instance_assignment -name SETUP_RELATIONSHIP 10ns -from clk_src -to clk_dst

Assignment Group

Use the timegroup Tcl command to create assignment groups:

timegroup [-h | -help] [-long_help] [-add_member <name>] [-add_exception <name>] \
[-remove_member <name>] [-remove_exception <name>] [-get_members] [-get_exceptions] \
[-overwrite] [-remove] [-disable] [-comment <comment>] <group_name>

The following example creates an assignment group called reg_bank
with members dst_reg*, and excludes register dst_reg5.

timegroup reg_bank -add_member dst_reg* -add_exception dst_reg5

8–58 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Virtual Clock

Use the create_relative_clock with the –virtual switch to create
Virtual Clock assignments:

create_relative_clock [-h | -help] [-long_help] -base_clock <Base clock> \
[-duty_cycle <integer>] [-multiply <integer>] [-divide <integer>] [-offset <offset>] \
[-phase_shift <integer>] [-invert] [-virtual] [-target <name>] [-no_target] \
[-entity <entity>] [-disable] [-comment <comment>] <clock_name>

To define a virtual clock derived from the base clock setting clk_aux
named brd_sys, enter the following Tcl command:

create_relative_clock –base_clock clk_aux -virtual brd_sys

MAX+PLUS II
Timing Analysis
Methodology

This section describes the basic static timing analysis and assignments
available in the Quartus II software that originated in the MAX+PLUS® II
design software.

fMAX Relationships

Maximum clock frequency is the fastest speed at which the design clock
can run without violating internal setup and hold time requirements. The
Quartus II software performs static timing analysis on both single- and
multiple-clock designs.

1 Apply clock settings to all clock nodes in a design to ensure that
you meet all performance requirements. Refer to “Clock
Settings” on page 8–8 for more information.

Slack

Slack is the margin by which a timing requirement such as fMAX is met or
not met. Positive slack indicates the margin by which a requirement is
met. Negative slack indicates the margin by which a requirement is not
met. The Quartus II software determines slack using Equations 35
through 38.

Altera Corporation 8–59
October 2007

MAX+PLUS II Timing Analysis Methodology

(35)

(36)

(37)

(38)

Figure 8–34 shows a slack calculation diagram.

Figure 8–34. Slack Calculation Diagram

Clock Setup Slack Longest Register-to-Register Requirement
Longest Register-to-Register Delay

–=

Register-to-Register Requirement Setup Relationship Largest Clock Skew
micro tco of Source Register micro tsu of Destination Register–

–+=

Clock Hold Slack Shortest Register-to-Register Delay
Smallest Register-to-Register Requirement

–=

Shortest Register-to-Register Requirement Hold Relationship Smallest Clock Skew
micro tco of Source Register micro tH of Destination Register–

–+=

tSUtCO

Register 1 Register 2

Data

clk1 clk2

clk1

clk2

 Slack
Clock Period

Latching Edge

Launching Edge

Point to Point Delay

Logic

8–60 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

I/O Timing

This section describes the basic measurements made for I/O timing in the
Quartus II software.

tSU Timing

tSU specifies the length of time data needs to arrive and be stable at an
external input pin prior to a clock transition on an associated clock I/O
pin. A tSU requirement describes this relationship for an input register
relative to the I/O pins of the FPGA. Figure 8–35 shows a diagram of
clock setup time.

Figure 8–35. Clock Setup Time (tSU)

Micro tSU is the internal setup time of the register. It is a characteristic of
the register and is unaffected by the signals feeding the register.
Equation 39 calculates the tSU of data with respect to clk for the circuit
shown in Figure 8–35.

(39)

tH Timing

tH specifies the length of time data needs to be held stable on an external
input pin after a clock transition on an associated clock I/O pin. A tH
requirement describes this relationship for an input register relative to
the I/O pins of the FPGA. Figure 8–36 shows a diagram of clock hold
time.

tSU

Data Delay

Micro tSU

Clock Delay

data

clk

tsu Longest Data Delay Shortest Clock Delay micro tsu of Input Register+–=

Altera Corporation 8–61
October 2007

MAX+PLUS II Timing Analysis Methodology

Figure 8–36. Clock Hold Time (tH)

Micro tH is the internal hold time of the register. Equation 40 calculates
the tH of data with respect to clk for the circuit shown in Figure 8–36.

(40)

tCO Timing

Clock-to-output delay is the maximum time required to obtain a valid
output at an output pin fed by a register, after a clock transition on the
input pin that clocks the register. Micro tCO is the internal clock-to-output
delay of the register. Figure 8–37 shows a diagram of clock-to-output
delay.

Figure 8–37. Clock-to-Output Delay (tCO)

Equation 41 calculates the tCO for output pin data_out with respect to
clock node clk for the circuit shown in Figure 8–37.

(41)

tH

Data Delay

Micro tH

Clock Delay

data

clk

tH Longest Clock Delay Shortest Data Delay micro tH of Input Register+–=

Data Delay

Micro tCO

Clock Delay

tCO

clk

data_out

tco Longest Clock Delay micro tco of Output Register+=

8–62 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Minimum tCO (min tCO)

Minimum clock-to-output delay is the minimum time required to obtain
a valid output at an output pin fed by a register, after a clock transition on
the input pin that clocks the register. Micro tCO is the internal
clock-to-output delay of registers in Altera FPGAs. Unlike the tCO
assignment, the min tCO assignment looks at the shortest delay paths
(Equation 42).

(42)

tPD Timing

Pin-to-pin delay (tPD) is the time required for a signal from an input pin
to propagate through combinational logic and appear at an external
output pin (Equation 43).

(43)

1 In the Quartus II software, you can make tPD assignments
between an input pin and an output pin.

Minimum tPD (min tPD)

The minimum pin-to-pin delay (tPD) is the time required for a signal from
an input pin to propagate through combinational logic and appear at an
external output pin. Unlike the tPD assignment, the min tPD assignment
applies to the shortest pin-to-pin delay (Equation 44).

(44)

The Timing Analyzer Tool

To facilitate the classic static timing analysis flow and constraint, the
Quartus II software provides a MAX+PLUS II-style Timing Analyzer
Tool available on the Tools menu. The Timing Analyzer Tool provides a
simple interface, similar to the Timing Analyzer tool in MAX+PLUS II,
that reports register-to-register performance, I/O timing, and custom
delay values (Figure 8–38).

min tco Shortest Clock Delay Shortest Data Delay micro tco of Output Register+ +=

tPD Longest Pin-to-Pin Delay=

min tPD Shortest Pin-to-Pin Delay=

Altera Corporation 8–63
October 2007

Conclusion

Figure 8–38. Timing Analyzer Tool

Conclusion Evolving design and aggressive process technologies require larger and
higher-performance FPGA designs. Increasing design complexity
demands enhanced static timing analysis tools that aid designers in
verifying design timing requirements. Without advanced static timing
analysis tools, you risk circuit failure in complex designs. The Quartus II
Classic Timing Analyzer incorporates a set of powerful static timing
analysis features critical in enabling system-on-a-programmable-chip
(SOPC) designs.

Referenced
Documents

This chapter references the following documents:

■ altpll Megafunction User Guide
■ AN 411: Understanding PLL Timing for Stratix II Devices
■ Assignment Editor chapter in volume 2 of the Quartus II Handbook
■ Quartus II TimeQuest Timing Analyzer chapter of the Quartus II

Handbook
■ Scripting Reference Manual

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/an/an411.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

8–64 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 8–2 shows the revision history for this chapter.

Table 8–2. Document Revision History

Date and
Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 8–63. —

May 2007
v7.1.0

● Updated Quartus II software 7.1 revision and date
● Added information about Arria GX
● Added Referenced Document
● No new screenshots were taken

Very minor update
pertaining to Arria GX.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

● Added paragraphs about multicycle assignments on page 8–17
and page 8–18

● Updated Figure 8–24 on page 8–42 (screenshot update)
● Updated Figure 8–25 on page 8–43 (screenshot update)

Minor clarification of
text referring to input
and output delay
assignments.

May 2006
v6.0.0

Chapter title changed to classic timing analyzer.
Updated for the Quartus II software version 6.0.0:
● Updated GUI information.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

August 2005
V5.0.1

Document revision 1.0. —

May 2005
V5.0.0

New functionality for Quartus II software 5.0 —

Jan. 2005
v2.2

Updated information pertaining to realistic, optimistic, and pessimistic
settings

—

Dec. 2004
v2.1

● Chapter 5 was formerly Chapter 4.
● Updates to tables and figures.
● New functionality for Quartus II software 4.2.

—

June 2004
v2.0

● Updates to tables and figures.
● New functionality for Quartus II software 4.1.

—

Feb. 2004
v1.0

Initial release. —

May 2006
v6.0.0

Chapter title changed to Classic Timing Analyzer.
Updated for the Quartus II software version 6.0.0:
● Updated GUI information.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

Altera Corporation 9–1
October 2007

9. Synopsys PrimeTime
Support

Introduction PrimeTime is an industry standard sign-off tool that performs static
timing analysis on ASIC designs. The Quartus® II software makes it easy
for designers to analyze their Quartus II projects using the PrimeTime
software. The Quartus II software exports a netlist, design constraints (in
the PrimeTime format), and libraries to the PrimeTime software
environment. Figure 9–1 shows the PrimeTime flow diagram.

Figure 9–1. The PrimeTime Software Flow Diagram

This chapter contains the following sections:

■ “Quartus II Settings for Generating the PrimeTime Software Files”
on page 9–2

■ “Files Generated for the PrimeTime Software Environment” on
page 9–3

■ “Running the PrimeTime Software” on page 9–10
■ “PrimeTime Timing Reports” on page 9–12
■ “Static Timing Analyzer Differences” on page 9–23

Design Netlist
(Verilog or

VHDL Format)

Constraints in
PrimeTime

Format

Standard Delay
Format Output

File (Timing
Information)

Timing Reports Generated

The Quartus II Software

The PrimeTime Software

DB lib
HDL lib

QII53005-7.2.0

9–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Quartus II
Settings for
Generating the
PrimeTime
Software Files

To set the Quartus II software to generate files for the PrimeTime
software, perform the following steps:

1. In the Quartus II software, on the Assignments menu, click EDA
Tool Settings.

2. In the Category list, under EDA Tool Settings, select Timing
Analysis.

3. In the Tool name drop-down list, select PrimeTime, and in the
Format for output netlist drop-down list, select either Verilog or
VHDL, depending on the HDL language you chose for use with the
PrimeTime software (Figure 9–2).

Figure 9–2. Setting the Quartus II Software to Generate the PrimeTime Software Files

Altera Corporation 9–3
October 2007

Files Generated for the PrimeTime Software Environment

When you compile your project after making these settings, the
Quartus II software runs the EDA Netlist Writer to create three files for
the PrimeTime software. These files are saved in the
<revision_name>/timing/primetime directory by default, where
<revision_name> is the name of your Quartus II software revision. If it is
not, you have used the wrong variable name.

Files Generated
for the
PrimeTime
Software
Environment

The Quartus II software generates a flattened netlist, a Standard Delay
Output File (.sdo), and a Tcl script that prepares the PrimeTime software
for timing analysis of the Quartus II project. These files are saved in the
<project directory>/timing/primetime directory.

The Quartus II software uses the EDA Netlist Writer to generate
PrimeTime files based on either the Quartus II Classic Timing Analyzer
or the Quartus II TimeQuest Timing Analyzer static timing analysis
results. When you run the EDA Netlist Writer, the PrimeTime SDO files
are based on delays generated by the currently selected timing analysis
tool in the Quartus II software.

To specify the timing analyzer, on the Assignments menu, click Settings.
The Settings dialog box appears. Under Category, click Timing Analysis
Settings. Select the timing analyzer of your choice.

f For more information about specifying the Quartus II timing analyzers,
refer to either the Quartus II Classic Timing Analyzer or the Quartus II
TimeQuest Timing Analyzer chapters in volume 3 of the Quartus II
Handbook. Also, refer to the Switching to the Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook to help you
decide which timing analyzer is most appropriate for your design.

The Netlist

Depending on whether Verilog or VHDL is selected as the Format for
output netlist option, in the Tool name list on the Timing Analysis page
of the Settings dialog box, the netlist is written and saved as either
<project name>.vo or <project name>.vho, respectively. This file contains
the flattened netlist representing the entire design.

1 When the Quartus II TimeQuest Timing Analyzer is selected,
only a Verilog PrimeTime netlist is generated.

9–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

The SDO File

The Quartus II software saves the Standard Delay Format Output (.sdo)
File as either <revision_name>_v.sdo or <revision_name>_vhd.sdo,
depending on whether you selected Verilog or VHDL in the Tool name
list on the Timing Analysis page of the Settings dialog box.

This file contains the timing information for each timing path between
any two nodes in the design.

When the Quartus II Classic Timing Analyzer is enabled, the slow-corner
(worst case) timing models are used by default when generating the SDO
file. To generate the SDO file using the fast-corner (best case) timing
models, perform the following steps:

1. In the Quartus II software, on the Processing menu, point to Start
and click Start Classic Timing Analyzer (Fast Timing Model).

2. After the fast-corner timing analysis is complete, on the Processing
menu, point to Start and click Start EDA Netlist Writer to create a
<revision_name>_v_fast.sdo or <revision_name>_vhd_fast.sdo file,
which contains the best-case delay values for each timing path.

1 If you are running a best-case timing analysis, the Quartus II
software generates a Tcl script similar to the following:
<revision_name>_pt_v_fast.tcl.

When TimeQuest is run with the fast-corner netlist or when the Optimize
fast-corner timing check box is selected in the Fitter Settings dialog box,
the fast-corner SDC file is generated.

After the EDA Netlist Writer has finished, two SDO files are created:
<revision_name>_v.sdo (slow-corner) or <revision_name>_v_fast.sdo
(fast-corner).

Generating Multiple Operating Conditions with TimeQuest

Different operating conditions can be specified to the EDA Netlist Writer
for PrimeTime analysis. The different operating conditions are reflected
in the .sdo file generated by the EDA Netlist Writer.

Altera Corporation 9–5
October 2007

Files Generated for the PrimeTime Software Environment

Table 9–1 shows the available operating conditions that can be set for a few
of Altera's device families.

1 From the TimeQuest Console pane, use the command
get_available_operating_conditions to obtain a list of
available operating conditions for the target device.

The following steps shows how to generate the .sdo files for the three
different operating conditions for a Stratix III design. Each command must
be entered at the command prompt.

1 The –tq2pt option for quartus_sta is required only if the
project doesn't specify that PrimeTime tool will be used as the
timing analysis tool.

1. Generate the first slow corner model at the operating conditions:
slow, 1100 mV, and 85º C.

quartus_sta --model=slow --voltage=1100 --
temperature=85 <project name>

2. Generate the fast corner model at the operating conditions: fast,
1100 mV, and 0º C.

quartus_sta --model=fast --voltage=1100 --
temperature=0 --tq2pt <project name>

Table 9–1. Available Operating Condition Combinations

Device Family Available Conditions
(Model, Voltage, Temperature)

Stratix III (slow, 1100 mV, 85º C),
(slow, 1100 mV, 0º C),
(fast, 1100 mV, 0º C)

Cyclone III (slow, 1200 mV, 85º C),
(slow, 1200 mV, 0º C),
(fast, 1200 mV, 0º C)

Stratix II (slow, N/A, N/A), (fast, N/A, N/A)

Cyclone II (slow, N/A, N/A), (fast, N/A, N/A)

9–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

3. Generate the PrimeTime output files for the corners specified above.
The output files will be generated in the
primetime_two_corner_files directory.

quartus_eda --timing_analysis --tool=primetime
--format=verilog --
output_directory=primetime_two_corner_files --
write_settings_files=off <project name>

4. Generate the second slow corner model at the operating conditions:
slow, 1100 mV, and 0º C.

quartus_sta --model=slow --voltage=1100 --
temperature=0 --tq2pt <project name>

5. Generate the PrimeTime output files for the second slow corner.
The output files will be generated in the
primetime_one_slow_corner_files directory.

quartus_eda --timing_analysis --tool=primetime --
format=verilog --
output_directory=primetime_one_slow_corner_files -
-write_settings_files=off $revision

To summarize, the previous steps generate the following files for the
three operating conditions:

■ First slow corner (slow, 1100 mV, 85º C) :
VO File—primetime_two_corner_files/<project name>.vo
SDO File—primetime_two_corner_files/<project name>_v.sdo

■ Fast corner (fast, 1100 mV, 0º C) :
VO File—primetime_two_corner_files/<project name>.vo
SDO File—primetime_two_corner_files/<project name>_v_fast.sdo

■ Second slow corner (slow, 1100 mV, 0º C) :
VO File—primetime_one_slow_corner_files/<project name>.vo
SDO File—primetime_one_slow_corner_files/<project name>_v.sdo

1 The directory primetime_one_slow_corner_files may also have
files for fast corner. These files can be ignored since they were
already generated in the primetime_two_corner_files directory.

Altera Corporation 9–7
October 2007

Files Generated for the PrimeTime Software Environment

The Tcl Script

The Tcl script generated by the Quartus II software contains information
required by the PrimeTime software to analyze the timing and set up
your post-fit design. This script specifies the search path and the names
of the PrimeTime database library files provided with the Quartus II
software. The search_path and link_path variables are defined at
the beginning of the Tcl file. The link_path variable is a space-
delimited list that contains the names of all database files used by the
PrimeTime software.

Depending on whether you selected Verilog or VHDL in the Format for
output netlist list on the Timing Analysis page of the Settings dialog
box, when the Quartus II Classic Timing Analyzer is enabled, the EDA
Netlist Writer generates and saves the script as either
<revision_name>_pt_v.tcl or <revision_name>_pt_vhd.tcl.

To access the EDA Settings dialog box, on the Assignments menu, click
EDA Tool Settings, then expand EDA Tool Settings under the Category
list. In the dialog box, you can specify VHDL or Verilog for the format for
the output netlist.

1 The script also directs the PrimeTime software to use the
<device family>_all_pt.v or <device family>_all_pt.vhd file,
which contains the Verilog or VHDL description of library cells
for the targeted device family.

Example 9–1 shows the search_path and link_path variables
defined in the Tcl script:

Example 9–1. Sample PrimeTime Setup Script
set quartus_root "altera/quartus/"
set search_path [list . [format "%s%s" $quartus_root "eda/synopsys/primetime/lib"]]

set link_path [list * stratixii_lcell_comb_lib.db stratixii_lcell_ff_lib.db
stratixii_asynch_io_lib.db stratixii_io_register_lib.db stratixii_termination_lib.db
bb2_lib.db stratixii_ram_internal_lib.db stratixii_memory_register_lib.db
stratixii_memory_addr_register_lib.db stratixii_mac_out_internal_lib.db
stratixii_mac_mult_internal_lib.db stratixii_mac_register_lib.db
stratixii_lvds_receiver_lib.db stratixii_lvds_transmitter_lib.db
stratixii_asmiblock_lib.db stratixii_crcblock_lib.db stratixii_jtag_lib.db
stratixii_rublock_lib.db stratixii_pll_lib.db stratixii_dll_lib.db alt_vtl.db]

read_vhdl -vhdl_compiler stratixii_all_pt.vhd

The EDA Netlist Writer converts any Quartus II Classic Timing Analyzer
timing assignments to the PrimeTime software constraints and
exceptions when it generates the PrimeTime files. The converted
constraints are saved to the Tcl script. The Tcl script also includes a

9–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

PrimeTime software command that reads the Standard Delay Format
Output (.sdo) file generated by the Quartus II software. You can place
additional commands in the Tcl script to analyze or report on timing
paths.

Table 9–2 shows some examples of timing assignments converted by the
Quartus II software for the PrimeTime software. For example, the
set_input_delay -max command sets the input delay on an input
pin.

When the Quartus II TimeQuest Timing Analyzer is turned on, the EDA
Netlist Writer generates and saves the script as <revision_name>.pt.tcl.

The EDA Netlist Writer converts all Quartus II TimeQuest Timing
Analyzer SDC constraints and exceptions into compatible PrimeTime
software constraints and exceptions when it generates the PrimeTime
files. The constraints and exceptions are saved to the
<revision_name>.constraints.sdc file.

Table 9–2. Equivalent Quartus II and PrimeTime Software Constraints

Quartus II Equivalent PrimeTime Constraint

Clock defined on input pin, clock of
10 ns period and 50% duty cycle

create_clock -period 10.000 -waveform {0 5.000} \
[get_ports clk] -name clk

Input maximum delay of 1 ns on input
pin, din

set_input_delay -max -add_delay 1.000 -clock \
[get_clocks clk] [get_ports din]

Input minimum delay of 1 ns on input
pin, din

set_input_delay -min -add_delay 1.000 -clock \
[get_clocks clk] [get_ports din]

Output maximum delay of 3 ns on
output pin, out

set_output_delay -max -add_delay 3.000 -clock \
[get_clocks clk] [get_ports out]

Altera Corporation 9–9
October 2007

Files Generated for the PrimeTime Software Environment

Generated File Summary

The files that are generated by the EDA Netlist Writer for the PrimeTime
software depend on the Quartus II timing analysis tool you selected.

Table 9–3 shows the files that are generated for the PrimeTime software
when the Quartus II Classic Timing Analyzer is selected.

Table 9–4 shows the files that are generated for the PrimeTime software
when the Quartus II TimeQuest Timing Analyzer is selected. The EDA
Netlist Writer supports the output netlist format only when the
TimeQuest Timing Analyzer is enabled.

Table 9–3. Quartus II Classic Timing Analyzer-Generated PrimeTime Files

File Description

<revision_name>.vho | <revision_name>.vo The PrimeTime software output netlist. Either a VHDL Output File
or a Verilog Output file is generated, depending on the output
netlist language set.

<revision_name>_vhd.sdo |
<revision_name>_v.sdo

The PrimeTime software standard delay file. Either a VHDL
Standard Delay Output file or a Verilog Standard Delay Output
file is generated, depending on the output netlist language set.

<revision_name>_pt_vhd.tcl |
<revision_name>_pt_v.tcl

PrimeTime setup and constraint script. Either a VHDL Tcl script
or a Verilog Tcl script is generated, depending on the output
netlist language set.

Table 9–4. Quartus II TimeQuest Timing Analyzer-Generated PrimeTime Files

File Description

<revision_name>.vo The PrimeTime software output netlist. When the Quartus II
TimeQuest Timing Analyzer is enabled, only PrimeTime (Verilog)
is supported.

<revision_name>_v.sdo |
<revision_name>_v_fast.sdo

The PrimeTime software standard delay file. When the Quartus II
TimeQuest Timing Analyzer is enabled, only PrimeTime (Verilog)
is supported.

<revision_name>.pt.tcl PrimeTime setup and constraint script. When the Quartus II
TimeQuest Timing Analyzer is enabled, only PrimeTime (Verilog)
is supported.

<revision_name>.collections.sdc Contains the mapping from the Quartus II TimeQuest Timing
Analyzer netlist to the PrimeTime netlist.

<revision_name>.constraints.sdc Contains the converted Quartus II TimeQuest Timing Analyzer
constraints for the PrimeTime software.

9–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Running the
PrimeTime
Software

The PrimeTime software runs only on UNIX operating systems. If the
Quartus II output files for the PrimeTime software were generated by
running the Quartus II software on a PC/Windows-based system, follow
these steps to run the PrimeTime software using Quartus II output files:

1. Install the PrimeTime libraries on a UNIX system by installing
Quartus II software on UNIX.

The PrimeTime libraries are located in the <Quartus II installation
directory>/eda/synopsys/primetime/lib directory.

2. Copy the Quartus II output files to the appropriate UNIX directory.
You may need to run a PC to UNIX program, such as dos2unix, to
remove any control characters.

3. Modify the Quartus II path in Tcl scripts to point to the PrimeTime
libraries, as described in Step 1. In Example 9–1, the first line is:

set quartus_root "altera/quartus/" set search_path [list . [format
"%s%s" $quartus_root "eda/synopsys/primetime/lib"]]

This is the Tcl script that should be modified.

Analyzing Quartus II Projects

The PrimeTime software is controlled with Tcl scripts and can be run
through pt_shell. You can run the <revision_name>_pt_v.tcl script file.
For example, type the following at a UNIX system command prompt:

pt_shell -f <revision_name>_pt_v.tcl r
When the Quartus II TimeQuest Timing Analyzer is selected, type the
following at a UNIX system command prompt:

pt_shell -f <revision_name>.pt.tcl r
After all Tcl commands in the script are interpreted, the PrimeTime
software returns control to the pt_shell prompt, which allows you to
use other commands.

Altera Corporation 9–11
October 2007

Running the PrimeTime Software

Other pt_shell Commands

You can run additional pt_shell commands at the pt_shell prompt,
including the man program. For example, to read documentation about
the report_timing command, type the following at the pt_shell
prompt:

man report_timing r
You can list all commands available in pt_shell by typing the following
at the pt_shell prompt:

help r
Type quit r at the pt_shell prompt to close pt_shell.

1 You can also run pt_shell without a script file by typing
pt_shellr at the UNIX command line prompt.

9–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

PrimeTime
Timing Reports

Sample of the PrimeTime Software Timing Report

After running the script, the PrimeTime software generates a timing
report. If the timing constraints are not met, Violated is displayed at the
end of the timing report. The timing report also gives the negative slack.

The PrimeTime software report is similar to the sample shown in
Example 9–2. The starting point in this report is a register clocked by
clock signal, clock, the endpoint is another register, inst3-I.lereg.

Example 9–2. Hold Path Report in PrimeTime
Startpoint: inst2~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Endpoint: inst3~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Path Group: clock
Path Type: min
Point IncrPath

clock clock (rise edge)0.0000.000
clock network delay (propagated)3.1663.166
inst2~I.lereg.clk (stratix_lcell_register)0.000 3.166r
inst2~I.lereg.regout (stratix_lcell_register) <-0.176*3.342r
inst2~I.regout (stratix_lcell)0.000*3.342r
inst3~I.datac (stratix_lcell)0.000*3.342r
inst3~I.lereg.datac (stratix_lcell_register)3.413*6.755r
data arrival time6.755
clock clock (rise edge)0.0000.000
clock network delay (propagated)3.0023.002
inst3~I.lereg.clk (stratix_lcell_register)3.002r
library hold time0.100*3.102
data required time 3.102

data required time3.102
data arrival time-6.755

slack (MET)3.653

Altera Corporation 9–13
October 2007

PrimeTime Timing Reports

Comparing Timing Reports from the Quartus II Classic Timing
Analyzer and the PrimeTime Software

Both the Quartus II Classic Timing Analyzer and the Quartus II
TimeQuest Timing Analyzer generate a static timing analysis report for
every successful design compilation. The timing report lists all of the
analyzed timing paths in your design that were analyzed, and indicates
whether these paths have met or violated their timing requirements.
Violations are reported only if timing constraints were specified.

The Quartus II TimeQuest Timing Analyzer uses an equivalent set of
equations as PrimeTime when reporting the static timing analysis result
for a design. However, the Quartus II Classic Timing Analyzer uses
slightly different reporting equations when reporting the static timing
analysis results for a design. This section describes these differences
between the Quartus II Classic Timing Analyzer and the PrimeTime
software.

The timing report generated by the Quartus II Classic Timing Analyzer
differs from the report generated by the PrimeTime software. Both tools
provide the same data but present in different formats. The following
sections show how the PrimeTime software reports the following slack
values differently from the Quartus II Classic Timing Analyzer report:

■ “Clock Setup Relationship and Slack” on page 9–13
■ “Clock Hold Relationship and Slack” on page 9–17
■ “Input Delay and Output Delay Relationships and Slack” on

page 9–21

Clock Setup Relationship and Slack

The Quartus II Classic Timing Analyzer performs a setup check that
ensures that the data launched by source registers is latched correctly at
the destination registers. The Quartus II Classic Timing Analyzer does
this by determining the data arrival time and clock arrival time at the
destination registers, and compares this data with the setup time delay of
the destination register. Equation 1 expresses the inequality that is used
for a setup check. The data arrival time includes the longest path from the
clock to the source register, the clock-to-out micro delay of the source
register, and the longest path from the source register to the destination
register. The clock arrival time is the shortest delay from the clock to the
destination register.

(1) Clock Arrival Data Arrival tsu≥–

9–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Slack is the margin by which a timing requirement is met or not met.
Positive slack indicates the margin by which a requirement is met.
Negative slack indicates the margin by which a requirement was not met.
The Quartus II Classic Timing Analyzer determines the clock setup slack,
with Equation 2:

(2)

1 The longest register-to-register delay in the previous equation is
equal to the register-to-register data delay.

(3)

For a simple three-register design, refer to Figure 9–3.

Figure 9–3. Simple Three-Register Design

Clock Setup Slack Largest Register-to-Register Requirement
Longest Register-to-Register Delay

–=

Largest Register-to-Register Requirement
Setup Relationship between Source and Destination Largest Clock Skew
Micro tco of Destination Register Micro tsu of Destination Register–

–+
=

Setup Relationship between Source and Destination Latch Edge Launch Edge–=

Clock Skew Shortest Clock Path to Destination Longest Clock Path to Source–=

Altera Corporation 9–15
October 2007

PrimeTime Timing Reports

The Quartus II Classic Timing Analyzer generates a report for the design,
as shown in Figure 9–4.

Figure 9–4. Timing Analyzer Report from Figure 9–3

Equation 1, 2, and 3 are similar to those found in other static timing
analysis tools, such as the PrimeTime software. Equation 4, 5, 6, and 7,
used by the PrimeTime software, are essentially the same as those used by
the Quartus II Classic Timing Analyzer, but they are rearranged.

(4)

(5)

(6)

(7)

1 The longest data delay in the previous equation is equal to
register-to-register data delay.

Slack Data Required Data Arrival–=

Clock Arrival Latch Edge Shortest Clock Path to Destination+=

Data Required Clock Arrival Micro tsu–=

Data Arrival Launch Edge Longest Clock Path to Source Micro tco Longest Data Delay++ +=

9–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 9–5 shows a clock setup check in the Quartus II software.

Figure 9–5. Clock Setup Check Reporting with the Quartus II Classic Timing Analyzer

The following results are obtained by extracting the numbers from the
Quartus II Classic Timing Analyzer report and applying them to the clock
setup slack equations from the Quartus II Classic Timing Analyzer:

(8) Setup Relationship between Source and Destination Latch Edge Launch Edge
Clock Setup Uncertainty

––=

8.0 0.0– 0.0– 8.0ns=

Clock Skew Shortest Clock Path to Destination Longest Clock Path to Source–=

3.002 3.166– 0.164ns–=

Largest Register-to-Register Requirement
Setup Relationship between Source & Destination Largest Clock Skew

Micro tco of Source Register– Micro tsu of Destination Register–
+

=

8 0.164–() 0.176– 0.010–+ 7.650ns=

Clock Setup Slack Largest Register-to-Register Requirement Longest Register-to-Register Delay–=

7.650 3.413– 4.237ns=

Altera Corporation 9–17
October 2007

PrimeTime Timing Reports

For the same register-to-register path, the PrimeTime software generates
a clock setup report as shown in Example 9–3:

Example 9–3. Setup Path Report in PrimeTime
Startpoint: inst2~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Endpoint: inst3~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Path Group: clock
Path Type: max PointIncrPath
--
clock clock (rise edge)0.0000.000
clock network delay (propagated)3.1663.166
inst2~I.lereg.clk (stratix_lcell_register)0.0003.166r
inst2~I.lereg.regout (stratix_lcell_register) <-0.176*3.342r
inst2~I.regout (stratix_lcell) <- 0.000*3.342r
inst3~I.datac (stratix_lcell) <-0.000*3.342r
inst3~I.lereg.datac (stratix_lcell_register)3.413*6.755r
data arrival time6.755
clock clock (rise edge)8.0008.000
clock network delay (propagated)3.00211.002
inst3~I.lereg.clk (stratix_lcell_register)11.002r
library setup time-0.010*10.992
data required time10.992
--
data required time10.992
data arrival time-6.755
--
slack (MET)4.237

Clock Hold Relationship and Slack

The Quartus II Classic Timing Analyzer performs a hold time check along
every register-to-register path in the design to ensure that no hold time
violations have occurred. The hold time check verifies that data from the
source register does not reach the destination until after the hold time of
the destination register. The condition used for a hold check is shown in
Equation 9:

(9)

The Quartus II Classic Timing Analyzer determines the clock hold slack
with Equation 10, 11, 12, and 13:

(10)

Data Arrival Clock Arrival– tH≥

Clock Hold Slack Shortest Register-to-Register Delay Smallest Register-to-Register Requirement–=

9–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

(11)

(12)

(13)

Figure 9–6 shows a simple three-register design.

Figure 9–6. A Simple Three-Register Design

The Quartus II Classic Timing Analyzer generates a report as shown in
Figure 9–7.

Figure 9–7. Timing Analyzer Report Generated from the Three Register Design

The previous equations are similar to those found in the Quartus II
software. The following equations are the same equations that are used
by the PrimeTime software, but they are rearranged.

Smallest Register-to-Register Requirement Hold Relationship between Source & Destination
Smallest Clock Skew Micro tsu of Source Micro tH of Destination+–

+=

Hold Relationship between Source & Destination Latch Edge Launch Edge–=

Smallest Clock Skew Longest Clock Path from Clock to Destination Register
Shortest Clock Path from Clock to Source Register

–=

Altera Corporation 9–19
October 2007

PrimeTime Timing Reports

(14)

(15)

(16)

(17)

1 The shortest register-to-register delay in the previous
equation is equal to register-to-register data delay.

Figure 9–8 shows a clock setup check with the Quartus II Classic Timing
Analyzer.

Figure 9–8. Clock Hold Check Reporting with the Quartus II Classic Timing Analyzer

The following results are obtained by extracting the numbers from the
Timing Analysis report and applying the clock setup slack equations
from the Quartus II Classic Timing Analyzer.

(18)

Slack Data Required Data Arrival–=

Clock Arrival Latch Edge Longest Clock Path to Destination+=

Data Required Clock Arrival Micro tH–=

Data Arrival Launch Edge Longest Clock Path to Source Micro tco Shortest Data Delay++ +=

Clock Hold Slack Shortest Register-to-Register Delay Smallest Register-to-Register Requirement–=

3.413 0.240–()– 3.653ns=

Smallest Register-to-Register Requirement Hold Relationship between Source & Destination
Smallest Clock Skew Micro tco of Source Micro tH of Destination+–

+=

0 0.164–() 0.176– 0.100+ + 0.240ns–=

9–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

For the same register-to-register path, the PrimeTime software generates
the report shown in Example 9–4:

Example 9–4. Hold Path Report in PrimeTime
Startpoint: inst2~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Endpoint: inst3~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Path Group: clock
Path Type: min
Point IncrPath

--
 clock clock (rise edge)0.0000.000
 clock network delay (propagated)3.1663.166
 inst2~I.lereg.clk (stratix_lcell_register)0.0003.166r
 inst2~I.lereg.regout (stratix_lcell_register)<-0.176*3.342r
 inst2~I.regout (stratix_lcell)0.000*3.342r
 inst3~I.datac (stratix_lcell)0.000*3.342r
 inst3~I.lereg.datac (stratix_lcell_register)3.413*6.755r
 data arrival time6.755

 clock clock (rise edge)0.0000.000
 clock network delay (propagated)3.0023.002
 inst3~I.lereg.clk (stratix_lcell_register)3.002r
 library hold time0.100*3.102
 data required time 3.102

--
 data required time3.102
 data arrival time-6.755

--
 slack (MET)3.653

Both sets of hold slack equations can be used to determine the hold slack
value of any path.

Hold Relationship between Source & Destination Latch Launch–=

0.0 0.0ns–

Smallest Clock Skew Longest Clock Path from Clock to Destination Register
Shortest Clock Path from Clock to Source Register

–=

3.002 3.166– 0.164ns–=

Altera Corporation 9–21
October 2007

PrimeTime Timing Reports

Input Delay and Output Delay Relationships and Slack

Input delay and output delay reports generated by the Quartus II Classic
Timing Analyzer are similar to the clock setup and clock hold
relationship reports. Figure 9–9 shows the input delay and output delay
report for the design shown in Figure 9–6 on page 9–18.

Figure 9–9. Input and Output Delay Reporting with the Quartus II Classic Timing Analyzer

Figure 9–10 shows the fully expanded view for the output delay path.

Figure 9–10. Output Delay Path Reporting with the Quartus II Classic Timing Analyzer

9–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

For the same output delay path, the PrimeTime software generates a
report similar to Example 9–5:

Example 9–5. Setup Path Report in PrimeTime
Startpoint: inst3~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Endpoint: data_out
 (output port clocked by clock)
Path Group: clock
Path Type: max PointIncrPath
--
clock clock (rise edge)0.0000.000
clock network delay (propagated)3.0023.002
inst3~I.lereg.clk (stratix_lcell_register)0.0003.002r
inst3~I.lereg.regout (stratix_lcell_register)<- 0.176*3.178r
inst3~I.regout (stratix_lcell)<- 0.0003.178r
data_out~I.datain (stratix_io)<- 0.000 3.178r
data_out~I.out_mux3.A (mux21) <-0.0003.178r
data_out~I.out_mux3.MO (mux21)<- 0.000 3.178r
data_out~I.and2_22.IN1 (AND2)<- 0.0003.178r
data_out~I.and2_22.Y (AND2)<- 0.0003.178r
data_out~I.out_mux1.A (mux21)<-0.0003.178r
data_out~I.out_mux1.MO (mux21)<- 0.0003.178r
data_out~I.inst1.datain (stratix_asynch_io)<-0.902*4.080r
data_out~I.inst1.padio (stratix_asynch_io)<- 2.495*6.575r
data_out~I.padio (stratix_io)<- 0.000 6.575r
data_out (out)0.0006.575r
data arrival time6.575
clock clock (rise edge)8.0008.000
clock network delay (propagated)0.0008.000
output external delay1.2506.750
data required time6.750

data required time6.750
data arrival time6.575

slack (MET) 0.175

To generate a list of the 100 worst paths and place this data into a file
called file.timing, type the following command at the pt_shell
prompt:

report_timing -nworst 100 > file.timing r
Timing paths in the PrimeTime software are listed in the order of
most-negative-slack to most-positive-slack. The PrimeTime software
does not categorize failing paths by default. Timing setup (tSU) and timing
hold (tH) times are not listed separately. In the PrimeTime software, each
path is shown with a start and end point; for example, if it is a

Altera Corporation 9–23
October 2007

Static Timing Analyzer Differences

register-to-register or input-to-register type of path. If you only use the
report_timing part of the command without adding a -delay option,
only the setup-time-related timing paths are reported.

The following command is used to create a minimum timing report or a
list of hold-time-related violations:

report_timing -delay_type min r
Ensure that the correct SDO file, either minimum or maximum delays, is
loaded before running this command.

Static Timing
Analyzer
Differences

Under certain design conditions, several static timing analysis differences
can exist between the Classic Timing Analyzer and the TimeQuest
Timing Analyzer, and the PrimeTime software. The following sections
explain the differences between the two static timing analysis engines
and the PrimeTime software.

The Quartus II Classic Timing Analyzer and the PrimeTime
Software

The following section describes the differences between the Quartus II
Classic Timing Analyzer and the PrimeTime software.

Rise/Fall Support

The Quartus II Classic Timing Analyzer does not support rise/fall
analysis. However, rise/fall support is available in PrimeTime.

Minimum and Maximum Delays

TimeQuest calculates minimum and maximum delays for all device
components with the exception of clock routing. PrimeTime does not
model these delays. This can result in different slacks for a given path on
average by 2 - 3%.

Recovery/Removal Analysis

TimeQuest performs a more pessimistic recovery/removal analysis for
asynchronous path than PrimeTime. This can result in different delays
reported between the two tools.

9–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Encrypted Intellectual Property Blocks

The Quartus II software has the capability to decrypt all intellectual
property (IP) blocks designed for Altera® devices that have been
encrypted by their vendors. The decryption process allows the Quartus II
software to perform a full compilation of the design that contains an
encrypted IP block. This also allows the Quartus II Classic Timing
Analyzer to perform a complete static timing analysis on the design.
However, when the PrimeTime software is designated as the static timing
analysis tool, the Quartus II EDA Netlist Writer does not generate either
a VHDL Output File (.vho) or Verilog Output File (.vo) netlist file for
designs that contain encrypted IP blocks for which the license does not
permit generation of output netlists for third-party tools.

Registered Clock Signals

Registered clock signals are clock signals that pass through a register
before reaching the clock port of a sequential element. Figure 9–11 shows
an example of a registered clock signal.

Figure 9–11. Registered Clock Signal

If no clock setting is applied to the register on the clock path (shown as
register reg_1 in Figure 9–11), the Quartus II Classic Timing Analyzer
treats the register in the clock path as a buffer. The delay of the buffer is
equal to the CELL delay of the register plus the tCO of the register. The
PrimeTime software does not treat the register as a buffer.

1 For more information about creating clock settings, refer to the
Quartus II Classic Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

D Q

D Q

reg1

reg2

Logic

Altera Corporation 9–25
October 2007

Static Timing Analyzer Differences

Multiple Source and Destination Register Pairs

In any design, multiple paths may exist from a source register to a
destination register. Each path from the source register to the destination
register may have a different delay value due to the different routes
taken. For example, Figure 9–12 shows a sample design that contains
multiple path pairs between the source register and destination register.

Figure 9–12. Multiple Source and Destination Pairs

The Quartus II Classic Timing Analyzer analyzes all source and
destination pairs, but reports only the source and destination register pair
with the worst slack. For example, if the Path 2 pair delay is greater than
the Path 1 pair delay in Figure 9–12, the Quartus II Classic Timing
Analyzer reports the slack value of the Path 2 pair and not the Path 1 pair.
The PrimeTime software reports all possible source and destination
register pairs.

Latches

By default, the Quartus II software implements all latches as
combinational loops. The Quartus II Classic Timing Analyzer can analyze
such latches by treating them as registers with inverted clocks or analyze
latches as a combinational loop modeled as a combinational delay.

1 For more information about latch analysis, refer to the Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

The PrimeTime software always analyzes these latches as combinational
loops, as defined in the netlist file.

LVDS I/O

When it analyzes the dedicated LVDS transceivers in your design, the
Quartus II Classic Timing Analyzer generates the Receiver Skew Margin
(RSKM) report and a Channel-to-Channel Skew (TCCS) report. The
PrimeTime software does not generate these reports.

D Q

Path 2

Path 1

D Q

9–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Clock Latency

When a single clock signal feeds both the source and destination registers
of a register-to-register path, and either an Early Clock Latency or a Late
Clock Latency assignment has been applied to the clock signal, the
Quartus II Classic Timing Analyzer does not factor in the clock latency
values when it calculates the clock skew between the two registers. The
Quartus II Classic Timing Analyzer factors in the clock latency values
when the clock signal to the source and destination registers of a register-
to-register path are different. The PrimeTime software applies the clock
latency values when a single clock signal or different clock signals feeds
the source and destination registers of a register-to-register path.

Input and Output Delay Assignments

When a purely combinational (non-registered) path exists between an
input pin and output pin of the Altera FPGA and both pins have been
constrained with an input delay and an output delay assignment applied,
respectively, the Quartus II Classic Timing Analyzer does not perform a
clock setup or clock hold analysis. The PrimeTime software analyzes
these paths.

Generated Clocks Derived from Generated Clocks

The Quartus II Classic Timing Analyzer does not support a generated
clock derived from a generated clock. This situation might occur if a
generated clock feeds the input clock pin of a PLL. The output clock of the
PLL is a generated clock.

The Quartus II TimeQuest Timing Analyzer and the PrimeTime
Software

The following sections describe the static timing analysis differences
between the Quartus II TimeQuest Timing Analyzer and the PrimeTime
software.

Encrypted Intellectual Property Blocks

The Quartus II software has the capability to decrypt all IP blocks,
designed for Altera devices that have been encrypted by their vendors.
The decryption process allows the Quartus II software to perform a full
compilation on the design containing an encrypted IP block. This also
allows the Quartus II TimeQuest Timing Analyzer to perform a complete
static timing analysis on the design. However, when the PrimeTime
software is designated as the static timing analysis tool, the Quartus II

Altera Corporation 9–27
October 2007

Static Timing Analyzer Differences

EDA Netlist Writer does not generate .vho or .vo netlist files for designs
that contain encrypted IP blocks whose license does not permit
generation of output netlists for other tools.

Latches

By default, the Quartus II software implements all latches as
combinational loops. The Quartus II TimeQuest Timing Analyzer can
analyze such latches by treating them as registers with inverted clocks.
The Quartus II TimeQuest Timing Analyzer analyzes latches as a
combinational loop modeled as a combinational delay.

f For more information about latch analysis, refer to the Quartus II Classic
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

The PrimeTime software always analyzes these latches as combinational
loops, as defined in the netlist file.

LVDS I/O

When it analyzes the dedicated LVDS transceivers in your design, the
Quartus II TimeQuest Timing Analyzer generates a Receiver Skew
Margin (RSKM) report and a Channel-to-Channel Skew (TCCS) report.
The PrimeTime software does not generate these reports.

The Quartus II TimeQuest Timing Analyzer SDC File and PrimeTime
Compatibility

Because of differences between node naming conventions with the netlist
generated by the EDA Netlist Writer and the internal netlist used by the
Quartus II software, SDC files generated for the Quartus II software or
the Quartus II TimeQuest Timing Analyzer are not compatible with the
PrimeTime software.

Run the EDA Netlist Writer to generate a compatible SDC file from the
TimeQuest SDC file for the PrimeTime software. After the files have been
generated, <revision_name>.collections.sdc and
<revision_name>.constraints.sdc, both files can be read in by the
PrimeTime software for compatibility of constraints between the
Quartus II TimeQuest Timing Analyzer and the PrimeTime software.

Clock and Data Paths

If a timing path acts both as a clock path (a path that connects to a clock
pin with a clock associated to it), and a data path (a path that feeds into
the data in port of a register), the Quartus II TimeQuest Timing Analyzer
will report the data paths, whereas PrimeTime will not.

9–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Inverting and Non-Inverting Propagation

TimeQuest always propagates non-inverting sense for clocks through
non-unate paths in the clock network.

PrimeTime's default behavior is to propagate both inverting and
non-inverting senses through a non-unate path in the clock network.

Multiple Rise/Fall Numbers For a Timing Arc

For a given timing path with a corresponding set of pins/ports that
make up the path (including source and destination pair), if the
individual components of that path have different rise/fall delays, there
can potentially be many timing paths with different delays using the
same set of pins. If this occurs, TimeQuest reports only one timing path
for the set of pins that make up the path.

Virtual Generated Clocks

PrimeTime does not support generated clocks that are virtual. To
maintain compatibility between TimeQuest and PrimeTime, all
generated clocks should have an explicit target specified.

Generated Clocks Derived from Generated Clocks

The Quartus II Classic Timing Analyzer does not support the creation of
a generated clock derived from a generated clock. This situation might
occur if a generated clock feeds the input clock pin of another generated
clock. The output clock of the PLL is a generated clock.

Conclusion The Quartus II software can export a netlist, constraints, and timing
information for use with the PrimeTime software. The PrimeTime
software can use data from either best-case or worst-case Quartus II
timing models to measure timing. The PrimeTime software is controlled
using a Tcl script generated by the Quartus II software that you can
customize to direct the PrimeTime software to produce violation and
slack reports.

Altera Corporation 9–29
October 2007

Referenced Documents

Referenced
Documents

This chapter references the following document:

■ Quartus II Handbook
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quartus II TimeQuest Timing Analyzer in volume 3 of the Quartus II

Handbook
■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in

volume 3 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

9–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 9–5 shows the revision history for this chapter.

Table 9–5. Document Revision History

Date and Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 9–29. —

May 2007
v7.1.0

● Added Generating Multiple Operating Conditions with
TimeQuest

● Added Rise/Fall Support
● Added Minimum and Maximum Delays
● Added Recovery/Removal Aanalyis
● Added Generated Clocks Derived from Generated

Clocks
● Added Multiple Rise/Fall Numbers for a Timing Analyzer

SDC
● Virtual Generated Clocks
● Added Referenced Documents

Updates added to the Static
Timing Analyzer Differences
section of this chapter.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only.
No other changes made to chapter.

—

November 2006
v6.1.0

● Noted the differences between the different timing
analyzers

● Explained how to select between the timing analyzers
● Introduced the TimeQuest flow with PrimeTime

Introduction of the TimeQuest
Timing Analyzer updated in
this chapter.

May 2006
v6.0.0

Chapter title changed to Synopsys PrimeTime Support.
Minor updates for the Quartus II software version 6.0.0.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

August 2005
v5.0.1

Minor text updates. —

May 2005
v5.0.0

New functionality for Quartus II software 5.0.0 —

December 2004
v2.0

● Chapter 6 Synopsys PrimeTime moved to section III
Volume 1.

● New functionality for Quartus II software 4.2.

—

Altera Corporation Section III–i
Preliminary

Section III. Power
Estimation and Analysis

As FPGA designs grow larger and processes continue to shrink, power
becomes an ever-increasing concern. When designing a printed circuit
board, the power consumed by a device needs to be accurately estimated
to develop an appropriate power budget, and to design the power
supplies, voltage regulators, heat sink, and cooling system.

The Quartus® II software allows you to estimate the power consumed by
your current design during timing simulation. The power consumption
of your design can be calculated using the Microsoft Excel-based power
calculator, or the Simulation-Based Power Estimation features in the
Quartus II software. This section explains how to use both.

This section includes the following chapter:

■ Chapter 10, PowerPlay Power Analysis

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section III–ii Altera Corporation
Preliminary

Power Estimation and Analysis Quartus II Handbook, Volume 3

Altera Corporation 10–1
October 2007 Preliminary

10. PowerPlay Power
Analysis

Introduction As designs grow larger and process technology continues to shrink,
power becomes an increasingly important design consideration. When
designing a printed circuit board (PCB), the power consumed by a device
needs to be accurately estimated to develop an appropriate power budget
and to design the power supplies, voltage regulators, heat sink, and
cooling system. The PowerPlay power analysis tools, made available by
Altera®, provide improved power consumption accuracy and the ability
to estimate power consumption from early design concept through
design implementation, as shown in Figure 10–1.

Figure 10–1. PowerPlay Power Analysis

Depending where you are in your design cycle and the accuracy of the
estimation required, you can either use the PowerPlay Early Power
Estimator spreadsheet or the PowerPlay Power Analyzer Tool in the
Quartus® II software. You can use the PowerPlay Early Power Estimator
spreadsheet during the board design and layout phase to obtain a power
estimate and then design for proper power management. The PowerPlay
Power Analyzer Tool is used to obtain an accurate estimation of power
after the design is complete, ensuring that thermal and supply budgets
are not violated.

User Input

Quartus II
Design Profile

Place-and-Route
Results

Simulation
Results

Design Concept Design Implementation

PowerPlay Early Power Estimators Quartus II PowerPlay Power Analyzer

Lower PowerPlay Power Analysis Inputs Higher

Es
tim

at
io

n
Ac

cu
ra

cy

Higher

QII53013-7.2.0

10–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

You can estimate power consumption for Arria™ GX, Stratix® series
devices, Cyclone® series devices, HardCopy® II, and MAX® II devices
with the Microsoft Excel-based PowerPlay Early Power Estimator
spreadsheet or the PowerPlay Power Analyzer Tool.

f For more information about acquiring the PowerPlay Power Estimator
spreadsheet for Arria GX, Stratix series devices, Cyclone series,
HardCopy II, and MAX II devices and its use, refer to
www.altera.com/support/devices/estimator/pow-powerplay.html.

This chapter discusses the following topics:

■ “Quartus II Early Power Estimator File”
■ “Types of Power Analyses” on page 10–6
■ “Factors Affecting Power Consumption” on page 10–6
■ “Using the PowerPlay Power Analyzer” on page 10–23

Quartus II Early
Power Estimator
File

When entering data into the Early Power Estimator spreadsheet, you
must enter the device resources, operating frequency, toggle rates, and
other parameters. This requires familiarity with the design. If you do not
have an existing design, you must estimate the number of device
resources used in your design and enter it manually.

If you already have an existing design or a partially completed design, the
power estimator file that is generated by the Quartus II software can aid
in completing the PowerPlay Early Power Estimator spreadsheet.

To generate the power estimation file, you must first compile your design
in the Quartus II software. After compilation is complete, on the Project
menu, click Generate PowerPlay Early Power Estimator File
(Figure 10–2). This command instructs the Quartus II software to write
out a power estimator Comma-Separated Value (.csv) file (or a text [.txt]
file for older device families).

Altera Corporation 10–3
October 2007 Preliminary

Quartus II Early Power Estimator File

Figure 10–2. Generate PowerPlay Early Power Estimator File Option

After the Quartus II software successfully generates the power estimator
file, a message appears (Figure 10–3).

Figure 10–3. Generate PowerPlay Early Power Estimator File Message

The power estimator file is named
<name of Quartus II project> _early_pwr.csv. Figure 10–4 is an example of
the contents of a power estimation file generated by the Quartus II
software version 7.2 using a Stratix II device.

10–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–4. Example of Power Estimation File

1 The power estimator file is named
<name of Quartus II project> _early_pwr.txt for older device
families.

The PowerPlay Early Power Estimator spreadsheet includes the Import
Data macro that parses the information in the power estimation file and
transfers it into the spreadsheet. If you do not want to use the macro, you
can transfer the data into the Early Power Estimator spreadsheet
manually.

If the existing Quartus II project represents only a portion of your full
design, you should enter the additional resources used in the final design
manually. Therefore, you can edit the spreadsheet and add additional
device resources after importing the power estimation file information.

Altera Corporation 10–5
October 2007 Preliminary

Quartus II Early Power Estimator File

PowerPlay Early Power Estimator File Generator Compilation
Report

After successfully generating the power estimation file, a PowerPlay
Early Power Estimator File Generator report is created under the
Compilation Report section. This report is divided into the different
sections, such as Summary, Settings, Generated Files, Confidence Metric
Details, and Signal Activities.

For more information about the PowerPlay Early Power Estimator File
Generator report, refer to “PowerPlay Power Analyzer Compilation
Report” on page 10–39.

Table 10–1 lists the main differences between the PowerPlay Early Power
Estimator and the PowerPlay Power Analyzer.

Table 10–1. Comparison of PowerPlay Early Power Estimator and PowerPlay Power Analyzer

Characteristic PowerPlay Early Power Estimator PowerPlay Power Analyzer

Phase in the design cycle Any time After fitting

Tool requirements Spreadsheet program/Quartus II software Quartus II software

Accuracy Medium Medium to very high

Data inputs ● Resource usage estimates
● Clock requirements
● Environmental conditions
● Toggle Rate

● Design after fitting
● Clock requirements
● Register transfer level (RTL)

simulation results (optional)
● Post-fitting simulation results

(optional)
● Signal activities per node or entity

(optional)
● Signal activity defaults
● Environmental conditions

Data outputs (1) ● Total thermal power dissipation
● Thermal static power
● Thermal dynamic power
● Off-chip power dissipation
● Voltage supply currents (2)

● Total thermal power
● Thermal static power
● Thermal dynamic power
● Thermal I/O power
● Thermal power by design hierarchy
● Thermal power by block type
● Thermal power dissipation by clock

domain
● Off-chip (non-thermal) power

dissipation
● Voltage supply currents (2)

Notes to Table 10–1:
(1) Early Power Estimator output varies by device family as some features may not be available.
(2) Available only for Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and MAX II

device families.

10–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The results of the Power Analyzer are only an estimation of power, not a
specification. The purpose of the estimation is to help establish a guide for
the design’s power budget. Altera recommends that the actual power be
measured on the board. You must measure the device’s total dynamic
current during device operation, because the estimate is very design
dependent and depends on many variable factors, including input vector
quantity, quality, and exact loading conditions of a PCB design. Static
power consumption must not be based on empirical observation. The
values reported by the Power Analyzer or datasheet must be used
because the devices tested may not exhibit worst-case behavior.

Types of Power
Analyses

Understanding the uses of power analysis and the factors affecting power
consumption help you use the Power Analyzer effectively. Power
analysis meets two significant planning requirements:

■ Thermal planning: The designer must ensure that the cooling
solution is sufficient to dissipate the heat generated by the device. In
particular, the computed junction temperature must fall within
normal device specifications.

■ Power supply planning: Power supplies must provide adequate
current to support device operation.

The two types of analyses are closely related because much of the power
supplied to the device is dissipated as heat from the device. However, in
some situations, the two types of analyses are not identical. For example,
when you use terminated I/O standards, some of the power drawn from
the FPGA device power supply is dissipated in termination resistors,
rather than in the FPGA.

Power analysis also addresses the activity of the design over time as a
factor that impacts the power consumption of the device. Static power is
defined as the power consumed regardless of design activity. Dynamic
power is the additional power consumed due to signal activity or
toggling.

Factors Affecting
Power
Consumption

This section describes the factors affecting power consumption.
Understanding these factors lets you use the Power Analyzer and
interpret its results effectively.

Device Selection

Different device families have different power characteristics. Many
parameters affect the device family power consumption, including choice
of process technology, supply voltage, electrical design, and device

Altera Corporation 10–7
October 2007 Preliminary

Factors Affecting Power Consumption

architecture. For example, the Cyclone II device family architecture was
designed to consume less static power than the high-performance,
full-featured, Stratix II device family.

Power consumption also varies within a single device family. A larger
device typically consumes more static power than a smaller device in the
same family, due to its larger transistor count. Dynamic power can also
increase with device size in devices that employ global routing
architectures, such as the MAX device family. Stratix, Cyclone, and
MAX II devices do not exhibit significantly increased dynamic power as
device size increases.

The choice of device package also affects the device’s ability to dissipate
heat. This can impact your cooling solution choice required to meet
junction temperature constraints.

Finally, process variation can affect power consumption. Process
variation primarily impacts static power, since sub-threshold leakage
current varies exponentially with changes in transistor threshold voltage.
As a result, it is critical to consult device specifications for static power
and not rely on empirical observation. Process variation weakly affects
dynamic power.

Environmental Conditions

Operating temperature primarily affects device static power
consumption. Higher junction temperatures result in higher static power
consumption. The device thermal power and cooling solution that you
use must result in the device junction temperature remaining within the
maximum operating range for that device.

The main environmental parameters affecting junction temperature are
the cooling solution and ambient temperature.

Air Flow

Air flow is a measure of how quickly heated air is removed from the
vicinity of the device and replaced by air at ambient temperature. This
can either be specified as “still air” when no fan is used, or as the linear
feet per minute rating of the fan used in the system. Higher air flow
decreases thermal resistance.

Heat Sink and Thermal Compound

A heat sink allows more efficient heat transfer from the device to the
surrounding area because of its large surface area exposed to the air. The
thermal compound that interfaces the heat sink to the device also

10–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

influences the rate of heat dissipation. The case-to-ambient thermal
resistance (θCA) parameter describes the cooling capacity of the heat sink
and thermal compound employed at a given airflow. Larger heat sinks
and more effective thermal compounds reduce θCA.

Ambient Temperature

The junction temperature of a device is equal to:

TJunction = TAmbient + PThermal · θJA

where θJA is the total thermal resistance from the device transistors to the
environment, having units of degrees Celsius per Watt. The value θJA is
equal to the sum of the junction-to-case (package) thermal resistance (θJC)
and the case-to-ambient thermal resistance (θCA) of your cooling solution.

Board Thermal Model

The thermal resistance of the path through the board is referred to as the
junction-to-board thermal resistance (θJB) (the units are in degrees Celsius
per Watt). This is used in conjunction with the board temperature, as well
as the top-of-chip θJA and ambient temperatures, to compute junction
temperature.

Design Resources

The design resource used greatly affects power consumption.

Number, Type, and Loading of I/O Pins

Output pins drive off-chip components, resulting in high-load
capacitance that leads to a high-dynamic power per transition.
Terminated I/O standards require external resistors that generally draw
constant (static) power from the output pin.

Number and Type of Logic Elements, Multiplier Elements, and RAM
Blocks

A design with more logic elements (LEs), multiplier elements, and
memory blocks tends to consume more power than a design with fewer
such circuit elements. Also, the operating mode of each circuit element
affects its power consumption. For example, a digital signal processing
(DSP) block performing 18×18 multiplications and a DSP block
performing multiply-accumulate operations consume different amounts

Altera Corporation 10–9
October 2007 Preliminary

Factors Affecting Power Consumption

of dynamic power due to different amounts of internal capacitance being
charged on each transition. Static power is also affected, to a small degree,
by the operating mode of a circuit element.

Number and Type of Global Signals

Global signal networks span large portions of the device and have high
capacitance, resulting in significant dynamic power consumption. The
type of global signal is important as well. For example, Stratix II devices
support several kinds of global clock networks that span either the entire
device or a specific portion of the device (a regional clock network covers
a quarter of the device). Clock networks that span smaller regions have
lower capacitance and therefore, tend to consume less power. In addition,
the location of the logic array blocks (LABs) that are driven by the clock
network can have an impact, because the Quartus II software
automatically disables unused branches of a clock.

Signal Activities

The final important factor in estimating power consumption is the
behavior of each signal in the design. The two vital statistics are the toggle
rate and the static probability.

The toggle rate of a signal is the average number of times that the signal
changes value per unit time. The units for toggle rate are transitions per
second, and a transition is a change from 1 to 0 or 0 to 1.

The static probability of a signal is the fraction of time that the signal is
logic 1 during the period of device operation that is being analyzed. Static
probability ranges from 0 (always at ground) to 1 (always at logic high).

Dynamic power increases linearly with the toggle rate as the capacitive
load is charged more frequently for logic and routing. The Quartus II
models assume full rail-to-rail switching. For high toggle rates, especially
on circuit output I/O pins, the circuit can transition before fully charging
downstream capacitance. The result is a slightly conservative prediction
of power by the Quartus II PowerPlay Power Analyzer.

The static power consumed by both routing and logic can sometimes be
affected by the static probabilities of their input signals. This effect is due
to state-dependent leakage, and has a larger affect on smaller process
geometries. The Quartus II software models this effect on devices at
90 nm (or smaller) if it is deemed important to the power estimate. The
static power also varies with the static probability of a logic 1 or 0 on the
I/O pin when output I/O standards drive termination resistors.

10–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 To get accurate results from power analysis, the signal activities
that are used for analysis must be representative of the actual
operating behavior of the design. Inaccurate signal toggle rate
data is the largest source of power estimation error.

PowerPlay
Power Analyzer
Flow

The PowerPlay Power Analyzer supports accurate and representative
power estimation by letting you specify all the important design factors
affecting power consumption. Figure 10–5 shows the high-level Power
Analyzer flow.

Figure 10–5. PowerPlay Power Analyzer High-Level Flow

Note to Figure 10–5:
(1) Operating condition specifications are available only for the Arria GX devices,

Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and
MAX II device families.

The PowerPlay Power Analyzer requires that your design is synthesized
and fit to the target device. Therefore, the Power Analyzer knows both
the target device and how the design is placed and routed on the device.
The electrical standard used by each I/O cell and the capacitive load on
each I/O standard must be specified in the design to obtain accurate I/O
power estimates.

PowerPlay
Power Analyzer

Operating
Conditions (1)

User Design
(After Fitting)

Power Analysis
Report

Signal
Activities

Altera Corporation 10–11
October 2007 Preliminary

PowerPlay Power Analyzer Flow

Operating Conditions

For the Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III,
Cyclone II, HardCopy II, and MAX II device families, you can specify the
operating conditions for power analysis in the Quartus II software.

 The following settings are available in the Settings dialog box:

■ Device power characteristics—Should the Power Analyzer assume
typical silicon or maximum power silicon? The typical setting is
useful for comparing to empirical data measured on an average unit.
Worst-case data provides a boundary to the worst-case device that
you could receive.

■ Selectable Core Voltage—You can select a suitable core supply
voltage for your design based on performance and power
requirements using the Core Supply Voltage option, available for
the latest devices with variable voltage support. The power
consumption of a device is heavily dependent on the voltage, so it is
very important to choose the right core supply voltage for your
design. The core supply voltage provides power to device logic
resources such as logic array blocks (LABs), MLABs, DSP functions,
memory, and interconnects.

■ Environmental conditions and junction temperature—By default,
the Power Analyzer automatically computes the junction
temperature based on the specified ambient temperature and the
cooling solution that you selected from a list. For a more accurate
analysis, enter the thermal resistance of your cooling solution. For
some cooling solutions, such as a heat sink with no forced airflow,
the thermal resistance varies with the amount of thermal power that
is dissipated. Air convection increases as the difference between the
device temperature and the ambient temperature increases, reducing
thermal resistance. When entering a thermal resistance in such cases,
it is important to use the thermal resistance that occurs when the heat
flow (Q) is equal to the thermal power generated by the device.
You can also specify a junction temperature in the PowerPlay Power
Analyzer. However, Altera does not recommend this because the
PowerPlay Power Analyzer provides more accurate results by
computing the junction temperature.

■ Board Thermal Modeling—If you want the Power Analyzer thermal
model to take the θJB into consideration, set the board thermal model
to either Typical or Custom. This feature produces more accurate
thermal power estimation.

A Typical board thermal model automatically sets θJB to a value
based on the package and device selected. You only need to specify
a board temperature. If you choose a Custom board thermal model,

10–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

you must specify a value for θJB and a board temperature. If you do
not want the PowerPlay Power Analyzer thermal model to take the
θJB resistance into consideration, set the Board thermal model option
to None (conservative). In this case, the path through the board and
power dissipation is not considered, and a more conservative
thermal power estimate is obtained.

The Board thermal model option is only available if you select the
Auto compute junction temperature option with the pre-set cooling
solution set to some heat sink solution option or custom solution.
This option is disabled when a cooling solution with no heat sink is
selected, as thermal conduction through the board is included in the
θJA value used to compute a junction temperature in that case.

Signal Activities Data Sources

The Power Analyzer provides a flexible framework for specifying signal
activities. This reflects the importance of using representative signal
activity data during power analysis. You can use the following sources to
provide information about signal activity:

■ Simulation results
■ User-entered node, entity, and clock assignments
■ User-entered default toggle rate assignment
■ Vectorless estimation

The PowerPlay Power Analyzer lets you mix and match the signal
activity data sources on a signal-by-signal basis. Figure 10–6 shows the
priority scheme. The data sources are described in the following sections.

Altera Corporation 10–13
October 2007 Preliminary

PowerPlay Power Analyzer Flow

Figure 10–6. Signal Activity Data Source Priority Scheme

Note to Figure 10–6:
(1) Vectorless estimation is available only for the Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone II, HardCopy II,

and MAX II device families.

Simulation Results

The Power Analyzer directly reads the waveforms generated by a design
simulation. The static probability and toggle rate for each signal is
calculated from the simulation waveform. Power analysis is most
accurate when simulations are generated using representative input
stimuli.

The Power Analyzer reads the results generated by the following
simulators:

■ Quartus II Simulator
■ ModelSim® VHDL, Active HDL, ModelSim Verilog HDL,

ModelSim-Altera VHDL, ModelSim-Altera Verilog
■ NC-Verilog, NC-VHDL
■ VCS

Signal activity and static probability information are stored in a Signal
Activity File (.saf) or may be derived from a Value Change Dump File
(.vcd), described in “Signal Activities” on page 10–9. The Quartus II
simulator generates a Signal Activity File (SAF) or a Value Change Dump
(VCD) file which is then read by the Power Analyzer.

Node or entity
assignment?

Simulation
data?

Is primary
input?

Vectorless
supported and

enabled?

Use vectorless
estimation

Use default
assignment

Use simulation
data

Use node or
entity assignment

Start

Yes Yes Yes No

YesNoNoNo

(1)

10–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

For third-party simulators, use the Quartus II EDA Tool Settings for
Simulation to specify a Generate Value Change Dump file script. These
scripts instruct the third-party simulators to generate a VCD file that
encodes the simulated waveforms. The Quartus II Power Analyzer reads
this file directly to derive toggle rate and static probability data for each
signal.

Third-party EDA simulators, other than those listed above, can generate
a VCD file that can then be used with the Power Analyzer. For those
simulators, it is necessary to manually create a simulation script to
generate the appropriate Value Change Dump File.

1 You can use a SAF or VCD file created for power analysis to
optimize the design for power during fitting by utilizing the
appropriate settings in the PowerPlay power optimization list,
available in Fitter Settings page of the Settings dialog box.

f For more information about power optimization, refer to the Power
Optimization chapter in volume 2 of the Quartus II Handbook.

Altera Corporation 10–15
October 2007 Preliminary

Using Simulation Files in Modular Design Flows

Using
Simulation Files
in Modular
Design Flows

A common design practice is to create modular or hierarchical designs in
which you develop each design entity separately and then instantiate it in
a higher-level entity, forming a complete design. Simulation is performed
on a complete design or on each modular design for verification. The
Quartus II PowerPlay Power Analyzer Tool supports modular design
flows when reading the signal activities generated from these simulation
files, as shown in Figure 10–7.

Figure 10–7. Modular Simulation Flow

When specifying a simulation file, an associated design entity name may
be given, such that the signal activities derived from the simulation file
(VCD file or SAF) can be imported into the Power Analyzer for that
particular design entity. The PowerPlay Power Analyzer Tool also
supports the specification of multiple SAFs for power analysis with each
having an associated design entity name to allow the integration of
partial design simulations into a complete design power analysis. When
specifying multiple SAFs for your design, it is possible that more than one
simulation file will contain signal activity information for the same signal.
In the case where multiple SAFs are applied to the same design entity, the
signal activity used in the power analysis is the equal-weight arithmetic
average of each SAF. Also in the case where multiple simulation files are
applied to design entities at different levels in the design hierarchy, the
signal activity used in the power analysis is derived from the simulation
file that is applied to the most specific design entity.

Figure 10–8 shows an example of a hierarchical design. The design Top
consists of three 8b/10b Decoders, followed by a multiplexer whose
output is then encoded again before being output from the design. There
is also an error-handling module that handles any 8b/10b decoding
errors. The top-level module, called Top, automatically contains the
design’s top-level entity and any logic not defined as part of another
module. The design file for the top-level module may be just a wrapper

Parameter
Input

Video
Processing

Column
Driver

Memory
Interface

Video
Source

Interface

Timing
Control

system.vcd

video_gizmo.saf

output_driver.vcd

video_input.vcd

10–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

for the hierarchical entities below it, or it may contain its own logic. The
following usage scenarios show common ways that you may simulate
your design and import SAFs into the PowerPlay Power Analyzer Tool.

Figure 10–8. Example Hierarchical Design

Complete Design Simulation

You can simulate the entire design Top, generating a VCD file if you use
a third-party simulator, or generating a SAF or VCD if you use the
Quartus II Simulator. The VCD file or SAF can then be imported
(specifying Entity Top) into the power analyzer. The resulting power
analysis uses all the signal activities information from the generated VCD
file or SAF, including those that apply to submodules, such as
decode[1-3], err1, mux1, and encode1.

Modular Design Simulation

You can simulate submodules of the design Top independently, and then
import all of the resulting SAFs into the Power Analyzer. For example,
you may simulate the 8b10b_dec independent of the entire design, as
well as multiplexer, 8b10b_rxerr, and 8b10b_enc. You can then
import the VCD file or SAF generated from each simulation by specifying

8b10b_dec:decode1

8b10b_dec:decode2

8b10b_dec:decode3

8b10b_rxerr:err1

mux:mux1

8b10b_enc:encode1

Top

Altera Corporation 10–17
October 2007 Preliminary

Using Simulation Files in Modular Design Flows

the appropriate instance name. For example, if the files produced by the
simulations are 8b10b_dec.vcd, 8b10b_enc.vcd, 8b10b_rxerr.vcd, and
mux.saf, the import specifications in Table 10–2 are used.

The resulting power analysis applies the simulation vectors found in each
file to the assigned entity. Simulation provides signal activities for the
pins and for the outputs of functional blocks. If the inputs to an entity
instance are input pins for the entire design, the simulation file associated
with that instance does not provide signal activities for the inputs of that
instance. For example, an input to an entity such as mux1 has its signal
activity specified at the output of one of the decode entities.

Multiple Simulations on the Same Entity

You can perform multiple simulations of an entire design or specific
modules of a design. For example, in the process of verifying the Top
design, you may have three different simulation testbenches: one for
normal operation, and two for corner cases. Each of these simulations
produces a separate VCD file or SAF. In this case, apply the different VCD
file or SAF names to the same top-level entity, shown in Table 10–3.

The resulting power analysis uses an arithmetic average of the signal
activities calculated from each simulation file to obtain the final signal
activities used. Thus, if a signal err_out has a toggle rate of 0 toggles per

Table 10–2. Import Specifications

File Name Entity

8b10b_dec.vcd Top|8b10b_dec:decode1

8b10b_dec.vcd Top|8b10b_dec:decode2

8b10b_dec.vcd Top|8b10b_dec:decode3

8b10b_rxerr.vcd Top|8b10b_rxerr:err1

8b10b_enc.vcd Top|8b10b_enc:encode1

mux.saf Top|mux:mux1

Table 10–3. Multiple Simulation File Names and Entities

File Name Entity

normal.saf Top

corner1.vcd Top

corner2.vcd Top

10–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

second in normal.saf, 50 toggles per second in corner1.vcd, and 70
toggles per second in corner2.vcd, the final toggle rate that is used in the
power analysis is 40 toggles per second.

Overlapping Simulations

You can perform a simulation on the entire design Top and more
exhaustive simulations on a submodule, such as 8b10b_rxerr.
Table 10–4 shows the import specification for overlapping simulations.

In this case, signal activities from error_cases.vcd are used for all of the
nodes in the generated SAF, and signal activities from full_design.vcd
are used for only those nodes that do not overlap with nodes in
error_cases.vcd. In general, the more specific hierarchy (the most
bottom-level module) is used to derive signal activities for overlapping
nodes.

Partial Simulations

You can perform a simulation where the entire simulation time is not
applicable to signal activity calculation. For example, suppose you run a
simulation for 10,000 clock cycles and you reset the chip for the first 2,000
clock cycles. If the signal activity calculation is performed over all 10,000
cycles, the toggle rates are typically only 80% of their steady state value
(since the chip is in reset for the first 20% of the simulation). In this case,
you should specify the useful parts of the VCD file for power analysis.
The Limit VCD Period option enables you to specify a start and end time
to be used when performing signal activity calculations.

Node Name Matching Considerations

Node name mismatches happen when you have SAFs or VCD files
applied to entities other than the top-level entity. In a modular design
flow, the gate-level simulation files created in different Quartus II
software projects may not match their node names properly with the
current Quartus II project.

Table 10–4. Overlapping Simulation Import Specifications

File Name Entity

full_design.vcd Top

error_cases.vcd Top|8b10b_rxerr:err1

Altera Corporation 10–19
October 2007 Preliminary

Using Simulation Files in Modular Design Flows

For example, if you have a file named 8b10b_enc.vcd, which was
generated in a separate project called 8b10b_enc and is simulating the
8b10b encoder, and you import that VCD file into another project called
Top, you may encounter name mismatches when applying the VCD file
to the 8b10b_enc module in the Top project. This is because all of the
combinational nodes in the 8b10b_enc.vcd file may be named differently
in the Top project.

You can avoid name mismatching by using only register transfer level
(RTL) simulation data, where register names usually do not change, or by
using an incremental compile flow that preserves node names in
conjunction with a gate-level simulation. To ensure the best accuracy,
Altera recommends using an incremental compile flow to preserve your
design’s node names.

f For more information about the incremental compile flow, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

Glitch Filtering

The Power Analyzer defines a glitch as two signal transitions that are so
closely spaced in time that the pulse, or glitch, occurs faster than the logic
and routing circuitry can respond. The output of a transport delay model
simulator (the default mode of the Quartus II simulator) generally
contains glitches for some signals. The device’s logic and routing
structures form a low-pass filter that filters out glitches that are tens to
hundreds of picoseconds long, depending on the device family.

Some third-party simulators use different simulator models than the
transport delay model as default. Different models cause differences in
signal activity estimation and power estimation. The inertial delay
model, which is the ModelSim default model, filters out many more
glitches than the transport delay model; therefore, it usually yields a
lower power estimate. Altera recommends using the transport simulation
model when using the Quartus II glitch filtering support with third-party
simulators. If the inertial simulation model is used, simulation glitch
filtering has little effect.

f For more information about how to set the simulation model type for
your specific simulator, refer to the Quartus II Help.

Glitch filtering in a simulator can also filter a glitch on one LE (or other
circuit element) output from propagating to downstream circuit elements
so that the glitch will not affect simulated results. This prevents a glitch
on one signal from producing non-physical glitches on all downstream
logic, which would result in a signal toggle rate that is too high and a

10–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

power estimate that is too high. Circuit elements in which every input
transition produces an output transition, including multipliers and logic
cells configured to implement XOR functions, are especially prone to
glitches. Therefore, circuits with many such functions can have power
estimates that are too high when glitch filtering is not used.

Altera recommends that the glitch filtering feature be used to obtain the
most accurate power estimates. For VCD files, the Power Analyzer flows
support two types of glitch filtering, both of which are recommended for
power estimation. In the first, glitches are filtered during simulation. To
enable this level of glitch filtering in the Quartus II software for
supported third-party simulators, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears.

3. Select the Tool Name to use for the simulation.

4. Turn on the Enable glitch filtering option.

To enable this level of glitch filtering in the Quartus II software using the
Quartus II Simulator, refer to “Generating a SAF or VCD File Using the
Quartus II Simulator” on page 10–24.

The second level of glitch filtering occurs while the Power Analyzer is
reading the VCD file generated by the third-party simulator or Quartus II
Simulator. Enable this level of glitch filtering by performing the following
steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select PowerPlay Power Analyzer Settings.
The PowerPlay Power Analyzer Settings page appears.

3. Under Input File(s), turn on the Perform glitch filtering on VCD
files option.

Altera recommends that you use both forms of glitch filtering.

The VCD file reader performs complementary filtering to the filtering
performed during simulation and is often not as effective. While the VCD
file reader can remove glitches on logic blocks, it has no way of
determining how downstream logic and routing are affected by a given

Altera Corporation 10–21
October 2007 Preliminary

Using Simulation Files in Modular Design Flows

glitch, and may not eliminate the impact of the glitch completely.
Filtering the glitches during simulation avoids switching downstream
routing and logic automatically.

1 When running simulation for design verification (rather than to
produce input to the Quartus PowerPlay Power Analyzer),
Altera recommends leaving glitch filtering turned off. This
produces the most rigorous and conservative simulation from a
functionality viewpoint. When performing simulation to
produce input for the Quartus II PowerPlay Power Analyzer,
Altera recommends turning on glitch filtering to produce the
most accurate power estimates.

Node and Entity Assignments

You can assign specific toggle rates and static probabilities to individual
nodes and entities in the design. These assignments have the highest
priority, overriding data from all other signal activity sources.

Use the Assignment Editor or tool command language (Tcl) commands to
make the Power Toggle Rate and Power Static Probability assignments.
You can specify the power toggle rate as an absolute toggle rate in
transitions using the Power Toggle Rate assignment or you can use the
Power Toggle Rate Percentage assignment to specify a toggle rate
relative to the clock domain of the assigned node for more specific
assignment made in terms of hierarchy level.

1 If the Power Toggle Rate Percentage assignment is used, and
the given node does not have a clock domain, a warning is
issued and the assignment is ignored.

f For more information about how to use the Assignment Editor in the
Quartus II software, refer to the Assignment Editor chapter in volume 2 of
the Quartus II Handbook.

This method is appropriate for special-case signals where you have
specific knowledge of the signal or entity being analyzed. For example, if
you know that a 100-MHz data bus or memory output produces data that
is essentially random (uncorrelated in time), you can directly enter a 0.5
static probability and a toggle rate of 50 million transitions per second.

Bidirectional I/O pins are treated specially. The combinational input port
and the output pad for a given pin share the same name. However, those
ports might not share the same signal activities. For the purpose of
reading signal activity assignments, the Power Analyzer creates a distinct
name <node_name~output> when the bidirectional signal is
configured as an output and <node_name~result> when the signal is

10–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

configured as an input. For example, if a design has a bidirectional pin
named MYPIN, assignments for the combinational input use the name
MYPIN~result, and the assignments for the output pad use the name
MYPIN~output.

1 When making the logic assignment in the Assignment Editor,
you will not find the MYPIN~result and MYPIN~output node
names in the Node Finder. Therefore, to make the logic
assignment, you must manually enter the two differentiating
node names to make the specific assignment for the input and
output port of the bidirectional pin.

Timing Assignments to Clock Nodes

For clock nodes, the Power Analyzer uses the timing requirements to
derive the toggle rate when neither simulation data nor user entered
signal activity data is available.

1 fMAX requirements specify full cycles per second, but each cycle
represents a rising transition and a falling transition. For
example, a clock fMAX requirement of 100 MHz corresponds to
200 million transitions per second.

Default Toggle Rate Assignment

You can specify a default toggle rate for primary inputs and all other
nodes in the design. The default toggle rate is used when no other method
has specified the signal activity data.

The toggle rate can be specified in absolute terms (transitions per second)
or as a fraction of the clock rate in effect for each particular node. The
toggle rate for a given clock is derived from the timing settings for the
clock. For example, if a clock is specified with an fMAX constraint of
100 MHz and a default relative toggle rate of 20%, nodes in this clock
domain transition in 20% of the clock periods, or 20 million transitions
occur per second. In some cases, the Power Analyzer cannot determine
the clock domain for a given node because there is either no clock domain
for the node or it is ambiguous. In these cases, the Power Analyzer
substitutes and reports a toggle rate of zero.

Altera Corporation 10–23
October 2007 Preliminary

Using the PowerPlay Power Analyzer

Vectorless Estimation

For some device families, the Power Analyzer automatically derives
estimates for signal activity on nodes with no simulation or user-entered
signal-activity data. Vectorless estimation is available and enabled by
default for Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III,
Cyclone II, HardCopy II, and MAX II device families. Vectorless
estimation statistically estimates the signal activity of a node based on the
signal activities of all nodes feeding that node, and on the actual logic
function that is implemented by the node. The PowerPlay Power
Analyzer Settings dialog box lets you disable vectorless estimation.
When enabled, vectorless estimation takes priority over default toggle
rates. Vectorless estimation does not override clock assignments.

1 Vectorless estimation cannot derive signal activities for primary
inputs. Vectorless estimation is generally accurate for
combinational nodes, but not for registered nodes. Therefore,
simulation data for at least the registered nodes and I/O nodes
is needed for accuracy.

Using the
PowerPlay
Power Analyzer

For all flows that use the PowerPlay Power Analyzer, synthesize your
design first and then fit it to the target device. You must either provide
timing assignments for all clocks in the design or use a simulation-based
flow to generate activity data. The I/O standard used on each device
input or output and the capacitive load on each output must be specified
in the design.

Common Analysis Flows

You can use the analysis flows in this section with the PowerPlay Power
Analyzer. However, vectorless activity estimation is only available for
some device families.

Signal Activities from Full Post-Fit Netlist (Timing) Simulation

This flow provides the highest accuracy because all node activities reflect
actual design behavior, provided that supplied input vectors are
representative of typical design operation. Results are better if the
simulation filtered glitches. The disadvantage with this method is that
simulation times can be long.

10–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Signal Activities from RTL (Functional) Simulation, Supplemented by
Vectorless Estimation

In this flow, simulation provides toggle rates and static probabilities for
all pins and registers in the design. Vectorless estimation fills in the
values for all the combinational nodes between pins and registers. This
method yields good results, since vectorless estimation is accurate, given
that the proper pin and register data is provided. This flow usually
provides a compilation time benefit to the user in the third-party RTL
Simulator.

1 RTL simulation may not provide signal activities for all registers
in the post-fitting netlist because some register names may be
lost during synthesis. For example, synthesis may automatically
transform state machines and counters, thus changing the
names of registers in those structures.

Signal Activities from Vectorless Estimation, User-Supplied Input Pin
Activities

This option provides a low level of accuracy, because vectorless
estimation for registers is not entirely accurate.

Signal Activities from User Defaults Only

This option provides the lowest degree of accuracy.

Generating a SAF or VCD File Using the Quartus II Simulator

While performing a timing or functional simulation using the Quartus II
Simulator, you can generate a SAF or VCD file. These files store the toggle
rate and static probability for each connected output signal based on the
simulation vectors that are entered in the Vector Waveform File (.vwf) or
the Vector File (.vec). You can use the SAF(s) or VCD file(s) as input to the
PowerPlay Power Analyzer to estimate power for your design.

1 For more accurate results, Altera recommends that you use the
SAF created from the Quartus II simulator as the input to the
PowerPlay Power Analyzer.

To create a SAF or VCD file for your design, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Simulator Settings. The Simulator
Settings page appears (Figure 10–9).

Altera Corporation 10–25
October 2007 Preliminary

Using the PowerPlay Power Analyzer

Figure 10–9. Simulator Settings Page

3. In the Simulation mode list, select either Timing or Functional.
Refer to “Common Analysis Flows” on page 10–23 for a description
of the difference in accuracy between the two types of simulation
modes.

4. (Optional) Click More Settings. The More Simulator Settings
dialog box appears.

5. (Optional) Turn on glitch filtering. To turn on glitch filtering, in the
Glitch filtering options list, select Always.

6. In the Category list, click the icon to expand Simulator Settings
and select Simulation Output Files (Figure 10–10).

10–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–10. Simulator Output Files Page of the Settings Dialog Box

7. Turn on Generate Signal Activity File and enter the file name for
the SAF file.

f For more information about the Quartus II Simulator and how to create a
SAF file, refer to the Quartus II Simulator chapter in volume 3 of the
Quartus II Handbook.

Altera Corporation 10–27
October 2007 Preliminary

Using the PowerPlay Power Analyzer

1 When generating a VCD file from the Quartus Simulator, you
must make sure that you add all nodes to the input vector wave
file. Only the nodes that have been added to your vector file will
be output to the Quartus-generated VCD file. This is not the case
when generating a SAF. The Quartus II Simulator will create a
SAF including all the internal nodes of your design even if the
stimuli file contains only the input vectors for your simulation.

8. (Optional) Click Signal Activity File Options. The Signal Activity
File Options dialog box appears (Figure 10–11).

Figure 10–11. Signal Activity File Options Dialog Box

9. (Optional) Turn on the Limit signal activity period option to
specify the simulation period to use when calculating the signal
activities.

Power estimation can be performed for the entire simulation time or
for a portion of the simulation time. This allows you to look at the
power consumption at different points in your overall simulation
without having to rework your testbenches. This feature is also
useful when multiple clock cycles are necessary to initialize the state
of the design, but you want to measure the signal activity only
during the normal operation of the design, not during its
initialization phase. You can specify the start time and end time in
the Signal Activity File Options dialog box by turning on the Limit
signal activity period option. Simulation information is used during
this time interval only to calculate toggle rates and static
probabilities. If no time interval is specified, the whole simulation is
used to compute signal activity data.

10. After the simulation is complete, a SAF is generated with the
specified filename and stored in the main project directory.

f For more information about how to perform simulations in the
Quartus II software, see the Quartus II Help.

10–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Generating a VCD File Using a Third-Party Simulator

You can use other EDA simulation tools, such as the Model Technology™
ModelSim® software, to perform a simulation and create a VCD file. You
can use this file as input to the PowerPlay Power Analyzer to estimate
power for your design. To do this, you must tell the Quartus II software
to generate a script file that is used as input to the third-party simulator.
This script tells the third-party simulator to generate a VCD file that
contains all the output signals. For more information about the supported
third-party simulators, refer to “Simulation Results” on page 10–13.

To create a VCD file for your design, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears, as shown in Figure 10–12.

Figure 10–12. Simulation Page of the Settings Dialog Box

3. In the Tool name list, select the appropriate EDA simulation tool.

Altera Corporation 10–29
October 2007 Preliminary

Using the PowerPlay Power Analyzer

4. In the Format for output netlist list, select VHDL or Verilog.

5. Turn on Generate Value Change Dump (VCD) file script.

1 This turns on the Map illegal HDL character and Enable
glitch filtering options.

6. (Optional) Map illegal HDL characters ensures that all signals have
legal names and that signal toggle rates are available later in the
PowerPlay Power Analyzer.

7. (Optional) By turning on Enable glitch filtering, glitch filtering
logic is the output when you generate an EDA netlist for simulation.
This option is always available, regardless of whether or not you
want to generate the VCD file scripts. For more information about
glitch filtering, refer to “Glitch Filtering” on page 10–19.

1 When performing simulation using ModelSim, the +nospecify
option given to the vsim command disables specify path delays
and timing checks in ModelSim. By enabling glitch filtering on
the Simulation page, the simulation models include specify
path delays. Thus, ModelSim can fail to simulate a design if
glitch filtering is enabled and the +nospecify option is specified.
Altera recommends the removal of the +nospecify option from
the ModelSim vsim command to ensure accurate simulation for
power estimation.

8. Click Script Settings. The Script Settings dialog box appears,
shown in Figure 10–13.

Figure 10–13. Script Settings Dialog Box

Select which signals should be output to the VCD file. With All
signals selected, the generated script instructs the third-party
simulator to write all connected output signals to the VCD file. With
All signals except combinational lcell outputs selected, the

10–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

generated script tells the third-party simulator to write all connected
output signals to the VCD file, except logic cell combinational
outputs. You may not want to write all output signals to the file
because the file can become extremely large (since its size depends
on the number of output signals being monitored and the number of
transitions that occur).

9. Click OK.

10. Type a name for your testbench in the Design instance name box.

11. Compile your design with the Quartus II software and generate the
necessary EDA netlist and script that tells the third-party simulator
to generate a VCD file.

f For more information about NativeLink use, refer to Section I. Simulation
in volume 3 of the Quartus II Handbook.

12. Perform a simulation with the third-party EDA simulation tool. Call
the generated script in the simulation tool before running the
simulation. The simulation tool generates the VCD file and places it
in the project directory.

The following example provides step-by-step instructions to successfully
produce a VCD file with the ModelSim software:

1. In the Quartus II software, on the Assignments menu, click Settings.

2. In the Settings dialog box, on the Simulator Settings page, choose
the appropriate ModelSim selection in the Tool Name list, and turn
on the Generate Value Change Dump File Script option.

3. To generate the VCD file, perform a full compilation.

4. In the ModelSim software, compile the files necessary for
simulation.

5. Load your design by clicking Start Simulation on the Tools menu,
or use the vsim command.

6. Source the Quartus II VCD script created in step 3 using the
following command:
source <design>_dump_all_vcd_nodes.tcl

7. Run the simulation (for example, run 2000ns or run -all).

8. Quit the simulation using the quit -sim command, if needed.

Altera Corporation 10–31
October 2007 Preliminary

Using the PowerPlay Power Analyzer

9. Exit the ModelSim software. If you do not exit the software, the
ModelSim software may end the writing process of the VCD files
improperly, resulting in a corrupted VCD file.

f For more information about how to call the VCD file generation script in
the respective third-party EDA simulation tools, refer to the Quartus II
Help. For more information about how to perform simulations in other
EDA simulation tools, see the relevant documentation for that tool.

Running the PowerPlay Power Analyzer Using the Quartus II GUI

To run the PowerPlay Power Analyzer using the Quartus II GUI, perform
the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select PowerPlay Power Analyzer Settings,
shown in Figure 10–14.

Figure 10–14. PowerPlay Power Analyzer Settings

10–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

3. (Optional) If you want to use either SAF(s) or VCD file(s) or both as
an input to the PowerPlay Power Analyzer, turn on Use input
file(s) to initialize toggle rates and static probabilities during
power analysis.

(Optional) The Edit button allows you to change the settings for a
selected file from the list. The Remove button allows you to remove
a selected file from the list.

4. Click Add. The Add Power Input File dialog box appears, as shown
in Figure 10–15.

Figure 10–15. Add Power Input File Dialog Box

5. Add your SAF(s) or VCD file(s) by clicking the browse button for
the File name box.

6. The Entity box enables you to specify the design entity (hierarchy)
to which the entered power input file applies. To enter the entity,
you can type in the box or browse through the list of your design
entities. To browse your design entities, click the browse button.
The Select Hierarchy dialog box appears, shown in Figure 10–16.
You can specify multiple entities in the entity text box by using
comma delimiters.

Altera Corporation 10–33
October 2007 Preliminary

Using the PowerPlay Power Analyzer

Figure 10–16. Select Hierarchy Dialog Box

7. You can specify whether the input file is a VCD file or SAF under
Input File Type.

8. (Optional) Limit VCD period is enabled only when the VCD file is
selected. This enables you to specify the simulation period to use
when calculating the signal activities. For more information, refer to
step 9 of “Generating a SAF or VCD File Using the Quartus II
Simulator” on page 10–24.

9. Click OK.

10. Click OK in the Add Power Input File dialog box.

11. (Optional) Turn on Perform glitch filtering on VCD files. This
option is recommended. For more information, refer to “Glitch
Filtering” on page 10–19.

12. (Optional) Turn on Write out signal activities used during power
analysis. In the Output file name list, select the output file name.
This file contains all the signal activities information used during
the power estimation of your design. This is recommended if you

10–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

used a VCD file as input into the PowerPlay Power Analyzer,
because it reduces the run time of any subsequent power estimation.
You can use the generated SAF as input instead of the original VCD
file.

13. (Optional) Turn on Write signal activities to report file.

14. (Optional) Turn on Write power dissipation by block to report file
to enable the output of detailed thermal power dissipation by block
to be included in the PowerPlay Power Analyzer report.

15. (Optional) You can also use the Assignment Editor to enter the
Power Toggle Rate or Power Toggle Rate Percentage, and the Power
Static Probability for a node or entity in your design, shown in
Figure 10–17.

Figure 10–17. Assignment Editor Notes (1), (2)

Notes to Figure 10–17:
(1) The assignments made with the Assignment Editor override the values already existing in the SAF or VCD file.
(2) You can also use Tcl script commands to make these assignments.

f For more information about how to use the Assignment Editor in the
Quartus II software, see the Assignment Editor chapter in volume 2 of the
Quartus II Handbook. For information about scripting, see the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

Altera Corporation 10–35
October 2007 Preliminary

Using the PowerPlay Power Analyzer

16. Specify the toggle rate in the Default toggle rate used for input I/O
signals field. This toggle rate is used for all unspecified input I/O
signal toggle rates regardless of whether or not the device family
supports vectorless estimation. By default, its value is set to 12.5%.
The default static probability for unspecified input I/O signals is 0.5
and cannot be changed.

17. Select either Use default value or Use vectorless estimation for
Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II,
HardCopy II, or MAX II device families. For all other device
families, only Use default value is available. This setting controls
how the remainder of the unspecified signal activities are
calculated. For more information, refer to “Vectorless Estimation”
on page 10–23 and “Default Toggle Rate Assignment” on
page 10–22.

18. In the Category list, select Operating Settings and Conditions. This
option is available only for the Arria GX, Stratix III, Stratix II,
Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and MAX II
device families (Figure 10–18).

Figure 10–18. Operating Conditions

10–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

19. In the Device power characteristics list, select Typical or
Maximum. The default is Typical.

20. In the Category list, click the icon to expand Operating Settings
and Conditions and click Voltage. The Voltage page appears.

21. For the devices with selectable core voltage support, in the Core
supply voltage list, select the core supply voltage for your device.
This option is available for the latest devices with variable voltage
selection.

22. In the Category list, under Operating Settings and Conditions,
select Temperature. The Temperature page appears (Figure 10–19).

Figure 10–19. Temperature Settings Page

Altera Corporation 10–37
October 2007 Preliminary

Using the PowerPlay Power Analyzer

23. Under Junction temperature range, specify a junction temperature
in degrees Celsius and specify the junction temperature range.
Select the Low temperature and High temperature range for your
selected device.

24. Specify the junction temperature and cooling solution settings. You
can select Specify junction temperature or Auto compute junction
temperature using cooling solution.

25. (Optional) Under Board thermal modeling, select the Board
thermal model and type the Board temperature. This feature can
only be turned on when you have selected Auto compute junction
temperature using cooling solution.

For more information about how to use the operating condition
settings, refer to “Operating Conditions” on page 10–11.

26. Click OK to close the Settings dialog box.

27. On the Processing menu, click PowerPlay Power Analyzer Tool.
The PowerPlay Power Analyzer Tool dialog box appears
(Figure 10–20).

Figure 10–20. PowerPlay Power Analyzer Tool Dialog Box

10–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

28. Click Start to run the PowerPlay Power Analyzer. Be sure that all
the settings are correct.

1 You can also make changes to some of your settings in this
dialog box. For example, you can click the Add Power
Input File(s) button to make changes to your input file(s).

29. After the PowerPlay Power Analyzer runs successfully, a message
appears (Figure 10–21).

Figure 10–21. PowerPlay Power Analyzer Message

30. Click OK.

31. In the PowerPlay Power Analyzer Tool dialog box, click Report to
open the PowerPlay Power Analyzer Summary window. You can
also view the summary in the PowerPlay Power Analyzer
Summary page of the Compilation Report (Figure 10–22).

Figure 10–22. PowerPlay Power Analyzer Summary

Altera Corporation 10–39
October 2007 Preliminary

Using the PowerPlay Power Analyzer

PowerPlay Power Analyzer Compilation Report

The PowerPlay Power Analyzer section of the Compilation Report is
divided into the following sections.

Summary

This section of the report shows your design’s estimated total thermal
power consumption. This includes dynamic, static, and I/O thermal
power consumption. The report also includes a confidence metric that
reflects the overall quality of the data sources for the signal activities.

Settings

This section of the report shows your design’s PowerPlay Power
Analyzer settings information. This includes default input toggle rates,
operating conditions, and other relevant setting information.

Simulation Files Read

This section of the report lists simulation output files (VCD file or SAF)
used for power estimation.

Operating Conditions Used

This section of the report shows device characteristics, voltages,
temperature, and cooling solution, if any, that were used during the
power estimation. It also shows the entered junction temperature or
auto-computed junction temperature that was used during the power
analysis. This page is created only for Arria GX, Stratix II, Stratix II GX,
Cyclone III, Cyclone II, HardCopy II, and MAX II device families.

Thermal Power Dissipated by Block

This section of the report shows estimated thermal dynamic power and
thermal static power consumption categorized by atoms. This
information provides designers with an estimated power consumption
for each atom in their design.

Thermal Power Dissipation by Block Type (Device Resource Type)

This section of the report shows the estimated thermal dynamic power
and thermal static power consumption categorized by block types. This
information is further categorized by estimated dynamic and static
power that was used, as well as providing an average toggle rate by block
type. Thermal power is the power dissipated as heat from the FPGA
device.

10–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Thermal Power Dissipation by Hierarchy

This section of the report shows an estimated thermal dynamic power
and thermal static power consumption categorized by design hierarchy.
This is further categorized by the dynamic and static power that was used
by the blocks and routing within that hierarchy. This information is very
useful in locating problem modules in your design.

Core Dynamic Thermal Power Dissipation by Clock Domain

This section of the report shows the estimated total core dynamic power
dissipation by each clock domain. This provides designs with estimated
power consumption for each clock domain in their design. If the clock
frequency for a domain is unspecified by a constraint, the clock frequency
is listed as “unspecified.” For all the combinational logic, the clock
domain is listed as no clock with 0 MHz.

Current Drawn from Voltage Supplies

This section of the report lists the current that was drawn from each
voltage supply. The VCCIO voltage supply is further categorized by I/O
bank and by voltage. The minimum safe power supply size (current
supply ability) is also listed for each supply voltage. This page is created
only for Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III,
Cyclone II, HardCopy II, and MAX II device families.

Confidence Metric Details

The confidence metric indicates the quality of the signal toggle rate data
used to compute a power estimate. The confidence metric is low if the
signal toggle rate data comes from sources that are considered poor
predictors of real signal toggle rates in the device during an operation.
Toggle rate data that comes from simulation, or user-entered assignments
on specific signals, or entities are considered reliable. Toggle rate data
from default toggle rates (for example, 12.5% of the clock period) or
vectorless estimation are considered relatively inaccurate. This section
gives an overall confidence rating in the toggle rate data, from low to
high. It also summarizes how many pins, registers, and combinational
nodes obtained their toggle rates from each of simulation, user entry,
vectorless estimation, or default toggle rate estimations. This detailed
information can help you understand how to increase the confidence
metric, letting you decide on your own confidence in the toggle rate data.

Altera Corporation 10–41
October 2007 Preliminary

Using the PowerPlay Power Analyzer

Signal Activities

This section lists toggle rate and static probabilities assumed by power
analysis for all signals with fan-out and pins. The signal type is provided
(Pin, Registered, or Combinational), as well as the data source for the
toggle rate and static probability. By default, all signal activities are
reported. This may be turned off on the PowerPlay Power Analyzer
Settings page by turning off the Write signal activities to report file
option. Turning this option off may be advisable for a large design
because of the large number of signals present. You can use the
Assignment Editor to specify that activities for individual nodes or
entities are reported by assigning an on value to those nodes for the
Power Report Signal Activities assignment.

Messages

This section lists any messages generated by the Quartus II software
during the analysis.

Specific Rules for Reporting

In the Stratix GX device, the XGM II State Machine block is always used
together with GXB transceivers, so its power is lumped into the power for
the transceivers. Therefore, the power for the XGM II State Machine block
is reported as 0 Watts.

Scripting Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp

The Scripting Reference Manual includes the same information in PDF
format.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

10–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Running the PowerPlay Power Analyzer from the Command Line

The separate executable that can be used to run the PowerPlay Power
Analyzer is quartus_pow. For a complete listing of all command line
options supported by quartus_pow, type the following at a system
command prompt:

quartus_pow --help or quartus_sh --qhelp r
The following is an example of using the quartus_pow executable with
project sample.qpf:

■ To instruct the PowerPlay Power Analyzer to generate a PowerPlay
Early Power Estimator file, type the following at a system command
prompt:

quartus_pow sample --output_epe=sample.csv r
■ To instruct the PowerPlay Power Analyzer to generate a PowerPlay

Early Power Estimator file without doing the power estimate, type
the following command at a system command prompt:

quartus_pow sample --output_epe=sample.csv --estimate_power=off r
■ To instruct the PowerPlay Power Analyzer to use a SAF as input

(sample.saf), type the following at a system command prompt:

quartus_pow sample --input_saf=sample.saf r
■ To instruct the PowerPlay Power Analyzer to use two VCD files as

input (sample1.vcd and sample2.vcd), perform glitch filtering on the
VCD file, and use a default input I/O toggle rate of 10,000
transitions/second, type the following at a system command
prompt:

quartus_pow sample --input_vcd=sample1.vcd
--input_vcd=sample2.vcd --vcd_filter_glitches=on
--default_input_io_toggle_rate=10000transitions/s r

■ To instruct the PowerPlay Power Analyzer to not use any input file,
a default input I/O toggle rate of 60%, no vectorless estimation, and
a default toggle rate of 20% on all remaining signals, type the
following at a system command prompt:

quartus_pow sample --no_input_file --default_input_io_toggle_rate=60%
--use_vectorless_estimation=off --default_toggle_rate=20% r

Altera Corporation 10–43
October 2007 Preliminary

Conclusion

1 There are no command line options to specify the information
found on the PowerPlay Power Analyzer Settings Operating
Conditions page. The easiest way to specify these options is to
use the Quartus II GUI.

A report file, <revision name>.pow.rpt, is created by the quartus_pow
executable and saved in the main project directory. The report file
contains the same information as described in the “PowerPlay Power
Analyzer Compilation Report” on page 10–39.

Conclusion PowerPlay power analysis tools are designed for accurate estimation of
power consumption from early design concept through design
implementation. Designers can use the PowerPlay Early Power Estimator
to estimate power consumption during the design concept stage. Power
estimations can be refined during design implementation using the
Quartus II PowerPlay Power Analyzer feature. The Quartus II PowerPlay
Power Analyzer produces detailed reports that you can use to optimize
designs for lower power consumption and verify that the design is within
your power budget.

Referenced
Documents

This chapter references the following documents:

■ Assignment Editor chapter in volume 2 of the Quartus II Handbook
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook
■ Power Optimization chapter in volume 2 of the Quartus II Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II Settings File Reference Manual
■ Quartus II Simulator chapter in volume 3 of the Quartus II Handbook
■ Section I. Simulation in volume 3 of the Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

10–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 10–5 shows the revision history for this chapter.

Table 10–5. Document Revision History

Date and Version Changes Made Summary of Changes

October 2007
v7.2.0

● Updated Figures 10–4, 10–9, 10–10, 10–11, and 10–22.
● Updated “Generating a SAF or VCD File Using the Quartus II

Simulator” on page 10–24.
● Updated “Generating a VCD File Using a Third-Party

Simulator” on page 10–28.

Updated for the
Quartus II software
version 7.2.

May 2007
v7.1.0

● Updated procedures for “Generating a SAF or VCD File Using
the Quartus II Simulator” on page 10–24.

● Updated figures.
● Added “Document Revision History” on page 10–45.

Added support for
Arria GX devices.

March 2007
v7.0.0

Added Cyclone III to list of devices supported (page 10-2) —

November 2006
v6.1.0

● Updated “Generating a SAF or VCD File Using the Quartus II
Simulator” by changing steps in certain processes to
accommodate new functionality.

● Updated “Operating Conditions” by adding Selectable Core
Voltage option.

● Updated Figure 10-2, 10-9, 10-10, 10-12, 10-14, 10-18, and
10-19.

Figure changes were
made to accommodate
the changes to the
GUI. Also, added
information for Stratix
III devices.

May 2006
v6.0.0

Chapter title changed to PowerPlay Power Analysis.
Updated for the Quartus II software version 6.0.0:
● Added information about the EPE tools.
● Added information about the power analyzer.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

● Updated information.
● Updated figures.
● New functionality for Quartus II software 5.0.

—

December 2004
v1.0

Initial release. —

Altera Corporation Section IV–i
Preliminary

Section IV. Signal
Integrity

As FPGA usage expands into more high-speed applications, signal
integrity becomes an increasingly important factor to consider for an
FPGA design.

Signal integrity issues must be taken into account as part of FPGA I/O
planning and assignments, as well as in the design and layout of the
printed circuit board (PCB) that must support the FPGA. Early design
simulation is essential for preventing issues that may require a board
redesign. The Quartus II software provides a number of features that will
help you make smart board design decisions to ensure good signal
integrity on all your high-speed interfaces.

This section includes the following chapter:

■ Chapter 11, Signal Integrity Analysis with Third-Party Tools

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section IV–ii Altera Corporation
Preliminary

Signal Integrity Quartus II Handbook, Volume 3

Altera Corporation 11–1
October 2007

11. Signal Integrity Analysis
with Third-Party Tools

Introduction As FPGA devices are used in more high-speed applications, signal
integrity and timing margin between the FPGA and other devices on the
printed circuit board (PCB) become increasingly important
considerations to ensure proper system operation. To avoid time
consuming redesigns and expensive board respins, the topology and
routing of critical signals must be simulated. The high-speed interfaces
available on current FPGA devices must be modeled accurately and
integrated into timing models and board-level signal integrity
simulations. To do this, the tools used in the design of an FPGA and its
integration into a PCB must be “board-aware,” able to take into account
properties of the board routing as well as the connected devices on the
board.

The Quartus® II software provides a number of methodologies,
resources, and tools to assist in ensuring good signal integrity and timing
margin between an Altera® FPGA device and other components on the
board. Three types of analysis are possible with the Quartus II software:

■ I/O timing with a default or user-specified capacitive load and no
signal integrity analysis (default)

■ The Quartus II Advanced I/O Timing option utilizing a user-defined
board trace model to produce enhanced timing reports from accurate
“board-aware” simulation models

■ Full board routing simulation in third-party tools using Altera
provided or generated IBIS or HSPICE I/O models

I/O timing using a specified capacitive test load requires no special
configuration other than setting the size of the load. I/O timing reports
from Quartus II TimeQuest or the Quartus II Classic Timing Analyzer are
generated based only on point-to-point delays within the I/O buffer and
assume the presence of the capacitive test load with no other details about
the board specified. The default size of the load is based on the I/O
standard selected for the pin. Timing is measured to the FPGA pin with
no signal integrity analysis details.

The Advanced I/O Timing option expands the details in I/O timing
reports by taking board topology and termination components into
account. A complete point-to-point board trace model is defined and
accounted for in the timing analysis. This ability to define a board trace
model is an example of how the Quartus II software is “board-aware.”

QII53020-7.2.0

11–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

In this case, timing and signal integrity metrics between the I/O buffer
and the defined far end load are analyzed and reported in enhanced
reports generated by the Quartus II TimeQuest Timing Analyzer.

f For more information about defining capacitive test loads or how to use
the Advanced I/O Timing option to configure a board trace model, refer
to the I/O Management chapter in volume 2 of the Quartus II Handbook.

This chapter focuses on the third type of analysis. The Quartus II software
can export accurate HSPICE models with the built-in HSPICE Writer.
You can run signal integrity simulations with these complete HSPICE
models in Synopsys HSPICE. Input/Output Buffer Information
Specification (IBIS) models of the FPGA I/O buffers are also created
easily with the Quartus II IBIS Writer. You can integrate IBIS models into
any third-party simulation tool that supports them, such as Mentor
Graphics Hyperlynx software. With the ability to create
industry-standard model definition files quickly, you can build accurate
simulations that can provide data to help improve board-level signal
integrity.

This chapter describes some of the basics of board-level signal integrity
and why it should be taken into consideration as part of the general FPGA
design flow. You will see that it is easy to produce accurate I/O models
in the Quartus II software that take into account the unique properties of
timing and signal integrity found in FPGA devices. You will learn how to
add these models to your board routing simulations in the most widely
used third-party simulation tools. Finally, you will find out where to go
for more information about board-level signal integrity and how the
Quartus II software and Altera FPGA devices fit into an overall high-
speed system design.

This chapter is intended for FPGA and board designers. FPGA designers
will learn about the concepts and steps involved in getting their designs
simulated and how to adjust their designs to improve board-level timing
and signal integrity. Board designers will learn how to get accurate
models from the Quartus II software and how to use those models in their
simulation software. To get the most out of this chapter, you should be
familiar with the use of the Quartus II software. It is also helpful if you are
familiar with some of the basic concepts involved in signal integrity and
the design techniques and components required to have good signal
integrity on a PCB. Finally, you should know how to set up simulations
and use your selected third-party simulation tool. This chapter gives a
basic overview of how to use the output from the IBIS Writer and HSPICE
Writer in these tools, but it does not provide detailed instructions on their
use.

Altera Corporation 11–3
October 2007 Preliminary

The Need for FPGA to Board Signal Integrity Analysis

f For information about basic signal integrity concepts and signal integrity
details pertaining to Altera FPGA devices, refer to the Altera Signal
Integrity Center.

The Need for
FPGA to Board
Signal Integrity
Analysis

When creating an FPGA design, the designer usually focuses on the
FPGA logic design and functionality. A main focus for the design of the
PCB to support the FPGA is to make sure FPGA I/O assignments match
the correct pads and routing to ensure the FPGA signals are correctly
connected to the rest of the circuit. In the past, this was all that was
necessary to ensure proper operation. However, FPGA devices can now
be configured with a wide assortment of high-speed interfaces that
communicate with many other devices on the board.

With the introduction of high-speed interfaces to traditional FPGA
design, it becomes necessary to make sure that timing and signal integrity
margins between the FPGA and other devices on the board are within
specification and tolerance before a single PCB is built. If the board trace
is designed poorly or the route is too heavily loaded, noise in the signal
can cause data corruption, while overshoot and undershoot can
potentially damage input buffers over time if allowed to continue.

The use of the I/O model creation and analysis tools available in the
Quartus II software early in the design process can help prevent
problems before a costly board respin is needed. In general, creating and
running accurate simulations is difficult and time consuming. The tools
in the Quartus II software help by automating the I/O model setup and
creation process by configuring the models specifically for your design.
You will be able to set up and run accurate simulations quickly and
acquire data that helps guide your FPGA and board design, using either
the Advanced I/O Timing feature for analysis in the Quartus II software
environment or the output from the IBIS and HSPICE Writers in third-
party simulation tools.

1 The discussion of signal integrity in this chapter refers to
board-level signal integrity based on I/O buffer configuration
and board parameters, not simultaneous switching noise (SSN),
also known as ground bounce or VCC sag. SSN is a product of
multiple output drivers switching at the same time, causing an
overall drop in the voltage of the chip’s power supply. This can
cause temporary glitches in the specified level of ground or VCC
for the device. For a more thorough discussion of SSN and ways
to prevent it, refer to application note AN 315: Guidelines for
Designing High-Speed FPGA PCBs.

http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/technology/signal/sgl-index.html

11–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Double
Counting
Problem for
FPGA Output
Timing

Simulating I/Os using accurate models is extremely helpful for finding
and fixing FPGA I/O timing and board signal integrity issues before any
boards are built. However, the usefulness of such simulations is directly
related to the accuracy of the models used and whether the simulations
are set up and performed correctly. To ensure accuracy in models and
simulations created for FPGA output signals, the timing hand-off
between tCO timing in the Quartus II software and simulation-based
board delay must be taken into account. If this hand-off is not handled
correctly, the calculated delay could either count some of the delay twice
or even miss counting some of the delay entirely.

Defining the Double Counting Problem

The double counting problem is inherent to the way output timing is
analyzed versus the method used for HSPICE models. The timing
analyzer tools in the Quartus II software measure delay timing for an
output signal from the core logic of the FPGA design through the output
buffer ending at the FPGA pin with a default capacitive load or a
specified value for the selected I/O standard. This measurement is the tCO
timing variable as shown in Figure 11–1.

Figure 11–1. Double Counting Problem

FPGA Core
Logic

FPGA Output
Buffer

FPGA Pin

HSPICE Reported Delay

Quartus II tCO

HSPICE tPD with
User Board Trace Model

Overlap (Double Counting)

Termination Network/
Trace Model

Signal
Destination

Altera Corporation 11–5
October 2007 Preliminary

The Double Counting Problem for FPGA Output Timing

HSPICE models for board simulation measure tPD (propagation delay)
from an arbitrary reference point in the output buffer, through the device
pin, out along the board routing, and ending at the signal destination (the
red bar in Figure 11–1).

It is immediately apparent that if these two delays were simply added
together, the delay between the output buffer and the device pin would
be counted twice in the calculation (the black bar in Figure 11–1). A model
or simulation that does not account for this double count would create
overly pessimistic simulation results, since the double counted delay can
artificially limit I/O performance. To fix the problem, it may seem like
simply subtracting the overlap between tCO and tPD would account for the
double count. However, this adjustment would not be accurate because
each measurement is based on a different load.

1 Input signals do not exhibit this problem because the HSPICE
models for inputs stop at the FPGA pin instead of at the input
buffer. In this case, simply adding the delays together produces
an accurate measurement of delay timing.

The Solution to Double Counting

To adjust the measurements to account for the double counting, the delay
between the arbitrary point in the output buffer selected by the HSPICE
model and the FPGA pin must be subtracted from either tCO or tPD before
adding the results together. The subtracted delay must also be based on a
common load between the two measurements. This is done by repeating
the HSPICE model measurement but with the same load used by the
Quartus II software for the tCO measurement. This second measurement,
called tTESTLOAD, is illustrated with the top circuit in Figure 11–2.

11–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 11–2. Common Test Loads Used for Output Timing

With tTESTLOAD known, the total delay for the output signal from the
FPGA logic to the signal destination on the board, accounting for the
double count, is calculated as shown in Equation 1.

(1)

The preconfigured simulation files generated by the HSPICE Writer in
the Quartus II software are designed to automatically account for the
double counting problem based on this calculation. This makes it easy to
perform accurate timing simulations without the need to manually make
adjustments for double counting.

FPGA Core
Logic

FPGA Output
Buffer

FPGA Pin Quartus
Test Load

HSPICE Netlist with
Quartus Test Load

HSPICE tPD
 with User

Specified Board Trace Model

Quartus II tCO

HSPICE Netlist with
User Board Trace Model

Overlap (HSPICE Delay
with Test Load)

Total Delay

HSPICE tPD Adjusted by tTESTLOAD

Termination Network/
Trace Model

Signal
Destination

tdelay tCO tPD tTESTLOAD–()+=

Altera Corporation 11–7
October 2007 Preliminary

I/O Model Selection: IBIS or HSPICE

I/O Model
Selection: IBIS
or HSPICE

The Quartus II software can export two different types of I/O models that
are useful for different simulation situations. IBIS models define the
behavior of input or output buffers through the use of voltage-current
(V-I) and voltage-time (V-t) data tables. HSPICE models, often referred to
as HSPICE decks, include complete physical descriptions of the
transistors and parasitic capacitances that make up an I/O buffer along
with all the parameter settings needed to run a simulation. The HSPICE
decks generated by the Quartus II software are preconfigured with the
I/O standard, voltage, and pin loading settings for each pin in your
design.

The choice of I/O model type is based on a number of factors. Table 11–1
provides a more detailed comparison of the two I/O model types as well
as information and examples of situations about where and when they
might be used.

f For more information about IBIS files created by the Quartus II IBIS
Writer and IBIS files in general, as well as links to websites with detailed
information, refer to AN 283: Simulating Altera Devices with IBIS Models.
For more information about HSPICE model files created by the
Quartus II HSPICE Writer, refer to AN 424: I/O Simulations Using
HSPICE.

Table 11–1. IBIS and HSPICE Model Comparison

Feature IBIS Model HSPICE Model

I/O Buffer
Description

Behavioral—I/O buffers are described by
voltage-current and voltage-time tables in
typical, minimum, and maximum supply
voltage cases.

Physical—I/O buffers and all components in a
circuit are described by their physical
properties, such as transistor characteristics
and parasitic capacitances, as well as their
connections to one another.

Model
Customization

Simple and limited—The model
completely describes the I/O buffer and
does not usually need to be customized.

Fully customizable—Unless connected to an
arbitrary board description, the description of
the board trace model must be customized in
the model file. All parameters of the simulation
are also adjustable.

Simulation Set Up
and Run Time

Fast—Simulations run quickly once set up
correctly.

Slow—Simulations take time to set up and take
longer to run and complete.

Simulation
Accuracy

Good—For most simulations, accuracy is
sufficient to make useful adjustments to the
FPGA and/or board design to improve
signal integrity.

Excellent—Simulations are highly accurate,
making HSPICE simulation almost a
requirement for any high-speed design where
signal integrity and timing margins are tight.

Third-Party Tool
Support

Excellent—Almost all third-party board
simulation tools support IBIS.

Good—Most third-party tools that support
SPICE support HSPICE. However, Synopsys
HSPICE is required for simulations of Altera’s
encrypted HSPICE models.

11–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

FPGA to Board
Signal Integrity
Analysis Flow

Board signal integrity analysis can take place at any point in the FPGA
design process and is often performed both before and after board layout.
If it is performed early in the process as part of a pre-PCB layout analysis,
the models used for simulations can be more generic and can be changed
as much as needed to see how adjustments improve timing or signal
integrity and help with the design and routing of the PCB. Simulations
and the resulting changes made at this stage allow you to analyze “what
if” scenarios to better plan and implement your design. To assist with
early board signal integrity analysis, you can download generic IBIS
model files for each device family from the Altera website. If board signal
integrity analysis is performed late in the design, it is typically used for a
post-layout verification. The inputs and outputs of the FPGA are defined,
and required board routing topologies and constraints are known.
Simulations can help you find problems that may still exist in the FPGA
or board design before fabrication and assembly. In either case, a simple
process flow illustrates how to create accurate IBIS and HSPICE models
from a design in the Quartus II software and transfer them to third-party
simulation tools. Figure 11–3 shows this flow.

1 This chapter is organized around the type of model, IBIS or
HSPICE, that you use for your simulations. Once you
understand the steps in the analysis flow, refer to the section of
this chapter that corresponds to the model type you are using.

Altera Corporation 11–9
October 2007 Preliminary

FPGA to Board Signal Integrity Analysis Flow

Figure 11–3. Third-Party Board Signal Integrity Analysis Flow

Make I/O Assignments

Create a Quartus II Project

Continue Design with
Existing I/O Assignments

Enable IBIS or HSPICE
File Generation

Customize Files

Yes

No

Using
Stratix II?

Configure Board Trace
Models (Optional)

Compile and Generate
Files (EDA Netlist Writer)

IBIS or
HSPICE?

Apply Models to Buffers
in Board Model Simulations

Run Simulations as
Defined in HSPICE Deck

Run Simulation

Results
OK?

No
Make Adjustments to

Models or Simulation Parameters
and Simulate Again

Yes

IBIS HSPICE

Changes
to FPGA I/O

required?

Yes

No

11–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Create I/O and Board Trace Model Assignments

If your design uses a Stratix II device, you can configure a board trace
model for output signals or for bidirectional signals in output mode and
automatically transfer its description to HSPICE decks generated by the
HSPICE Writer. This helps improve simulation accuracy. To do this, turn
on the Enable Advanced I/O Timing option in the TimeQuest Timing
Analyzer page in the Settings dialog box and configure the board trace
model assignment settings for each I/O standard used in your design.
You can add series or parallel termination, specify the transmission line
length, and set the value of the far-end capacitive load. You can configure
these parameters in either the Board Trace Model view in the Pin Planner
or by clicking Device and Pin Options in the Device page of the Settings
dialog box.

f For information about how to use Advanced I/O Timing and configure
board trace models for the I/O standards used in your design, refer to
the I/O Management chapter in volume 2 of the Quartus II Handbook.

The Quartus II software can generate IBIS models and HSPICE decks
without the need to configure a board trace model with the Advanced
I/O Timing option. In fact, IBIS models ignore any board trace model
settings other than the far-end capacitive load. If any load value is set
other than the default, the delay given by IBIS models generated by the
IBIS Writer cannot be used to account correctly for the double counting
problem. The load value mismatch between the IBIS delay and the tCO
measurement of the Quartus II software prevents the delays from being
safely added together. Warning messages displayed when the EDA
Netlist Writer runs indicate when this mismatch occurs.

Enable Output File Generation

IBIS and HSPICE model files are not generated by the Quartus II software
by default. To generate or update the files automatically during each
project compilation, select the type of file to generate and a location
where to save the file in the project settings. These settings can also be
specified with commands in a Tcl script.

Generate the Output Files

The IBIS and HSPICE Writers in the Quartus II software are run as part of
the EDA Netlist Writer during normal project compilation. If either writer
is turned on in the project settings, IBIS or HSPICE files are created and
stored in the specified location. For IBIS, a single file is generated
containing information about all assigned pins, while HSPICE file
generation creates separate files for each assigned pin. You can run the
EDA Netlist Writer separately from a full compilation in the Quartus II

Altera Corporation 11–11
October 2007 Preliminary

FPGA to Board Signal Integrity Analysis Flow

software or at the command line. However, you must fully compile the
project or perform I/O Assignment Analysis at least once for the IBIS and
HSPICE Writers to have information about the I/O assignments and
settings in the design.

Customize the Output Files

The files generated by either the IBIS or HSPICE Writer are text files that
you can edit and customize easily for design or experimentation
purposes. IBIS files downloaded from the Altera website must be
customized with the correct RLC values for the specific device package
you have selected for your design. IBIS files generated by the IBIS Writer
do not require this customization since they are automatically configured
with the RLC values for your selected device. HSPICE decks require
modification to include a detailed description of your board. With Enable
Advanced I/O Timing turned on and a board trace model defined in the
Quartus II software, generated HSPICE decks automatically include that
model’s parameters. However, it is recommended that you replace that
model with a more detailed model that more accurately describes your
board design. A default simulation included in the generated HSPICE
decks measures delay between the FPGA and the far-end device. You can
make additions or adjustments to the default simulation in the generated
files to change the parameters of the default simulation or to perform
additional measurements.

Set Up and Run Simulations in Third-Party Tools

Once you have generated the files, you can use them to perform
simulations in your selected simulation tool. With IBIS models, you can
apply them to input, output, or bidirectional buffer entities and quickly
set up and run simulations. For HSPICE decks, the simulation parameters
are included in the files. Open the files in Synopsys HSPICE and run
simulations for each pin as needed. With HSPICE decks generated from
the HSPICE Writer, the double counting problem is accounted for,
ensuring that your simulations are accurate. Simulations that involve IBIS
models created with anything other than the default loading settings in
the Quartus II software must take the change in the size of the load
between the IBIS delay and the Quartus II tCO measurement into account.
Warning messages during compilation alert you to this change.

11–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Interpret Simulation Results

After running your simulations, you may find timing or signal integrity
issues with your high-speed signals. Based on your simulation results,
you can make adjustments to I/O assignment settings in the Quartus II
software, such as drive strength or I/O standard, or make changes to
your board routing or topology. After regenerating models in the
Quartus II software based on the changes you have made, rerun the
simulations to see if your changes corrected the problem.

Simulation with
IBIS Models

IBIS models provide a way to run accurate signal integrity simulations
quickly. IBIS models describe the behavior of I/O buffers with voltage-
current and voltage-time data curves. Because of their behavioral nature,
IBIS models do not have to include any information about the internal
circuit design of the I/O buffer. Most component manufacturers,
including Altera, provide IBIS models for free download and use in
signal integrity analysis simulation tools. You can download generic
device family IBIS models from the Altera website for early design
simulation or use the IBIS Writer to create custom IBIS models for your
existing design.

Elements of an IBIS Model

An IBIS model file (.ibs) is a text file that describes the behavior of an I/O
buffer across minimum, typical, and maximum temperature and voltage
ranges with a specified test load. The tables and values specified in the
IBIS file describe five basic elements of the I/O buffer. Figure 11–4
highlights each of these elements in the I/O buffer model.

Figure 11–4. Five Basic Elements in IBIS Models

Rise
Fall L_pkg R_pkg

C_comp C_pkg

1

2

4

3

5

Altera Corporation 11–13
October 2007 Preliminary

Simulation with IBIS Models

The following elements correspond to each numbered block in
Figure 11–4.

1. Pulldown—A voltage-current table describes the current when the
buffer is driven low based on a pull-down voltage range of -VCC to
2VCC.

2. Pullup—A voltage-current table describes the current when the
buffer is driven high based on a pull-up voltage range of -VCC to
VCC.

3. Ground and Power Clamps—Voltage-current tables describe the
current when clamping diodes for electrostatic discharge (ESD) are
present. The ground clamp voltage range is -VCC to VCC, and the
power clamp voltage range is -VCC to ground.

4. Ramp and Rising/Falling Waveform—A voltage-time (dv/dt) ratio
describes the rise and fall time of the buffer during a logic transition.
Optional rising and falling waveform tables can be added to more
accurately describe the characteristics of the rising and falling
transitions.

5. Total Output Capacitance and Package RLC—The total output
capacitance includes the parasitic capacitances of the output pad,
clamp diodes (if present), and input transistors. The package RLC is
device package-specific and defines the resistance, inductance, and
capacitance of the bond wire and pin of the I/O.

f For more information about IBIS models and Altera-specific features,
including links to the official IBIS specification, refer to AN 283:
Simulating Altera Devices with IBIS Models.

Creating Accurate IBIS Models

There are two ways to obtain Altera device IBIS files for your board-level
signal integrity simulations. You can download generic IBIS models from
the Altera website or you can use the IBIS writer in the Quartus II
software to create design-specific models.

Download IBIS Models

Altera provides IBIS models for almost all FPGA and FPGA configuration
devices. Check the Download Center at www.altera.com to see if models
for your selected device are available. You can use the IBIS models from
the website to perform early simulations of the I/O buffers you expect to
use in your design as part of a pre-layout analysis.

11–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Downloaded IBIS models have the RLC package values set to one
particular device in each device family. To accurately simulate your
design with the model, you must adjust the RLC values in the IBIS model
file to match the values for your particular device package by performing
the following steps:

1. Download and expand the ZIP file (.zip) of the IBIS model for the
device family you are using for your design. The .zip file contains
the IBIS model file along with an IBIS model user guide and a model
data correlation report.

2. Download the Package RLC Values spreadsheet for the same device
family.

3. Open the spreadsheet and locate the row that describes the device
package used in your design.

4. Copy the minimum, maximum, and typical values of resistance,
inductance, and capacitance for your device package from the
package’s I/O row.

5. Open the IBIS model file in a text editor and locate the [Package]
section of the file.

6. Overwrite the listed values copied with the values from the
spreadsheet and save the file.

The IBIS model file is now customized for your device package and can
be used for any simulation. IBIS models downloaded and used for
simulations in this manner are generic. They describe only a certain set of
models listed for each device on the IBIS model Download Center page
on the Altera website. To create customized models for your design, use
the IBIS Writer as described in the next section.

Generate Custom IBIS Models with the IBIS Writer

If you have started your FPGA design and have created custom I/O
assignments, such as drive strength settings or the enabling of clamping
diodes for ESD protection, you can use the Quartus II IBIS Writer to
create custom IBIS models to more accurately reflect your assignments.
IBIS models created with the IBIS Writer take I/O assignment settings
into account.

If the Enable Advanced I/O Timing option is turned off, the generated
IBIS model files are based on the load value setting for each I/O standard
on the Capacitive Loading tab of the Device and Pin Options dialog box
in the Device page of the Settings dialog box. With the Enable Advanced

Altera Corporation 11–15
October 2007 Preliminary

Simulation with IBIS Models

I/O Timing option turned on, IBIS models use an effective capacitive load
based on settings found in the board trace model on the Board Trace
Model tab in the Device and Pin Options dialog box or the Board Trace
Model view in the Pin Planner. The effective capacitive load is based on
the sum of the Near capacitance, Transmission line distributed
capacitance, and the Far capacitance settings in the board trace model.
Resistances and transmission line inductance values are ignored.

1 If any changes are made from the default load settings, the delay
in the generated IBIS model cannot safely be added to the
Quartus II tCO measurement to account for the double counting
problem. This is because the load values between the two delay
measurements do not match. When this happens, the Quartus II
software displays warning messages when the EDA Netlist
Writer runs to remind you about the load value mismatch.

When the IBIS Writer is enabled, it generates a custom IBIS model file
whenever the EDA Netlist Writer is run in the Quartus II software. To
turn on the IBIS Writer and create custom IBIS model files, perform the
following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, click the icon to expand EDA Tool Settings
and select Board-Level.

3. Under Board-Level Signal Integrity Analysis Format, in the
Format list, select IBIS (Figure 11–5).

11–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 11–5. Enabling IBIS Model Generation in the Settings Dialog Box

4. IBIS models are stored in the <project directory>/board/ibis directory
by default. To change the directory, click the browse button next to
the Output directory box, and browse to the desired location.

5. Click OK to close the Settings dialog box.

6. If the project has not been compiled, run a full compilation to create
a netlist and establish I/O assignments. On the Processing menu,
click Start Compilation. The IBIS model file, named
<project name>.ibs, is saved in the specified location.

7. If the project has been compiled before, you only need to run the
EDA Netlist Writer to create or update the IBIS model file. On the
Processing menu, point to Start and click Start EDA Netlist Writer.
The IBIS model file is created or updated in the specified location.

Altera Corporation 11–17
October 2007 Preliminary

Simulation with IBIS Models

1 You can save compilation time when creating the IBIS model file
the first time for early design simulation by performing only
required steps of the compilation process instead of a full
compilation of your project. Run Analysis and Synthesis and
I/O Assignment Analysis before creating the IBIS model file
with the EDA Netlist Writer.

f For more information about IBIS model generation, refer to the AN 283:
Simulating Altera Devices with IBIS Models application note or the
Quartus II Help.

Design Simulation Using the Mentor Graphics HyperLynx
Software

You must integrate IBIS models downloaded from the Altera website or
created with the Quartus II IBIS Writer into board design simulations to
accurately model timing and signal integrity. The HyperLynx software
from Mentor Graphics is one of the most popular tools for design
simulation. HyperLynx software makes it easy to integrate IBIS models
into simulations.

The HyperLynx software is a PCB analysis and simulation tool for high-
speed designs, consisting of two products, LineSim and BoardSim.
LineSim is an early simulation tool. Before any board routing takes place,
LineSim is used to simulate “what if” scenarios to assist in creating
routing rules and defining board parameters. BoardSim is a post-layout
tool used to analyze existing board routing. Specific nets are selected
from a board layout file and simulated in a manner similar to LineSim.
With board and routing parameters, and surrounding signal routing
known, highly accurate simulations of the final fabricated PCB are
possible. This section focuses on LineSim. Since the process of creating
and running simulations is very similar for both LineSim and BoardSim,
the details of IBIS model use in LineSim applies to simulations in
BoardSim.

Simulations in LineSim are configured using a schematic GUI to create
connections and topologies between I/O buffers, route trace segments,
and termination components. LineSim provides two methods, cell-based
and free-form, for creating routing schematics. Cell-based schematics are
based on fixed cells consisting of typical placements of buffers, trace
impedances, and components. Parts of the grid-based cells are filled with
the desired objects to create the topology. A topology in a cell-based
schematic is limited by the available connections within and between the
cells.

11–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

A more robust and expandable way to create a circuit schematic for
simulation is to use the free-form schematic format in LineSim as shown
in Figure 11–6. The free-form schematic format makes it easy to place
parts into any configuration and edit them as needed. This section
describes the use of IBIS models with free-form schematics, but the
process is nearly identical for cell-based schematics.

Figure 11–6. HyperLynx LineSim Free-Form Schematic Editor

Altera Corporation 11–19
October 2007 Preliminary

Simulation with IBIS Models

When you use HyperLynx software to perform simulations, you typically
perform the following steps:

1. Create a new LineSim free-form schematic document and set up the
board stackup for your PCB using the Stackup Editor. In this editor,
you specify board layer properties including layer thickness,
dielectric constant, and trace width.

2. Create a circuit schematic for the net you want to simulate. The
schematic represents all the parts of the routed net including source
and destination I/O buffers, termination components, transmission
line segments, and representations of impedance discontinuities
such as vias or connectors.

3. Assign IBIS models to the source and destination I/O buffers to
represent their behavior during operation.

4. Attach probes from the digital oscilloscope that is built in to
LineSim to points in the circuit that you want to monitor during
simulation. Typically, at least one probe is attached to the pin of a
destination I/O buffer. For differential signals, you can attach a
differential probe to both the positive and negative pins at the
destination.

5. Configure and run the simulation. You can simulate a rising or
falling edge and test the circuit under different drive strength
conditions.

6. Interpret the results and make adjustments. Based on the
waveforms captured in the digital oscilloscope, you can adjust
anything in the circuit schematic to correct any signal integrity
issues, such as overshoot or ringing. If necessary, you can make I/O
assignment changes in the Quartus II software, regenerate the IBIS
file with the IBIS Writer, and apply the updated IBIS model to the
buffers in your HyperLynx software schematic.

7. Repeat the simulations and circuit adjustments until you are
satisfied with the results. Once the operation of the net meets your
design requirements, implement changes to your I/O assignments
in the Quartus II software and/or adjust your board routing
constraints, component values, and placement to match the
simulation.

f For more information about HyperLynx software, including schematic
creation, simulation setup, model usage, product support, licensing, and
training, refer to HyperLynx Help or the Mentor Graphics website at
www.mentor.com.

11–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Configuring LineSim to Use Altera IBIS Models

You must configure LineSim to find and use the downloaded or
generated IBIS models for your design. To do this, you add the location
of your IBIS model file(s) to the LineSim Model Library search path. Then
you apply a selected model to a buffer in your schematic.

To add the Quartus II software’s default IBIS model location, <project
directory>/board/ibis, to the HyperLynx LineSim model library search
path, perform the following steps in LineSim:

1. From the Options menu, click Directories. The Set Directories
dialog box appears (Figure 11–7). The Model-library file path(s) list
displays the order in which LineSim searches file directories for
model files.

Figure 11–7. LineSim Set Directories Dialog Box

2. Click Edit. A dialog box appears where you can add directories and
adjust the order in which LineSim searches them (Figure 11–8).

Altera Corporation 11–21
October 2007 Preliminary

Simulation with IBIS Models

Figure 11–8. LineSim Select Directories Dialog Box

3. Click Add and browse to the default IBIS model location, <project
directory>/board/ibis. Click OK.

4. Click Up to move the IBIS model directory to the top of the list, and
click Generate Model Index to update LineSim’s model database
with the models found in the added directory.

5. Click OK. The IBIS model directory for your project is added to the
top of the Model-library file path(s) list. Click OK to close the Set
Directories dialog box.

Integrating Altera IBIS Models into LineSim Simulations

Once the location for IBIS files is set, you can assign the downloaded or
generated IBIS models to the buffers in your schematic. To do this,
perform the following steps:

1. Double-click a buffer symbol in your schematic to open the Assign
Models dialog box (Figure 11–9). You can also click Assign Models
from the buffer symbol’s right-click menu.

11–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 11–9. LineSim Assign Model Dialog Box

2. The pin of the buffer symbol you selected should be highlighted in
the Pins list. If you want to assign a model to a different symbol or
pin, select it from the list.

3. Click Select. The Select IC Model dialog box appears
(Figure 11–10).

Altera Corporation 11–23
October 2007 Preliminary

Simulation with IBIS Models

Figure 11–10. LineSim Select IC Model Dialog Box

4. To filter the list of available libraries to display only IBIS models,
select .IBS. Scroll through the Libraries list, and click the name of
the library for your design. By default, this is <project name>.ibs.

5. The device for your design should be selected as the only item in the
Devices list. If not, select your device from the list.

6. From the Signal list, select the name of the signal you want to
simulate. You can also choose to select by device pin number.

7. Click OK. The Assign Models dialog box displays the selected IBIS
model file and signal.

8. If applicable to the signal you chose, adjust the buffer settings as
needed for the simulation.

9. Select and configure other buffer pins from the Pins list in the same
manner. Click OK when all I/O models are assigned.

11–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Running and Interpreting LineSim Simulations

You can now run any desired simulations and make adjustments to the
I/O assignments or simulation parameters as needed. For example, if
after running a simulation you see too much overshoot in the simulated
signal at the destination buffer as seen in Figure 11–11, you could adjust
the drive strength I/O assignment setting to a lower value. Regenerate
the IBIS model file, and run the simulation again to verify if the change
fixed the problem.

Figure 11–11. Example of Overshoot in HyperLynx with IBIS Models

If you see a discontinuity or other anomalies at the destination, such as
slow rise and fall times as shown in Figure 11–12, adjust the termination
scheme or termination component values. After making these changes,
rerun the simulation to check whether your adjustments solved the
problem. In this case, it is not necessary to regenerate the IBIS model file.

Altera Corporation 11–25
October 2007 Preliminary

Simulation with HSPICE Models

Figure 11–12. Example of Signal Integrity Anomaly in HyperLynx with IBIS
Models

f For more information about board-level signal integrity and to learn
about ways to improve it with simple changes to your design, visit the
Altera Signal Integrity Center at www.altera.com.

Simulation with
HSPICE Models

HSPICE decks are used to perform highly accurate simulations by
precisely describing the physical properties of all aspects of a circuit.
HSPICE decks describe I/O buffers, board components, and all the
connections between them, as well as defining the parameters of the
simulation to be run. By their nature, HSPICE decks are highly
customizable and require a detailed description of the circuit under
simulation to be effective. For Stratix II devices, when Enable Advanced
I/O Timing is turned on, the HSPICE decks generated by the Quartus II
HSPICE Writer automatically include board components and topology
defined in the Board Trace Model that you configure in the Pin Planner
or in the Board Trace Model tab of the Device and Pin Options dialog
box. All HSPICE decks generated by the Quartus II software include
compensation for the double count problem (for more information about
the double count problem, refer to “The Double Counting Problem for
FPGA Output Timing” on page 11–4). You can simulate with the default
simulation parameters built in to the generated HSPICE decks or make
adjustments to customize your simulation.

11–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more detailed information about the HSPICE model files created by
the Quartus II HSPICE Writer, refer to AN 424: I/O Simulations Using
HSPICE.

Supported Devices and Signaling

The HSPICE Writer in the Quartus II software version 6.1 supports the
devices and signaling defined in Table 11–2. Only Stratix II devices
support the creation of a board trace model in the Quartus II software for
automatic inclusion in an HSPICE deck. Other devices require the board
description to be manually added to the HSPICE file.

If you are using a Stratix II device for your design, you can turn on Enable
Advanced I/O Timing and configure the board trace model for each I/O
standard used in your design. The HSPICE files will include the board
trace description you create in the Board Trace Model view in the Pin
Planner or the Board Trace Model tab in Device and Pin Options dialog
box.

f For more information about Advanced I/O Timing and configuring
board trace models for the I/O standards in your design, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

Creating Accurate HSPICE Models

The HSPICE Writer must be turned on before HSPICE model files are
created. HSPICE models are not generated by default in the Quartus II
software. When enabled, the HSPICE Writer operates as part of the EDA
Netlist Writer in the compilation process. When a project is fully
compiled or the EDA Netlist Writer is run, the HSPICE Writer generates
or updates the HSPICE model files.

Table 11–2. HSPICE Writer Device and Signaling Support

Device Input Output Single-Ended Differential

Automatic
Board Trace

Model
Description

Stratix® II v v v v v
Stratix II GX
(non-HSSI signals)

v v v v —

HardCopy® II v v v v —

Altera Corporation 11–27
October 2007 Preliminary

Simulation with HSPICE Models

Creating HSPICE Model Files Using the Quartus II GUI

To turn on the HSPICE Writer and create HSPICE deck files for each pin
in your design, perform the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, click the icon to expand EDA Tool Settings
and select Board-Level.

3. Under Board-Level Signal Integrity Analysis Format, in the
Format list, select HSPICE (Figure 11–13).

Figure 11–13. Enabling HSPICE Deck and Model Generation in the Settings Dialog Box

11–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

4. HSPICE decks are stored in the <project directory>/board/hspice
directory by default. To change the directory, click the browse
button next to the Output directory box, and browse to the desired
location.

5. Click OK to close the Settings dialog box.

6. If the project has not been compiled, run a full compilation to create
a netlist and establish I/O assignments. On the Processing menu,
click Start Compilation. HSPICE decks for each assigned pin, along
with required model library subdirectories, are saved in the
specified location.

7. If the project has been compiled, you only need to run the EDA
Netlist Writer to create or update the HSPICE deck and model files.
On the Processing menu, point to Start and click Start EDA Netlist
Writer. The HSPICE decks and models are created or updated in the
specified location.

1 You can save compilation time when creating HSPICE decks the
first time for early design simulation by performing only
required steps of the compilation process instead of a full
compilation of your project. Run Analysis and Synthesis and
I/O Assignment Analysis before creating the HSPICE deck files
with the EDA Netlist Writer.

Preconfigured HSPICE simulation files generated by the HSPICE Writer
are named <device pin #>_<signal name>_<in|out>.sp. Both an “in” and
an “out” file are generated for bidirectional pins. HSPICE files are text
files and can be edited with any ASCII text editor.

Two folders, named lib and cir, are also generated. These folders contain
the encrypted I/O buffer descriptions and other information needed for
running simulations. If you want to move the HSPICE model files to a
different location, be sure to move these folders as well. The HSPICE
model files include direct references to files in the lib and cir folders. If
they are not in the same location, your HSPICE simulations will not run.

Creating HSPICE Model Files Using Tcl Scripting and the Command Line

If you use a script-based flow to compile your project, you can turn on the
creation of HSPICE model files by including the following commands in
your Tcl script (.tcl file):

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL "HSPICE
(Signal Integrity)"
set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE -section_id
eda_board_design_signal_integrity

Altera Corporation 11–29
October 2007 Preliminary

Simulation with HSPICE Models

set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> -
section_id eda_board_design_signal_integrity

The <output directory> option specifies the location where HSPICE model
files are saved. By default, the following directory is used:

<project directory>/board/hspice

You can run the HSPICE Writer at a command prompt by running the
EDA Netlist Writer with the following command:

quartus_eda.exe <project name> --board_signal_integrity=on --format=HSPICE --
output_directory=<output directory>

The <project name> should match the name of the Quartus II Settings File
(.qsf) for your project.

Customizing HSPICE Model Files

HSPICE models generated by the HSPICE Writer can be used for
simulation as generated. A default board description is included, and a
default simulation is set up to measure rise and fall delays for both input
and output simulations which compensates for the double counting
problem. However, Altera recommends that you customize the board
description to more accurately represent your routing and termination
scheme. To do this, open the generated HSPICE model files for all pins
you want to simulate, and locate the following commented section:

*///
* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description
*///

Replace the board description in this section with a description of your
board or the board topology you would like to simulate in each HSPICE
file.

For input simulations, you must include a description of the device that
provides the stimulus for the signal. Locate the following comments that
indicate where to place the stimulus device description in the file:

*///
* Sample source stimulus placeholder
* - Replace this with your I/O driver model
*///

f For more information about configuring and customizing HSPICE
model files for simulation, refer to the HSPICE manual.

11–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Design Simulation Using Synopsys HSPICE

Synopsys HSPICE is an industry standard SPICE simulation tool; it is
required for running SPICE simulation with Altera’s encrypted HSPICE
models. While you can use HSPICE model files in other tools, such as
Mentor Graphics HyperLynx software, Synopsys HSPICE is still required
to decrypt the models. You can use Synopsys HSPICE along with the
included Avanwaves viewer to run simulations and view the results as
waveforms.

f For more information about Synopsys HSPICE, including licensing,
installation, usage, support, and training, refer to the HSPICE manual or
the Synopsys website at www.synopsys.com.

Running HSPICE Simulations

Since simulation parameters are configured directly in the HSPICE model
files, running a simulation requires only that you open an HSPICE file in
the HSPICE User Interface (hspui) and start the simulation. The hspui
window is shown in Figure 11–14.

Figure 11–14. HSPICE hspui Window

Click Open and browse to the location of the HSPICE model files
generated by the Quartus II HSPICE Writer. The default location for
HSPICE model files is <project directory>/board/hspice. Select the .sp file,
generated by the HSPICE Writer, for the signal you want to simulate and
click OK.

Click Simulate to run the simulation. The status of the simulation is
displayed in the window and saved in a .lis file with the same name as
the .sp file when the simulation is complete. Check the .lis file if an error
occurs during the simulation requiring a change in the .sp file to fix.

Altera Corporation 11–31
October 2007 Preliminary

Simulation with HSPICE Models

Viewing and Interpreting Tabular Simulation Results

The .lis file stores the collected simulation data in tabular form. The
default simulation configured by the HSPICE Writer produces delay
measurements for rising and falling transitions on both input and output
simulations. These measurements are found in the .lis file and named
tpd_rise and tpd_fall. For output simulations, these values are
already adjusted for the double count. Add either of these measurements
to the Quartus II tCO delay to determine the complete delay from the
FPGA logic to the load pin. For input simulations, add either of these
measurements to the Quartus II tSU and tH delay values to calculate the
complete delay from the far end stimulus to the FPGA logic. Other values
found in the .lis file, such as tpd_uncomp_rise, tpd_uncomp_fall,
t_dblcnt_rise, and t_dblcnt_fall, are parts of the double count
compensation calculation. These values are not needed for further
analysis.

Viewing Graphical Simulation Results

You can quickly view the results of the simulation as a graphical
waveform display using the Avanwaves viewer included with HSPICE.
With the default simulation configured by the HSPICE Writer, you can
view the simulated waveforms at both the source and destination in input
and output simulations.

To see the waveforms for the simulation, in the HSPICE hspui window,
click Avanwaves. The Avanwaves viewer opens and displays the Results
Browser as shown in Figure 11–15.

11–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 11–15. HSPICE Avanwaves Results Browser

The Results Browser lets you quickly select which waveform to view in
the main viewing window. If multiple simulations are run on the same
signal, the list at the top of the Results Browser displays the results of each
simulation. Click the simulation description to select which simulation to
view. By default, the descriptions are derived from the first line of the
HSPICE file, so the description may appear as a line of asterisks.

Select the type of waveform to view. With the default simulation, select
Voltages from the Types list to see the source and destination
waveforms. On the Curves list, double-click the waveform you want to
view. The waveform appears in the main viewing window. You can
zoom in and out and adjust the view as desired (Figure 11–16).

Altera Corporation 11–33
October 2007 Preliminary

Simulation with HSPICE Models

Figure 11–16. Avanwaves Waveform Viewer

Making Design Adjustments Based on HSPICE Simulations

Based on the results of your simulations, you can make adjustments to the
I/O assignments or simulation parameters if required. For example, after
you run a simulation and see overshoot or ringing in the simulated signal
at the destination buffer as shown in the example in Figure 11–17, you can
adjust the drive strength I/O assignment setting to a lower value.
Regenerate the HSPICE deck, and run the simulation again to verify that
the change fixed the problem.

11–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 11–17. Example of Overshoot in the Avanwaves Waveform Viewer

If there is a discontinuity or any other anomalies at the destination as
shown in the example in Figure 11–18, adjust the board description in the
Quartus II Board Trace Model (for Stratix II devices) or in the generated
HSPICE model files to change the termination scheme or adjust
termination component values. After making these changes, regenerate
the HSPICE files, if necessary, and rerun the simulation to verify whether
your adjustments solved the problem.

Altera Corporation 11–35
October 2007 Preliminary

Conclusion

Figure 11–18. Example of Signal Integrity Anomaly in the Avanwaves Waveform Viewer

f For more information about board-level signal integrity and to learn
about ways to improve it with simple changes to your FPGA design,
refer to the Altera Signal Integrity Center.

Conclusion As FPGA devices are used in more high-speed applications, it becomes
increasingly necessary to perform board-level signal integrity analysis
simulations. You must run such simulations to ensure good signal
integrity between the FPGA and any connected devices. The Quartus II
software helps to simplify this process with the ability to automatically
generate I/O buffer description models easily with the IBIS and HSPICE
Writers. IBIS models can be integrated into a third party signal integrity
analysis workflow using a tool such as Mentor Graphics HyperLynx
software, generating quick and accurate simulation results. HSPICE
decks include preconfigured simulations and only require descriptions of
board routing and stimulus models to create highly accurate simulation

11–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

results using Synopsys HSPICE. Either type of simulation helps prevent
unnecessary board spins, increasing your productivity and decreasing
your costs.

Referenced
Documents

This chapter references the following documents:

■ AN 283: Simulating Altera Devices with IBIS Models
■ AN 424: I/O Simulations Using HSPICE
■ I/O Management chapter in volume 2 of the Quartus II Handbook

Document
Revision History

Table 11–3 shows the revision history for this chapter.

Table 11–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 11–36. —

May 2007
v7.1.0

Added Referenced Documents. —

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Initial Release —

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/literature/an/an424.pdf

Altera Corporation Section V–i
Preliminary

Section V. In-System
Design Debugging

Debugging today's FPGA designs can be a daunting task. As your
product requirements continue to increase in complexity, the time you
spend on design verification continues to rise. To get your product to
market as quickly as possible, you must minimize design verification
time. To help alleviate the time-to-market pressure, you need a set of
verification tools that are powerful, yet easy to use.

The Quartus® II software SignalTap® II Logic Analyzer and the
SignalProbe™ features analyze internal device nodes and I/O pins while
operating in-system and at system speeds. The SignalTap II Logic
Analyzer uses an embedded logic analyzer to route the signal data
through the JTAG port to either the SignalTap II Logic Analyzer or an
external logic analyzer or oscilloscope. The SignalProbe feature uses
incremental routing on unused device routing resources to route selected
signals to an external logic analyzer or oscilloscope. A third Quartus II
software feature, the Chip Editor, can be used in conjunction with the
SignalTap II and SignalProbe debugging tools to speed up design
verification and incrementally fix bugs uncovered during design
verification. This section explains how to use each of these features.

This section includes the following chapters:

■ Chapter 12, Quick Design Debugging Using SignalProbe
■ Chapter 13, Design Debugging Using the SignalTap II Embedded

Logic Analyzer
■ Chapter 14, In-System Debugging Using External Logic Analyzers
■ Chapter 15, In-System Updating of Memory and Constants
■ Chapter 16, Design Debugging Using In-System Sources and Probes

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section V–ii Altera Corporation
Preliminary

In-System Design Debugging Quartus II Handbook, Volume 3

Altera Corporation 12–1
October 2007

12. Quick Design Debugging
Using SignalProbe

Introduction Hardware verification can be a lengthy and expensive process. The
SignalProbe incremental routing feature helps reduce the hardware
verification process and time-to-market for
system-on-a-programmable-chip (SOPC) designs.

Easy access to internal device signals is important in design or
debugging. The SignalProbe feature makes design verification more
efficient by quickly routing internal signals to I/O pins without affecting
the design. Starting with a fully routed design, you can select and route
signals for debugging to either previously reserved or currently unused
I/O pins.

You can use the SignalProbe feature with the Stratix® series, Cyclone®
series, MAX® II, and APEX™ series device families.

This chapter is divided into two sections. If you are using the SignalProbe
feature to debug your Stratix series, Cyclone series, and MAX II device,
then refer to “Debugging Using the SignalProbe Feature” on page 12–4. If
you are using the SignalProbe feature to debug your APEX series device,
refer to “Using SignalProbe with the APEX Device Family” on
page 12–19.

QII53008-7.2.0

12–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

On-Chip
Debugging Tool
Comparison

The Quartus® II software provides a number of different ways to help
debug your FPGA design after programming the device. The
SignalTap® II Logic Analyzer, SignalProbe, and the Logic Analyzer
Interface (LAI) share some similar features, but each has advantages. In
some debugging situations, it can be difficult to decide which tool is best
to use or whether multiple tools are required. Table 12–1 compares
common debugging features between these tools and provides
suggestions for which is the best tool to use for a given feature.

Note that “v” indicates the suggested best tool for the feature, “—”
indicates that while the tool is available for that feature, that tool may not
give the best results, and “N/A” indicates that the feature is not
applicable for the selected tool.

Table 12–1. Suggested On-Chip Debugging Tools for Common Debugging Features Note (1) (Part 1 of 2)

Feature SignalProbe
Logic

Analyzer
Interface (LAI)

SignalTap II
Embedded
Analyzer

Description

Large Sample
Depth

N/A v — An external logic analyzer used with the
LAI has a bigger buffer to store more
captured data than the SignalTap II
Logic Analyzer. No data is captured or
stored with SignalProbe.

Ease in Debugging
Timing Issue

N/A v — An external logic analyzer used with the
LAI provides you with access to timing
mode, enabling you to debug combined
streams of data.

Minimal Effect
on Logic Design

v v(2) v (2) SignalProbe incrementally routes nodes to
pins, not affecting the design at all. The LAI
adds minimal logic to a design, requiring
fewer device resources. The SignalTap II
Logic Analyzer has little effect on the
design when it is set as a separate design
partition using incremental compilation.

Short Compile and
Recompile Time

v v (2) v (2) SignalProbe attaches incrementally routed
signals to previously reserved pins,
requiring very little recompilation time to
make changes to source signal selections.
The SignalTap II Logic Analyzer and the
LAI can take advantage of incremental
compilation to refit their own design
partitions to decrease recompilation time.

Altera Corporation 12–3
October 2007 Preliminary

On-Chip Debugging Tool Comparison

Triggering
Capability

N/A v — Although advanced triggering is available
in the SignalTap II Logic Analyzer, many
additional triggering options are only
available on an external logic analyzer
when used with the LAI.

I/O Usage — — v No additional output pins are required with
the SignalTap II Logic Analyzer. Both the
LAI and SignalProbe require I/O pin
assignments.

Acquisition
Speed

N/A — v The SignalTap II Logic Analyzer can
acquire data at speeds of over 200 MHz.
The same acquisition speeds are
obtainable with an external logic analyzer
used with the LAI, but signal integrity
issues may limit this.

No JTAG
Connection
Required

v — — An FPGA design with the SignalTap II
Logic Analyzer or the LAI requires an active
JTAG connection to a host running the
Quartus II software. SignalProbe does not
require a host for debugging purposes.

External
Equipment

— — v The SignalTap II Logic Analyzer logic is
completely internal to the programmed
FPGA device. No extra equipment is
required other than a JTAG connection
from a host running the Quartus II software
or the stand-alone SignalTap II software.
SignalProbe and the LAI require the use of
external debugging equipment, such as
multimeters, oscilloscopes, or logic
analyzers.

Notes to Table 12–1:
(1) v indicates the suggested best tool for the feature.

— indicates that while the tool is available for that feature, that tool may not give the best results.
N/A indicates that the feature is not applicable for the selected tool.

(2) When used with incremental compilation.

Table 12–1. Suggested On-Chip Debugging Tools for Common Debugging Features Note (1) (Part 2 of 2)

Feature SignalProbe
Logic

Analyzer
Interface (LAI)

SignalTap II
Embedded
Analyzer

Description

12–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Debugging
Using the
SignalProbe
Feature

The SignalProbe feature enables you to reserve available pins and route
internal signals to those reserved pins, while preserving the behavior of
your design. SignalProbe is an effective debugging tool providing
visibility into your FPGA.

1 This section describes the SignalProbe process for the Stratix
series, Cyclone series, and MAX II device families. Using
SignalProbe with APEX devices is described in “Using
SignalProbe with the APEX Device Family” on page 12–19.
APEX devices do not support post-fit netlist changes made as
engineering change orders (ECOs).

You can reserve pins for SignalProbe and assign I/O standards before or
after a full compilation. Each SignalProbe source to SignalProbe pin
connection is implemented as an ECO change that is applied to your
netlist after a full compilation.

To route the internal signals to the device’s reserved pins for SignalProbe,
perform the following tasks:

1. Reserve the SignalProbe Pins, described on page 12–4.

2. Perform a Full Compilation, described on page 12–6.

3. Assign a SignalProbe Source, described on page 12–6.

4. Add Registers to the Pipeline Path to SignalProbe Pin, described on
page 12–7.

5. Perform a SignalProbe Compilation, described on page 12–9.

6. Analyze the Results of the SignalProbe Compilation, described on
page 12–10.

7. Generate the Programming File, described on page 12–11.

Reserve the SignalProbe Pins

You can reserve SignalProbe pins before or after compiling your design.
Reserving SignalProbe pins before a compilation is optional. You can also
reserve any unused I/Os of the device for SignalProbe pins after
compilation. You can assign sources easily after reserving your
SignalProbe pins. The sources for SignalProbe pins are the internal nodes
and registers in the post-compilation netlist that you want to probe.

Altera Corporation 12–5
October 2007 Preliminary

Debugging Using the SignalProbe Feature

1 Although you can reserve SignalProbe pins using many features
within the Quartus II software, including the Pin Planner and
the Tcl interface, you should use the SignalProbe Pins dialog
box to create and edit your SignalProbe pins.

To reserve an available package pin as a SignalProbe pin using the
SignalProbe Pins dialog box, perform the following steps:

1. On the Tools menu, click SignalProbe Pins. The SignalProbe Pins
dialog box appears (Figure 12–1). The SignalProbe pin name and
I/O standard appear as the only fields that are editable if a place
and route, or fit, has not been performed.

Figure 12–1. Reserving a SignalProbe Pin in the SignalProbe Pins Dialog Box

2. In the Current and potential SignalProbe pins list, click on a pin
from the Number column and type your SignalProbe pin name into
the Pin name box.

3. Select an I/O standard from the I/O standard drop-down list.

12–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

4. Click Add to add the new SignalProbe pin or Change if you are
editing a previously reserved pin for SignalProbe. (Figure 12–1
shows the dialog box editing a previously reserved pin; if you were
adding a new SignalProbe pin, the Add button appears instead of
the Change button.)

5. Click OK.

Perform a Full Compilation

You must complete a full compilation to generate an internal netlist
containing a list of internal nodes to probe to a SignalProbe outpin.

To perform a full compilation, on the processing menu, click Start
Compilation.

Assign a SignalProbe Source

A SignalProbe source can be any combinational node, register, or pin in
your post-compilation netlist. To find a SignalProbe source, use the
SignalProbe filter in the Node Finder to filter out all sources that cannot
be probed. You may not be able to find a particular internal node because
the node may be optimized away during synthesis, or the node cannot be
routed to the SignalProbe pin, as it is untappable. For example, internal
nodes and registers within the Gigabit transceivers can not be probed
because there are no physical routes to the pins available.

1 To probe virtual I/O pins generated in low-level partitions in an
incremental compilation flow, select the source of the logic that
feeds the Virtual Pin as your SignalProbe source pin.

To assign a SignalProbe source to your SignalProbe reserved pin, perform
the following steps:

1. On the Tools menu, click SignalProbe Pins. The SignalProbe Pins
dialog box appears (Figure 12–1 on page 12–5).

2. If a SignalProbe reserved pin is shown, click on the pin in the
Current and potential SignalProbe pins list. Alternately, you can
click on an available pin number in the Current and potential
SignalProbe pins list and type a new SignalProbe pin name into the
Pin name box.

3. In the Source box, specify the source name. Click the browse button.
The Node Finder dialog box appears.

Altera Corporation 12–7
October 2007 Preliminary

Debugging Using the SignalProbe Feature

4. When you open the Node Finder dialog box from the SignalProbe
Pins dialog box, SignalProbe is selected by default in the Filter list.
Click List to show a set of nodes that can be probed in the Nodes
Found list.

5. Select your source node in the Nodes Found list and click the “>”
button. The selected node appears in the Selected Nodes list.

6. Click OK.

7. After a source is selected, the SignalProbe enable option is turned
on. Click Change or Add to accept the changes.

1 Because SignalProbe pins are implemented and routed as ECOs,
turning the SignalProbe enable option on or off is the same as
selecting Apply Selected Change or Restore Selected Change
in the Change Manager window. (If the Change Manager
window is not visible at the bottom of your screen, from the
View menu, point to Utility Windows and click Change
Manager.)

f For more information about the Change Manager for the Chip Planner
and Resource Property Editor, refer to the Engineering Change
Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

Add Registers to the Pipeline Path to SignalProbe Pin

You can specify the number of registers placed between a SignalProbe
source and a SignalProbe pin to synchronize the data with a clock and to
control the latency of the SignalProbe outputs. The SignalProbe feature
automatically inserts the number of registers specified into the
SignalProbe path.

Figure 12–2 shows a single register between the SignalProbe source
Reg_b_1 and SignalProbe SignalProbe_Output_2 output pin added
to synchronize the data between the two SignalProbe output pins.

1 When you add a register to a SignalProbe pin, the SignalProbe
compilation attempts to place the register to best fit timing
requirements. You can place SignalProbe registers near the
SignalProbe source to meet fMAX requirements, or you can place
the register near the I/O to meet tCO requirements.

12–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 12–2. Synchronizing SignalProbe Outputs with a SignalProbe Register

To pipeline an existing SignalProbe, perform the following steps:

1. On the Tools menu, click SignalProbe Pins. The SignalProbe Pins
dialog box appears.

2. Select a SignalProbe pin and in the Clock box, type the clock name
used to drive your registers, or click the browse button to use the
Node Finder to select your clock source.

3. In the Registers box, specify the number of registers you want to
add in between the SignalProbe source and the SignalProbe output.

4. Click Change.

5. Click OK.

1 In addition to the clock input for the pipeline registers, you can
also specify a reset signal pin for the pipeline registers. To
specify a reset pin for the pipeline registers, use the Tcl
command make_sp as described in “Scripting Support” on
page 12–17.

Reg_b_1 Reg_b_2

SignalProbe
Pipeline
Register

SignalProbe_Output_1

SignalProbe_Output_2

D Q

DFF

D Q

DFF

D Q

DFF

D Q

DFF

D Q

DFF
Reg_a_1 Reg_a_2

Logic

Logic

Logic

Logic

Altera Corporation 12–9
October 2007 Preliminary

Debugging Using the SignalProbe Feature

Perform a SignalProbe Compilation

Perform a SignalProbe compilation to route your SignalProbe pins. On
the Processing menu, point to Start and click Start SignalProbe
Compilation (Figure 12–3). A SignalProbe compilation saves and checks
all netlist changes without recompiling the other parts of the design, and
completes compilation in a fraction of the time of a full compilation. The
design’s current placement and routing are preserved.

Figure 12–3. Performing the SignalProbe Compilation

Begin SignalProbe
Compilation

12–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Analyze the Results of the SignalProbe Compilation

After a SignalProbe compilation, you can view the results in the
compilation report file. Each SignalProbe pin is displayed in the
SignalProbe Fitting Result page in the Fitter section of the Compilation
Report (Figure 12–4). To view the status of each SignalProbe pin in the
SignalProbe Pins dialog box, click SignalProbe Pins on the Tools menu.

Figure 12–4. SignalProbe Fitting Results Page in the Compilation Report Window

You can also view the status of each SignalProbe pin the Change Manager
window (Figure 12–5). (If the Change Manager window is not visible at
the bottom of your GUI, from the View menu, point to Utility Windows
and click Change Manager.)

Figure 12–5. Change Manager Window with SignalProbe Pins

Altera Corporation 12–11
October 2007 Preliminary

Debugging Using the SignalProbe Feature

1 For more information about how to use the Change Manager,
refer to the Engineering Change Management with the Chip Planner
chapter in volume 2 of the Quartus II Handbook.

To view the timing results of each successfully routed SignalProbe pin, on
the Processing menu, point to Start and click Start Timing Analysis.

Generate the Programming File

After a SignalProbe compilation, generate the new programming file
containing your successfully routed SignalProbe pins. To generate a
programming file, on the Processing menu, point to Start and click Start
Assembler.

SignalProbe ECO flows

Beginning with the Quartus II software version 6.0, SignalProbe pins are
implemented using the same flow as other post-compilation changes
made as ECOs. The following section describes SignalProbe ECO flows
with and without the Quartus II incremental compilation feature.

SignalProbe ECO Flow with Quartus II Incremental Compilation

Beginning with the Quartus II software version 6.1, the incremental
compilation feature is turned on by default. The top-level design is
automatically set to a design partition when the incremental compilation
feature is on. A design partition during incremental compilation can have
different netlist types. (Netlist types can be set to source HDL, post
synthesis, or post-fit.) The netlist type indicates whether that partition
should be resynthesized or refit during Quartus II incremental
compilation. Incremental compilation saves you time and preserves the
placement of unchanged partitions in your design if small changes must
be made to some partitions late in the design cycle.

f For more information about the Quartus II incremental compilation
feature, refer to the Quartus Incremental Compilation Feature for Hiearchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

The behavior of SignalProbe pins during an incremental compilation
depends on the Netlist Type setting. If the top-level partition netlist type
is set to post-fit, SignalProbe ECOs are retained when you recompile the
design.

If some SignalProbe sources from lower-level partitions are set to a netlist
type other than post-fit, then during re-compilation the Quartus II fitter
uses the post-fit netlist type for those partitions as well, and a warning
message appears in the message window.

12–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

All of the partitions containing SignalProbe ECOs are linked together and
must use the post-fit netlist type. The same rule applies when your
top-level partition is set to post-synthesis and one of the lower-level
partitions’ netlist type is set to post-fit. When you recompile your design,
the Quartus II fitter uses the post-fit netlist for the top-level partition and
SignalProbe ECOs are retained.

The behavior is different in the case that your top-level partition netlist
type is set to post–synthesis and you have no other lower-level partitions
defined, or the lower-level partition netlist types are also set to
post-synthesis. If you create SignalProbe ECOs and re-compile the
design, your SignalProbe ECOs are not retained and a warning message
appears in the messages window. The warning indicates that ECO
modifications are discarded; however, all of the ECO information is
retained in the Change Manager. In this case, you can apply SignalProbe
ECOs from the Change Manager and perform the Check and Save All
Netlist Changes step as described in “SignalProbe ECO Flow without
Quartus Incremental Compilation” on page 12–12.

SignalProbe ECO Flow without Quartus Incremental Compilation

If you do not use the Quartus II incremental compilation feature and you
implement SignalProbe pins after the initial compilation of your design,
then SignalProbe ECOs are not retained during recompilation. However,
all of the SignalProbe ECOs remain in the Change Manager.

To apply a SignalProbe ECO, right-click the Change Manager and select
Apply Selected Change (Figure 12–6). (If the Change Manager window
is not visible at the bottom of your screen, from the View menu, point to
Utility Windows and click Change Manager.)

Altera Corporation 12–13
October 2007 Preliminary

Debugging Using the SignalProbe Feature

Figure 12–6. Applying SignalProbe ECOs

Alternately, you can use the SignalProbe Pins dialog box to enable the
ECOs (Figure 12–7). This has the same effect as applying the SignalProbe
ECOs within the Change Manager.

Figure 12–7. Enabling ECOs in the SignalProbe Pins Dialog Box

After applying the selected SignalProbe ECO, you can either click Check
and Save All Netlist Changes from the menu within the Change
Manager (Figure 12–8) or from Processing menu, point to Start and click
Start Check and Save All Netlist Changes to perform the ECO
compilation.

SignalProbe Enable
Checkbox

12–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 12–8. Check and Save All Netlist Changes

Common Questions About the SignalProbe Feature

The following are answers to common questions about the SignalProbe
feature.

Why Did I Get the Following Error Message, “Error: There are No Enabled
SignalProbes to Process”?

This error message is generated when a SignalProbe compilation was
attempted with either no SignalProbe pins to route, or with all
SignalProbe pins disabled.

This may occur if you perform a SignalProbe compilation after a full
compilation. For example, when a full compilation is performed, all
SignalProbe pins are disabled. You can create or re-enable your
SignalProbe pins in the SignalProbe Pins dialog box.

How Can I Retain My SignalProbe ECOs during Re-compilation of My
Design?

To retain your existing ECOs during recompilation of your design, you
must use Quartus II incremental compilation. To learn more about the
flow, refer to “SignalProbe ECO Flow with Quartus II Incremental
Compilation” on page 12–11.

Why Did My SignalProbe Source Disappear in the Change Manager?

The SignalProbe source information for each SignalProbe is stored in the
project database (db directory). SignalProbe pins are post-compilation
changes to your netlist and are interpreted as ECOs. These changes are
stored in the project db and if the project database is removed, the
SignalProbe source information is lost and will not appear in the

Altera Corporation 12–15
October 2007 Preliminary

Debugging Using the SignalProbe Feature

SignalProbe Pins dialog box. To restore your SignalProbe pins after the
design compilation step, source the signalprobe_qsf.tcl script located in
your project directory.

You can restore your SignalProbe source information by typing the
following command from a command prompt:

quartus_cdb -t signalprobe_qsf.tcl

1 After the compilation with Quartus II software, you must close
your design project before typing the above command. Once the
command finishes, you can open your design project again and
the change manager shows the sources for SignalProbe pins.

What is an ECO and Where Can I Find More Information on ECO?

ECOs are late design cycle changes made to your design that do not alter
functionality and timing. For more information about ECO and using the
Change Manager, refer to the Engineering Change Management with the
Chip Planner chapter in volume 2 of the Quartus II Handbook.

How Do I Migrate My Previous SignalProbe Assignments in the
Quartus II Software Versions 5.1 and below to Versions 6.0 and Higher?

In earlier versions of the Quartus II software, SignalProbe pins were
stored in the Quartus II Settings File (.qsf). These assignments are
automatically converted into ECO changes when you open the
SignalProbe dialog box or when you start a SignalProbe compilation in
the Quartus II software versions 6.0 and higher.

For example, the SignalProbe source assignment from a Quartus II
Settings File is removed and added to the Change Manager as an ECO
after the SignalProbe dialog box is opened, or when you perform a
SignalProbe compilation.

Example 12–1. SignalProbe Assignments in the Quartus II Settings File
set_location_assignment PIN_C22 -to my_signalprobe_pin
set_instance_assignment -name RESERVE_PIN "AS SIGNALPROBE OUTPUT" -to my_signalprobe_pin
set_instance_assignment -name IO_STANDARD LVTTL -to my_signalprobe_pin
set_instance_assignment -name SIGNALPROBE_ENABLE ON -to my_signalprobe_pin
set_instance_assignment -name SIGNALPROBE_SOURCE inst5[0] -to my_signalprobe_pi

12–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example 12–2. SignalProbe Assignments in the Quartus II Settings File after Opening the SignalProbe Pins
Dialog Box
set_location_assignment PIN_C22 -to my_signalprobe_pin
set_instance_assignment -name RESERVE_PIN "AS SIGNALPROBE OUTPUT" -to my_signalprobe_pin
set_instance_assignment -name IO_STANDARD LVTTL -to my_signalprobe_pin
set_instance_assignment -name SIGNALPROBE_ENABLE ON -to my_signalprobe_pin

What are all the Changes for the SignalProbe Feature between the
Quartus II Software Version 5.1 and Earlier, and Version 6.0 and Later?

The following list of changes affect users of the SignalProbe feature in the
Quartus II software versions 5.1 and below with Stratix series, Cyclone
series, and MAX II device families.

■ In Quartus II software versions 5.1 and earlier, the SignalProbe Pins
dialog box was accessed on the Assignments menu. To access it with
the Quartus II software version 6.0 and later, on the Tools menu,
click SignalProbe Pins.

■ A full compilation is required before making SignalProbe
connections. However, you can still reserve pins before compilation
for later use by SignalProbe. You can reserve pins by creating a
SignalProbe in the SignalProbe dialog box without specifying a
source. This is the same behavior as in the Quartus II software
version 5.1.

■ To route the SignalProbe pins, you must perform a SignalProbe
compilation after a full compilation. The Automatically route
SignalProbe signals during compilations and Modify latest fitting
results during SignalProbe compilation options are no longer
supported.

■ After subsequent compiles, full or incremental, existing SignalProbe
pins are disabled and are not present in the post-compilation netlist.
To add them back, enable the SignalProbe pins and perform a
SignalProbe compilation.

■ SignalProbe pins are not controlled via assignments in the Quartus II
Settings File because they are now ECOs. Existing Quartus II Settings
Files automatically convert to ECOs when a SignalProbe compilation
is performed or when the SignalProbe dialog box is opened.

■ The Tcl interface for creating SignalProbe pins has improved and is
a part of the Chip Planner package ::quartus::chip_editor.
Refer to “Scripting Support” on page 12–17.

■ Previously, the quartus_fit –-signalprobe command was
used to perform a SignalProbe compilation. This is not supported in
the Quartus II software version 6.0 and later, and is replaced by the
improved Tcl interface and the check_netlist_and_save Tcl
command.

Altera Corporation 12–17
October 2007 Preliminary

Debugging Using the SignalProbe Feature

■ The SignalProbe timing report generated after a successful
SignalProbe compilation is not available in the Quartus II software
version 6.0 and later. You can view the timing results of your
SignalProbe pins in the SignalProbe Fitting Results, under the Fitter
report, or in the tCO results page of the Timing report.

■ You can not make SignalProbe pins in the Assignment Editor. Use
the SignalProbe Pins dialog box to make and edit your SignalProbe
pins.

Scripting Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II command-line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Scripting Reference Manual includes the same information in PDF
form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. For more information
about all settings and constraints in the Quartus II software, refer to the
Quartus II Settings File Reference Manual. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Make a SignalProbe Pin

You can make a SignalProbe pin by typing the following command:

make_sp [-h | -help] [-long_help] [-clk <clk>] [-io_std <io_std>] \
-loc <loc> -pin_name <pin name> [-regs <regs>] [-reset <reset>] \
-src_name <source name> r

Delete a SignalProbe Pin

You can delete a SignalProbe pin by typing the following command:

delete_sp [-h | -help] [-long_help] -pin_name <pin name> r

12–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Enable a SignalProbe Pin

You can enable a SignalProbe pin by typing the following command:

enable_sp [-h | -help] [-long_help] -pin_name <pin name> r

Disable a SignalProbe Pin

You can disable a SignalProbe pin by typing the following command:

disable_sp [-h | -help] [-long_help] -pin_name <pin name> r

Perform a SignalProbe Compilation

You can perform a SignalProbe compilation by typing the following
command:

check_netlist_and_save r

Migrating Previous SignalProbe Pins to the Quartus II Software Versions
6.0 and Later

You can migrate previous SignalProbe pins to the Quartus II software
versions 6.0 and later by typing the following command:

convert_signal_probes r

Script Example

Example 12–3 is a script that creates a SignalProbe pin called sp1 and
connecting it to source node reg1 in a project that was already compiled.

Example 12–3. Creating a SignalProbe Pin Called sp1
Package require ::quartus::chip_editor
Project_open project
Read_netlist
Make_sp –pin_name sp1 –src_name reg1
Check_netlist_and_save
Project_close

Altera Corporation 12–19
October 2007 Preliminary

Using SignalProbe with the APEX Device Family

Using
SignalProbe
with the APEX
Device Family

APEX devices do not support post-fit netlist changes made as ECOs. You
can use SignalProbe compilation to route internal signals to output pins
incrementally. The SignalProbe incremental routing feature does not
affect design behavior.

To use the SignalProbe feature, follow these steps:

1. Reserve SignalProbe pins. For more information, refer to “Reserve
the SignalProbe Pins” on page 12–4.

2. Assign a SignalProbe source to each SignalProbe pin.

3. Perform a SignalProbe compilation.

4. Analyze the results of a SignalProbe compilation.

Adding SignalProbe Sources

A SignalProbe source is a signal in the post-compilation design database
with a possible route to an output pin. You can assign a SignalProbe
source to a SignalProbe pin, or an unused output pin by performing the
following steps:

1. On the Tools menu, click SignalProbe Pins. The SignalProbe Pins
dialog box appears.

2. In the Current and potential SignalProbe pins list, select the
SignalProbe pin to which you want to add a SignalProbe source.

3. Click Browse and select a SignalProbe source.

4. Click OK.

The Node Finder dialog box displays with the SignalProbe filter
selected (Figure 12–9). Click List to view all of the available
SignalProbe sources. If you cannot find a specific node with the

12–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

SignalProbe filter, then the node either has either been removed by
the Quartus II software during optimization, or placed in the device
where there are no possible routes to a pin.

Figure 12–9. Available SignalProbe Sources in the Node Finder

5. In the Assign SignalProbe Pins dialog box, click Add if a source has
not been assigned to the SignalProbe pin.

or

Click Change for a SignalProbe pin that has a source already
assigned.

1 When the source of the SignalProbe pin is added or changed, the
SignalProbe pin is automatically enabled. To disable a
SignalProbe pin, turn off SignalProbe enable.

6. Click OK.

Performing a SignalProbe Compilation

You can start a SignalProbe compilation manually or automatically after
a full compilation. A SignalProbe compilation includes the following:

■ Validates SignalProbe pins.
■ Validates your specified SignalProbe sources.
■ If applicable, adds registers into SignalProbe paths.
■ Attempts to route from SignalProbe sources through registers to

SignalProbe pins.

To run the SignalProbe compilation automatically after a full
compilation, on the Tools menu, click SignalProbe Pins. In the
SignalProbe Pins dialog box, turn on Automatically route SignalProbe
signals during compilation.

Altera Corporation 12–21
October 2007 Preliminary

Using SignalProbe with the APEX Device Family

To run a SignalProbe compilation manually after a full compilation, on
the Processing menu, point to Start and click Start SignalProbe
Compilation.

1 You must run the Fitter before a SignalProbe compilation. The
Fitter generates a list of all internal nodes that can be used as
SignalProbe sources.

You can enable and disable each SignalProbe pin by turning the
SignalProbe enable option on and off in the SignalProbe Pins dialog
box.

Running SignalProbe with Smart Compilation

Optimally, you can run a smart compilation, which reduces compilation
time by running only necessary modules during compilation. However,
a full compilation is required if any design files, Analysis and Synthesis
settings, or Fitter settings have changed.

To turn on smart compilation, on the Assignments menu, click Settings.
In the Category list, select Compilation Process Settings and turn on Use
Smart compilation.

If you run a SignalProbe compilation with smart compilation turned on,
and there are changes to a design file or settings related to the Analysis
and Synthesis or Fitter modules, the following message is displayed:

Error: Can't perform SignalProbe compilation because design
requires a full compilation.

1 You should turn smart compilation on, which allows you to
work with the latest settings and design files.

Understanding the Results of a SignalProbe Compilation

After a SignalProbe compilation, the results appear in two sections of the
compilation report file. The fitting results and status (Table 12–2) of each
SignalProbe pin is displayed in the SignalProbe Fitting Result page in the
Fitter section of the compilation report (Figure 12–10).

The timing results of each successfully routed SignalProbe pin is
displayed in the SignalProbe source to output delays page in the Timing
Analysis section of the compilation report (Figure 12–11).

12–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 After a SignalProbe compilation, the processing page of the
Messages window also provides the results of each SignalProbe
pin and displays slack information for each successfully routed
SignalProbe pin.

Figure 12–10. SignalProbe Fitting Results Page in the Compilation Report Window

Figure 12–11. SignalProbe Source to Output Delays Page in the Compilation Report Window

Table 12–2. Status Values

Status Description

Routed Connected and routed successfully

Not Routed Not enabled

Failed to Route Failed routing during last SignalProbe compilation

Need to Compile Assignment changed since last SignalProbe compilation

Altera Corporation 12–23
October 2007 Preliminary

Using SignalProbe with the APEX Device Family

Analyzing SignalProbe Routing Failures

The SignalProbe can begin compilation; however, one of the following
reasons can prevent complete compilation:

■ Route unavailable—the SignalProbe compilation failed to find a
route from the SignalProbe source to the SignalProbe pin because of
routing congestion

■ Invalid or nonexistent SignalProbe source—you entered a
SignalProbe source that does not exist or is invalid

■ Unusable output pin—the output pin selected is found to be
unusable

Routing failures can occur if the SignalProbe pin’s I/O standard conflicts
with other I/O standards in the same I/O bank.

If routing congestion prevents a successful SignalProbe compilation, you
can allow the compiler to modify the routing to the specified SignalProbe
source. On the Tools menu, click SignalProbe Pins and turn on Modify
latest fitting results during SignalProbe compilation. This setting
allows the Fitter to modify existing routing channels used by your design.

1 Turning on Modify latest fitting results during SignalProbe
compilation can change the performance of your design.

SignalProbe Scripting Support for APEX Devices

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Scripting Reference Manual includes the same information in PDF
form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

12–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Reserving SignalProbe Pins

Use the following Tcl commands to reserve a SignalProbe pin.

set_location_assignment <location> -to <SignalProbe pin name>

set_instance_assignment -name RESERVE_PIN \
"AS SIGNALPROBE OUTPUT" -to <SignalProbe pin name> r
Valid locations are pin location names, such as Pin_A3.

For more information about reserving SignalProbe pins, refer to “Reserve
the SignalProbe Pins” on page 12–4.

Adding SignalProbe Sources

Use the following Tcl commands to add SignalProbe sources. For more
information about adding SignalProbe sources, refer to “Adding
SignalProbe Sources” on page 12–19. The following command assigns the
node name to a SignalProbe pin:

set_instance_assignment -name SIGNALPROBE_SOURCE \
<node name> -to <SignalProbe pin name> r
The next command turns on the SignalProbe routing. You can turn off
individual SignalProbe pins by specifying OFF instead of ON with the
following command:

set_instance_assignment -name SIGNALPROBE_ENABLE ON \
-to <SignalProbe pin name> r

Assigning I/O Standards

Use the following Tcl command to assign an I/O standard to a pin:

set_instance_assignment -name IO_STANDARD \
<I/O standard> -to <SignalProbe pin name> r

f For a list of valid I/O standards, refer to the I/O Standards general
description in the Quartus II Help.

Adding Registers for Pipelining

Use the following Tcl commands to add registers for pipelining:

set_instance_assignment -name SIGNALPROBE_CLOCK \
<clock name> -to <SignalProbe pin name>

Altera Corporation 12–25
October 2007 Preliminary

Using SignalProbe with the APEX Device Family

set_instance_assignment \
-name SIGNALPROBE_NUM_REGISTERS <number of registers> \
-to <SignalProbe pin name> r

Run SignalProbe Automatically

Use the following Tcl command to run SignalProbe automatically after a
full compile.

set_global_assignment -name \
SIGNALPROBE_DURING_NORMAL_COMPILATION ON

For more information about running SignalProbe automatically, refer to
“Performing a SignalProbe Compilation” on page 12–20.

Run SignalProbe Manually

You can run SignalProbe manually with a Tcl command or the
quartus_fit command at a command prompt.

execute_flow -signalprobe r
The execute_flow command is in the flow package. At a command
prompt, type the following command:

quartus_fit <project name> --signalprobe r
For more information about running SignalProbe manually, refer to
“Performing a SignalProbe Compilation” on page 12–20.

Enable or Disable All SignalProbe Routing

Use the Tcl command in Example 12–4 to turn on or turn off SignalProbe
routing. In the set_instance_assignment command, specify ON to
turn on SignalProbe routing or OFF to turn off SignalProbe routing.

Example 12–4. Turning SignalProbe On or Off with Tcl
set spe [get_all_assignments -name SIGNALPROBE_ENABLE] \
foreach_in_collection asgn $spe {

set signalprobe_pin_name [lindex $asgn 2]
set_instance_assignment -name SIGNALPROBE_ENABLE -to \

$signalprobe_pin_name <ON|OFF> } r

For more information about enabling or disabling SignalProbe routing,
refer to page 12–20.

12–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Running SignalProbe with Smart Compilation

Use the following Tcl command to turn on Smart Compilation:

set_global_assignment -name SMART_RECOMPILE ON r
For more information, refer to “Running SignalProbe with Smart
Compilation” on page 12–21.

Allow SignalProbe to Modify Fitting Results

Use the following Tcl command to turn on Modify latest fitting results.

set_global_assignment -name \
SIGNALPROBE_ALLOW_OVERUSE ON r
For more information, refer to “Analyzing SignalProbe Routing Failures”
on page 12–23.

Conclusion Using the SignalProbe feature can significantly reduce the time required
compared to a full recompilation. You can use the SignalProbe feature to
get quick access to internal design signals to perform system-level
debugging.

Referenced
Documents

This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ Engineering Change Management with the Chip Planner chapter in
volume 2 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hiearchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook

■ Quartus II Settings File Reference Manual
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii53010.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Altera Corporation 12–27
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 12–3 shows the revision history for this chapter.

Table 12–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 12–26. —

May 2007
v7.1.0

Added Referenced Documents, minor updates to address
ADoQS issues.

—

March 2007 v7.0.0 Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Updated for the Quartus II software version 6.1.0:
● New section (SignalProbe ECO flows) added to explain how

SignalProbe pins’ ECOs are affected during Quartus II
Incremental Compilation.

● QandA added to answer: How Can I Retain My SignalProbe
ECOs during Re-compilation of My Design.

Quartus II software
version 6.1.0 added
more ECO features;
the chapter updated to
reflect this change.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Documented new SignalTap features.

—

December 2005
v5.1.1

Added SMART_RECOMPILE assignment. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

● Minor updates for Quartus II software 5.0 —

December 2004
v2.1

● Chapter 9 was formerly Chapter 8.
● Updates to tables and figures.
● New functionality for Quartus II software 4.2.

—

June 2004
v2.0

● Updates to tables, figures.
● New functionality for Quartus II software 4.1.

—

February 2004
v1.0

Initial release. —

12–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 13–1
October 2007

13. Design Debugging Using
the SignalTap II Embedded

Logic Analyzer

Introduction The phenomenal growth in design size and complexity continues to make
design verification a critical bottleneck for current FPGA systems.
Limited access to internal signals, complex FPGA packages, and PCB
electrical noise all contribute to making design debugging the most
challenging process of the design cycle. More than 50% of the design cycle
time can be spent on debugging and verifying the design. To help with
the process of design debugging, Altera® provides a solution that enables
a designer to examine the behavior of internal signals, without using
extra I/O pins, while the design is running at full speed on an FPGA
device.

The SignalTap® II Embedded Logic Analyzer is scalable, easy to use, and
is included with the Quartus® II software subscription. This logic
analyzer helps debug an FPGA design by probing the state of the internal
signals in the design without the use of external equipment. Defining
custom trigger-condition logic provides greater accuracy and improves
the ability to isolate problems. The SignalTap II Embedded Logic
Analyzer does not require external probes, or changes to the design files
to capture the state of the internal nodes or I/O pins in the design. All
captured signal data is conveniently stored in device memory until the
designer is ready to read and analyze the data.

The topics in this chapter include:

■ “On-Chip Debugging Tool Comparison” on page 13–5
■ “Design Flow Using the SignalTap II Logic Analyzer” on page 13–7
■ “SignalTap II Logic Analyzer Task Flow” on page 13–8
■ “Add the SignalTap II Logic Analyzer to Your Design” on page 13–10
■ “Configure the SignalTap II Logic Analyzer” on page 13–18
■ “Define Triggers” on page 13–30
■ “Program the Target Device or Devices” on page 13–57
■ “Run the SignalTap II Logic Analyzer” on page 13–59
■ “View, Analyze, and Use Captured Data” on page 13–63
■ “Other Features” on page 13–67
■ “SignalTap II Scripting Support” on page 13–72
■ “Design Example: Using SignalTap II Logic Analyzers in SOPC

Builder Systems” on page 13–77
■ “Custom Triggering Flow Application Examples” on page 13–77

QII53009-7.2.0

13–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The SignalTap II Embedded Logic Analyzer is a next-generation,
system-level debugging tool that captures and displays real-time signal
behavior in a system-on-a-programmable-chip (SOPC) or any FPGA
design. The SignalTap II Embedded Logic Analyzer supports the highest
number of channels, largest sample depth, and fastest clock speeds of any
embedded logic analyzer in the programmable logic market. Figure 13–1
shows a block diagram of the components that make up the SignalTap II
Embedded Logic Analyzer.

Figure 13–1. SignalTap II Logic Analyzer Block Diagram Note (1)

Note to Figure 13–1:
(1) This diagram assumes that the SignalTap II Logic Analyzer was compiled with the design as a separate design

partition using the Quartus II Incremental Compilation feature. This is the default setting for new projects in the
Quartus II software. If incremental compilation is disabled or not used, the SignalTap II logic is integrated with the
design. For information about the use of incremental compilation with SignalTap II, refer to “Faster Compilations
with Quartus II Incremental Compilation” on page 13–51.

This chapter is intended for any designer who wants to debug their FPGA
design during normal device operation without the need for external lab
equipment. Because the SignalTap II Embedded Logic Analyzer is
similar to traditional external logic analyzers, familiarity with external
logic analyzer operations is helpful but not necessary. To take advantage
of faster compile times when making changes to the SignalTap II Logic
Analyzer, knowledge of the Quartus II Incremental Compilation feature
is helpful.

Design Logic

1 2 30

1 2 30

SignalTap II
 Instances

JTAG
Hub

Altera
Programming

Hardware

Quartus II
Software

Buffers (Device Memory)

FPGA Device

Altera Corporation 13–3
October 2007 Preliminary

Introduction

f For information about using the Quartus II Incremental Compilation
feature, refer to the Incremental Compilation for Hierarchical and
Team-Based Design chapter in the Quartus II Handbook.

Hardware and Software Requirements

The following components are required to perform logic analysis with the
SignalTap II Embedded Logic Analyzer:

■ Quartus II design software
or
Quartus II Web Edition (with TalkBack feature enabled)
or
SignalTap II Logic Analyzer standalone software

■ Download/Upload Cable
■ Altera development kit or user design board with JTAG connection

to device under test

Captured data is stored in the device’s memory blocks and transferred to
the Quartus II software waveform display with a JTAG communication
cable, such as EthernetBlaster or USB-BlasterTM. Table 13–1 summarizes
some of the features and benefits of the SignalTap II Embedded Logic
Analyzer.

Table 13–1. SignalTap II Features and Benefits (Part 1 of 2)

Feature Benefit

Multiple logic analyzers in a single device Captures data from multiple clock domains in a design at the same
time

Multiple logic analyzers in multiple
devices in a single JTAG chain

Simultaneously captures data from multiple devices in a JTAG chain

Plug-In Support Easily specifies nodes, triggers, and signal mnemonics for IP, such as

the Nios® II embedded processor

Up to 10 basic or advanced trigger
conditions for each analyzer instance

Enables more complex data capture commands to be sent to the logic
analyzer, providing greater accuracy and problem isolation

Power-Up Trigger Captures signal data for triggers that occur after device programming
but before manually starting the logic analyzer

State-Based Triggering Flow Enables you to organize your triggering conditions to precisely define
what your embedded logic analyzer will capture

Incremental Compilation Modifies the SignalTap II Logic Analyzer monitored signals and
triggers without performing a full compilation, saving time

Flexible buffer acquisition modes Allows more accurate data collection by setting each trigger to
sample at different ranges relative to the triggering event, in circular
or segmented modes

13–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For a list of supported device families, refer to the Quartus II Help.

MATLAB integration with included MEX
function

Acquires the SignalTap II Logic Analyzer captured data into a
MATLAB integer matrix

Up to 1,024 channels in each device Samples many signals and wide bus structures

Up to 128K samples in each device Captures a large sample set for each channel

Fast clock frequencies Collects sample data at up to 270 MHz

Resource usage estimator Provides estimate of logic and memory device resources used by
SignalTap II Embedded Logic Analyzer configurations

No additional cost The SignalTap II Logic Analyzer is included with a Quartus II
subscription and with the Quartus II Web Edition (with TalkBack
enabled)

Table 13–1. SignalTap II Features and Benefits (Part 2 of 2)

Feature Benefit

Altera Corporation 13–5
October 2007 Preliminary

On-Chip Debugging Tool Comparison

On-Chip
Debugging Tool
Comparison

The Quartus II software provides a number of different ways to help
debug your FPGA design after programming the device. The SignalTap II
Logic Analyzer, SignalProbe, and the Logic Analyzer Interface (LAI)
share some similar features, but each has its own advantages. In some
debugging situations, it can be difficult to decide which tool is best to use
or whether multiple tools are required. Table 13–2 compares common
debugging features between these tools and provides suggestions about
which is the best tool to use for a given feature.

Table 13–2. Suggested On-Chip Debugging Tools for Common Debugging Features Note (1) (Part 1 of 2)

Feature SignalProbe
Logic Analyzer

Interface
(LAI)

SignalTap II
Embedded
Analyzer

Description

Large Sample
Depth

N/A v — An external logic analyzer used with the
LAI has a bigger buffer to store more
captured data than the SignalTap II
Logic Analyzer. No data is captured or
stored with SignalProbe.

Ease in Debugging
Timing Issue

N/A v — An external logic analyzer used with the
LAI provides you with access to timing
mode, enabling you to debug combined
streams of data.

Minimal Effect
on Logic Design

v v(2) v (2) The LAI adds minimal logic to a design,
requiring fewer device resources. The
SignalTap II Logic Analyzer has little effect
on the design when it is set as a separate
design partition using incremental
compilation. SignalProbe incrementally
routes nodes to pins, not affecting the
design at all.

Short Compile and
Recompile Time

v v (2) v (2) SignalProbe attaches incrementally routed
signals to previously reserved pins,
requiring very little recompilation time to
make changes to source signal selections.
The SignalTap II Logic Analyzer and the
LAI can take advantage of incremental
compilation to refit their own design
partitions to decrease recompilation time.

Triggering
Capability

N/A v v The SignalTap II Logic Analyzer offers
triggering capabilities that are comparable
to commercial logic analyzers.

I/O Usage — — v No additional output pins are required with
the SignalTap II Logic Analyzer. Both the
LAI and SignalProbe require I/O pin
assignments.

13–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If you have signals that you want to monitor with external equipment
without adding the logic resources required by the SignalTap II Logic
Analyzer, consider the use of these other tools available in the Quartus II
software. Signals can be quickly routed out to reserved I/O pins as part
of an ECO change using SignalProbe, while multiplexed banks of many
signals can be made visible on only a few pins with the use of the LAI.

f For information about the use of these tools, refer to the Quick Design
Debugging Using SignalProbe and In-System Debugging Using External
Logic Analyzers chapters in volume 3 of the Quartus II Handbook.

Acquisition
Speed

N/A — v The SignalTap II Logic Analyzer can
acquire data at speeds of over 200 MHz.
The same acquisition speeds are
obtainable with an external logic analyzer
used with the LAI, but signal integrity
issues may limit this.

No JTAG
Connection
Required

v — — An FPGA design with the SignalTap II
Logic Analyzer or the LAI requires an active
JTAG connection to a host running the
Quartus II software. SignalProbe does not
require a host for debugging purposes.

External
Equipment

— — v The SignalTap II Logic Analyzer logic is
completely internal to the programmed
FPGA device. No extra equipment is
required other than a JTAG connection
from a host running the Quartus II software
or the stand-alone SignalTap II software.
SignalProbe and the LAI require the use of
external debugging equipment, such as
multimeters, oscilloscopes, or logic
analyzers.

Notes to Table 13–2:
(1) v indicates the suggested best tool for the feature. — indicates that while the tool is available for that feature, that

tool may not give the best results. N/A indicates that the feature is not applicable for the selected tool.
(2) When used with incremental compilation.

Table 13–2. Suggested On-Chip Debugging Tools for Common Debugging Features Note (1) (Part 2 of 2)

Feature SignalProbe
Logic Analyzer

Interface
(LAI)

SignalTap II
Embedded
Analyzer

Description

Altera Corporation 13–7
October 2007 Preliminary

Design Flow Using the SignalTap II Logic Analyzer

Design Flow
Using the
SignalTap II
Logic Analyzer

Figure 13–2 shows a typical overall FPGA design flow for using the
SignalTap II Logic Analyzer in your design. A SignalTap II file (.stp) is
added to and enabled in your project, or a SignalTap II HDL function,
created with the MegaWizard® Plug-In Manager, is instantiated in your
design. The diagram shows the flow of operations from initially adding
the SignalTap II Logic Analyzer to your design to the final device
configuration, testing, and debugging.

Figure 13–2. SignalTap II FPGA Design and Debugging Flow

Fitter
Place-and-Route

Verilog
HDL
(.v)

VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Analysis & Synthesis

Assembler

Timing Analyzer

Functionality
Satisfied?

Yes

Configuration

SignalTap II File (.stp)
or SignalTap II

MegaWizard File

Debug Source File No

End

13–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

SignalTap II
Logic Analyzer
Task Flow

To use the SignalTap II Logic Analyzer to debug your design, you
perform a number of tasks to add, configure, and run the logic analyzer.
Figure 13–3 shows a typical flow of the tasks you complete to debug your
design. Refer to the appropriate section of this chapter for more
information about each of these tasks.

Figure 13–3. SignalTap II Logic Analyzer Task Flow

Add SignalTap II
to Design

Create New Project or
Open Existing Project

End

Yes

Yes

No

No

Functionality
Satisfied or Bug

Fixed?

Recompilation
Necessary?

Configure
SignalTap II

Program Target
Device(s)

View, Analyze &
Use Captured Data

Define Triggers

Compile Design

Run SignalTap II
Adjust Options
and/or Triggers

Continue Debugging

Altera Corporation 13–9
October 2007 Preliminary

SignalTap II Logic Analyzer Task Flow

Add the SignalTap II Logic Analyzer to Your Design

Create a SignalTap II file or create a parameterized HDL instance
representation of the logic analyzer using the MegaWizard Plug-In
Manager. If you want to monitor multiple clock domains simultaneously,
you can add additional instances of the logic analyzer to your design,
limited only by the available resources in your device.

Configure the SignalTap II Logic Analyzer

Once the SignalTap II Logic Analyzer is added to your design, you
configure it to monitor the signals you want. You can manually add
signals or use a plug-in, such as the Nios II plug-in, to quickly add entire
sets of associated signals for a particular IP. You can also specify settings
for the data capture buffer, such as its size, the method in which data is
captured and stored, and the device memory type to use for the buffer in
devices that support memory type selection.

Define Triggers

The SignalTap II Logic Analyzer continuously captures data while it is
running. To capture and store specific signal data, you set up triggers that
tell the logic analyzer under what conditions to stop capturing data. The
SignalTap II Logic Analyzer lets you define Runtime Triggers that range
from very simple, such as the rising edge of a single signal, to very
complex, involving groups of signals, extra logic, and multiple
conditions. Power-Up Triggers give you the ability to capture data from
trigger events occurring immediately after the device enters user-mode
after configuration.

Compile the Design

With the SignalTap II file configured and triggers defined, you compile
your project as usual to include the logic analyzer in your design. Since
you may need to frequently change monitored signal nodes or adjust
trigger settings during debugging, it is recommended that you use the
incremental compilation feature built into the SignalTap II Logic
Analyzer, along with Quartus II incremental compilation, to reduce
recompile times.

Program the Target Device or Devices

When you are debugging a design with the SignalTap II Logic Analyzer,
you can program a target device directly from the SignalTap II file
without using the Quartus II Programmer. You can also program
multiple devices with different designs and simultaneously debug them.

13–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Run the SignalTap II Logic Analyzer

In normal device operation, you control the logic analyzer through the
JTAG connection, specifying when to start looking for your trigger
conditions to begin capturing data. With Runtime or Power-Up Triggers,
you read and transfer the captured data from the on-chip buffer to the
SignalTap II file for analysis.

View, Analyze, and Use Captured Data

Once you have captured data and read it into the SignalTap II file, it is
available for analysis and use in the debugging process. Either manually
or with a plug-in, you can set up mnemonic tables to make it easier to
read and interpret the captured signal data. To speed up debugging, use
the Locate feature in the SignalTap II node list to find the locations of
problem nodes in other tools in the Quartus II software. Save the
captured data for later analysis, or convert it to other formats for sharing
and further study.

Add the
SignalTap II
Logic Analyzer
to Your Design

Because the SignalTap II Logic Analyzer is implemented in logic on your
target device, it must be added to your FPGA design as another part of
the design itself. There are two ways to generate the SignalTap II Logic
Analyzer and add it to your design for debugging:

■ Create a SignalTap II file (.stp) and use the SignalTap II Editor to
configure the details of the logic analyzer

■ Create and configure the SignalTap II file with the MegaWizard

Plug-In Manager and instantiate it in your design

Creating and Enabling a SignalTap II File

To create an embedded logic analyzer, you can use an existing
SignalTap II file or create a new file. Once a file is created or selected, it
must be enabled in the project where it is used.

Creating a SignalTap II File

The SignalTap II file contains the SignalTap II Logic Analyzer settings
and the captured data for viewing and analysis. To create a new
SignalTap II file, perform the following steps:

1. On the File menu, click New.

2. In the New dialog box, click the Other Files tab, and select
SignalTap II Logic Analyzer File.

Altera Corporation 13–11
October 2007 Preliminary

Add the SignalTap II Logic Analyzer to Your Design

3. Click OK.

To open an existing SignalTap II file already associated with your project,
on the Tools menu, click SignalTap II Logic Analyzer. You can also use
this method to create a new SignalTap II file if no SignalTap II file exists
for the current project.

To open an existing file, on the File menu, click Open and select a
SignalTap II file (Figure 13–4).

Figure 13–4. SignalTap II Editor

Enabling and Disabling a SignalTap II File for the Current Project

Whenever you save a new SignalTap II file, the Quartus II software asks
you if you want to enable the file for the current project. However, you
can add this file manually, change the selected SignalTap II file, or
completely disable the logic analyzer by performing the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select SignalTap II Logic Analyzer. The
SignalTap II Logic Analyzer page appears.

13–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

3. Turn on Enable SignalTap II Logic Analyzer. Turn off this option
to disable the logic analyzer, completely removing it from your
design.

4. In the SignalTap II File name box, type the name of the
SignalTap II file you want to include with your design, or browse to
and select a file name.

5. Click OK.

Using the MegaWizard Plug-In Manager to Create Your
Embedded Logic Analyzer

Alternatively, you can create a SignalTap II Logic Analyzer instance by
using the MegaWizard Plug-In Manager. The MegaWizard Plug-In
Manager generates an HDL file that you instantiate in your design. You
can also use a hybrid approach in which you instantiate the MegaWizard
Plug-In Manager file in your HDL, and then use the method described in
“Creating and Enabling a SignalTap II File” on page 13–10.

Creating an HDL Representation Using the MegaWizard Plug-In Manager

The Quartus II software allows you to easily create your SignalTap II
Logic Analyzer using the MegaWizard Plug-In Manager. To implement
the SignalTap II megafunction, perform the following steps:

1. On the Tools menu, click MegaWizard Plug-In Manager. Page 1 of
the MegaWizard Plug-In Manager dialog box appears.

2. Select Create a new custom megafunction variation.

3. Click Next.

4. In the Installed Plug-Ins list, expand the JTAG-accessible
Extensions folder, and select SignalTap II Logic Analyzer. Select
an output file type and enter the desired name of the SignalTap II
megafunction. You can choose AHDL (.tdf), VHDL (.vhd), or
Verilog HDL (.v) as the output file type (Figure 13–5).

Altera Corporation 13–13
October 2007 Preliminary

Add the SignalTap II Logic Analyzer to Your Design

Figure 13–5. Creating the SignalTap II Logic Analyzer in the MegaWizard
Plug-In Manager

5. Click Next.

6. Configure the analyzer by specifying the Sample depth, RAM
Type, Data input port width, Trigger levels, Trigger input port
width, and whether to enable an external Trigger in or Trigger out
(Figure 13–6).

For information about these settings, refer to “Configure the
SignalTap II Logic Analyzer” on page 13–18 and “Define Triggers”
on page 13–30.

13–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 13–6. Select Logic Analyzer Parameters

7. Click Next.

8. Set the Trigger level options by selecting Basic or Advanced
(Figure 13–7). If you select Advanced for any trigger level, the next
page of the MegaWizard Plug-In Manager displays the Advanced
Trigger Condition Editor. You can configure an advanced trigger
expression using the number of signals you specified for the trigger
input port width.

1 You cannot define a Power-Up Trigger using the
MegaWizard Plug-In Manager. Refer to “Define Triggers”
on page 13–30 to learn how to do this using the SignalTap II
file.

Altera Corporation 13–15
October 2007 Preliminary

Add the SignalTap II Logic Analyzer to Your Design

Figure 13–7. MegaWizard Basic and Advanced Trigger Options

9. On the final page of the MegaWizard Plug-In Manager, select any
additional files you want to create and click Finish to create an HDL
representation of the SignalTap II Logic Analyzer.

For information about the configuration settings options in the
MegaWizard Plug-In Manager, refer to “Configure the SignalTap II
Logic Analyzer” on page 13–18. For information about defining
triggers, refer to “Define Triggers” on page 13–30.

13–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

SignalTap II Megafunction Ports

Table 13–3 provides information about the SignalTap II megafunction
ports.

f For the most current information about the ports and parameters for this
megafunction, refer to the latest version of the Quartus II Help.

Instantiating the SignalTap II Logic Analyzer in Your HDL

Instantiating the logic analyzer in your HDL is similar to instantiating
any other Verilog HDL or VHDL megafunction in your design. Add the
code from the files that are generated by the MegaWizard Plug-In
Manager to your design, mapping the signals in your design to the
appropriate SignalTap II megafunction ports. You can instantiate up to
127 analyzers in your design, or as many as physically fit in the FPGA.
Once you have instantiated the SignalTap II file in your HDL file, compile
your Quartus II project to fit the logic analyzer in the target FPGA.

To capture and view the data, you must create a SignalTap II file from
your SignalTap II HDL output file. To do this, on the File menu, point to
Create/Update, and click Create SignalTap II File from Design
Instance(s).

If you make any changes to your design or the SignalTap II instance,
recreate or update the SignalTap II file with this command. This ensures
that the SignalTap II file is always compatible with the SignalTap II
instance in your design. If the SignalTap II file is not compatible with the
SignalTap II instance in your design, you may not be able to control the
SignalTap II Logic Analyzer after it is programmed into your device.

Table 13–3. SignalTap II Megafunction Ports

Port Name Type Required Description

acq_data_in Input No This set of signals represents the set of signals that are monitored in
the SignalTap II Logic Analyzer.

acq_trigger_in Input No This set of signals represents the set of signals that are used to
trigger the analyzer.

acq_clk Input Yes This port represents the sampling clock that the SignalTap II Logic
Analyzer uses to capture data.

trigger_in Input No This signal is used to trigger the SignalTap II Logic Analyzer.

trigger_out Output No This signal is enabled when the trigger event occurs.

Altera Corporation 13–17
October 2007 Preliminary

Add the SignalTap II Logic Analyzer to Your Design

For information about SignalTap II file compatibility with programmed
SignalTap II instances, refer to “Program the Target Device or Devices” on
page 13–57.

Embedding Multiple Analyzers in One FPGA

The SignalTap II Logic Analyzer includes support for multiple logic
analyzers in an FPGA device. This feature allows you to create a unique
logic analyzer for each clock domain in the design. As multiple instances
of the analyzer are added to the SignalTap II file, the resource usage
increases proportionally.

In addition to debugging multiple clock domains, this feature allows you
to apply the same SignalTap II settings to a group of signals in the same
clock domain. For example, if you have a set of signals that must use a
sample depth of 64K and another set of signals in the same clock domain
requires a sample depth of 1K, you can create two instances to meet these
needs.

To create multiple analyzers, on the Edit menu, click Create Instance, or
right-click in the Instance Manager window and click Create Instance.

Each instance of the SignalTap II Logic Analyzer can be configured
independently. The icon in the Instance Manager for the currently active
instance that is available for configuration is highlighted in color and
surrounded by a blue box. To configure a different instance, double-click
the icon or name of another instance in the Instance Manager.

Monitoring FPGA Resources Used by the SignalTap II Logic
Analyzer

The SignalTap II Logic Analyzer has a built-in resource estimator that
calculates the logic resources and amount of memory that each
SignalTap II Logic Analyzer uses. You can see the resource usage of each
logic analyzer instance and the total resources used in the columns of the
Instance Manager section of the SignalTap II Editor. This feature is useful
when device resources are limited and you must know what device
resources the SignalTap II Logic Analyzer uses. The value reported in the
resource usage estimator may vary by as much as 5% from the actual
resource usage.

13–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 13–4 shows the SignalTap II Logic Analyzer M4K memory block
resource usage for the listed devices per signal width and sample depth.

Configure the
SignalTap II
Logic Analyzer

The SignalTap II file provides many options for configuring instances of
the logic analyzer. Some of the settings are similar to those found on
traditional external logic analyzers. Other settings are unique to the
SignalTap II Logic Analyzer because of the requirements for configuring
an embedded logic analyzer. All settings give you the ability to configure
the logic analyzer the way you want to help debug your design.

1 Some settings can only be adjusted when you are viewing
Run-Time Trigger conditions instead of Power-Up Trigger
conditions. To learn about Power-Up Triggers and viewing
different trigger conditions, refer to “Creating a Power-Up
Trigger” on page 13–45.

Assigning an Acquisition Clock

You must assign a clock signal to control the acquisition of data by the
SignalTap II Logic Analyzer. The logic analyzer samples data on every
rising edge of the acquisition clock. You can use any signal in your design
as the acquisition clock. However, for best results, Altera recommends
that you use a global, non-gated clock for data acquisition. Using a gated
clock as your acquisition clock can result in unexpected data that does not
accurately reflect the behavior of your design. The Quartus II Classic
Timing Analyzer shows the maximum acquisition clock frequency at
which you can run your design.

Table 13–4. SignalTap II Logic Analyzer M4K Block Utilization for Stratix II, Stratix, Stratix GX, and
Cyclone Devices Note (1)

Signals (Width)
Samples (Depth)

256 512 2,048 8,192

8 < 1 1 4 16

16 1 2 8 32

32 2 4 16 64

64 4 8 32 128

256 16 32 128 512

Note to Table 13–4:
(1) When you configure a SignalTap II Logic Analyzer, the Instance Manager reports an estimate of the memory bits

and logic elements required to implement the given configuration.

Altera Corporation 13–19
October 2007 Preliminary

Configure the SignalTap II Logic Analyzer

To assign an acquisition clock, perform the following steps:

1. In the SignalTap II Logic Analyzer window, click the Setup tab.

2. Click Browse next to the Clock field in the Signal Configuration
pane. The Node Finder dialog box appears.

3. From the Filter list, select SignalTap II: post-fitting
or
SignalTap II: pre-synthesis.

4. In the Named field, type the exact name of a node that you want to
use as your sample clock, or search for a node using a partial name
and wildcard characters.

5. To start the node search, click List.

6. In the Nodes Found list, select the node that represents the design’s
global clock signal.

7. Add the selected node name to the Selected Nodes list by clicking
“>” or by double-clicking the node name.

8. Click OK. The node is now specified as the acquisition clock in the
SignalTap II Editor.

If you do not assign an acquisition clock in the SignalTap II Editor, the
Quartus II software automatically creates a clock pin called
auto_stp_external_clk.

You must make a pin assignment to this pin independently from the
design. You must ensure that a clock signal in your design drives the
acquisition clock.

f For information about assigning signals to pins, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

Adding Signals to the SignalTap II File

While configuring the logic analyzer, you add signals to the node list in
the SignalTap II file to select which signals in your design you want to
monitor. Selected signals are also used to define triggers. You can assign
the following two types of signals to your SignalTap II file:

■ Pre-synthesis—This signal exists after design elaboration, but before
any synthesis optimizations are done. This set of signals should
reflect your Register Transfer Level (RTL) signals.

13–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Post-fitting—This signal exists after physical synthesis
optimizations and place-and-route.

1 If you are not using incremental compilation, add only
pre-synthesis signals to your SignalTap II file. Using
pre-synthesis is particularly useful if you want to add a new
node after you have made design changes. To do this, on the
Processing menu, point to Start and click Start Analysis &
Elaboration.

Signals shown in blue text are post-fit node names. Signals shown in
black text are pre-synthesis node names.

After successful Analysis and Elaboration, the signals shown in red text
are invalid signals. Unless you are certain that these signals are valid, you
must remove them from the SignalTap II file for correct operation. The
SignalTap II Health Monitor also indicates if an invalid node name exists
in the SignalTap II file.

As a general guideline, signals can be tapped if a routing resource (row
or column interconnects) exists to route the connection to the SignalTap
II instance. For example, signals that exist in the I/O element (IOE) cannot
be directly tapped because there are no direct routing resources from the
signal in an IOE to a core logic element. For input pins, you can tap the
signal that is driving a Logic Array Block (LAB) from an IOE, or, for
output pins, you can tap the signal from the LAB that is driving an IOE.

When adding pre-synthesis signals, all connections made to the
SignalTap II Logic Analyzer are made prior to synthesis. Logic and
routing resources are allocated during recompilation to make the
connection as if a change in your design files had been made. As such,
pre-synthesis signal names for signals driving to and from IOEs will
coincide with the signal names assigned to the pin.

In the case of post-fit signals, connections that you make to the
SignalTap II Logic Analyzer are the signal names from the actual atoms
in your post-fit netlist. A connection can only be made if the signals are
part of the existing post-fit netlist and existing routing resources are
available from the signal of interest to the SignalTap II Logic Analyzer. In
the case of post-fit output signals, tap the COMBOUT or REGOUT signal that
drives the IOE block. For post-fit input signals, signals driving into the
core logic will coincide with the signal name assigned to the pin.

Altera Corporation 13–21
October 2007 Preliminary

Configure the SignalTap II Logic Analyzer

1 If you are tapping the signal from the atom that is driving an
IOE, be aware that the signal may be inverted due to NOT-gate
push back. You can check this by locating the signal in either the
Resource Property Editor or the Technology Map Viewer. The
Technology Map viewer and the Resource Property Editor are
also helpful in finding post-fit node names.

f For information about cross-probing to source design file and other
Quartus II windows, refer to the Analyzing Designs with Quartus II Netlist
Viewers chapter in volume 1 of the Quartus II Handbook.

For more information about the use of incremental compilation with the
SignalTap II Logic Analyzer, refer to “Faster Compilations with
Quartus II Incremental Compilation” on page 13–51.

Signal Preservation

Many of your RTL signals are optimized during the process of synthesis
and place-and-route. The RTL signal names frequently may not appear in
the post-fit netlist after optimizations. This can cause a problem when
you use the incremental compilation flow with the SignalTap II Logic
Analyzer. Since only post-fitting signals can be added to the SignalTap II
Logic Analyzer in partitions of type post-fit, RTL signals that you want
to monitor may not be available, preventing their usage. To avoid this
issue, you can use synthesis attributes to preserve signals during
synthesis and place-and-route. When the Quartus II software encounters
these synthesis attributes, it does not perform any optimization on the
specified signals, forcing them to continue to exist in the post-fit netlist.
However, if you do this, you could see an increase in resource utilization
or a decrease in timing performance. The two attributes you can use are:

■ keep—Ensures that combinational signals are not removed
■ preserve—Ensures that registers are not removed

f For more information about using these attributes, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

If you are debugging an IP core, such as the Nios II CPU, or other
encrypted IP, you may need to preserve nodes from the core to make
them available for debugging with the SignalTap II Logic Analyzer. This
is often necessary when a plug-in is used to add a group of signals for a
particular IP. To do this, on the Assignments menu, click Settings. In the
Category list, select Analysis & Synthesis Settings. Turn on Create
debugging nodes for IP cores to make these nodes available to the
SignalTap II Logic Analyzer.

13–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Assigning Data Signals

To assign data signals, perform the following steps:

1. Perform Analysis and Elaboration, Analysis and Synthesis, or
compile your design.

2. In the SignalTap II Logic Analyzer window, click the Setup tab.

3. Double-click anywhere in the node list of the SignalTap II Editor to
open the Node Finder dialog box.

4. In the Fitter list, select SignalTap II: pre-synthesis or SignalTap II:
post-fitting. Only signals listed under one of these filters can be
added to the SignalTap II node list. Signals cannot be selected from
any other filters.

1 If you use Incremental Compilation flow with SignalTap II,
pre-synthesis nodes will not be connected to the
SignalTap II Logic Analyzer if the affected partition is of the
post-fit type. Any pre-synthesis nodes added to a partition
of type post-fit may not be connected to the SignalTap II
Logic Analyzer. A critical warning is issued for all pre-
synthesis node names that are not found in the post-fit
netlist. Altera recommends that you do not add a mix of
pre-synthesis and post-fitting signals within the same
partition. For more details, refer to “Using Incremental
Compilation with the SignalTap II Logic Analyzer” on
page 13–52.

5. In the Named field, type a node name, or search for a particular
node by entering a partial node name along with wildcard
characters. To start the node name search, click List.

6. In the Nodes Found list, select the node or bus you want to add to
the SignalTap II file.

7. Add the selected node name(s) to the Selected Nodes list by
clicking “>” or by double-clicking the node name(s).

8. To insert the selected nodes in the SignalTap II file, click OK. With
the default colors set for the SignalTap II Logic Analyzer, a
pre-synthesis signal in the list is shown in black, and a post-fitting
signal is shown in blue.

1 You can also drag and drop signals from the Node Finder
dialog box into a SignalTap II file.

Altera Corporation 13–23
October 2007 Preliminary

Configure the SignalTap II Logic Analyzer

Node List Signal Use Options

Once a signal is added to the node list, you can select options that specify
how the signal is used with the logic analyzer. You can turn off the ability
of a signal to trigger the analyzer by disabling the Trigger Enable for that
signal in the node list in the SignalTap II file. This option is useful when
you want to see only the captured data for a signal, and you are not using
that signal as part of a trigger.

You can turn off the ability to view data for a signal by disabling the Data
Enable column. This option is useful when you want to trigger on a
signal, but have no interest in viewing data for that signal.

For information about using signals in the node list to create SignalTap II
trigger conditions, refer to “Define Triggers” on page 13–30.

Untappable Signals

Not all of the post-fitting signals in your design are available in the
SignalTap II: post-fitting filter in the Node Finder dialog box. The
following signal types cannot be tapped:

■ Post-fit output pins—You cannot tap a post-fit output pin directly.
To make an output signal visible, tap the register or buffer that drives
the output pin.

■ Signals that are part of a carry chain—You cannot tap the carry out
(cout0 or cout1) signal of a logic element. Due to architectural
restrictions, the carry out signal can only feed the carry in of another
logic element (LE).

■ JTAG Signals—You cannot tap the JTAG control (TCK, TDI, TDO, and
TMS) signals.

■ altgxb megafunction—You cannot directly tap any ports of an
altgxb instantiation.

■ LVDS—You cannot tap the data output from a
serializer/deserializer (SERDES) block.

Adding Signals with a Plug-In

Instead of adding individual or grouped signals through the Node
Finder, you can add groups of relevant signals of a particular type of IP
through the use of a plug-in. The SignalTap II Logic Analyzer comes with
one plug-in already installed for the Nios II processor. Besides easy signal
addition, plug-ins also provide a number of other features, such as
pre-designed mnemonic tables, useful for trigger creation and data
viewing, as well as the ability to disassemble code in captured data.

13–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Nios II plug-in, for example, creates one mnemonic table in the Setup
tab, and two tables in the Data tab:

■ Nios II Instruction (Setup tab) —Capture all the required signals for
triggering on a selected instruction address.

■ Nios II Instance Address (Data tab)—Display address of executed
instructions in hexadecimal format or as a programming symbol
name if defined in an optional Executable and Linking Format (.elf)
file.

■ Nios II Disassembly (Data tab)—Displays disassembled code from
the corresponding address.

For information about the other features plug-ins provided, refer to
“Define Triggers” on page 13–30 and “View, Analyze, and Use Captured
Data” on page 13–63.

To add signals to the SignalTap II file using a plug-in, perform the
following steps after running Analysis and Elaboration on your design:

1. Right-click in the node list. On the Add Nodes with Plug-In
submenu, click the name of the plug-in you want to use, such as the
included plug-in named Nios II.

1 If the intellectual property (IP) for the selected plug-in does
not exist in your design, a message appears informing you
that you cannot use the selected plug-in.

2. The Select Hierarchy Level dialog box appears showing the IP
hierarchy of your design (Figure 13–8). Select the IP that contains
the signals you want to monitor with the plug-in, and click OK.

Altera Corporation 13–25
October 2007 Preliminary

Configure the SignalTap II Logic Analyzer

Figure 13–8. IP Hierarchy Selection

3. If all the signals in the plug-in are available, a dialog box may
appear, depending on the plug-in selected, where you can set any
available options for the plug-in. With the Nios II plug-in, you can
optionally select an Executable and Linking Format (.elf) file
containing program symbols from your Nios II Integrated
Development Environment (IDE) software design. Set options for
the selected plug-in as desired, and click OK.

1 To make sure all the required signals are available, turn on the
Create debugging nodes for IP cores option in the Quartus II
Analysis & Synthesis settings.

All the signals included in the plug-in are added to the node list.

Specifying the Sample Depth

The sample depth specifies the number of samples that are captured and
stored for each signal in the captured data buffer. To set the sample
depth, select the desired number of samples to store in the Sample Depth
list. The sample depth ranges from 0 to 128K.

If device memory resources are limited, you may not be able to
successfully compile your design with the sample buffer size you have
selected. Try reducing the sample depth to reduce resource usage.

13–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Capturing Data to a Specific RAM Type

When you use the SignalTap II Logic Analyzer with some devices, you
have the option to select the RAM type where acquisition data is stored.
RAM selection allows you to preserve a specific memory block for your
design and allocate another portion of memory for SignalTap II data
acquisition. For example, if your design implements a large buffering
application such as a system cache, it is ideal to place this application into
M-RAM blocks so that the remaining M512 or M4K blocks are used for
SignalTap II data acquisition.

To select the RAM type to use for the SignalTap II buffer, select it from the
RAM type list. Use this feature when the acquired data (as reported by
the SignalTap II resource estimator) is not larger than the available
memory of the memory type that you have selected in the FPGA.

Choosing the Buffer Acquisition Mode

The buffer acquisition type selection feature in the SignalTap II Logic
Analyzer lets you choose how the captured data buffer is organized and
can potentially reduce the amount of memory that is required for
SignalTap II data acquisition. You can choose to use either a circular
buffer, which allocates the entire sample depth to a single buffer, or a
segmented buffer, which splits the buffer space into a number of separate
even sized segments. Figure 13–9 illustrates the differences between the
two buffer types.

Figure 13–9. Buffer Type Comparison in the SignalTap II Logic Analyzer Note (1)

Note to Figure 13–9:
(1) Both circular and segmented buffers can use a predefined trigger position or define a custom trigger position using

the State-Based Triggering tab. Refer to “Specifying the Trigger Position” on page 13–44 for more details.

1 1 1 11 0 100 00(a) Circular Buffer

(b) Segmented Buffer

Newly
Captured

Data

Pre-Trigger Center Trigger Post-Trigger

Oldest Data
Removed (1)

1 1 1 11 0 1 1 00 00 1 0 11...

Segment
Trigger

Segment
Trigger

Segment
Trigger

Segment
Trigger

Segment 1 Segment 2 Segment 3 Segment 4

Altera Corporation 13–27
October 2007 Preliminary

Configure the SignalTap II Logic Analyzer

Circular Buffer

The circular buffer (Figure 13–9 (a)) is the default buffer type used by the
SignalTap II Logic Analyzer. While the logic analyzer is running, data is
stored in the buffer until it fills up, at which point new data replaces the
oldest data. This continues until a specified trigger event occurs. When
this happens, the logic analyzer continues to capture data after the trigger
event until the buffer is full, based on the circular buffer trigger position
setting in the Signal Configuration pane in the SignalTap II file. Select a
setting from the list to choose whether to capture the majority of the data
before (Post trigger position) or after (Pre trigger position) the trigger
occurs or to center the trigger position in the data (Center trigger
position). Another option is to use the custom state-based triggering flow
to define your desired triggering position precisely. You can also choose
to continuously capture data until the logic analyzer is stopped.

For more information, refer to “Specifying the Trigger Position” on
page 13–44.

Segmented Buffer

The segmented buffer (Figure 13–9 (b)) organizes the buffer into a
number of separate, evenly sized segments. This type of buffer
organization makes it easier to debug systems that contain relatively
infrequent recurring events. Figure 13–10 shows an example of this type
of buffer system.

Figure 13–10. Example System that Generates Recurring Events

The SignalTap II Logic Analyzer verifies the functionality of the design
shown in Figure 13–10 to ensure that the correct data is written to the
SRAM controller. The buffer acquisition in the SignalTap II Logic

QDR SRAM
Controller

WADDR[17..0]

RADDR[17..0]

WDATA[35..0]

RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]

Q[17..0]

D[17..0]

BWSn[1..0]

RPSn

WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Stratix Device

Pipeline
Registers
(Optional)

K_FB_OUT

K_FB_IN

C, Cn

SRAM Interface Signals

13–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Analyzer allows you to monitor the RDATA port when H'0F0F0F0F is sent
into the RADDR port. You can monitor multiple read transactions from the
SRAM device without running the SignalTap II Logic Analyzer again.
The buffer acquisition feature allows you to segment the memory so that
you can capture the same event multiple times without wasting the
allocated memory. The number of cycles that are captured depends on
the number of segments that you have specified under the Data settings.

To enable and configure buffer acquisition, select Segmented in the
SignalTap II Editor, and select the number of segments to use. In the
example, selecting sixty-four, 64-sample segments allows you to capture
64 read cycles when the RADDR signal is H'0F0F0F0F.

f For more information about the buffer acquisition mode, refer to Setting
the Buffer Acquisition Mode in the Quartus II Help.

Managing Multiple SignalTap II Files and Configurations

In some cases you may have more than one SignalTap II file in one
design. Each file potentially has a different group of monitored signals.
These signal groups make it possible to debug different blocks in your
design. In turn, each group of signals may also be used to define different
sets of trigger conditions. Along with each SignalTap II file, there is also
an associated programming file (SRAM Object File (SOF)). The settings in
a selected SignalTap II file must match the SignalTap II logic design in the
associated SOF file for the logic analyzer to run properly when the device
is programmed. Managing all of the SignalTap II files and their
associated settings and programming files is a challenging task. To help
you manage everything, you can use the Data Log feature and the
SOF Manager.

The Data Log allows you to store multiple SignalTap II configurations
within a single SignalTap II file. Figure 13–11 shows two signal set
configurations with multiple trigger conditions in one SignalTap II file. To
toggle between the active configurations, double-click on an entry in the
Data Log. As you toggle between the different configurations, the signal
list and trigger conditions change in the Setup tab of the SignalTap II file.
The active configuration displayed in the SignalTap II file is indicated by
the blue square around the signal set in the Data log. To store a
configuration in the data log, on the Edit menu, click Save to Data Log,
or click the Save to Data Log button at the top of the Data Log.

Altera Corporation 13–29
October 2007 Preliminary

Configure the SignalTap II Logic Analyzer

Figure 13–11. Data Log

The SOF Manager allows you to embed multiple SOFs into one
SignalTap II file. Embedding an SOF in a SignalTap II file lets you move
the SignalTap II file to a different location, either on the same computer
or across a network, without the need to include the associated SOF as a
separate file. To embed a new SOF in the SignalTap II file, right-click in
the SOF Manager, and click Attach SOF File (Figure 13–12).

Figure 13–12. SOF Manager

As you switch between configurations in the Data Log, you can extract
the SOF that is compatible with that particular configuration and use the
programmer in the SignalTap II Logic Analyzer to download the new
SOF to the FPGA. In this way, you ensure that the configuration of your
SignalTap II file always matches the design programmed into the target
device.

13–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Define Triggers To capture the data you want at the right time, you need to specify
conditions under which the signals you are monitoring display that data.
In the SignalTap II Logic Analyzer, these conditions are referred to as
triggers, just as they are in conventional external logic analyzers and
oscilloscopes. You have many options for creating different types of
triggers to help in your debugging.

Creating Basic Trigger Conditions

The simplest kind of trigger condition you can use is a basic trigger. You
select this from the list at the top of the Trigger Conditions column in the
node list in the SignalTap II Editor. With the trigger type set to Basic, you
must set the trigger pattern for each signal you have added in the
SignalTap II file. To set the trigger pattern, right-click in the Trigger
Conditions column and click the desired pattern. You can set the trigger
pattern to any of the following conditions:

■ Don’t Care
■ Low
■ High
■ Falling Edge
■ Rising Edge
■ Either Edge

For buses, you can type a pattern in binary, or right-click and select Insert
Value to enter the pattern in other number formats. For signals added to
the SignalTap II file that have an associated mnemonic table, you can
right-click and select an entry from the table to set pre-defined conditions
for the trigger.

For more information about the creation and use of mnemonic tables,
refer to “View, Analyze, and Use Captured Data” on page 13–63 and in
the Quartus II Help.

For signals added with certain plug-ins, you can easily create basic
triggers using pre-defined mnemonic table entries. For example, with the
Nios II plug-in, if you have specified an executable software (.elf) file
from your Nios II IDE design, you can type the name of a function from
your Nios II code. The logic analyzer triggers when the Nios II instruction
address matches the address of the specified code function name.

Data capture stops and the data is stored in the buffer when the logical
AND of all the signals for a given trigger condition evaluates to TRUE.

Altera Corporation 13–31
October 2007 Preliminary

Define Triggers

Creating Advanced Trigger Conditions

Along with the SignalTap II Logic Analyzer’s basic triggering
capabilities, you can build more complex triggers utilizing extra logic that
enable you to capture data when a particular combination of conditions
exist. If you set the trigger type to Advanced at the top of the Trigger
Conditions column in the node list of the SignalTap II Editor, a new tab
named Advanced Trigger appears where you can build a complex trigger
expression using a simple GUI. You can drag and drop operators into the
Advanced Trigger Configuration Editor window to build the complex
trigger condition in an expression tree. Double-click operators that you
have placed or right-click them and select Properties to configure the
operator's settings. Table 13–5 lists the operators you can use.

Table 13–5. Advanced Triggering Operators Note (1)

Name of Operator Type

Less Than Comparison

Less Than or Equal To Comparison

Equality Comparison

Inequality Comparison

Greater Than Comparison

Greater Than or Equal To Comparison

Logical NOT Logical

Logical AND Logical

Logical OR Logical

Logical XOR Logical

Reduction AND Reduction

Reduction OR Reduction

Reduction XOR Reduction

Left Shift Shift

Right Shift Shift

Bitwise Complement Bitwise

Bitwise AND Bitwise

Bitwise OR Bitwise

Bitwise XOR Bitwise

Edge and Level Detector Signal Detection

Note to Table 13–5:
(1) For more information about each of these operators, refer to the Quartus II Help.

13–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

You can configure some of the settings for certain operators at run-time.
This enables you to change one operator type to another operator type or
adjust other settings for an operator without recompiling your design.
Operator settings that have a white background on the operator symbol
can be changed without recompiling the design.

Adding many objects to the Advanced Trigger Condition Editor can
make the workspace cluttered and difficult to read. To keep objects
organized while you build your advanced trigger condition, use the
right-click menu and select Arrange All Objects. You can also use the
Zoom-Out command to fit more objects into the Advanced Trigger
Condition editor window.

Examples of Advanced Triggering Expressions

The following examples show how to use Advanced Triggering:

■ Trigger when bus outa is greater than or equal to outb
(Figure 13–13).

Figure 13–13. Bus outa is Greater Than or Equal to Bus outb

■ Trigger when bus outa is greater than or equal to bus outb, and
when the enable signal has a rising edge (Figure 13–14).

Altera Corporation 13–33
October 2007 Preliminary

Define Triggers

Figure 13–14. Enable Signal has a Rising Edge

■ Trigger when bus outa is greater than or equal to bus outb, or when
the enable signal has a rising edge. Or, when a bitwise AND operation
has been performed between bus outc and bus outd, and all bits of
the result of that operation are equal to 1 (Figure 13–15).

Figure 13–15. Bitwise AND Operation

13–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Trigger Condition Flow Control

SignalTap II offers multiple triggering conditions to give you more
precise control of the method in which data is captured into the
acquisition buffers. Trigger Condition Flow control allows you to define
the relationship between a set of triggering conditions. SignalTap II gives
you two flow control mechanisms for organizing trigger conditions:

■ Sequential Triggering—The default triggering flow. This flow allows
you to define up to ten triggering levels that must be satisfied before
the acquisition buffer finishes capturing.

■ Custom State-Based Triggering—This flow allows you the greatest
control over your acquisition buffer. This method allows you to
organize trigger conditions into states based on a conditional flow
that you define.

Both methods can be used with either a circular buffer or a segmented
buffer.

Sequential Triggering

The sequential triggering flow allows you to cascade up to ten levels of
triggering conditions. The SignalTap II Logic Analyzer sequentially
evaluates each of the triggering conditions. When the last triggering
condition evaluates to TRUE, the SignalTap II Logic Analyzer triggers the
acquisition buffer. For segmented buffers, every acquisition segment
after the first segment triggers on the last triggering condition that you
have specified. You can use the simple sequential triggering feature with
basic triggers, advanced triggers, or a mix of both. Figure 13–16 illustrates
the simple sequential triggering flow for circular and segmented buffers.

1 Note that the external trigger in is considered as trigger level 0.
The external trigger must be evaluated before the main trigger
levels are evaluated.

Altera Corporation 13–35
October 2007 Preliminary

Define Triggers

Figure 13–16. Sequential Triggering Flow Notes (1), (2)

Note to Figure 13–16:
(1) The Acquisition buffer stops capture when all n triggering levels are satisfied, where .
(2) An external trigger input, if defined, will be evaluated before all other defined trigger conditions are evaluated. For

more information about external triggers refer to “Using External Triggers” on page 13–47.

To configure the SignalTap II Logic Analyzer for Sequential triggering,
on the Trigger flow control list in the SignalTap II editor, select
Sequential. You can select the desired number of trigger conditions by
using the Trigger Conditions pull-down list. After you select the desired
number of trigger conditions, you can configure each trigger condition in
the node list. To disable any trigger condition, click the check box next to
the trigger condition at the top of the column in the node list. Figure 13–17
shows the setup tab for Sequential Triggering.

Circular Buffer Segmented Buffer

Trigger Condition n Acquisition Segment 1
trigger

Trigger Condition n Acquisition Segment 2
trigger

Trigger Condition n Acquisition Segment m
trigger

Acquisition Buffer
trigger

m - 2 transitions

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

n - 2 transitions

n - 2 transitions

Trigger Condition 1

Trigger Condition 2

n 10≤

13–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 13–17. Setup Tab

Custom State-Based Triggering

The custom state-based triggering method gives you the most control of
triggering condition arrangement. This flow gives you the ability to
describe the relationship between triggering conditions precisely, using
an intuitive GUI and the SignalTap II Trigger Flow Description
Language, a simple description language based upon conditional
expressions. Tooltips within the custom triggering flow GUI allow you to
describe your desired flow quickly. The custom state-based triggering
flow allows for more efficient use of the space available in the acquisition
buffer because only specific samples of interest are captured.

Figure 13–18 illustrates the custom state-based triggering flow. Events
that trigger the acquisition buffer are organized by a user-defined state
diagram. All actions performed by the acquisition buffer are captured by
the states and all the transition conditions between the states are defined
by the conditional expressions that you specify within each state.

Setup Tab

Trigger Conditions Pull-Down List

Altera Corporation 13–37
October 2007 Preliminary

Define Triggers

Figure 13–18. Custom State-Based Triggering Flow Note (1), (2)

Note to Figure 13–18:
(1) You are allowed up to twenty different states.
(2) An external trigger input, if defined, will be evaluated before any conditions in the custom state-based triggering

flow are evaluated. For more information, refer to “Using External Triggers” on page 13–47.

Each state allows you to define a set of conditional expressions. Each
conditional expression is a Boolean expression dependent upon a
combination of triggering conditions (configured within the Setup tab),
counters, and status flags. Counters and status flags are resources
provided by the Signal Tap II custom-based triggering flow.

Within each conditional expression you define a set of “actions”. Actions
include triggering the acquisition buffer to stop capture, a modification to
either a counter or status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented
acquisition buffer or to the entire circular acquisition buffer. Each trigger
action provides you with an optional count that specifies the number of
samples to be captured before stopping acquisition of the current
segment. The count argument allows you to control the amount of data
captured precisely before and after triggering event.

Resource manipulation actions allow you to increment and decrement
counters or set and clear status flags. The counter and status flag
resources are used as optional inputs in the conditional expressions.
Counters and status flags are useful for counting the number of
occurrences of particular events and for aiding in the triggering flow
control.

User-Defined Triggering Flow

Segmented Acquisition Buffer

Trigger Condition Set a

State 1:

Trigger Condition Set b

State 2:

Trigger Condition Set c

State 3:

Trigger Condition Set d

State n (last state):

First Acquisition Segment Acquisition Segment y Acquisition Segment z Last Acquisition Segment

Transition Condition i Transition Condition j Transition Condition l

segment_triggersegment_trigger segment_trigger segment_trigger

Transition Condition k

13–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

This Signal Tap II custom state-based triggering flow allows you to
capture a sequence of events that may not necessarily be contiguous in
time; for example, capturing a communication transaction between two
devices that includes a handshaking protocol containing a sequence of
acknowledgements.

The State-Based Trigger Flow tab is the control interface for the custom
state-based triggering flow. To enable this tab, on the Trigger Flow
Control pull-down list, select State-based. (Note that when the Trigger
Flow control option is set to Sequential, the State-Based Trigger Flow
tab is hidden.)

Figure 13–19 shows the Custom Trigger Flow tab.

Figure 13–19. State-Based Trigger Flow Tab

The State-Based Trigger Flow tab is partitioned into the following three
panes.

■ State Diagram Pane
■ Resources Pane
■ State Machine Pane

State-Based Trigger Flow Tab

Altera Corporation 13–39
October 2007 Preliminary

Define Triggers

State Diagram Pane
The State Diagram pane provides a graphical overview of the triggering
flow that you define. It shows the number of states available and the state
transitions between all of the states. You can adjust the number of
available states by using the pull-down menu above the graphical
overview.

State Machine Pane
The State Machine pane contains the text entry boxes where you can
define the triggering flow and the actions associated with each state. You
can define the triggering flow using the Signal Tap II Trigger Flow
Description Language, a simple language based upon if-else conditional
statements. Tooltips appear when you move the mouse over the cursor,
to guide command entry into the state boxes. The GUI provides a syntax
check on your flow description in real-time and highlights any errors in
the text flow.

1 Refer to “SignalTap II Trigger Flow Description Language” on
page 13–40 for a full description of the SignalTap II Trigger Flow
Description Language. You can also refer to the Quartus II Help.

The State Machine description text boxes default to show one text box per
state. You can optionally have the entire flow description be shown in a
single text field. This option can be useful when copying and pasting a
flow description from a template or an external text editor. To toggle
between one window per state, or all states in one window, select the
appropriate option under State Display mode.

Resources Pane
The Resources pane allows you to declare Status Flags and Counters for
use in the conditional expressions in the Custom Triggering Flow.
Actions to decrement and increment counters or to set and clear status
flags are performed within the triggering flow that you define.

You can set up to 20 counters and 20 status flags for use. Counter and
status flags values may be initialized by right-clicking the status flag or
counter name after selecting a number of them from the respective
drop-down list, and selecting Set Initial Value. Counter width can be set
by right-clicking the counter name and selecting Set Width.

13–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Runtime Reconfigurability—The configurable at runtime options in the
Resources pane allows you to configure the custom-flow control options
that can be changed at runtime without requiring a recompilation.
Table 13–6 contains a description of options that can be reconfigured at
runtime.

You can restrict changes to your SignalTap configuration to include only
the options that do not require a recompilation by using the pull-down
menu above the trigger list in the Setup tab. The option Allow trigger
condition changes only restricts changes to only the configuration
settings that the runtime configurable option set. You can then modify
Trigger Flow conditions in the Custom Trigger Flow tab by clicking the
desired parameter in the text box, and selecting a new parameter from the
menu that appears.

1 The runtime configurable settings for the Custom Trigger Flow
tab are on by default. You may get some performance
advantages by disabling some of the runtime configurable
options. Refer to “Performance and Resource Considerations”
on page 13–55 for details about the effects of turning off the
runtime modifiable options.

SignalTap II Trigger Flow Description Language

The Trigger Flow Description Language is based on a list of conditional
expressions per state to define a set of actions. Each line in Example 13–1
shows a language format. Keywords are shown in bold. Non-terminals
are delimited by “<>” and are further explained in the following sections.
Optional arguments are delimited by “[] “.

1 Examples of Triggering Flow descriptions for common
scenarios using the Signal Tap II Custom Triggering Flow are
provided in the section, “Custom Triggering Flow Application
Examples” on page 13–77.

Table 13–6. Runtime Configurable Settings

Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows comparison values in Boolean expressions to be modifiable at runtime. In
addition, it allows the segment_trigger and trigger action post-fill count
argument to be modifiable at runtime.

Comparison operators Allows comparison operators in Boolean expressions to be modifiable at runtime.

Logical operators Allows the logical operators in Boolean expressions to be modifiable at runtime.

Altera Corporation 13–41
October 2007 Preliminary

Define Triggers

Example 13–1. Trigger Flow Description Language Format Note (1)
state <State_label>:
<action_list>

or

state <State_label>:
if(<Boolean_expression>)
<action_list>
[else if (<boolean_expression>)
 <action_list>] (1)
[else
 <action_list>]

Notes to Example 13–1:
(1) Multiple else if conditions are allowed.

The priority for evaluation of conditional statements is assigned from top
to bottom. The <boolean_expression> in an if statement can contain a
single event, or it can contain multiple event conditions. The
action_list embedded within an if or an else if clause must be
delimited by the begin and end tokens when the action list contains
multiple statements. When the boolean expression is evaluated true, the
logic analyzer analyzes all of the commands in the action list
concurrently. The possible actions include:

■ Triggering the acquisition buffer
■ Manipulating a counter or status flag resource
■ Defining a state transition

State Labels

State Labels are identifiers that can be used in the action goto.

state <state_label>: begins the description of the actions evaluated
when this state is reached.

The description of a state ends with the beginning of another state or the
end of the whole trigger flow description.

Boolean_expression

Boolean_expression is a collection of logical operators, relational
operators, and their operands that evaluate into a Boolean result.
Depending on the operator, the operand can be a reference to a trigger
condition, a counter and a register, or a numeric value. Within an
expression, parentheses can be used to group a set of operands.

13–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Logical operators accept any boolean expression as an operand. The
supported Logical operators are shown in Table 13–7.

Relational operators are performed on counters or status flags. The
comparison value—the right operator—must be a numerical value. The
supported Relational operators are shown in Table 13–8.

Action_list

Action_list is a list of actions that can be performed when a state is
reached and a condition is also satisfied. If more than one action is
specified, they must be enclosed by begin and end. The actions can be
categorized as resource manipulation actions, buffer control actions and
state transition actions. Actions must be embedded within a condition
statement if condition statements are used in a state. Each action is
terminated by a semicolon.

Table 13–7. Logical Operators

Operator Description Syntax

! NOT operator ! expr1

&& AND operator expr1 && expr2

|| OR operator expr1 || expr2

Table 13–8. Relational Operators

Operator Description Syntax Notes (1) (2)

> Greater than <identifier> > <numerical_value>

>= Greater than or Equal to <identifier> >= <numerical_value>

== Equals <identifier> == <numerical_value>

!= Does not equal <identifier> != <numerical_value>

<= Less than or equal to <identifier> <= <numerical_value>

< Less than <identifier> < <numerical_value>

Notes to Table 13–8:
(1) <identifier> indicates a counter or status flag
(2) <numerical_value> indicates an integer

Altera Corporation 13–43
October 2007 Preliminary

Define Triggers

Resource Manipulation Action

The resources used in the trigger flow description can be either counters
or status flags. Table 13–9 shows the description and syntax of each
action.

Buffer Control Action

Buffer control actions specify an action to control the acquisition buffer.
Table 13–10 shows the description and syntax of each action,

Both trigger and segment_trigger actions accept an optional
post-fill count argument. If provided, the current acquisition acquires the
number of samples provided by post-fill count and then stops
acquisition. If no post-count value is specified, the trigger position for the
affected buffer defaults to the trigger position specified in the setup tab.

Table 13–9. Resource Manipulation Action

Action Description Syntax

Increment Increments a counter resource by 1 increment <counter_identifier>;

Decrement Decrements a counter resource by 1 decrement <counter_identifier>;

Reset Resets counter resource to initial value reset <counter_identifier>;

Set Sets a status Flag to 1 set <register_flag_identifier>;

Clear Sets a status Flag to 0 clear <register_flag_identifier>;

Table 13–10. Buffer Control Action

Action Description Syntax

trigger Stops the acquisition for the current buffer and
ends analysis. This command is required in
every flow definition.

trigger <post-fill_count>;

segment_trigger Ends the acquisition of the current segment.
The Signal Tap II Logic Analyzer starts
acquiring from the next segment upon
evaluating this command. If all segments are
filled, the oldest segment is overwritten with the
latest sample. The acquisition stops when a
trigger action is evaluated.
This action cannot be used in non-segmented
acquisition mode.

segment_trigger <post-fill_count>;

13–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 Note that in the case of segment_trigger, acquisition of the
current buffer stops immediately if a subsequent triggering
action is issued in the next state, regardless of whether or not the
post-fill count has been satisfied for the current buffer. The
remaining unfilled post-count acquisitions in the current buffer
are discarded and displayed as grayed-out samples in the data
window.

State Transition Action

State transition action specifies the next state in the custom state control
flow. It is specified by the goto command. The syntax is as follows:

goto <state_label>;

Specifying the Trigger Position

The SignalTap II Logic Analyzer allows you to specify the amount of data
that is acquired before and after a trigger event. You can set the trigger
position independently between a Runtime and Power-Up Trigger. Select
the desired ratio of pre-trigger data to post-trigger data by choosing one
of the following ratios:

■ Pre—This selection saves signal activity that occurred after the
trigger (12% pre-trigger, 88% post-trigger).

■ Center—This selection saves 50% pre-trigger and 50% post-trigger
data.

■ Post—This selection saves signal activity that occurred before the
trigger (88% pre-trigger, 12% post-trigger).

These pre-defined ratios apply to both circular buffers and segmented
buffers.

If you use the custom-state based triggering flow, you can specify a
custom trigger position. The segment_trigger and trigger actions
accept a post-fill count argument. The post-fill count specifies the number
of samples to capture before stopping data acquisition for the circular
buffer or a data segment when using the trigger and
segment_trigger commands, respectively. When the captured data is
displayed in the SignalTap II data window, the trigger position appears
as the number of post-count samples from the end of the acquisition
segment or buffer. Refer to Equation 1:

(1)

In this case, N is the sample depth of either the acquisition segment or
circular buffer.

Sample Number of Trigger Position N Post-Fill Count–()=

Altera Corporation 13–45
October 2007 Preliminary

Define Triggers

For segmented buffers, the acquisition segments that have a post-count
argument defined use the post-count setting. Segments that do not have
a post-count setting default to the trigger position ratios defined in the
Setup tab.

For more details about the Custom-State based triggering flow, refer to
“Custom State-Based Triggering” on page 13–36.

Creating a Power-Up Trigger

Typically, the SignalTap II Logic Analyzer is used to trigger on events
that occur during normal device operation. You start an analysis
manually once the target device is fully powered on and the device’s
JTAG connection is available. However, there may be cases when you
would like to capture trigger events that occur during device
initialization immediately after the FPGA is powered on or reset. With
the SignalTap II Power-Up Trigger feature, you can capture data from
triggers that occur after device programming but before the logic
analyzer is started manually.

Enabling a Power-Up Trigger

A different Power-Up Trigger can be added to each logic analyzer
instance in the SignalTap II Instance Manager. To enable the Power-Up
Trigger for a logic analyzer instance, right-click the instance, and click
Enable Power-Up Trigger, or select the instance, and on the Edit menu,
click Enable Power-Up Trigger. To disable a Power-Up Trigger, click
Disable Power-Up Trigger in the same locations. Power-Up Trigger is
shown as a child instance below the name of the selected instance with
the default trigger conditions set in the node list. Figure 13–20 shows the
SignalTap II Editor when a Power-Up Trigger is enabled.

13–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 13–20. SignalTap II Editor with Power-Up Trigger Enabled

Managing and Configuring Power-Up and Runtime Trigger Conditions

When the Power-Up Trigger is enabled for a logic analyzer instance, you
create basic and advanced trigger conditions for it in the same way you
do with the regular trigger, also called the Runtime Trigger. Power-Up
Trigger conditions that you can adjust are color coded light blue, while
Run-Time Trigger conditions remain white. Since each instance now has
two sets of trigger conditions, the Power-Up Trigger and the Run-Time
Trigger, you can differentiate between the two with the color coding. To
switch between the trigger conditions of the Power-Up Trigger and the
Runtime Trigger, double-click the instance name or the Power-Up
Trigger name in the Instance Manager.

You cannot make changes to the Power-Up Trigger conditions that would
normally require a full recompile with Runtime Trigger conditions, such
as adding signals, deleting signals, or changing between basic and
advanced triggers. For these changes to be applied to the Power-up
Trigger conditions, you must first make the changes using the Runtime
Trigger conditions.

Altera Corporation 13–47
October 2007 Preliminary

Define Triggers

1 Any change made to the Power-Up Trigger conditions requires
that the SignalTap II Logic Analyzer be recompiled, even if a
similar change to the Runtime Trigger conditions does not
require a recompilation.

While creating or making changes to the trigger conditions for the
Run-Time Trigger or the Power-Up Trigger, you may want to copy these
conditions to the other trigger. This makes it easy to look for the same
trigger during both power-up and runtime. To do this, right-click the
instance name or the Power-Up Trigger name in the Instance Manager,
and click Duplicate Trigger, or select the instance name or the Power-Up
Trigger name and, on the Edit menu, click Duplicate Trigger.

For information about running the SignalTap II Logic Analyzer instance
with a Power-Up Trigger enabled, refer to “Running with a Power-Up
Trigger” on page 13–60.

Using External Triggers

You can create a trigger input that allows you to trigger the SignalTap II
Logic Analyzer from an external source. The external trigger input
behaves like trigger condition 1. It is evaluated and must be true before
any other configured trigger conditions are evaluated. The analyzer can
also supply a signal to trigger external devices or other SignalTap II
instances. These features allow you to synchronize external logic analysis
equipment with the internal logic analyzer. Power-Up Triggers can use
the external triggers feature, but they must use the same source or target
signal as their associated Run-Time Trigger.

Trigger In

To use Trigger In, perform the following steps:

1. In the SignalTap II Editor, click the Setup tab.

2. If a Power-Up Trigger is enabled, make sure you are viewing the
Runtime Trigger conditions.

3. In the Signal Configuration pane, turn on Trigger In.

4. In the Pattern list, select the condition you want to act as your
trigger event. You can set this separately for a Runtime or a
Power-Up Trigger.

5. Click Browse next to the Source field in the Trigger In pane
(Figure 13–22 on page 13–50). The Node Finder dialog box appears.

13–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

6. In the Node Finder dialog box, select the signal (either an input pin
or an internal signal) that you want to drive the Trigger In source,
and click OK.

If you type a new signal name in the Source field, you create a new
node that you can assign to an input pin in the Pin Planner or
Assignment editor. If you leave the Source field blank, a default
name is entered in the form auto_stp_trigger_in_<SignalTap
instance number>.

Trigger Out

To use Trigger Out, perform the following steps:

1. In the SignalTap II Editor, click the Setup tab.

2. If a Power-Up trigger is enabled, make sure you are viewing the
Runtime Trigger conditions.

3. In the Signal Configuration pane, turn on Trigger Out (refer to
Figure 13–21 on page 13–49)

4. In the Level list, select the condition you want to signify that the
trigger event is occurring. You can set this separately for a
Run-Time or a Power-Up Trigger.

5. Type a new signal name in the Target field. A new node name is
created that you must assign to an output pin in the Pin Planner or
Assignment editor.

If you leave the Target field blank, a default name is entered in the
form auto_stp_trigger_out_<SignalTap instance number>.
When the logic analyzer triggers, a signal at the level you indicated
will be output on the pin you assigned to the new node.

Using the Trigger Out of One Analyzer as the Trigger In of Another
Analyzer

An advanced feature of the SignalTap II Logic Analyzer is the ability to
use the Trigger Out of one analyzer as the Trigger In to another analyzer.
This feature allows you to synchronize and debug events that occur
across multiple clock domains.

Altera Corporation 13–49
October 2007 Preliminary

Define Triggers

To perform this operation, first enable the Trigger Out of the source logic
analyzer instance. On the Trigger out Target list, select the targeted logic
analyzer instance. For example, if the instance named
auto_signaltap_0 should trigger auto_signaltap_1, select
auto_signaltap_1|trigger_in from the list (Figure 13–21).

Figure 13–21. Configuring the Trigger Out Signal

■ This automatically enables the Trigger In of the targeted logic
analyzer instance and fills in the Trigger In Source field with the
Trigger Out signal from the source logic analyzer instance. In this
example, auto_signaltap_0 is targeting auto_signaltap_1.
The Trigger In Source field of auto_signaltap_1 is automatically
filled in with auto_signaltap_0|trigger_out (Figure 13–22).

Target Set to Trigger in of
auto_signaltap_1

13–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 13–22. Configuring the Trigger In Signal

Compile the
Design

When you add a SignalTap II file to your project, the SignalTap II Logic
Analyzer becomes part of your design. You must compile your project to
incorporate the SignalTap II logic and enable the JTAG connection that is
used to control the logic analyzer. When you are debugging with a
traditional external logic analyzer, it is often necessary to make changes
to the signals monitored as well as the trigger conditions. Since these
adjustments often translate into recompilation time when using the
SignalTap II Logic Analyzer, you can use the SignalTap II Logic Analyzer
feature along with incremental compilation in the Quartus II software to
reduce time spent recompiling.

Source Set to Trigger out of
auto_signaltap_1

Enabling
Trigger in

Altera Corporation 13–51
October 2007 Preliminary

Compile the Design

Faster Compilations with Quartus II Incremental Compilation

To use Incremental compilation with the SignalTap II Logic Analyzer,
you must perform the following steps:

■ Enable Full Incremental Compilation for your design
■ Assign design partitions
■ Set partitions to the proper preservation levels
■ Enable SignalTap for your design
■ Add signals to SignalTap using the appropriate netlist filter in the

node finder (either SignalTap II: pre-synthesis or SignalTap II:
post-fitting).

When you compile your design with a SignalTap II file, the
sld_signaltap and sld_hub entities are automatically added to the
compilation hierarchy. These two entities are the main components of the
SignalTap II Logic Analyzer, providing the trigger logic and JTAG
interface required for operation.

Incremental compilation enables you to preserve the synthesis and fitting
results of your original design and add the SignalTap II Logic Analyzer
to your design without recompiling your original source code. This
feature is also useful when you want to modify the configuration of the
SignalTap II file. For example, you can modify the buffer sample depth or
memory type without performing a full compilation after the change is
made. Only the SignalTap II Logic Analyzer, configured as its own
design partition, must be recompiled to reflect the changes.

To use incremental compilation, you must first enable Full Incremental
Compilation for your design if it is not already enabled, assign design
partitions if necessary, and set the design partitions to the correct
preservation levels. Incremental compilation is the default setting for
new projects in the Quartus II software, so you can establish design
partitions immediately in a new project. However, it is not necessary to
create any design partitions to use the SignalTap II Incremental
Compilation feature. Once your design is set up to use full incremental
compilation, the SignalTap II Logic Analyzer acts as its own separate
design partition. You can begin taking advantage of incremental
compilation by using the SignalTap II: post-fitting filter in the Node
Finder to add signals for logic analysis.

Enabling Incremental Compilation for your Design

To enable Incremental Compilation if it is not already enabled, perform
the following steps:

1. On the Assignments menu, click Design Partitions window.

13–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

2. In the Incremental Compilation list, select Full Incremental
Compilation.

3. Create user-defined partitions if desired and set the Netlist Type to
Post-fit for all partitions.

1 The netlist type for the top-level partition defaults to source. To
take advantage of incremental compilation, you must set the
Netlist types for the partitions you wish to tap as post-fit.

4. On the Processing menu, click Start Compilation, or click Start
Compilation on the toolbar.

Your project is fully compiled the first time, establishing the design
partitions you have created. When enabled for your design, the
SignalTap II Logic Analyzer will always be a separate partition. After the
first compilation, you can use the SignalTap II Logic Analyzer to analyze
signals from the post-fit netlist. If your partitions are set correctly,
subsequent compilations due to SignalTap II settings are able to take
advantage of the shorter compilation times.

f For more information about configuring and performing Incremental
Compilation, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

Using Incremental Compilation with the SignalTap II Logic Analyzer

The SignalTap II Logic Analyzer is automatically configured to work
with the incremental compilation flow. For all signals that you want to
connect to the SignalTap II Logic Analyzer from the post-fit netlist, set the
netlist type of the partition containing the desired signals to Post-Fit or
Post-Fit (Strict) with a Fitter Preservation Level of Placement and Routing
using the Design Partitions window. Use the SignalTap II: post-fitting
filter in the Node Finder to add the signals of interest to your
SignalTap II configuration file. If you want to add signals from the pre-
synthesis netlist, set the netlist type to Source File and use the
SignalTap II: pre-synthesis filter in the Node Finder. Do not use the
netlist type Post-Synthesis with the SignalTap II Logic Analyzer.

c Be sure to conform to the following guidelines when using
post-fit/pre-synthesis nodes:

● Read all incremental compilation guidelines to ensure the
proper partition of a project.

● To speed compile time, use only post-fit nodes for partitions set
to preservation level post-fit.

Altera Corporation 13–53
October 2007 Preliminary

Compile the Design

● Do not mix pre-synthesis and post-fit nodes in any partition. If
you must tap presynthesis nodes for a particular partition, make
all tapped nodes in that partition presynthesis nodes and change
the netlist type to source in the design partitions window.

Node names may be different between a pre-synthesis netlist and a post-
fit netlist. In general, registers and user input signals share common
names between the two netlists. During compilation, certain
optimizations will change the names of combinational signals in your
RTL. If the type of node name chosen does not match the netlist type, the
compiler may not be able to find the signal to connect to your SignalTap II
Logic Analyzer instance for analysis. The compiler will issue a critical
warning to warn you of this scenario. The signal that is not connected is
tied to ground in the SignalTap II data tab.

If you do use incremental compile flow with the SignalTap II Logic
Analyzer and source file changes are necessary, be aware that you may
have to remove compiler-generated post-fit net names. Source code
changes force the affected partition to go through a resynthesis. During
synthesis, the compiler cannot find compiler-generated net names from a
previous compilation. Altera recommends you use only registered and
user input signals as debugging taps in your STP file whenever possible.
Both registered and user-supplied input signals share common node
names in the pre-synthesis and post-fit netlist. As a result, using only
registered and user-supplied input signals in your STP file limits the
changes you need to make to your SignalTap configuration.

To verify that your original design was not modified, examine the
messages in the Partition Merge section of the Compilation Report.
Figure 13–23 shows an example of the messages displayed.

13–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 13–23. Compilation Report Messages

Unless you make changes to your design partitions that require
recompilation, only the SignalTap II design partition is recompiled. If you
make subsequent changes to only the SignalTap II file, only the
SignalTap II design partition must be recompiled, reducing your
recompilation time.

Preventing Changes Requiring Recompilation

You can configure the SignalTap II file to prevent changes that normally
require a recompilation. You do this by selecting a lock mode from above
the node list in the Setup tab. Whether or not you are using incremental
compilation, you can lock your configuration by choosing to allow only
trigger condition changes.

f For more information about the use of lock modes, refer to the Quartus II
Help.

Timing Preservation with the SignalTap II Logic Analyzer

In addition to verifying functionality, timing closure is one of the most
crucial processes in successfully completing a design. When you compile
a project with a SignalTap II Logic Analyzer without the use of
incremental compilation, you add IP to your existing design. Therefore,
you can affect the existing placement, routing, and timing of your design.
To minimize the effect that the SignalTap II Logic Analyzer has on your
design, Altera recommends that you use incremental compilation for

Altera Corporation 13–55
October 2007 Preliminary

Compile the Design

your project. Incremental compilation is the default setting in new
designs and can be easily enabled and configured in existing designs.
With the SignalTap II Logic Analyzer in its own design partition, it has
little to no affect on your design.

In addition to using the incremental compilation flow for your design,
you can use the following techniques to help maintain timing:

■ Avoid adding critical path signals to your SignalTap II file.
■ Minimize the number of combinational signals you add to your

SignalTap II file, and add registers whenever possible.
■ Specify an fMAX constraint for each clock in your design.

f For an example of timing preservation with the SignalTap II Logic
Analyzer, refer to the Area and Timing Optimization chapter in volume 2
of the Quartus II Handbook.

Performance and Resource Considerations

There is an inherent trade-off between runtime flexibility of the
SignalTap II Logic Analyzer, timing performance of the Signal Tap II
Logic Analyzer, and the resource usage. The SignalTap II Logic Analyzer
allows you to select the runtime configurable parameters to balance the
need for runtime flexibility, speed, and area. The default values have
been chosen to provide maximum flexibility so you can reach debugging
closure as quickly as possible; however, you can adjust these settings to
determine whether there is a more optimal configuration for your design.

The suggestions in this section provide some tips to provide extra timing
slack if you have determined that the SignalTap II logic is in your critical
path, or to alleviate the resource requirements that the SignalTap II Logic
Analyzer consumes if your design is resource-constrained.

If the SignalTap II logic is part of your critical path, the following
suggestions can help to speed up the performance of the SignalTap II
Logic Analyzer:

■ Disable runtime configurable options—Certain resources are
allocated to accommodate for run-time flexibility. If you are using
either advanced triggers or the state-based triggering flow, you can
disable run-time configurable parameters for a boost in fMAX of the
SignalTap II logic. If you are using the state-based triggering flow,
try disabling the Goto state destination option and performing a
recompilation before disabling the other runtime configurable
options. The Goto state destination option has the greatest impact
on fMAX as compared to the other runtime configurable options.

13–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Minimize the number of signals that have Trigger Enable
selected—All of the signals that you add to the SignalTap II file have
Trigger Enable turned on. Turn off Trigger Enable for signals that
you do not plan to use as triggers.

■ Turn on Physical Synthesis for register retiming—If you have a
large number of triggering signals enabled (greater than the number
of inputs that would fit in a LAB) that fan-in to logic gate-based
triggering condition, such as a basic trigger condition or a logical
reduction operator in the advanced trigger tab, turn on the Perform
register retiming. This can help balance combinational logic across
LABs.

If your design is resource constrained, the following suggestions can help
to reduce the amount of logic or memory used by the SignalTap II Logic
Analyzer:

■ Disable runtime configurable options—Disabling runtime
configurability for the advanced trigger conditions or the runtime
configurable options in the state-based triggering flow will result in
less LE usage.

■ Minimize the number of segments in the acquisition buffer—You
can reduce the number of logic resources used for the SignalTap II
Logic Analyzer by limiting the number of segments in your sampling
buffer to only that which is required.

■ Disable the Data Enable for signals that are used for triggering
only—By default, both the data enable and trigger enable options are
selected for all signals. Turning off the data enable option for signals
used as trigger inputs only will save on memory resources used by
the SignalTap II Logic Analyzer.

Because performance results are design-dependent, try these options in
different combinations until you achieve the desired balance between
functionality, performance, and utilization.

f For more information about area and timing optimization, refer the Area
and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

Altera Corporation 13–57
October 2007 Preliminary

Program the Target Device or Devices

Program the
Target Device or
Devices

Once your project, including the SignalTap II Logic Analyzer, is
compiled, you must configure the FPGA target device. When you are
using the SignalTap II Logic Analyzer for debugging, you can configure
the device from the SignalTap II file instead of the Quartus II
Programmer. Because you configure from the SignalTap II file, you can
open more than one SignalTap II file and program multiple devices to
debug multiple designs simultaneously.

The settings in a SignalTap II file must be compatible with the
programming (SOF) file used to program the device. A SignalTap II file is
considered compatible with an SOF when the settings for the logic
analyzer, such as the size of the capture buffer and the signals selected for
monitoring or triggering, match the way the target device will be
programmed. If the files are not compatible, you will still be able to
program the device, but you will not be able to run or control the logic
analyzer from the SignalTap II Editor.

To ensure programming compatibility, make sure to program your
device with the latest SOF created from the most recent compilation.

Before starting a debugging session, do not make any changes to the
SignalTap II file settings that would require the project to be recompiled.
You can check the SignalTap II status display at the top of the Instance
Manager to see if a change you made requires the design to be
recompiled, producing a new SOF. This gives you the opportunity to
undo the change, so that a recompilation is not necessary. To prevent any
such changes, enable a lock mode in the SignalTap II file.

Programming a Single Device

To configure a single device for use with the SignalTap II Logic Analyzer,
perform the follow steps:

1. In the JTAG Chain Configuration pane in the SignalTap II Editor,
select the connection you use to communicate with the device from
the Hardware list. If you need to add your communication cable to
the list, click Setup to configure your connection.

2. Click Browse in the JTAG Chain Configuration pane, and select
the SOF file that includes the compatible SignalTap II Logic
Analyzer.

3. Click Scan Chain. The Scan Chain operation enumerates all of the
JTAG devices within your JTAG chain.

13–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

4. In the Device list, select the device to which you want to download
the design. The device list shows an ordered list of all devices in the
JTAG chain.

All of the devices are numbered sequentially according to their
position in the JTAG chain, prefixed with the “@”. For example:
@1 : EP3C25 (0x020F30DD) lists a Cyclone III device as the first
device in the chain, with the JTAG ID code of 0x020F30DD.

5. Click the Program Device icon.

Programming Multiple Devices to Debug Multiple Designs

You can simultaneously debug multiple designs using one instance of the
Quartus II software by performing the following steps:

1. Create, configure, and compile each project that includes a
SignalTap II file.

2. Open each SignalTap II file.

1 You do not have to open a Quartus II project to open a
SignalTap II file.

3. Use the JTAG Chain Configuration pane controls to select the
target device in each SignalTap II file.

4. Program each FPGA.

5. Run each analyzer independently.

Figure 13–24 shows a JTAG chain and its associated SignalTap II files.

Figure 13–24. JTAG Chain

Stratix FPGA1

STP1

Stratix FPGA2

STP2

Stratix FPGA3

STP3

Communication
Cable

Altera Corporation 13–59
October 2007 Preliminary

Run the SignalTap II Logic Analyzer

Run the
SignalTap II
Logic Analyzer

After the device is configured with your design that includes the
SignalTap II Logic Analyzer, you can perform debugging operations in a
manner similar to the use of an external logic analyzer. You “arm” the
logic analyzer by starting an analysis. When your trigger event occurs,
the captured data is stored in the memory buffer on the device and then
transferred to the SignalTap II file over the JTAG connection. You can
also perform the equivalent of a “force trigger” that lets you view the
captured data currently in the buffer without a trigger event occurring.
Figure 13–25 illustrates a flow that shows how you operate the
SignalTap II Logic Analyzer. The flowchart indicates where Power-Up
and Run-Time Trigger events occur and when captured data from these
events is available for analysis.

Figure 13–25. Power-Up and runtime Trigger Events Flowchart

Compile Design

Start

End

Yes

NoTrigger
Occurred?

No

Yes

Yes

No
Changes
Require

Recompile?

Continue
Debugging?

Program Device

Manually Run
SignalTap II

Logic Analyzer

Analyze Data:
Power-Up or

Run-Time Trigger

No

Yes Data
Downloaded?

Manually Read
Data from Device

Make Changes
to Setup

(If Needed)

Possible Missed
Trigger

(Unless Power-Up
Trigger Enabled)

Manually
Stop Analyzer

13–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The SignalTap II toolbar in the Instance Manager has four options for
running the analyzer:

■ Run Analysis—The SignalTap II Logic Analyzer runs until the
trigger event occurs. When the trigger event occurs, monitoring and
data capture stops once the acquisition buffer is full.

■ AutoRun Analysis—The SignalTap II Logic Analyzer continuously
captures data until the Stop Analysis button is clicked, ignoring all
trigger event conditions.

■ Stop Analysis—SignalTap II analysis stops. The acquired data does
not appear automatically if the trigger event has not occurred.

■ Read Data—Captured data is displayed. This button is useful if you
want to view the acquired data even if the trigger has not occurred.

Running with a Power-Up Trigger

If you have enabled and set up a Power-Up Trigger for an instance of the
SignalTap II Logic Analyzer, the captured data may already be available
for viewing if the trigger event occurred after device configuration. To
download the captured data or to check if the Power-Up Trigger is still
running, click Run Analysis in the Instance Manager. If the Power-Up
Trigger occurred, the logic analyzer immediately stops, and the captured
data is downloaded from the device. The data can now be viewed on the
Data tab of the SignalTap II Editor. If the Power-Up Trigger did not occur,
no captured data is downloaded, and the logic analyzer continues to run.
You can wait for the Power-Up Trigger event to occur, or, to stop the logic
analyzer, click Stop Analysis.

Running with Runtime Triggers

You can arm and run the SignalTap II Logic Analyzer manually after
device configuration to capture data samples based on the Runtime
Trigger. You can do this immediately if there is no Power-Up Trigger
enabled. If a Power-Up Trigger is enabled, you can do this after the
Power-Up Trigger data is downloaded from the device or once the logic
analyzer is stopped because the Power-Up Trigger event did not occur.
Click Run Analysis in the SignalTap II Editor to start monitoring for the
trigger event. You can start multiple SignalTap II instances at the same
time by selecting all of the required instances before you click Run
Analysis on the toolbar.

Unless the logic analyzer is stopped manually, data capture begins when
the trigger event evaluates to TRUE. When this happens, the captured
data is downloaded from the buffer. You can view the data in the Data
tab of the SignalTap II Editor.

Altera Corporation 13–61
October 2007 Preliminary

Run the SignalTap II Logic Analyzer

Performing a Force Trigger

Sometimes when you use an external logic analyzer or oscilloscope, you
want to see the current state of signals without setting up or waiting for a
trigger event to occur. This is referred to as a “force trigger” operation,
because you are forcing the test equipment to capture data without
regard to any set trigger conditions. With the SignalTap II Logic
Analyzer, you can choose to run the analyzer and capture data
immediately or run the analyzer and capture data when you want.

f For more information, refer to the Design Debugging Using In-System
Sources and Probes chapter in volume 3 of the Quartus II Handbook.

To run the analyzer and immediately capture data, disable the trigger
conditions by turning off each Trigger Condition column in the node list.
This operation does not require a recompilation. Click Run Analysis in
the Instance Manager. The SignalTap II Logic Analyzer immediately
triggers, captures, and downloads the data to the Data tab of the
SignalTap II Editor. If the data does not download automatically, click
Read Data in the Instance Manager.

If you want to choose when to capture data manually, it is not required
that you disable the trigger conditions. Click Autorun Analysis to start
the logic analyzer, and click Stop Analysis to capture data. If the data
does not download to the Data tab of the SignalTap II Editor
automatically, click Read Data.

Finally, you can choose to capture data manually after a trigger event has
occurred. This is useful if you still want the trigger event to occur, but you
want to capture data about the signals at some point after the trigger
without capturing the trigger event itself. To do this, set the Buffer
acquisition mode to Circular and Continuous, and click Run Analysis.
When the trigger event occurs, the status in the SignalTap II Health
Monitor is shown as Acquiring post-trigger data, but the logic
analyzer does not stop. When you want to capture and download the
data, click Stop Analysis. If the data does not download automatically,
click Read Data.

f You can also use In-System Sources and Probes in conjunction with the
SignalTap II Logic Analyzer to force trigger conditions. The In-System
Sources and Probes feature allows you to drive and sample values on to
selected nets over the JTAG chain. For more information, refer to the
Design Debugging Using In-System Sources and Probes chapter in volume 3
of the Quartus II Handbook.

13–62 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

SignalTap II Status Messages

Table 13–11 describes the text messages that may appear in the
SignalTap II Health Monitor in the Instance Manager before, during, and
after a data acquisition. Use these messages to know the state of the logic
analyzer or what operation it is performing.

1 In segmented acquisition mode, pre-trigger and post-trigger do
not apply.

Table 13–11. Text Messages in the SignalTap II Health Monitor

Message Message Description

Not running The SignalTap II Logic Analyzer is not running. There is no
connection to a device or the device is not configured.

(Power-Up Trigger) Waiting
for clock (1)

The SignalTap II Logic Analyzer is performing a Runtime or
Power-Up Trigger acquisition and is waiting for the clock signal to
transition.

Acquiring (Power-Up)
pre-trigger data (1)

The trigger condition has not been evaluated yet. A full buffer of data
is collected if the circular buffer acquisition mode is selected.

Trigger In conditions met Trigger In condition has occurred. The SignalTap II Logic Analyzer is
waiting for the condition of the first trigger condition to occur. This
can appear if Trigger In is specified.

Waiting for (Power-up)
trigger (1)

The SignalTap II Logic Analyzer is now waiting for the trigger event
to occur.

Trigger level <x> met The condition of trigger condition x has occurred. The SignalTap II
Logic Analyzer is waiting for the condition specified in condition x + 1
to occur.

Acquiring (power-up)
post-trigger data (1)

The whole trigger event has occurred. The SignalTap II Logic
Analyzer is acquiring the post-trigger data. The amount of
post-trigger data collected is user-defined between 12%, 50%, and
88% when the circular buffer acquisition mode is selected.

Offload acquired (Power-Up)
data (1)

Data is being transmitted to the Quartus II software through the
JTAG chain.

Ready to acquire The SignalTap II Logic Analyzer is waiting for the user to arm the
analyzer.

Note to Table 13–11:
(1) This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger,

the text in parentheses is added.

Altera Corporation 13–63
October 2007 Preliminary

View, Analyze, and Use Captured Data

View, Analyze,
and Use
Captured Data

Once a trigger event has occurred or you capture data manually, you can
use the SignalTap II interface to examine the data, and use your findings
to help debug your design. The SignalTap II Logic Analyzer provides a
number of features that makes it easy to do this.

Viewing Captured Data

You can view captured SignalTap II data in the Data tab of the
SignalTap II file (Figure 13–26). Each row of the Data tab displays the
captured data for one signal or bus. Buses can be expanded to show the
data for each individual signal on the bus. Click on the data waveforms
to zoom in on the captured data samples, and right-click to zoom out.

Figure 13–26. Captured SignalTap II Data

When you are viewing captured data, it is often useful to know the time
interval between two events. Time bars enable you to see the number of
clock cycles between two samples of captured data in your system. There
are two types of time bars:

■ Master Time Bar—The master time bar’s label displays the absolute
time of its location in bold. The master time bar is a thick black line
in the Data tab. The captured data has only one master time bar.

■ Reference Time Bar—The reference time bar’s label displays the
time relative to the master time bar. You can create an unlimited
number of reference time bars.

To help you find a transition of signals relative to the master time bar
location, use either the Next Transition or the Previous Transition
button. This aligns the master time bar with the next or previous

13–64 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

transition of a selected signal or group of selected signals. This feature is
very useful when the sample depth is very large and the rate at which
signals toggle is very low.

Creating Mnemonics for Bit Patterns

The mnemonic table feature allows you to assign a meaningful name to a
set of bit patterns, such as a bus. To create a mnemonic table, right-click
in the Setup or Data tab of a SignalTap II file, and click Mnemonic Table
Setup. You create a mnemonic table by entering sets of bit patterns and
specifying a label to represent each pattern. Once you have created a
mnemonic table, you assign it to a group of signals. To assign a mnemonic
table, right-click on the group, click Bus Display Format, and select the
desired mnemonic table.

The labels you create in a table are used in different ways on the Setup
and Data tabs. On the Setup tab, you can create basic triggers with
meaningful names by right-clicking an entry in any Trigger Conditions
column and selecting a label from the table you assigned to the signal
group. On the Data tab, if any captured data matches a bit pattern
contained in an assigned mnemonic table, the signal group data is
replaced with the appropriate label, making it easy to see when expected
data patterns occur.

Automatic Mnemonics with a Plug-In

When you use a plug-in to add signals to a SignalTap II file, mnemonic
tables for the added signals are automatically created and assigned to the
signals defined in the plug-in. If you ever need to manually enable these
mnemonic tables, right-click on the name of the signal or signal group.
On the Bus Display Format submenu, click the name of the mnemonic
table that matches the plug-in.

As an example, the Nios II plug-in makes it easy to monitor your design’s
signal activity as code is executed. If you have set up the logic analyzer to
trigger on a function name in your Nios II code based on data from an
ELF file, you can see the function name in the Instance Address signal
group at the trigger sample, along with the corresponding disassembled
code in the Disassembly signal group, as shown in Figure 13–27 on
page 13–65. Captured data samples around the trigger are referenced as
offset addresses from the trigger function name.

Altera Corporation 13–65
October 2007 Preliminary

View, Analyze, and Use Captured Data

Figure 13–27. Data Tab when the Nios II Plug-In is Used

Locating a Node in the Design

When you find the source of a bug in your design using the SignalTap II
Logic Analyzer, you can use the node locate feature to locate that signal
in many of the tools found in the Quartus II software, as well as in your
design files. This lets you find the source of the problem quickly so you
can modify your design to correct the flaw. To locate a signal from the
SignalTap II Logic Analyzer in one of the Quartus II software tools or
your design files, right-click on the signal in the SignalTap II file, and click
Locate in <tool name>. You can locate a signal from the node list in any of
the following locations:

■ Assignment Editor
■ Pin Planner
■ Timing Closure Floorplan
■ Chip Planner
■ Resource Property Editor
■ Technology Map Viewer
■ RTL Viewer
■ Design File

f For more information about using these tools, refer to the appropriate
chapters in the Quartus II Handbook.

13–66 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Saving Captured Data

The data log shows the history of captured data and the triggers used to
capture the data. The analyzer acquires data, stores it in a log, and
displays it as waveforms. When the logic analyzer is in auto-run mode
and a trigger event occurs more than once, captured data for each time
the trigger occurred is stored as a separate entry in the data log. This
makes it easy to go back and review the captured data for each trigger
event. The default name for a log is based on the time when the data was
acquired. Altera recommends that you rename the data log with a more
meaningful name.

The logs are organized in a hierarchical manner; similar logs of captured
data are grouped together in trigger sets. If the Data Log pane is closed,
on the View menu, select Data Log to reopen it. To enable data logging,
turn on Enable data log in the Data Log (Figure 13–11). To recall a data
log for a given trigger set and make it active, double-click the name of the
data log in the list.

The Data Log feature is useful for organizing different sets of trigger
conditions and different sets of signal configurations. Refer to “Managing
Multiple SignalTap II Files and Configurations” on page 13–28.

Converting Captured Data to Other File Formats

You can export captured data in the following file formats, some of which
can be used with other EDA simulation tools:

■ Comma Separated Values File (.csv)
■ Table File (.tbl)
■ Value Change Dump File (.vcd)
■ Vector Waveform File (.vwf)
■ Graphics format files (.jpg, .bmp)

To export the SignalTap II Logic Analyzer’s captured data, on the File
menu, click Export and specify the File Name, the Export Format, and the
Clock Period.

Altera Corporation 13–67
October 2007 Preliminary

Other Features

Creating a SignalTap II List File

Captured data can also be viewed in a SignalTap II list file. A SignalTap II
list file is a text file that lists all the data captured by the logic analyzer for
a trigger event. Each row of the list file corresponds to one captured
sample in the buffer. Columns correspond to the value of each of the
captured signals or signal groups for that sample. If a mnemonic table
was created for the captured data, the numerical values in the list are
replaced with a matching entry from the table. This is especially useful
with the use of a plug-in that includes instruction code disassembly. You
can immediately see the order in which the instruction code was executed
during the same time period of the trigger event. To create a SignalTap II
list file, on the File menu, select Create/Update, and click Create
SignalTap II List File.

Other Features The SignalTap II Logic Analyzer has a number of other features that do
not necessarily belong to a particular task in the task flow.

Using the SignalTap II MATLAB MEX Function to Capture Data

If you use MATLAB for DSP design, you can call the MATLAB MEX
function alt_signaltap_run, built into the Quartus II software, to
acquire data from the SignalTap II Logic Analyzer directly into a matrix
in the MATLAB environment. If you use the MEX function repeatedly in
a loop, you can perform as many acquisitions as you can when using
SignalTap II in the Quartus II software environment in the same amount
of time.

1 The SignalTap II MATLAB MEX function is available only in the
Windows version of the Quartus II software. It is compatible
with MATLAB Release 14 Original Release Version 7 and later.

To set up the Quartus II software and the MATLAB environment to
perform SignalTap II acquisitions, perform the following steps:

1. In the Quartus II software, create a SignalTap II file.

2. In the node list in the Data tab of the SignalTap II Editor, organize
the signals and groups of signals into the order in which you want
them to appear in the MATLAB matrix. Each column of the
imported matrix represents a single SignalTap II acquisition sample,
while each row represents a signal or group of signals in the order
they are organized in the Data tab.

13–68 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 Signal groups acquired from the SignalTap II Logic
Analyzer and transferred into the MATLAB environment
with the MEX function are limited to a width of 32 signals.
If you want to use the MEX function with a bus or signal
group that contains more than 32 signals, split the group up
into smaller groups that do not exceed the 32 signal limit.

3. Save the SignalTap II file and compile your design. Program your
device and run the SignalTap II Logic Analyzer to make sure your
trigger conditions and signal acquisition are working correctly.

4. In the MATLAB environment, add the Quartus II binary directory
to your path with the following command:

addpath <Quartus install directory>\win r
You can view the help file for the MEX function by entering
alt_signaltap_run in MATLAB without any operators.

You use the MEX function in the MATLAB environment to open the
JTAG connection to the device and run the SignalTap II Logic Analyzer
to acquire data. When you finish acquiring data, you must close the
connection.

To open the JTAG connection and begin acquiring captured data directly
into a MATLAB matrix called stp, use the following command:

stp = alt_signaltap_run('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[,/
'<signalset name>'[,'<trigger name>']]]]); r

When capturing data, <stp filename> is the name of the SignalTap II file
you want to use. This is required for using the MEX function. The other
MEX function options are defined in Table 13–12.

Table 13–12. SignalTap II MATLAB MEX Function Options (Part 1 of 2)

Option Usage Description

signed
unsigned

'signed'
'unsigned'

The signed option turns signal group data into
32-bit two’s complement signed integers. The
most significant bit (MSB) of the group as
defined in the SignalTap II Data tab is the sign
bit. The unsigned option keeps the data as an
unsigned integer. The default is signed.

Altera Corporation 13–69
October 2007 Preliminary

Other Features

You can enable or disable verbose mode to see the status of the logic
analyzer while it is acquiring data. To enable or disable verbose mode,
use the following commands:

alt_signaltap_run('VERBOSE_ON'); r
alt_signaltap_run('VERBOSE_OFF'); r
When you finish acquiring data, you must close the JTAG connection.
Use the following command to close the connection:

alt_signaltap_run('END_CONNECTION'); r
f For more information about the use of MEX functions in MATLAB, refer

to the MATLAB Help.

Using SignalTap II in a Lab Environment

You can install a stand-alone version of the SignalTap II Logic Analyzer.
This version is particularly useful in a lab environment where you do not
have a workstation that meets the requirements for a complete Quartus II
installation, or if you do not have a license for a full installation of the
Quartus II software. The stand-alone version of the SignalTap II Logic
Analyzer is included with the Quartus II stand-alone Programmer and is
available from the Downloads page of the Altera website,
www.altera.com.

Remote Debugging Using the SignalTap II Logic Analyzer

You can use the SignalTap II Logic Analyzer to debug a design that is
running on a device attached to a PC in a remote location.

<instance name> 'auto_signaltap_0' Specify a SignalTap II instance if more than
one instance is defined. The default is the first
instance in the SignalTap II file,
auto_signaltap_0.

<signal set name>
<trigger name>

'my_signalset'
'my_trigger'

Specify the signal set and trigger from the
SignalTap II data log if multiple configurations
are present in the SignalTap II file. The default
is the active signal set and trigger in the file.

Table 13–12. SignalTap II MATLAB MEX Function Options (Part 2 of 2)

Option Usage Description

13–70 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

To perform a remote debugging session, you must have the following
setup:

■ The Quartus II software installed on the local PC
■ Stand-alone SignalTap II Logic Analyzer or the full version of the

Quartus II software installed on the remote PC
■ Programming hardware connected to the device on the PCB at the

remote location
■ TCP/IP protocol connection

Equipment Setup

On the PC in the remote location, install the stand-alone version of the
SignalTap II Logic Analyzer or the full version of the Quartus II software.
This remote computer must have Altera programming hardware
connected, such as the EthernetBlaster or USB-Blaster.

On the local PC, install the full version of the Quartus II software. This
local PC must be connected to the remote PC across a LAN with the
TCP/IP protocol.

Software Setup on the Remote PC

To setup the software on the remote PC, perform the following steps:

1. In the Quartus II programmer, click Hardware Setup.

2. Click the JTAG Settings tab (Figure 13–28 on page 13–70).

Figure 13–28. Configure JTAG on Remote PC

Altera Corporation 13–71
October 2007 Preliminary

Other Features

3. Click Configure local JTAG Server.

4. In the Configure Local JTAG Server dialog box (Figure 13–29), turn
on Enable remote clients to connect to the local JTAG server, and
type your password in the password box. Type your password
again in the Confirm Password box and click OK.

Figure 13–29. Configure Local JTAG Server on Remote

Software Setup on the Local PC

To set up your software on your local PC, perform the following steps:

1. Launch the Quartus II programmer.

2. Click Hardware Setup.

3. On the JTAG settings tab, click Add server.

4. In the Add Server dialog box (Figure 13–30), type the network name
or IP address of the server you want to use and the password for the
JTAG server that you created on the remote PC.

Figure 13–30. Add Server Dialog Box

5. Click OK.

13–72 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

SignalTap II Setup on the Local PC

To connect to the hardware on the remote PC, perform the following
steps:

1. Click the Hardware Settings tab and select the hardware on the
remote PC (Figure 13–31).

Figure 13–31. Selecting Hardware on Remote PC

2. Click Close.

You can now control the logic analyzer on the device attached to the
remote PC as if it was connected directly to the local PC.

SignalTap II
Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r
f The Quartus II Scripting Reference Manual includes the same information

in PDF format.

Altera Corporation 13–73
October 2007 Preliminary

SignalTap II Scripting Support

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

f For more information about command-line scripting, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

SignalTap II Command Line Options

To compile your design with the SignalTap II Logic Analyzer using the
command prompt, you must use the quartus_stp command.
Table 13–13 shows the options that help you better understand how to
use the quartus_stp executable.

Table 13–13. SignalTap II Command-Line Options (Part 1 of 2)

Option Usage Description

stp_file quartus_stp
--stp_file <stp_filename>

Assigns the specified SignalTap II
file to the
USE_SIGNALTAP_FILE in the
Quartus II Settings File (QSF).

enable quartus_stp --enable Creates assignments to the
specified SignalTap II file in the
QSF, and changes
ENABLE_SIGNALTAP to ON. The
SignalTap II Logic Analyzer is
included in your design the next
time the project is compiled. If no
SignalTap II file is specified in the
QSF, the --stp_file option
must be used. If the --enable
option is omitted, the current value
of ENABLE_SIGNALTAP in the
QSF is used.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

13–74 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example 13–2 illustrates how to compile a design with the SignalTap II
Logic Analyzer at the command line:

Example 13–2.
quartus_stp filtref --stp_file stp1.stp --enable r
quartus_map filtref --source=filtref.bdf --family=CYCLONE r
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns r
quartus_tan filtref r
quartus_asm filtref r

The quartus_stp --stp_file stp1.stp --enable command
creates the QSF variable and instructs the Quartus II software to compile
the stp1.stp file with your design.

disable quartus_stp --disable Removes the SignalTap II file
reference from the QSF and
changes ENABLE_SIGNALTAP to
OFF. The SignalTap II Logic
Analyzer is removed from the
design database the next time you
compile your design. If the
--disable option is omitted, the
current value of
ENABLE_SIGNALTAP in the QSF
is used.

create_signaltap_hdl_file quartus_stp
--
create_signaltap_hdl_file

Creates a SignalTap II file
representing the SignalTap II
instance in the design generated by
the SignalTap II Logic Analyzer
megafunction created with the
MegaWizard Plug-in Manager. The
file is based on the last compilation.
You must use the --stp_file
option to properly create a
SignalTap II file. Analogous to
Create SignalTap II File from
Design Instance(s) command in
the Quartus II software.

Table 13–13. SignalTap II Command-Line Options (Part 2 of 2)

Option Usage Description

Altera Corporation 13–75
October 2007 Preliminary

SignalTap II Scripting Support

Example 13–3 shows how to create a new SignalTap II file after building
the SignalTap II Logic Analyzer instance with the MegaWizard Plug-In
Manager:

Example 13–3.
quartus_stp filtref --create_signaltap_hdl_file --stp_file stp1.stp r

f For information about the other command line executables and options
refer to the Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook.

SignalTap II Tcl Commands

The quartus_stp executable supports a Tcl interface that allows you to
capture data without running the Quartus II GUI. You cannot execute
SignalTap II Tcl commands from within the Tcl console in the GUI. They
must be run from the command line with the quartus_stp executable. To
run a Tcl file that has SignalTap II Tcl commands, use the following
command:

quartus_stp -t <Tcl file> r
Table 13–14 shows the Tcl commands that you can use with SignalTap II.

Table 13–14. SignalTap II Tcl Commands (Part 1 of 2)

Command Argument Description

open_session -name <stp_filename> Opens the specified SignalTap II file. All
captured data is stored in this file.

run -instance <instance_name>
-signal_set <signal_set>

(optional)
-trigger <trigger_name>

(optional)
-data_log <data_log_name>

(optional)
-timeout <seconds>

(optional)

Starts the analyzer. This command must be
followed by all the required arguments to
properly start the analyzer. You can optionally
specify the name of the data log you want to
create. If the Trigger condition is not met, you
can specify a timeout value to stop the
analyzer.

13–76 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more information about SignalTap II Tcl commands, refer to the
Quartus II Help.

Example 13–4 is an excerpt from a script that is used to continuously
capture data. Once the trigger condition is met, the data is captured and
stored in the data log.

Example 13–4.
#opens signaltap session
open_session -name stp1.stp
#start acquisition of instance auto_signaltap_0 and
#auto_signaltap_1 at the same time
#calling run_multiple_end will start all instances
#run after run_multiple_start call
run_multiple_start
run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger /
trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger /
trigger_1 -data_log log_1 -timeout 5
run_multiple_end
#close signaltap session
close_session

run_multiple_start None Defines the start of a set of run commands.
Use this command when multiple instances of
data acquisition are started simultaneously.
Add this command before the set of run
commands that specify data acquisition. You
must use this command with the
run_multiple_end command. If the
run_multiple_end command is not
included, the run commands will not execute.

run_multiple_end None Defines the end of a set of run commands.
Use this command when multiple instances of
data acquisition are started simultaneously.
Add this command after the set of
run_commands.

stop None Stops data acquisition.

close_session None Closes the currently open SignalTap II file. You
cannot run the analyzer after the SignalTap II
file is closed.

Table 13–14. SignalTap II Tcl Commands (Part 2 of 2)

Command Argument Description

Altera Corporation 13–77
October 2007 Preliminary

Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems

Once the script is completed, you should open the SignalTap II file that
you used to capture data to examine the contents of the Data log.

Design Example:
Using
SignalTap II
Logic Analyzers
in SOPC Builder
Systems

Altera Application Note, AN 323: Using SignalTap II Embedded Logic
Analyzers in SOPC Builder Systems describes how to use the SignalTap II
Logic Analyzer to monitor signals located inside a system module
generated by SOPC Builder. The system in this example contains many
components, including a Nios processor, a direct memory access (DMA)
controller, on-chip memory, and an interface to external SDRAM
memory. In this example, the Nios processor executes a simple C
program from on-chip memory and waits for a button push. After a
button is pushed, the processor initiates a DMA transfer, which you
analyze using the SignalTap II Logic Analyzer.

f For more information about this example and using the SignalTap II
Logic Analyzer with SOPC builder systems refer to AN 323: Using
SignalTap II Embedded Logic Analyzers in SOPC Builder Systems and
AN 446: Debugging NIOS II Systems with the SignalTap II Logic Analyzer.

Custom
Triggering Flow
Application
Examples

The custom triggering flow in the SignalTap II Logic Analyzer is most
useful for organizing a number of triggering conditions and for precise
control over the acquisition buffer. This section provides two application
examples for defining a custom triggering flow within the SignalTap II
Logic Analyzer. Both examples can be easily copied and pasted directly
into the state machine description box by using the state display mode
All states in one window.

1 For additional triggering flow design examples, refer to the
Quartus II On-Chip Debugging Support Resources page for
on-chip debugging.

Design Example 1: Specifying a Custom Trigger Position

Actions to the acquisition buffer can accept an optional post-count
argument. This post-count argument enables you to define a custom
triggering position for each segment in the acquisition buffer.
Example 13–5 shows an example that applies a trigger position to all
segments in the acquisition buffer. The example describes a triggering
flow for an acquisition buffer split into four segments. If each acquisition
segment is 64 samples in depth, the trigger position for each buffer will
be at sample #34. The acquisition stops after all four segments are filled
once.

http://www.altera.com/support/software/quartus2/debugging/sof-qts-debugging.html

13–78 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example 13–5.
if (c1 == 3 && condition1)

trigger 30;
else if (condition1)
begin

segment_trigger 30;
increment c1;

end

Each segment acts as a circular buffer, that continuously updates the
memory contents with the signal values. The last acquisition before
stopping the buffer is the displayed on the data tab as the last sample
number in the affected segment. The trigger position in the affected
segment is then defined by N – post count fill, where N is the number of
samples per segment. Figure 13–32 illustrates the triggering position.

Figure 13–32. Specifying a Custom Trigger Position

Design Example 2: Trigger When triggercond1 Occurs Ten Times
between triggercond2 and triggercond3

The custom trigger flow description is often useful to count a sequence of
events before triggering the acquisition buffer. Example 13–6 on
page 13–79 shows such a sample flow. This example uses three basic
triggering conditions configured in the SignalTap II setup tab.

0

1

1

11
1

1

1

1
1

1 1
1

1

1

0
00

0

0

0

0 0

0

Trigger

Sample #1

Post Count

Last Sample

Altera Corporation 13–79
October 2007 Preliminary

Custom Triggering Flow Application Examples

This example triggers the acquisition buffer when condition1 occurs
after condition3 and occurs ten times prior to condition3. If
condition3 occurs prior to ten repetitions of condition1, the state
machine transitions to a permanent wait state.

Example 13–6.
state ST1:

if (condition2)
begin
 reset c1;
 goto ST2;
end

State ST2 :
if (condition1)

increment c1;

else if (condition3 && c1 < 10)
goto ST3;

else if (condition3 && c1 >= 10)
trigger;

ST3:
goto ST3;

13–80 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Conclusion As the FPGA industry continues to make technological advancements,
outdated methodologies need to be replaced with new technologies that
maximize productivity. The SignalTap II Logic Analyzer gives you the
same benefits as a traditional logic analyzer, without the many
shortcomings of a piece of dedicated test equipment. This version of the
SignalTap II Logic Analyzer provides many new and innovative features
that allow you to capture and analyze internal signals in your FPGA,
allowing you to find the source of a design flaw in the shortest amount of
time.

Referenced
Documents

This chapter references the following documents:

■ AN 323: Using SignalTap II Embedded Logic Analyzers in SOPC Builder
System

■ Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ I/O Management chapter in volume 2 of the Quartus II Handbook
■ In-System Debugging Using External Logic Analyzers chapter in

volume 3 of the Quartus II Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II

Handbook
■ Quartus II Settings File Reference Manual
■ Quick Design Debugging Using SignalProbe chapter in volume 3 of the

Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Altera Corporation 13–81
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 13–15 shows the revision history for this chapter.

Table 13–15. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v.7.2.0

Updated for the Quartus II software version 7.2:
● Added new section: “Trigger Condition Flow Control” on

page 13–34
● Documented the new feature for State-machine-based

triggering
● Documented changes to “Using Incremental Compilation with

the SignalTap II Logic Analyzer” on page 13–52
● Added additional information about node tappability
● Added section “Performance and Resource Considerations”

on page 13–55, with information about performance and
resource utilization considerations for the SignalTap II Logic
Analyzer

Updated for the
Quartus II software
version 7.2

May 2007
v7.1.0

Added “Referenced Documents” on page 13–71, minor updates
to address ADoQS issues.

—

March 2007
v7.0.0

Added Cyclone III device support listed on page 13–4. —

November 2006
v6.1.0

Updated for the Quartus II software version 6.1:
● Updated Figure 13-4, 13-11,13-16, 13-17, 13-18. Added new

Figure 13-23.
● Miscellaneous changes throughout.
● Removed information about incremental routing (feature

removed).
● Added more detail about the use of incremental compilation.
● Added more detail about the use of the Nios II plug-in.
● Added more information about SignalTap II file/SOF

compatibility.
● Updated method for triggering one logic analyzer with another

using trigger in/out.

Updated for the
Quartus II software
version 6.1.

May 2006
v6.0.0 Updated for the Quartus II software version 6.0.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

● Updated information.
● Updated figures.
● New functionality for Quartus II software 5.0.

—

December 2004
v1.0

Initial release. —

13–82 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 14–1
October 2007 Preliminary

14. In-System Debugging
Using External Logic

Analyzers

Introduction The phenomenal growth in design size and complexity continues to make
the process of design verification a critical bottleneck for today’s FPGA
systems. Limited access to internal signals, advanced FPGA packages,
and printed circuit board (PCB) electrical noise are all contributing factors
in making design debugging and verification the most difficult process of
the design cycle. You can easily spend more than 50% of your design
cycle time debugging and verifying your design. To help you with the
process of design debugging and verification, Altera® provides a solution
that allows you to examine the behavior of internal signals using an
external logic analyzer and using a minimal number of FPGA I/O pins,
while your design is running at full speed on your FPGA.

1 This chapter's use of ‘logic analyzer’ includes both logic
analyzers and oscilloscopes equipped with digital channels,
commonly referred to as mixed signal analyzers or MSOs.

The Logic Analyzer Interface is an application within the Quartus II
software used to connect a large set of internal device signals to a small
number of output pins. You can connect these output pins to an external
logic analyzer for debugging purposes. The Logic Analyzer Interface
enables you to connect to and transmit internal signals buried within
your FPGA to an external logic analyzer for analysis. The Quartus II
Logic Analyzer Interface allows you to debug a large set of internal
signals using a small number of output pins. In the Quartus II Logic
Analyzer Interface, the internal signals are grouped together, distributed
to a user-configurable multiplexer, and then output to available I/O pins
on your FPGA. Instead of having a one-to-one relationship between
internal signals to output pins, the Quartus II Logic Analyzer Interface
enables you map many internal signals to a smaller number of output
pins. The exact number of internal signals that you can map to an output
pin varies based on the multiplexer settings in the Quartus II Logic
Analyzer Interface.

Optionally, you can use the Logic Analyzer Interface with the Quartus II
Incremental Compilation.

QII53016-7.2.0

14–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Choosing a Logic Analyzer

During the debugging phase of your project, you have the choice of
using:

■ SignalTap® II, the embedded logic analyzer.
■ An external logic analyzer, which connects to internal signals in your

FPGA, by using the Quartus II Logic Analyzer Interface.

Table 14–1 describes the advantages to both debugging technologies.

Table 14–1. Comparing the SignalTap II Embedded Logic Analyzer with the Logic Analyzer Interface

Feature Logic Analyzer Interface SignalTap II Embedded
Logic Analyzer

Sample Depth—You will have access to a wider sample
depth with an external logic analyzer. In SignalTap II,
the maximum sample depth is set to 128 Kb, which is a
device constraint. However, with an external logic
analyzer, there are no device constraints, providing you
a wider sample depth.

v —

Debugging Timing Issues—Using an external logic
analyzer provides you with access to a “timing” mode,
which enables you to debug combined streams of data.

v —

Performance—You frequently have limited routing
resources available to place-and-route when you use
SignalTap II with your design. An external logic analyzer
adds minimal logic, which removes resource limits on
place-and-route.

v —

Triggering Capability—Although advanced triggering
is available in SignalTap II, many additional triggering
options are available on an external logic analyzer.

v —

Use of Output Pins—Using the SignalTap II Logic
Analyzer, no additional output pins are required. Using
an external logic analyzer requires the use of additional
output pins.

— v

Acquisition Speed—With the SignalTap II Logic
Analyzer, you can acquire data at speeds of over
200 MHz. You can achieve the same acquisition speeds
with an external logic analyzer, however you have to
consider signal integrity issues.

— v

Altera Corporation 14–3
October 2007 Preliminary

Introduction

Required Components

You must have the following components to perform analysis using the
Quartus II Logic Analyzer Interface:

■ The Quartus II software starting with version 5.1 and later
■ The device under test
■ An external logic analyzer
■ An Altera communications cable
■ A cable to connect the FPGA to the external logic analyzer

Figure 14–1 shows the Logic Analyzer Interface and the hardware setup.

Figure 14–1. Logic Analyzer Interface and Hardware Setup

Notes to Figure 14–1:
(1) Configuration and control of the LAI using computer loaded with Quartus II via the JTAG port.
(2) Configuration and control of the LAI using a third-party vendor logic analyzer via the JTAG port. Support varies

by vendor.

FPGA Device Support

You can use the Quartus II Logic Analyzer Interface with the following
FPGA device families:

■ Arria™ GX
■ Stratix® III
■ Stratix II
■ Stratix II GX
■ Stratix
■ Stratix GX

JTAG

(1)

(2)

FPGA

Connected to
Unused FPGA Pins

LAI

Altera Programming
Hardware Quartus II Software

Logic Analyzer
Board

14–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Cyclone® III
■ Cyclone II
■ Cyclone
■ MAX® II
■ APEX™ 20K
■ APEX II

Debugging Your
Design Using
the Logic
Analyzer
Interface

Figure 14–2 shows the steps you must follow to debug your design with
the Quartus II Logic Analyzer Interface.

Figure 14–2. Logic Analyzer Interface Process Flow

Creating a Logic Analyzer Interface File

The Logic Analyzer Interface File (.lai), defines the interface that builds a
connection between internal FPGA signals and your external logic
analyzer. An example of a Logic Analyzer Interface File is shown in
Figure 14–3.

Enable Logic Analyzer
Interface File

Configure Logic Analyzer
Interface File

Create New Logic
Analyzer Interface File

Compile Project

Program Device

Control Output Pin

Debug Project

Start the Quartus II Software

Altera Corporation 14–5
October 2007 Preliminary

Debugging Your Design Using the Logic Analyzer Interface

Figure 14–3. Example of a Logic Analyzer Interface Editor

To define the Quartus II Logic Analyzer Interface, you can create a new
Logic Analyzer Interface File or use an existing Logic Analyzer Interface
File.

Creating a New Logic Analyzer Interface File

To create a new Logic Analyzer Interface File, perform the following
steps:

1. In the Quartus II software, on the File menu, click New. The New
dialog box opens.

2. Click the Other Files tab and select Logic Analyzer Interface File
(Figure 14–4).

14–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 14–4. Creating a New Logic Analyzer File

3. Click OK. The Logic Analyzer Interface editor opens. The file name
is assigned by the Quartus II software (refer to Figure 14–3 on
page 14–5). When you save the file, you will be prompted for a file
name. Refer to “Saving the External Analyzer Interface File” on
page 14–7.

Opening an Existing External Analyzer Interface File

To open an existing Logic Analyzer Interface File, on the Tools menu,
click Logic Analyzer Interface Editor. If no Logic Analyzer Interface File
is enabled for the current project, the editor automatically creates a new
Logic Analyzer Interface File. If a Logic Analyzer Interface File is
currently enabled for the project, that file opens when you select the Logic
Analyzer Interface Editor.

Another way to open an existing Logic Analyzer Interface File is on the
File Menu, click Open, and select the Logic Analyzer Interface File you
want to open.

Altera Corporation 14–7
October 2007 Preliminary

Debugging Your Design Using the Logic Analyzer Interface

Saving the External Analyzer Interface File

To save your Logic Analyzer Interface File, perform the following steps:

1. In the Quartus II software, on the File menu, click Save As, The
Save As dialog box opens (Figure 14–5).

2. In the File name box, enter the desired file name. Click Save
(Figure 14–5).

Figure 14–5. Saving the Logic Analyzer Interface File

Configuring the Logic Analyzer Interface File Core Parameters

After you have created your Logic Analyzer Interface File, you must
configure the Logic Analyzer Interface File core parameters.

To configure the Logic Analyzer Interface File core parameters, select
Core Parameters from the Setup View list. Refer to Figure 14–6.

14–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 14–6. Logic Analyzer Interface File Core Parameters

Table 14–2 lists the Logic Analyzer Interface File core parameters.

Table 14–2. Logic Analyzer Interface File Core Parameters (Part 1 of 2)

Parameter Description

Pin Count The Pin Count parameter signifies the number of pins you want dedicated to your Logic
Analyzer Interface. The pins need to be connected to a debug header on your board. Within
the FPGA, each pin is mapped to a user-configurable number of internal signals.

The Pin Count parameter can range from 1 to 256 pins.

Bank Count The Bank Count parameter signifies the number of internal signals that you want to map to
each pin. For example, a Bank Count of 8 implies that you will connect eight internal signals
to each pin.

The Bank Count parameter can range from 1 to 256 banks.

Output/
Capture Mode

The Output/Capture Mode parameter signifies the type of acquisition you perform. There are
two options that you can select:

Combinational/Timing—This acquisition uses your external logic analyzer’s internal clock to
determine when to sample data. Because Combinational/Timing acquisition samples data
asynchronously to your FPGA, you need to properly determine the sample frequency you
should use to debug and verify your system. This mode is effective if you want to measure
timing information such as channel-to-channel skew. For more information on the sampling
frequency, and what speeds it can run at refer to the data sheet for your external logic
analyzer.

Registered/State—This acquisition uses a signal from your system under test to determine
when to sample. Because Registered/State acquisition samples data synchronously with your
FPGA, it provides you with a functional view of your FPGA while it is running. This mode is
effective when you want to verify the functionality of your design.

Altera Corporation 14–9
October 2007 Preliminary

Debugging Your Design Using the Logic Analyzer Interface

Mapping the Logic Analyzer Interface File Pins to Available I/O
Pins

To configure the Logic Analyzer Interface File I/O pins parameters, select
Pins from the Setup View list (Figure 14–7).

Figure 14–7. Logic Analyzer Interface File Pins Parameters

To assign pin locations for the Logic Analyzer Interface, double-click the
Location column next to the reserved pins in the Names column. This
opens the Pin Planner.

For information on how to use the Pin Planner, refer to the Pin Planner
section in the I/O Management chapter in volume 2 of the Quartus II
Handbook.

Mapping Internal Signals to the Logic Analyzer Interface Banks

After you have specified the number of banks to use in the Core
Parameters settings page, you must assign internal signals for each bank
in the Logic Analyzer Interface. Click the Setup View arrow and select
Bank n or ALL Banks (Figure 14–8).

Clock The clock parameter is available only when Output/Capture Mode is set to Registered State.
You must specify the sample clock in the Core Parameters view. The sample clock can be
any signal in your design. However, for best results, Altera recommends that you use a clock
with an operating frequency fast enough to sample the data you would like to acquire.

Power-Up State The Power-Up State parameter specifies the power-up state of the pins you have designated
for use with the Logic Analyzer Interface. You have the option of selecting tri-stated for all
pins, or selecting a particular bank that you have enabled.

Table 14–2. Logic Analyzer Interface File Core Parameters (Part 2 of 2)

Parameter Description

14–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 14–8. Logic Analyzer Interface Bank Parameters

To view all of your bank connections, click Setup View and select All
Banks (Figure 14–9).

Figure 14–9. Logic Analyzer Interface All Bank Parameters

Using the Node Finder

Before making bank assignments, on the View menu, point to Utility
Windows, and click Node Finder. Find the signals that you want to
acquire, then drag and drop the signals from the Node Finder dialog box

Altera Corporation 14–11
October 2007 Preliminary

Debugging Your Design Using the Logic Analyzer Interface

into the bank Setup View. When adding signals, use SignalTap II:
pre-synthesis for non-incrementally routed instances and SignalTap II:
post-fitting for incrementally routed instances.

As you continue to make assignments in the bank Setup View, the
schematic of your Logic Analyzer Interface in the Logical View of your
Logic Analyzer Interface File begins to reflect your assignments
(Figure 14–10).

Figure 14–10. A Logical View of the Logic Analyzer Interface Schematic

Continue making assignments for each bank in the Setup View until you
have added all of the internal signals for which you wish to acquire data.

1 You can right-click to switch between the Logic Analyzer
Interface schematic and the Logic Analyzer Interface Setup
view.

Enabling the Logic Analyzer Interface Before Compiling Your
Quartus II Project

Compile your project after you have completed the following steps:

■ Configure your Logic Analyzer Interface parameters
■ Map the Logic Analyzer Interface pins to available I/O pins
■ Map the internal signals to the Logic Analyzer Interface banks

14–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Compiling Your Quartus II Project

Before compilation, you must enable the Logic Analyzer Interface.

1. On the Assignments menu, click Settings. The Settings dialog box
opens. Under Category, click Logic Analyzer Interface. The Logic
Analyzer Interface displays. Turn on Enable Logic Analyzer
Interface.

2. Click Logic Analyzer Interface file name and specify the full path
name to your Logic Analyzer Interface File (Figure 14–11).

Figure 14–11. Settings Dialog Box—Logic Analyzer Interface Settings

After you have specified the name of your Logic Analyzer Interface File,
you must compile your project. To compile your project, on the
Processing menu, click Start Compilation.

Altera Corporation 14–13
October 2007 Preliminary

Debugging Your Design Using the Logic Analyzer Interface

To ensure the Logic Analyzer Interface is properly compiled with your
project, expand the entity hierarchy in the Project Navigator. (To display
the Project Navigator, on the View menu, point to Utility Windows, and
click Project Navigator.) If the Logic Analyzer Interface compiled with
your design, the sld_hub and sld_multitap entities are shown in the
project navigator.

Figure 14–12. Project Navigator

Programming Your FPGA Using the Logic Analyzer Interface

After compilation completes, you must configure your FPGA before
using the Logic Analyzer Interface. To configure a device for use with the
Logic Analyzer Interface, follow these steps:

1. Open the Logic Analyzer Interface File Editor (Figure 14–13).

2. Under JTAG Chain Configuration, click Hardware and select your
hardware communications device. You may have to click Settings
to configure your hardware.

3. Click Device and select the FPGA device to which you want to
download the design (it may be automatically detected). You may
have to click Scan Chain to configure your device.

4. Click File and select the SRAM Object File (.sof) that includes the
Logic Analyzer Interface File (it may be automatically detected).

5. If desired, turn on Incremental Compilation.

6. Save the Logic Analyzer Interface File.

7. Click the Program Device icon to program the device.

14–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 14–13. The JTAG Section of the Logic Analyzer Interface File

Using the Logic Analyzer Interface with Multiple Devices

You can use the Logic Analyzer Interface with multiple devices in your
JTAG chain. Your JTAG chain can also consist of devices that do not
support the Logic Analyzer Interface or non-Altera, JTAG-compliant
devices. To use the Logic Analyzer Interface in more than one FPGA,
create a Logic Analyzer Interface and configure a Logic Analyzer
Interface File for each FPGA that you want to analyze. To perform multi-
FPGA analysis, perform the following steps:

1. Open the Quartus II software.

2. Create, configure, and compile a Logic Analyzer Interface File for
each design.

3. Open one Logic Analyzer Interface File at a time.

1 You do not have to open a Quartus II project to open a Logic
Analyzer Interface File.

4. Follow Steps 2 through 6 under “Programming Your FPGA Using
the Logic Analyzer Interface” on page 14–13.

5. Click the Program Device icon to program the device.

6. Control each Logic Analyzer Interface File independently.

Altera Corporation 14–15
October 2007 Preliminary

Advanced Features

Configuring Banks in the Logic Analyzer Interface File

When you have programmed your FPGA, you can control which bank is
mapped to the reserved Logic Analyzer Interface File output pins. To
control which bank is mapped, right-click on the bank in the schematic in
the logical view and click Connect Bank.

Figure 14–14. Configuring Banks

Acquiring Data on Your Logic Analyzer

To acquire data on your logic analyzer, you must establish a connection
between your device and the external logic analyzer.

f For more information on this process, and for guidelines on how to
establish connections between debugging headers and logic analyzers,
refer to the documentation for your logic analyzer.

Advanced
Features

This section describes the following advanced features:

■ Using the Logic Analyzer Interface with Incremental Compilation
■ Creating Multiple Logic Analyzer Interface Instances in One FPGA

Using the Logic Analyzer Interface with Incremental Compilation

Using the Logic Analyzer Interface with Incremental Compilation
enables you to preserve the synthesis and fitting of your original design
and add the Logic Analyzer Interface to your design without recompiling
your original source code.

To use the Logic Analyzer Interface with Incremental Compilation,
perform the following steps:

1. Start the Quartus II software.

14–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

2. Enable Design Partitions. To enable Partitions, perform the
following steps:

a. On the Assignments menu, click, Design Partitions.

b. In the Incremental Compilation list, select Full Incremental
Compilation.

c. Create Design Partitions for the entities in your design, and set
the Netlist Type to Post-fit.

d. On the Processing menu, click Start Compilation.

3. Enable Logic Analyzer Interface Incremental Compilation by
performing these steps:

a. In your Logic Analyzer Interface File, under Instance Manager,
click Incremental Compilation.

1 When you enable Incremental Compilation, all existing
presynthesis signals will be converted into post-fitting signals.
Only post-fitting signals can be used with the Logic Analyzer
Interface with Incremental Compilation.

b. Add Post-Fitting nodes to your Logic Analyzer Interface File.

c. On the Processing menu, click Start Compilation.

Creating Multiple Logic Analyzer Interface Instances in One
FPGA

The Logic Analyzer Interface includes support for multiple interfaces in
one FPGA. This feature is particularly useful when you want to build
Logic Analyzer Interface configurations that contain different settings.
For example, you can build one Logic Analyzer Interface instance to
perform Registered/State analysis and build another instance that
performs Combinational/Timing analysis on the same set of signals.

Another example would be if you want to perform Registered/State
analysis on portions of your design that are in different clock domains.

To create multiple Logic Analyzer Interfaces, on the Edit menu, click
Create Instance. Alternatively, you can right-click in the Instance
Manager window, and click Create Instance.

Altera Corporation 14–17
October 2007 Preliminary

Conclusion

Figure 14–15. Creating Multiple Logic Analyzer Interface Instances in One FPGA

Conclusion As the FPGA industry continues to make technological advancements,
outdated debugging methodologies must be replaced with new
technologies that maximize productivity. The Logic Analyzer Interface
feature enables you to connect many internal signals within your FPGA
to an external logic analyzer with the use of a small number of I/O pins.
This new technology in the Quartus II software enables you to use
feature-rich external logic analyzers to debug your FPGA design,
ultimately enabling you to delver your product in the shortest amount of
time.

14–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 14–3 shows the revision history for this chapter.

Table 14–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

No changes to content. —

May 2007
v7.1.0

Minor updates to address ADoQS issues. —

March 2007
v7.0.0

Added Cyclone III device support listed on page 14–3. —

November 2006
v6.1.0

Added new revision history table format to this document. —

May 2006
v6.0.0

Chapter title changed.
Minor updates for the Quartus II software version 6.0.0.

—

October 2005
v5.1.0

Initial release. —

Altera Corporation 15–1
October 2007 Preliminary

15. In-System Updating of
Memory and Constants

Introduction FPGA designs are growing larger in density and are becoming more
complex. Designers and verification engineers require more access to the
design that is programmed in the device to quickly identify, test, and
resolve issues. The in-system updating of memory and constants
capability of the Quartus® II software provides read and write access to
in-system FPGA memories and constants through the Joint Test Action
Group (JTAG) interface, making it easier to test changes to memory
contents in the FPGA while the FPGA is functioning in the end system.

This chapter explains how to use the Quartus II In-System Memory
Content Editor as part of your FPGA design and verification flow.

This chapter contains the following sections:

■ “Device Megafunction Support” on page 15–2
■ “Using In-System Updating of Memory Constants with Your

Design” on page 15–3
■ “Creating In-System Modifiable Memories Constants” on page 15–3
■ “Running the In-System Memory Content Editor” on page 15–4

Overview The ability to read and update memories and constants in a programmed
device provides more insight into and control over your design. The
Quartus II In-System Memory Content Editor gives you access to device
memories and constants. When used in conjunction with the
SignalTap® II embedded logic analyzer, this feature provides you the
visibility required to debug your design in the hardware lab.

f For more information on the SignalTap II embedded logic analyzer, refer
to the Design Debugging Using the SignalTap II Embedded Logic Analyzer
chapter in volume 3 of the Quartus II Handbook.

The ability to read data from memories and constants allows you to
quickly identify the source of problems. In addition, the write capabilities
allow you to bypass functional issues by writing expected data. For
example, if a parity bit in your memory is incorrect, you can use the
In-System Content Editor to write the correct parity bit values into your
RAM, allowing your system to continue functioning. You can also
intentionally write incorrect parity bit values into your RAM to check
your design’s error handling functionality.

QII53012-7.2.0

15–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Device
Megafunction
Support

The following tables list the devices and types of memories and constants
that are currently supported by the Quartus II software. Table 15–1 lists
the types of memory supported by the MegaWizard® Plug-In Manager
and the In-System Memory Content Editor.

Table 15–2 lists support for in-system updating of memory and constants
for the Stratix® series, Arria™ GX, Cyclone® series, APEX™ II, APEX 20K,
and Mercury™ device families.

Table 15–1. MegaWizard Plug-In Manager Support

Installed Plug-Ins Category Megafunction Name

Gates LPM_CONSTANT

Memory Compiler RAM: 1-PORT, ROM: 1-PORT

Storage ALTSYNCRAM, LPM_RAM_DQ, LPM_ROM

Table 15–2. Supported Megafunctions

MegaFunction

Arria GX / Stratix Series
Cyclone
Series APEX II APEX

20K MercuryM512
Blocks

M4K
Blocks

MegaRAM
Blocks

LPM_CONSTANT Read/
Write

Read/
Write

Read/
Write

Read/
Write

Read/
Write

Read/
Write

Read/
Write

LPM_ROM Write Read/
Write

N/A Read/
Write

Read/
Write

Write Read/
Write

LPM_RAM_DQ N/A Read/
Write

Read/
Write

Read/
Write

Read/
Write

N/A (1) Read/
Write

ALTSYNCRAM (ROM) Write Read/
Write

N/A Read/
Write

N/A N/A N/A

ALTSYNCRAM
(Single-Port RAM Mode)

N/A Read/
Write

Read/
Write

Read/
Write

N/A N/A N/A

Note to Table 15–2:
(1) Only write-only mode is applicable for this single-port RAM. In read-only mode, use LPM_ROM instead of

LPM_RAM_DQ.

Altera Corporation 15–3
October 2007 Preliminary

Using In-System Updating of Memory Constants with Your Design

Using In-System
Updating of
Memory
Constants with
Your Design

Using the In-System Updating of Memory and Constants feature requires
the following steps:

1. Identify the memories and constants that you want to access.

2. Edit the memories and constants to be run-time modifiable.

3. Perform a full compilation.

4. Program your device.

5. Launch the In-System Memory Content Editor.

Creating
In-System
Modifiable
Memories
Constants

When you specify that a memory or constant is run-time modifiable, the
Quartus II software changes the default implementation. A single-port
RAM is converted to dual-port RAM, and a constant is implemented in
registers instead of look-up tables (LUTs). These changes enable run-time
modification without changing the functionality of your design. For a list
of run-time modifiable megafunctions, refer to Table 15–1.

To enable your memory or constant to be modifiable, perform the
following steps:

1. On the Tools menu, click MegaWizard Plug-In Manager.

2. If you are creating a new megafunction, select Create a new custom
megafunction variation. If you have an existing megafunction,
select Edit an existing custom megafunction variation.

3. Make the necessary changes to the megafunction based on the
characteristics required by your design, turn on Allow In-System
Memory Content Editor to capture and update content
independently of the system clock and type a value in the Instance
ID text box. These parameters can be found on the last page of the
wizard for megafunctions that support in-system updating.

1 The Instance ID is a four-character string used to
distinguish the megafunction from other in-system
memories and constants.

4. Click Finish.

5. On the Processing menu, click Start Compilation.

15–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If you instantiate a memory or constant megafunction directly using
ports and parameters in VHDL or Verilog HDL, add or modify the
lpm_hint parameter as shown below.

In VHDL code, add the following:

lpm_hint => "ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

In Verilog HDL code, add the following:

defparam <megafunction instance name>.lpm_hint =
"ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

Running the
In-System
Memory Content
Editor

The In-System Memory Content Editor is separated into the Instance
Manager, JTAG Chain Configuration, and the Hex Editor (Figure 15–1).

Figure 15–1. In-System Memory Content Editor

The Instance Manager displays all available run-time modifiable
memories and constants in your FPGA device. The JTAG Chain
Configuration section allows you to program your FPGA and select the
Altera® device in the chain to update.

Altera Corporation 15–5
October 2007 Preliminary

Running the In-System Memory Content Editor

Using the In-System Memory Content Editor does not require that you
open a project. The In-System Memory Content Editor retrieves all
instances of run-time configurable memories and constants by scanning
the JTAG chain and sending a query to the specific device selected in the
JTAG Chain Configuration section.

Each In-System Memory Content Editor can access the in-system
memories and constants in a single device. If you have more than one
device containing in-system configurable memories or constants in a
JTAG chain, you can launch multiple In-System Memory Content Editors
within the Quartus II software to access the memories and constants in
each of the devices.

Instance Manager

Scan the JTAG chain to update the Instance Manager with a list of all
run-time modifiable memories and constants in the design. The Instance
Manager displays the Index, Instance, Status, Width, Depth, Type, and
Mode of each element in the list.

You can read and write to in-system memory using the Instance Manager
as shown in Figure 15–2.

Figure 15–2. Instance Manager Controls

The following buttons are provided in the Instance Manager:

■ Read data from In-System Memory—reads the data from the device
independently of the system clock and displays it in the Hex Editor

■ Continuously Read Data from In-System Memory—Continuously
reads the data asynchronously from the device and displays it in the
Hex Editor

■ Stop In-System Memory Analysis—Stops the current read or write
operation

Read Data from In-System Memory
Continuously Read Data from In-System Memory

Stop In-System Memory Analysis
Write Data to In-System

15–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Write Data to In-System Memory—Asynchronously writes data
present in the Hex Editor to the device

1 In addition to the buttons available in the Instance Manager, you
can also read and write data by selecting the command from the
Processing menu, or the right button pop-up menu in the
Instance Manager or Hex Editor.

The status of each instance is also displayed beside each entry in the
Instance Manager. The status indicates if the instance is Not running,
Offloading data or Updating Data. The health monitor provides useful
information about the status of the editor.

The Quartus II software assigns a different index number to each
in-system memory and constant to distinguish between multiple
instances of the same memory or constant function. View the In-System
Memory Content Editor Setting section of the compilation report to
match an index with the corresponding instance ID (Figure 15–3).

Figure 15–3. Compilation Report In-System Memory Content Editor Setting Section

Altera Corporation 15–7
October 2007 Preliminary

Running the In-System Memory Content Editor

Editing Data Displayed in the Hex Editor

You can edit the data read from your in-system memories and constants
displayed in the Hex Editor by typing values directly into the editor or by
importing memory files.

To modify the data displayed in the Hex Editor, click a location in the
editor and type or paste in the new data. The new data appears as blue
indicating modified data that has not been written into the FPGA. On the
Edit menu, choose Value, and click Fill with 0's, Fill with 1's, Fill with
Random Values, or Custom Fills to update a block of data by selecting a
block of data.

Importing Exporting Memory Files

Importing and exporting memory files lets you quickly update in-system
memories with new memory images and record data for future use and
analysis.

On the Edit menu, click Import Data from File to import a memory file,
select an in-system memory or constant from the instance manager. You
can only import a memory file that is in either a Hexadecimal
(Intel-Format) file (.hex) or memory initialization file (.mif) format.

On the Edit menu, click Export Data to File to export data displayed in
the Hex Editor to a memory file, to select an in-system memory or
constant from the instance manager. You can export data to a .hex, .mif,
Verilog Value Change Dump file (.vcd), or RAM Initialization file (.rif)
format.

Viewing Memories Constants in the Hex Editor

For each instance of an in-system memory or constant, the Hex Editor
displays data in hexadecimal representation and ASCII characters (if the
word size is a multiple of 8 bits). The arrangement of the hexadecimal
numbers depends on the dimensions of the memory. For example, if the
word width is 16 bits, the Hex Editor displays data in columns of words
that contain columns of bytes (Figure 15–4).

15–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 15–4. Editing 16-Bit Memory Words Using the Hex Editor

Unprintable ASCII characters are represented by a period (.). The color of
the data changes as you perform reads and writes. Data displayed in
black indicates the data in the Hex Editor was the same as the data read
from the device. If the data in the Hex Editor changes color to red, the
data previously shown in the Hex Editor was different from the data read
from the device.

As you analyze the data, you can use the cursor and the status bar to
quickly identify the exact location in memory. The status bar is located at
the bottom of the In-System Memory Content Editor and displays the
selected instance name, word position, and bit offset (Figure 15–5).

Figure 15–5. Status Bar in the In-System Memory Content Editor

The bit offset is the bit position of the cursor within the word. In the
following example, a word is set to be 8-bits wide.

With the cursor in the position shown in Figure 15–6, the word location is
0x0000 and the bit position is 0x0007.

Altera Corporation 15–9
October 2007 Preliminary

Running the In-System Memory Content Editor

Figure 15–6. Hex Editor Cursor Positioned at Bit 0×0007

With the cursor in the position shown in Figure 15–7, the word location
remains 0x0000 but the bit position is 0x0003.

Figure 15–7. Hex Editor Cursor Positioned at Bit 0×0003

Scripting Support

The In-System Memory Content Editor supports reading and writing of
memory contents via a Tcl script or Tcl commands entered in a command
prompt. For detailed information about scripting command options, refer
to the Quartus II command-line and Tcl API Help browser.

To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

The Quartus II Scripting Reference Manual includes the same information
in PDF form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. For more information
about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

The commonly used commands for the In-System Memory Content
Editor are as follows:

■ Reading from memory:
read_content_from_memory
[-content_in_hex]
-instance_index <instance index>
-start_address <starting address>
-word_count <word count>

15–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Writing to memory:
write_content_to_memory

■ Save memory contents to file:
save_content_from_memory_to_file

■ Update memory contents from File:
update_content_to_memory_from_file

f For descriptions about the command options and scripting examples,
refer to the Tcl API Help Browser and the Quartus II Scripting Reference
Manual.

Programming the Device Using the In-System Memory Content
Editor

If you make changes to your design, you can program the device from
within the In-System Memory Content Editor. To program the device,
follow these steps:

1. On the Tools menu, click In-System Memory Content Editor.

2. In the JTAG Chain Configuration panel of the In-System Memory
Content Editor, select the SRAM object file (.sof) that includes the
modifiable memories and constants.

3. Click Scan Chain.

4. In the Device list, select the device you want to program.

5. Click Program Device.

Example: Using the In-System Memory Content Editor with the
SignalTap II Embedded Logic Analyzer

The following scenario describes how you can use the In-System
Updating of Memory and Constants feature with the SignalTap II
embedded logic analyzer to efficiently debug your design in-system.
Although both the In-System Content Editor and the SignalTap II
embedded logic analyzer use the JTAG communication interface, you are
able to use them simultaneously.

After completing your FPGA design, you find that the characteristics of
your FIR filter design are not as expected.

Altera Corporation 15–11
October 2007 Preliminary

Conclusion

1. To locate the source of the problem, change all your FIR filter
coefficients to be in-system modifiable and instantiate the
SignalTap II embedded logic analyzer.

2. Using the SignalTap II embedded logic analyzer to tap and trigger
on internal design nodes, you find the FIR filter to be functioning
outside of the expected cut-off frequency.

3. Using the In-System Memory Content Editor, you check the
correctness of the FIR filter coefficients. Upon reading each
coefficient, you discover that one of the coefficients is incorrect.

4. Since your coefficients are in-system modifiable, you update the
coefficients with the correct data using the In-System Memory
Content Editor.

In this scenario, you are able to quickly locate the source of the problem
using both the In-System Memory Content Editor and the SignalTap II
embedded logic analyzer. You are also able to verify the functionality of
your device by changing the coefficient values before modifying the
design source files.

An extension to this example would be to modify the coefficients with the
In-System Memory Content Editor to vary the characteristics of the FIR
filter (for example, filter attenuation, transition bandwidth, cut-off
frequency, and windowing function).

Conclusion The In-System Updating of Memory and Constants feature provides
access into a device for efficient debug in a hardware lab. You can use
In-System Memory Updating of Memory and Constants with the
SignalTap II embedded logic analyzer to maximize the visibility into an
Altera FPGA. By increasing visibility and access to internal logic of the
device, you are able to more quickly identify and resolve problems with
your design or its implementation.

Referenced
Documents

This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ Design Debugging Using the SignalTap II Embedded Logic Analyzer
chapter in volume 3 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

15–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 15–3 shows the revision history of this chapter.

Table 15–3. Document Revision History

Date and
Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 15–11. —

May 2007
v7.1.0

● Added Scripting Support section on page 15–9.
● Added Referenced Documents on page 15–11.

Updates made for Quartus II
version 7.1.

March 2007
v7.0.0

Added Cyclone III device support listed on page 15–2. —

November 2006
v6.1.0

● Added revision history to the document.
● Updated Table 15–2.

Added information for Stratix III
support.

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0.0 —

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 13 was formerly Chapter 12 in version 5.0.

—

May 2005
v5.0.0

● Chapter 12 was formerly in Section V of Vol 3 in 4.2. —

December 2004
v1.2

● Chapter 12 was formerly Chapter 11.
● Updated tables.
● Corrected the Verilog code for the lpm_hint

parameter.
● Re-organized the “Making Changes” segment into the

Editing Data Displayed in the Hex Editor and Importing
and Exporting Memory Files segments. Added the Edit
value menu.

● Added Example: Using the In-System Memory Content
Editor with the SignalTap II Embedded Logic Analyzer.

—

Aug. 2004 v1.1 Minor typographical corrections. —

June 2004 v1.0 Initial release. —

Altera Corporation 16–1
October 2007

16. Design Debugging Using
In-System Sources and

Probes

Introduction Traditional debugging techniques often involve using an external pattern
generator to exercise the logic and a logic analyzer to study the output
waveforms during run-time. The SignalTap® II Logic Analyzer and
SignalProbe allow you to read or “tap” internal logic signals during
run-time as a way to debug your logic on-chip. While this is useful, the
debugging cycle efficiency may be enhanced with the ability to drive any
internal signal manually within your design. By doing this you can
perform the following activities:

■ Force the occurrence of trigger conditions setup in the SignalTap II
Logic Analyzer

■ Create simple test vectors to exercise your design without using
external test equipment

■ Dynamically control run-time control signals with the JTAG chain

With the introduction of the In-System Sources and Probes feature in the
Quartus® II software beginning with version 7.1, Altera extends the
portfolio of verification tools. The In-System Sources and Probes feature
allows you to easily control any internal signal, providing you with a
completely dynamic debugging environment. Coupled with either the
SignalTap II Logic Analyzer or SignalProbe, the In-System Sources and
Probes feature gives you a powerful debugging environment in which to
generate stimuli and solicit responses from your logic design.

This chapter addresses the following topics:

■ “Design Flow Using In-System Sources and Probes” on page 16–4
■ “Running the In-System Sources and Probes Editor” on page 16–9
■ “TCL Support” on page 16–14
■ “Design Example: Dynamic PLL Reconfiguration” on page 16–18

Overview The In-System Sources and Probes feature consists of the altsource_probe
megafunction and an interface to control the altsource_probe
megafunction instances during run-time. Each altsource_probe
megafunction instance provides you with source output ports and probe
input ports, where source ports drive selected signals and probe ports
sample selected signals. Upon compilation, the altsource_probe
megafunction sets up a register chain to either drive or sample the
selected nodes in your logic design. During runtime, the In-System
Sources and Probes interface uses a JTAG connection to shift data to and

QII53021-7.2.0

16–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

from the altsource_probe megafunction instances. Figure 16–1 shows a
block diagram of the components that make up the In-System Sources
and Probes feature.

Figure 16–1. In-System Sources and Probes Block Diagram

The altsource_probe megafunction hides the detailed transactions
between the JTAG Hub and the registers instrumented in your design to
give you a basic building block for stimulating and probing your design.
Moreover, the In-System Sources and Probes feature provides single-
cycle samples and single-cycle writes to the selected logic nodes. This
provides an easy way to input simple virtual stimuli and an easy way to
capture the current value on instrumented nodes. Because In-System
Sources and Probes gives you access to logic nodes within your design,
this feature can be used during the debugging process to toggle the inputs
of low-level components. If used in conjunction with the SignalTap II
Logic Analyzer, you can force trigger conditions to help isolate your
problem and shorten your debugging process.

D QD QD QD Q

D QD QD QD Q

Design Logic

altsource_probe
Megafunction

Probes Sources

JTAG
Hub

Altera
Programming

Hardware

Quartus II
Software

FPGA

Altera Corporation 16–3
October 2007 Preliminary

Overview

Additionally, the ease of use of the In-System Sources and Probes feature
makes it ideal for implementing control signals as virtual stimuli. This
feature can be especially helpful during for prototyping your design.
Examples of such applications could include the ability to do the
following:

■ Create virtual push buttons
■ Create a virtual front panel to interface with your design
■ Mimic external sensor data
■ Monitor and change run-time constants on the fly

In-System Sources and Probes supports Tcl commands to interface with
all your altsource_probe instances to increase the level of automation.

1 The Virtual JTAG Megafunction and the In-System Memory
Content Editor also give you the capability to drive virtual
inputs into your design. The Virtual JTAG Megafunction gives
you a greater level of control (compared to In-system Sources
and Probes) in how your design communicates with the JTAG
Hub at the cost of greater complexity. With the Virtual JTAG
megafunction, you can design your own customized register
scan chain to drive and control your logic through the JTAG
port. The In-System Memory Content Editor is used specifically
for reading and writing memory contents at runtime.

f For more details about the Virtual JTAG Megafunction, refer to the
sld_virtual_jtag Megafunction User Guide. For information about the
In-System Memory Content Editor, refer to the In-System Updating of
Memory and Constants chapter in volume 3 of the Quartus II Handbook.

Hardware and Software Requirements

The following components are required to use In-System Sources and
Probes:

■ Quartus II design software
or

■ Quartus II Web Edition (with TalkBack feature enabled)

■ Download Cable (USB-BlasterTM download cable or ByteBlasterTM
cable)

■ Altera® development kit or user design board with JTAG connection
to device under test

16–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The In-System Sources and Probes feature supports the following device
families:

■ ArriaTM GX
■ Stratix® III
■ Stratix II
■ Stratix II GX
■ Stratix
■ Stratix GX
■ HardCopy® II
■ HardCopy Stratix
■ Cyclone® III
■ Cyclone® II
■ Cyclone
■ MAX® II
■ APEXTM II
■ APEX 20KE
■ APEX 20KC
■ APEX 20K

Design Flow
Using In-System
Sources and
Probes

In-System Sources and Probes supports an RTL flow in which your
design nodes are instrumented in your HDL code via instantiation of the
altsource_probe megafunction. After your device is compiled with the
design nodes that you want instrumented, you can control your
altsource_probe instances via the Sources and Probes Editor GUI or via a
Tcl interface. The complete design flow is shown in Figure 16–2.

Altera Corporation 16–5
October 2007 Preliminary

Design Flow Using In-System Sources and Probes

Figure 16–2. FPGA Design Flow Using In-System Sources and Probes

Yes

No

Start

End

Functionality
Satisfied?

Create a New Project
or Open an Existing

Project

Configure
altsource_probe

Megafunction

Instrument selected logic
nodes by Instantiating the

altsource_probe
Megafunction variation file

into the HDL Design

Compile the design

Program Target
Device(s)

Control Source and
Probe Instance(s)

Debug/Modify HDL

16–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Configuring the altsource_probes Megafunction

To add in-system sources and probes functionality to your design, you
must first instantiate the altsource_probe megafunction variation file. The
altsource_probe megafunction can be easily configured using the
MegaWizard® Plug-In Manager. Each source or probe port can be up to
256 bits wide. You can have up to 128 instances of the altsource_probe
megafunction in your design. The following steps will guide you through
the steps necessary to configure the altsource_probe megafunction:

1. On the Tools menu, click MegaWizard Plug-In Manager.

2. Select Create a new custom megafunction variation.

3. Click Next.

4. On Page 2a, make the following selections:

a. In the Installed Plug-Ins list, expand the JTAG-accessible
Extensions folder. In the JTAG-accessible Extensions list, select
In-System Sources and Probes.

b. Make sure that the currently selected device family matches the
device you are targeting.

c. Select an output file type and enter the desired name of the
altsource_probe megafunction. You can choose AHDL (.tdf),
VHDL (.vhd), or Verilog HDL (.v) as the output file type.

5. Click Next.

6. On Page 3, make the following selections:

a. Make sure that the currently selected device family matches the
device that you are targeting.

b. Under Do you want to specify an Instance Index?, turn on Yes.

c. Specify the Instance ID of this instance.

d. Specify the width of the probe port. The width can be from
1 bit to 256 bits wide.

e. Specify the width of the source port. The width can be from
1 bit to 256 bits wide.

Altera Corporation 16–7
October 2007 Preliminary

Design Flow Using In-System Sources and Probes

7. On Page 3, you can click Advanced Options and specify other
parameters. The following options are included:

● What is the initial value of the source port, in hexadecimal?
This option allows you to specify the initial value driven on the
source port at run-time.

● Write data to the source port synchronously to the source
clock. This allows you to synchronize your source port write
transactions with the clock domain of your choice.

● Create an enable signal for the registered source port. When
enabled, this creates a clock enable input for the synchronization
registers. This option is enabled only when the Write data to the
source port synchronously to the source clock option is
enabled.

Table 16–1 summarizes the configurable fields for the altsource_probe
megafunction.

Table 16–1. MegaWizard Plug-In Manager —altsource_probe (page 3) Options

Options Description

Currently selected device family Specifies the device family.

Do you want to specify an Instance Index? Specifies the numeric index of the megafunction
instance during run-time (from 0 to 127).

The 'Instance ID' of this Instance (optional): Specifies the four character ID tag of the megafunction
in the instance manager window of the Sources and
Probes Editor.

How wide should the probe port be? Specifies the number of signals to be read by
In-System Sources and Probes.

How wide should the source port be? Specifies the number of signals to be driven by
In-System Sources and Probes.

What is the initial value of the source port (under
Advanced Options)

Specifies the initial value driven on the source port at
run time.

Write data to the source port synchronously to the
source clock. Each bit in the source port will utilize two
additional registers to achieve metastability (under
Advanced Options)

Turning on this option allows you to synchronize your
source port write transactions with the clock domain of
your choice.

Create an enable signal for the registered source port
(configured under Advanced Options)

Turning on this option creates a clock enable input for
the synchronization registers.

16–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Instantiating the altsource_probe Megafunction

The MegaWizard Plug-in Manager produces the necessary variation file
and the instantiation template based on your inputs to the MegaWizard.
Use the template to instantiate the altsource_probe megafunction
variation file in your design. The port information is shown in Table 16–2.

You can include up to 128 instances of the altsource_probe megafunction
in your design, provided that there are available logic resources in your
device. Each instance of the altsource_probe megafunction uses a pair of
registers per signal for the width of the widest port it contains.
Additionally, there will be some fixed overhead logic to accommodate
communication between the altsource_probe instances and the JTAG
controller. An additional pair of registers per source port is added for
synchronization if it is specified.

Compiling the Design

When you compile your design with the In-System Sources and Probes
megafunction instantiated, an instance of the altsource_probe instance
and sld_hub megafunctions are added to your compilation hierarchy
automatically. These two instances allow communication between the
JTAG controller and your instrumented logic.

To modify your In-System Sources and Probes connections, you can
modify the number of connections to your design by editing the
altsource_probe megafunction. You can open the MegaWizard Plug-In
Manager for the design instance you want to modify by double-clicking
the desired instance in the Project Navigator. You can then modify the
connections in the HDL source file. You must recompile your design
when you are finished editing it.

Table 16–2. altsource_probe Megafunction Port Information

Port Name Required? Direction Comments

Probe[] No Input The outputs from the user’s design.

Source_clk No Input Source Data is written synchronously to this clock.
This input is required if the Source Clock option is
turned on in the Advanced Options box in the
MegaWizard Plug-in Manager.

Source_ena No Input Clock enable signal for source_clk. This input is
required if specified in the Advanced Options box in
the MegaWizard Plug-in Manager.

Source[] No Output Used to drive inputs to user design.

Altera Corporation 16–9
October 2007 Preliminary

Running the In-System Sources and Probes Editor

Because the design cycle is iterative in nature, you can use the Quartus II
incremental compilation feature to reduce compilation time. Incremental
compilation allows you to organize your design into logical partitions.
During recompilation of a design, incremental compilation preserves the
compilation results and performance of unchanged partitions and
reduces design iteration time by compiling only modified design
partitions.

f For more information about Incremental Compilation, refer to the
Quartus II Incremental Compilation for Hierarchical & Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

Running the
In-System
Sources and
Probes Editor

The In-System Sources and Probes Editor is a GUI that gives you control
over all of the altsource_probe megafunction instances within your
design. It displays all available run-time controllable instances of the
altsource_probe megafunction in your design, provides a push-button
interface to drive all of your source nodes, and a logging feature to store
your probe and source data.

To run the In-System Sources and Probes Editor, from the Tools menu,
click In-System Sources and Probes Editor.

Figure 16–3 shows the Editor window.

16–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 16–3. In-System Sources and Probes Editor

The In-System Sources and Probes Editor is made up of three panes:

■ JTAG Chain configuration—Allows you to specify programming
hardware, device, and file settings that the In-System Sources and
Probes Editor uses to program and acquire data from a device.

■ Instance Manager—Displays information about the instances
generated when you compile a design, and allows you to control the
data the In-System Sources and Probes Editor acquires.

■ Sources and Probes Editor—Logs all the data read from the selected
instance and allows you to modify source data to be written to your
device.

Using the In-System Sources and Probes Editor does not require you to
open a Quartus II project. The In-System Sources and Probes Editor
retrieves all instances of the altsource_probe megafunction by scanning
the JTAG chain and sending a query to the specific device selected in the
JTAG Chain Configuration pane. Also, you can use a previously saved
configuration to run the In-System Sources and Probes Editor.

Altera Corporation 16–11
October 2007 Preliminary

Running the In-System Sources and Probes Editor

Each In-System Sources and Probes Editor window can access the
altsource_probe megafunction instances in a single device. If you have
more than one device containing megafunction instances in a JTAG chain,
you can launch multiple In-System Sources and Probes Editor windows
to access the megafunction instances in each of the devices.

Programming Your Device Using the JTAG Chain Configuration
Window

After compilation is complete, you must configure your FPGA before
using In-System Sources and Probes. To configure a device for use with
the In-System Sources and Probes, perform the following steps:

1. Open the In-System Sources and Probes Editor.

2. Under JTAG Chain Configuration, point to Hardware and select the
desired hardware communications device. You may be prompted to
configure your hardware; in this case, click Setup.

3. From the Device list, select the FPGA device to which you want to
download the design (it may be automatically detected). You may
have to click Scan Chain to detect your target device.

4. In the JTAG Configuration window, click Browse and select the
SRAM Object File (.sof) that includes the In-System Sources and
Probes instance or instances. (Note that it may be automatically
detected).

5. Click Program Device (next to File:) to program the target device.

16–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Instance Manager

The Instance Manager provides a list of all altsource_probe instances in
the design and allows you to configure how data is acquired from or
written to those instances.

The Instance Manager is shown in Figure 16–4.

Figure 16–4. Instance Manager

The following buttons and sub-panes are provided in the Instance
Manager:

■ Read Probe Data—Samples the probe data in the selected instance
and displays it in the Sources and Probes Editor Window

■ Continuously Read Probe Data—Continuously samples the probe
data of the selected instance and displays it in the Sources and Probes
Editor Window; you can modify the sample rate via the Probe read
interval setting

■ Stop Continuously Reading Probe Data—Cancels continuous
sampling of probe of selected instance

■ Write Source Data sub-pane —Writes data to all source nodes of the
selected instance

■ Probe Read Interval sub-pane—Displays the sample interval of all
the In-system Sources and Probe instances in your design; you can
modify the sample interval by clicking Manual

■ Event Log sub-pane—controls the event log in the Sources and
Probes Editor Window

■ Write Source Data sub-pane—Allows you to manually or
continuously write data to the system

Read Probe
Data

Continuously Read
Probe Data Stop

Reading
Probe Data

Health
Monitor

Write
Source Data

Read Source
Data

Write Source
Data

Altera Corporation 16–13
October 2007 Preliminary

Running the In-System Sources and Probes Editor

The status of each instance is also displayed beside each entry in the
Instance Manager. The status indicates if the instance is Not running
Offloading data, Updating data, or if an “Unexpected JTAG
communication error” occurs. The health monitor provides useful
information about the status of the editor.

Sources and Probes Editor Window

The Sources and Probes Editor window organizes and displays the data
from all sources and probes in your design, organized according to the
index number of the instance. The editor provides an easy way to manage
your signals, allowing you to rename signals or to group them into buses.
All data collected from source and probe nodes is recorded in the event
log and displayed as a timing diagram.

Reading Probe Data

You can read data by selecting the desired altsource_probe instance in the
Instance Manager and clicking Read Probe Data. This produces a single
sample of the probe data and updates the data column of the selected
index in the Sources and Probes Editor window. You can save the data to
an event log by turning on the Save data to event log option in the
Instance Manager.

If you want to sample data from your probe instance continuously, in the
Instance Manager, click the instance you want to read, and then click
Continuously read probe data. While reading, the status of the active
instance will show Unloading. You can read continuously from multiple
instances.

You can access read data by using the right-click menus in the Instance
Manager.

To adjust the probe read interval, in the Instance Manager, turn on the
Manual option in the Probe read interval sub-pane, and specify the
desired sample rate in the text field next to the Manual option. The
maximum sample rate depends on your computer setup. The actual
sample rate is shown in the Current interval box. The event log window
buffer size can be adjusted in the Maximum Size box.

Writing Data

To modify the source data to be written into the altsource_probe instance,
click in the name field of the signal you want to change. For buses of
signals, you can double-click on the data field and type in the value to be
driven out to the altsource_probe instance. The In-System Sources and
Probes Editor stores the modified source data values into a temporary

16–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

buffer. Modified values that have not been written out to the
altsource_probe instances appear in red. To update the altsource_probe
instance, highlight the instance in the Instance Manager and click Write
source data. The Write source data function is also available via the
shortcut menus in the Instance Manager.

You can choose to have the values stored in the In-System Sources and
Probes Editor continuously update the altsource_probe instances. By
doing so, any modifications you make to the source data buffer are
written immediately to the altsource_probe instances. To continuously
update the altsource_probe instances, change the Write source data field
from Manually to Continuously.

Data Organization

The main editor window allows you to group signals into buses, and
allows you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group,
right-click and select Group. You can modify the display format in the
Bus Display Format and the Bus Bit order submenus.

The Sources and Probes Editor Window allows you to rename any signal.
To rename a signal, double-click the name of the desired signal and type
in the new name.

The event log contains a record of the most recent samples. The buffer
size is adjustable, up to 128k samples. The time stamp for each sample is
logged and is displayed above the event log of the instance being
examined as you move your mouse pointer over the data samples.

You can save the changes that you have made and the recorded data into
a Sources and Probes File (.spf). To save changes, on the File menu, click
Save. The file contains all of the modifications you made to the signal
groups, as well as the current data event log.

TCL Support To support automation, In-system Sources and Probes supports the
procedures described in this chapter in the form of Tcl commands. The
Tcl package for In-System Sources and Probes is included by default
when you run quartus_stp.

The Tcl interface for In-System Sources and Probes provides a powerful
platform to help you debug your design. It is especially helpful for
debugging designs that require toggling multiple sets of control inputs.
You can aggregate multiple commands using a Tcl script to define your
own custom command set.

Altera Corporation 16–15
October 2007 Preliminary

TCL Support

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. For more information
about all settings and constraints in the Quartus II software, refer to the
Quartus II Settings File Reference Manual. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Table 16–3 shows the Tcl command you can use with In-System Sources
and Probes.

Example 16–1 shows an excerpt from a Tcl script with procedures that
control the altsource_probe instances of the design as shown in
Figure 16–5. The example design contains a DCFIFO with
altsource_probe instances to read from and to write to the DCFIFO. A set
of control muxes are added into the design to control the flow of data to

Table 16–3. In-System Sources and Probes Tcl Commands

Command Argument Description

start_insystem_source
_probe

-device_name <device name>
-hardware_name <hardware name>

Opens a handle to a device using the
specified hardware.
Call this command before starting
any transactions.

get_insystem_source_
probe_instance_info

-device_name <device name>
-hardware_name <hardware name>

Returns a list of all
altsource_probe instances in
your design. Each record returned
will be in the following format:
{<instance Index>, <source width>,
<probe width>, <instance name>}

read_probe_data -instance_index
<instance_index>
-value_in_hex (optional)

Retrieves the current value of the
probe.
A string is returned specifying the
status of each probe, with the MSB as
the left-most bit.

read_source_data -instance_index
<instance_index>
-value_in_hex (optional)

Retrieves the current value of the
sources.
A string is returned specifying the
status of each source, with the MSB
as the left-most bit.

write_source_data -instance_index
<instance_index>
-value <value>
-value_in_hex (optional)

Sets the value of the sources.
A binary string is sent to the source
ports, with the MSB as the left-most
bit.

end_interactive_probe None Releases the JTAG chain.
Issue this command when all
transactions are finished.

16–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

the DCFIFO between the input pins and the altsource_probe instances. A
pulse generator is added to the read request and write request control
lines to guarantee a single sample read or write. The altsource_probe
instances, when used with the script in Example 16–1, provides visibility
into the contents of the FIFO by performing single sample write and read
operations and reporting the state of the full and empty status flags.

The Tcl script can be useful in debugging situations where you may want
to either empty or preload the FIFO in your design. As an example, you
can use this feature to preload the FIFO to match a trigger condition you
have set up within the Signal Tap II Logic Analyzer.

Figure 16–5. A DCFIFO Example Design Controlled by the Tcl Script in Example 16–1

D Q

D Q

Write_clock

Write_req
Data[7..0]

Write_clock

Read_req

Read_clock

Wr_full

Q[7..0]

Rd_empty

Data_out

Read_clock

Source_read_sel

S_read_req

S_write_req

Rd_req_in

Wr_req_in

Data_in[7..0]

altsource_probe
(instance 1)

altsource_probe
(instance 0)

Source_write_sel

S_data[7..0]

 DCFIFO

Altera Corporation 16–17
October 2007 Preliminary

TCL Support

Example 16–1. Tcl Script Procedures for Reading and Writing to the DCFIFO in Figure 16–5
Setup USB hardware - assumes only USB Blaster is installed and
an FPGA is the only device in the JTAG chain

set usb [lindex [get_hardware_names] 0]
set device_name [lindex [get_device_names -hardware_name $usb] 0]
write procedure : argument value is integer

proc write {value} {

global device_name usb
variable full

start_insystem_source_probe -device_name $device_name -hardware_name \
$usb

#read full flag
set full [read_probe_data -instance_index 0]

if {$full == 1} {end_insystem_source_probe
return "Write Buffer Full"
}

##toggle select line, drive value onto port, toggle enable
##bits 7:0 of instance 0 is S_data[7:0]; bit 8 = S_write_req;
##bit 9 = Source_write_sel

##int2bits is custom procedure that returns a bitstring from an integer
argument

write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | \
$value]]
write_source_data -instance_index 0 -value [int2bits [expr 0x300 | \
$value]]

##clear transaction

write_source_data -instance_index 0 -value 0

end_insystem_source_probe
}

proc read {} {

global device_name usb
variable empty
start_insystem_source_probe -device_name $device_name -hardware_name \
$usb

16–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

##read empty flag : probe port[7:0] reads FIFO output; bit 8 reads
##empty_flag

set empty [read_probe_data -instance_index 1]

if {[regexp {1........} $empty]} { end_insystem_source_probe
return "FIFO empty" }

toggle select line for read transaction
Source_read_sel = bit 0; s_read_reg = bit 1

pulse read enable on DC FIFO
write_source_data -instance_index 1 -value 0x1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex

set x [read_probe_data -instance_index 1]

end_insystem_source_probe

return $x
}

Design Example:
Dynamic PLL
Reconfiguration

The ease of use of the In-System Sources and Probes feature can be
extremely helpful in creating a virtual front panel during the prototyping
phase of your design. Relatively simple designs of high functionality can
be created in a short amount of time. The following PLL reconfiguration
example demonstrates how the In-System Sources and Probes feature is
used to provide a GUI to dynamically reconfigure a Stratix PLL.

Stratix PLLs allows you to dynamically update PLL coefficients during
run-time. Each enhanced PLL within the Stratix device contains a register
chain that allows you to modify the pre-scale counters (m and n values),
output divide counters, and delay counters. In addition, the
altpll_reconfig megafunction provides an easy interface to access the
register chain counters. The altpll_reconfig megafunction provides a
cache containing all modifiable PLL parameters. After you have updated
all of the PLL parameters in the cache, the alt_pll_reconfig megafunction
drives the PLL register chain to update the PLL with the updated
parameters. Figure 16–6 shows a Stratix enhanced PLL with
reconfigurable coefficients.

Altera Corporation 16–19
October 2007 Preliminary

Design Example: Dynamic PLL Reconfiguration

1 Stratix II and Stratix III devices also allow you to dynamically
reconfigure PLL parameters. For more information about these
families, refer to the appropriate data sheet. For more
information about dynamic PLL reconfiguration, refer to
AN 282: Implementing PLL Reconfiguration in Stratix & Stratix GX
Devices or AN 367: Implementing PLL Reconfiguration in Stratix II
Devices.

Figure 16–6. Stratix-Enhanced PLL with Reconfigurable Coefficients

The following design example uses an altsource_probe instance to update
the PLL parameters in the altpll_reconfig megafuntion cache. The
altpll_reconfig megafunction connects to an enhanced PLL in a Stratix
FPGA to drive the register chain containing the PLL reconfigurable
coefficients. This design example uses a Tcl/Tk script to generate a GUI
where you can enter in new m and n values for the enhanced PLL. The Tcl
script extracts the m and n values from the GUI, shifts the values out to
the altsource_probe instances to update the values in the altpll_reconfig
megafunction cache and asserts the reconfig signal on the altpll_reconfig
megafunction. The reconfig signal on the altpll_reconfig megafunction

÷n Δtn

Δtm÷m

÷g0 Δtg0

÷e3 Δte3

÷g3 Δtg3

PFD VCOCharge
Pump

Loop
Filter

fREF

scandata

scanclk

scanaclr

Counters and Clock
Delay Settings are
Programmable

All Output Counters and
Clock Delay Settings can
be Programmed Dynamically

LSB MSB

LSB MSB

LSB MSB

LSB MSB

LSB

MSB

(1) (2)

16–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

starts the register chain transaction to update all PLL reconfigurable
coefficients. A block diagram of design example is shown in Figure 16–7.
The Tk GUI is shown in Figure 16–8.

Figure 16–7. Block Diagram of Dynamic PLL Reconfiguration Design Example

Figure 16–8. Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources and Probes Tcl
Package

This design example was created using a NIOS® Development Kit, Stratix
Edition. The file sourceprobe_DE_dynamic_pll.zip contains all of the
necessary files for running this design example:

■ Readme.txt—A text file that describes the files contained in the
Design Example and provides instructions on running the Tk GUI
shown in Figure 16–8.

■ Interactive_Reconfig.qar—The archived Quartus II project for this
Design Example

You can download the sourceprobe_DE_dynamic_pll.zip file in the
Quartus II Handbook volume 3 section of the Altera Literature web page.

Altera Corporation 16–21
October 2007 Preliminary

Conclusion

Conclusion In-System Sources and Probes can provide stimuli and get responses
from the target design during run-time. With its simple and intuitive
interface, you can provide virtual inputs into your design during run-
time without using external equipment. When used in conjunction with
SignalTap II, you can use In-System Sources and Probes to provide
greater control of the signals in your design, and thus help shorten the
verification cycle. Also, with its ability to create virtual inputs into your
design, you can create simple, yet powerful applications to interact with
your design.

Referenced
Documents

This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ sld_virtual_jtag Megafunction User Guide
■ Quartus II Incremental Compilation for Hierarchical & Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II Settings File Reference Manual
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document
Revision History

Table 16–4 shows the revision history for this chapter.

Table 16–4. Document Revision History

Date and
Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 16–21. —

May 2007
v7.1.0

Initial Release. —

http://www.altera.com/literature/ug/ug_virtualjtag.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

16–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation Section VI–i
Preliminary

Section VI. Formal
Verification

The Quartus® II software easily interfaces with EDA formal design
verification tools such as the Cadence Incisive Conformal and Synplicity
Synplify software. In addition, the Quartus II software has built-in
support for verifying the logical equivalence between the synthesized
netlist from Synplicity Synplify and the post-fit Verilog Quartus Mapped
(.vqm) files using Incisive Conformal software.

This section discusses formal verification, how to set-up the
Quartus II software to generate the VQM file and Incisive Conformal
script, and how to compare designs using Incisive Conformal software.

This section includes the following chapters:

■ Chapter 17, Cadence Encounter Conformal Support
■ Chapter 18, Synopsys Formality Support

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section VI–ii Altera Corporation
Preliminary

Formal Verification Quartus II Handbook, Volume 3

Altera Corporation 17–1
October 2007

17. Cadence Encounter
Conformal Support

Introduction The Quartus® II software provides formal verification support for
Altera® designs through interfaces with a formal verification EDA tool,
the Cadence Encounter Conformal software.

Use the Encounter Conformal software to verify the functional
equivalence of a post-synthesis Verilog Quartus Mapping netlist from the
Synplicity Synplify Pro software and the post-fit Verilog Output File from
the Quartus II software. You can also use the Encounter Conformal
software to verify the functional equivalence of the register transfer level
(RTL) source code and post-fit Verilog Output File from the Quartus II
software when using Quartus II integrated synthesis. These formal
verification flows support designs for the Cyclone®, Cyclone II, Stratix®,
Stratix II, Stratix GX, Stratix II GX, Stratix III, Arria™ GX, and
HardCopy® II device families.

There are two types of formal verification—equivalence checking and
model checking. This chapter discusses equivalence checking using the
Cadence Encounter Conformal software.

This chapter contains the following sections:

■ “Formal Verification Design Flow” on page 17–2
■ “RTL Coding Guidelines for Quartus II Integrated Synthesis” on

page 17–5
■ “Generating the Post-Fit Netlist Output File and the Encounter

Conformal Setup Files” on page 17–10
■ “Understanding the Formal Verification Scripts for Encounter

Conformal” on page 17–18
■ “Comparing Designs Using Encounter Conformal” on page 17–21
■ “Known Issues and Limitations” on page 17–24
■ “Black Box Models” on page 17–28
■ “Conformal Dofile/Script Example” on page 17–30

Equivalence checking uses mathematical techniques to compare the
logical equivalence of the two versions of the same design rather than
using test vectors to perform simulation. The two compared versions
could be post-map design and post-fit design, or RTL design and post-fit
design. Equivalence checking greatly shortens the verification cycle of the
design.

QII53011-7.2.0

17–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Formal Verification Versus Simulation

Formal verification cannot be considered as a replacement to the
vector-based simulation. Formal verification only complements the
existing vector-based simulation techniques to speed up the verification
cycle. Vector-based simulation techniques of gate level designs can take a
considerable amount of time.

Vector-based simulation techniques can be used to do the following:

■ Verify design functionality
■ Verify timing specifications
■ Debug designs

Formal Verification: What You Need to Know

If you use formal verification techniques to verify logic equivalence of
your design, you can save time by forgoing a comprehensive
vector-based simulation of the gate level design. However, there may be
impact on area and performance during recompilation of your design
with the Quartus II software if you have chosen to use formal verification
flow for Cadence Conformal LEC software. The area and performance of
your design may be affected by the following factors:

■ Hierarchy preservation
■ ROM implementation by logic elements (LEs)
■ Retiming is disabled

Refer to “Known Issues and Limitations” on page 17–24 before you
consider using the formal verification flow in your design methodology.

Formal
Verification
Design Flow

Altera supports formal verification using the Encounter Conformal
software for the following two synthesis tools:

■ Quartus II Integrated Synthesis
■ Synplify Pro

The following sections describe the supported design flows for these
synthesis tools.

Altera Corporation 17–3
October 2007 Preliminary

Formal Verification Design Flow

Quartus II Integrated Synthesis

The design flow for formal verification using the Quartus II integrated
synthesis is shown in Figure 17–1. This flow performs equivalency
checking for the RTL source code and the post-fit netlist generated by the
Quartus II software. The RTL source code can be in Verilog or VHDL
format. The post-fit netlist generated by the Quartus II software is always
in Verilog format.

Figure 17–1. Formal Verification Using Quartus II Integrated Synthesis and the
Encounter Conformal Software

EDA Tool Support for Quartus II Integrated Synthesis

The formal verification flow using the Quartus II software and Cadence
Encounter Conformal software supports the following software versions
and operating systems:

■ Quartus II software beginning with version 4.2
■ Cadence Encounter Conformal software beginning with 4.3.5A
■ Solaris and Linux operating systems

Synplify Pro

The design flow for formal verification using Synplify Pro Synthesis
performs equivalency checking for the post-synthesis netlist from
Synplify Pro and the post fit netlist generated by Quartus II software, as
shown in Figure 17–2.

f For additional information about performing equivalency checking
between RTL and post-synthesis netlist generated from Synplify Pro
software, refer to the Synplify Pro documentation.

Synthesis

Place-and-Route

Equivalence
Checking

RTL

Quartus II
Software

Post-Fit
Verilog Output

Encounter Conformal
Software

Formal Verification
Library

17–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 17–2. Formal Verification Flow Using Synplify Pro and the Encounter
Conformal Software

EDA Tool Support for Synplify Pro

The formal verification flow using the Quartus II software, the Synplicity
Synplify Pro, and the Cadence Encounter Conformal software supports
the software versions and operating systems shown in Table 17–1.

Table 17–1. Compatible Software Versions

Quartus II
Software Version

Cadence Conformal
LEC Version Synplify Pro Version

4.1 4.3.0.a 7.6.1

4.2 4.3.5.a 8.0

5.0 5.1 8.1

5.1 5.1 8.4

6.0 5.2 8.5

6.1 6.1 8.6.2

7.0 6.1 8.6.2

7.1 6.2 8.8.1

7.2 7.1 9.0

Synplify Pro

Quartus II

Synthesized
Netlist

Equivalence Checking/
Encounter Conformal

Equivalence Checking/
Encounter Conformal

Formal Verification
 Library

P&R
Netlist

RTL

Altera Corporation 17–5
October 2007 Preliminary

RTL Coding Guidelines for Quartus II Integrated Synthesis

RTL Coding
Guidelines for
Quartus II
Integrated
Synthesis

The Cadence Encounter Conformal software can compare the RTL code
against the post-fit netlist generated by the Quartus II software. The
Encounter Conformal software and the Quartus II integrated synthesis
parse and compile the RTL description in slightly different ways. The
Quartus II software supports some RTL features that the Encounter
Conformal software does not support, and vice versa. The style of the
RTL code is of particular concern because neither tool supports some
constructs, leading to potential formal verification mismatches; for
example, state machine extraction, wherein different encoding
mechanisms can result in different structures. Therefore, for successful
verification, both tools must interpret the RTL code in the same manner.

The following section provides information on recognizing and
preventing problems that can arise in the formal verification flow.

f For more details about RTL coding styles for Quartus II Integrated
Synthesis, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook.

1 Some of the coding guidelines apply to both Quartus II
Integrated Synthesis and Synplify Pro flow, as indicated in each
of the guidelines in the following sections.

Synthesis Directives and Attributes

Synthesis directives, also known as pragmas, play an important role in
successful verification of RTL against the post-fit Verilog Output netlist
from the Quartus II software.

Pragmas and trigger keywords that are supported in Quartus II
integrated synthesis and Encounter Conformal are also supported in the
formal verification flow. The Quartus II integrated synthesis and
Encounter Conformal both support the trigger keywords synthesis and
synopsys. When the Quartus II software does not recognize a keyword
such as verplex, the keyword is disabled in the formal verification scripts
produced for use with the Cadence Conformal software. Therefore, it is
important to use caution with unsupported pragmas because they can
lead to verification mismatches.

17–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

For example, you can use the Quartus II integrated synthesis to
synthesize RTL code with the synthesis directive
read_comments_as_HDL.

Example 17–1. Verilog HDL Example of Read Comments as HDL

// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

Example 17–2. VHDL Example of Read Comments as HDL

-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

1 The Encounter Conformal software does not support the
synthesis directive read_comments_as_HDL, and the
directive has no affect on the Encounter Conformal software.

Table 17–2 lists supported pragmas and trigger keywords for formal
verification.

Table 17–2. Supported Pragmas and Trigger Keywords for Formal
Verification

Pragmas (1) Trigger Keywords

full_case
parallel_case
pragma
synthesis_off
synthesis_on
translate_off
translate_on

synthesis
synopsys

Note to Table 17–2:
(1) Do not use Verilog 2001-style pragma declarations. The Quartus II software and

the Encounter Conformal software support this style of pragma in different
manners.

Altera Corporation 17–7
October 2007 Preliminary

RTL Coding Guidelines for Quartus II Integrated Synthesis

Stuck-at Registers

Quartus II integrated synthesis eliminates registers that have their output
stuck at a constant value. Quartus II integrated synthesis gives a warning
message and adds an entry to the corresponding report panel in the
formal verification folder of the Analysis and Synthesis section of the
Compilation Report. If Conformal LEC does not find the same
optimizations, it can lead to unmapped points in the golden netlist.
Example 17–3 illustrates the issue:

Example 17–3. Verilog HDL Example Showing Stuck at Registers

module stuck_at_example {clk, a,b,c,d,out};
input a,b,c,d,clk;
output out;
reg e,f,g;

always @(posedge clk) begin
e <= a and g;// e is stuck at 0
g <= c and e;// g is stuck at 0
f <= e | b;

end
assign out = f and d;
endmodule

In this module description, registers e and g are tied to logic 0. In this
example, the Quartus II software generates the following warning
message:

Warning: Reduced register "g" with stuck data_in port to stuck value GND
Warning: Reduced register "e" with stuck data_in port to stuck value GND

Quartus II integrated synthesis then adds a command to the formal
verification scripts telling Conformal LEC that a register is stuck at a
constant value, as shown in Example 17–4:

Example 17–4. Conformal LEC Script Showing Commands for Instance Equivalence

// report floating signals
// Instance-constraints commands for constant-value registers removed
// during compilation
// add instance constraints 0 e -golden
// add instance constraints 0 g -golden

17–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The command is commented in the formal verification script, forcing the
Encounter Conformal software to treat the register as stuck at a constant
value, and potentially hiding a compilation error. You must verify that
input to the e and g registers is constant in the design and uncomment
the command to obtain accurate results.

1 Altera recommends recoding your design to eliminate
“stuck-at” registers.

The stuck-at register information in this section also applies to
the Synplify Pro flow.

ROM, LPM_DIVIDE, and Shift Register Inference

For the purpose of formal verification, the Quartus II integrated synthesis
implements both ROM and shift registers in the form of LEs instead of
using dedicated on-chip memory resources. Using LEs can be less
area-efficient than inferring a megafunction that can be implemented in a
RAM block. However, the Quartus II software generates a warning
message indicating that the megafunction was not inferred. Quartus II
integrated synthesis also reports a suggested ROM or shift register
instantiation that enables you to either use the MegaWizard® Plug-In
Manager to create the appropriate megafunction explicitly, or to isolate
the corresponding logic in a separate entity that you can set as a black
box. By setting black box properties on a particular module or entity, you
are telling the formal verification tool not to peek inside the module or
entity for formal verification. If the black box properties are set on the
corresponding megafunction before synthesis, you can verify the
megafunction with the Encounter Conformal software.

If the design contains division functionality, the Quartus II software
infers an lpm_divide megafunction, which is treated as a black box for the
purpose of formal verification.

RAM Inference

When the Quartus II software infers the LPM megafunction altsyncram
from the RTL code, the Quartus II software generates the following
warning message:

Created node "<mem_block_name>" as a RAM by generating altsyncram megafunction to implement
register logic with M512 or M4K memory block or M-RAM. Expect to get an error or a mismatch
for this block in the formal verification tool.

Altera Corporation 17–9
October 2007 Preliminary

RTL Coding Guidelines for Quartus II Integrated Synthesis

This warning is generated because the memory block (altsyncram) is a
new instance in the post-fit netlist that is handled as a black box by the
formal verification tool. However, no such instance exists in the original
RTL design, resulting in mismatch or error reporting in the formal
verification tool.

Latch Inference

A latch is implemented in the Quartus II integrated synthesis using a
combinational feedback loop. The Encounter Conformal software infers a
latch primitive in the Encounter Conformal library (DLAT) to implement
a latch. This results in having a DLAT on the golden side and a
combinational loop with a cut point on the revised side, leading to
verification mismatches. The Quartus II software issues a warning
message whenever a latch is inferred, and the Quartus II software adds
an entry to the report panel in the Formal Verification folder of the
Analysis and Synthesis report. Altera recommends that you avoid latches
in your design; however, if latches are necessary, Altera recommends
using the corresponding lpm_latch megafunction.

f For more information about the problems related to latches, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

Combinational Loops

If the design consists of an intended combinational loop, you must define
an appropriate cut point for both the RTL and the post-fit Verilog Output
netlist. A warning that a combinational loop exists in the design is found
in the Formal Verification subfolder of the Quartus II software
Analysis and Synthesis report.

For more information on issues with combinational loops, see “Known
Issues and Limitations” on page 17–24.

17–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Finite State Machine Coding Styles

When a state machine is inferred by the Encounter Conformal software,
it uses sequential encoding as the default encoding when no user
encoding is present. The Quartus II software selects the encoding most
suited for the inferred state machine if the State Machine Processing
Settings on the Analysis and Synthesis Settings page of the Settings
dialog box is set to the default value Auto. Therefore, it is important to use
the coding style described in the Recommended HDL Coding Styles chapter
in volume 1 of the Quartus II Handbook on RTL when writing finite state
Machines (FSMs). This allows the Quartus II integrated synthesis and the
Encounter Conformal software to infer a similar state machine for the
same RTL code.

Generating the
Post-Fit Netlist
Output File and
the Encounter
Conformal Setup
Files

The following steps describe how to set up the Quartus II software
environment to generate the post-fit Verilog Output netlist and the
Encounter Conformal script for use in formal verification. With the
exception of step 3, the steps are identical for both of the Synthesis tools:

1. Create a new Quartus II project or open an existing project.

2. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

3. In the Category list, click EDA Tool Settings.

If you are using the Quartus II integrated synthesis, perform the
following steps:

a. In the Category list, under EDA Tool Settings, select Design
Entry/Synthesis. Select <None> from the Tool name list.

b. In the Category list, under EDA Tool Settings, select Formal
Verification. Select Conformal LEC from the Tool name list
(Figure 17–3).

Altera Corporation 17–11
October 2007 Preliminary

Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files

Figure 17–3. Compilation Process Settings

If you are using Synplify Pro, perform the following steps:

a. In the Category list, under EDA Tool Settings, select Design
Entry/Synthesis. Select Synplify Pro from the Tool name list.

b. In the Category list, under EDA Tool Settings, select Formal
Verification. Select Conformal LEC from the Tool name list.

4. In the Category list, select Compilation Process Settings. Under
Compilation Process Settings, select Incremental Compilation.

In the Incremental Compilation page, click Full Incremental
Compilation to turn on Incremental Compilation.

or

17–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Turn on Incremental Compilation by typing the following Tcl
command in the Quartus II software Tcl console:

Example 17–5. TcL Command to Turn On Full Incremental Compilation

set_global_assignment -name INCREMENTAL_COMPILATION \
FULL_INCREMENTAL_COMPILATION

1 Altera requires that Incremental Compilation be turned On
for Formal Verification, and that your design does not
contain any user created partitions. Starting with Quartus II
version 6.1 and later, the incremental compilation feature is
On by default.

5. In the Category list, select Analysis and Synthesis Settings to
expand the options list, and click Synthesis Netlist Optimizations.
In the Synthesis Netlist Optimizations page, turn off Perform
gate-level register retiming (Figure 17–4).

1 If Perform gate-level register retiming is not turned off, the
Encounter Conformal script can display a different set of
compare points, making the resulting netlist difficult to
compare against the reference netlist file.

Altera Corporation 17–13
October 2007 Preliminary

Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files

Figure 17–4. Synthesis Netlist Optimizations

6. In the Category list, select Fitter Settings, and select Physical
Synthesis Optimizations.

a. Under Physical synthesis for registers, turn off Perform
register retiming.

b. Under Physical Synthesis for Fitting, turn off both Perform
physical synthesis for combinational logic and Perform logic
to memory mapping to prevent logic from being mapped to
RAMs (Figure 17–5).

17–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 17–5. Fitter Settings

Retiming a design, either during the synthesis step or during the fitting
step, usually results in moving and merging registers along the critical
path and is not well supported by the equivalence checking tools. Because
equivalence checkers compare the cone of logic terminating at registers,
do not use retiming to move the registers during optimization in the
Quartus II software.

1 If the options Perform gate-level register retiming
(Figure 17–4) and Perform register retiming (Figure 17–5)
are not turned off, the Encounter Conformal script can
display a different set of compare points, making the
resulting netlist difficult to compare against the reference
netlist file. If you use retiming in your design during
compilation, then you cannot generate a netlist for formal
verification.

f To learn more about physical synthesis, refer to the Netlist Optimizations
and Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

Altera Corporation 17–15
October 2007 Preliminary

Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files

7. Perform a full compilation of the design. On the Processing menu,
click Start Compilation, or click the Start Compilation icon on the
Toolbar.

If your golden netlist (VQM netlist from Synplify Pro or RTL)
includes any design entity not having a corresponding formal
verification model, that entity is handled as a black box whose
boundary interface is preserved. There are three types of black boxes
and required user actions, depending upon each circumstance.
Table 17–3 describes these three types of black boxes and the
required user actions in detail.

You can also use Tcl commands or Quartus II GUI to set the black box
property on the entities, which the formal verification tool does not
compare.

Tcl Command

Use the following Tcl commands to preserve the boundary interface of a
black box entity: dram.

Example 17–6. TcL Command to Create a Black Box

set_instance_assignment -name PRESERVE_HIERARCHICAL_BOUNDARY FIRM -to | -entity dram
set_instance_assignment -name EDA_FV_HIERARCHY BLACKBOX -to | -entity dram

GUI

To preserve the boundary interface of an entity using the GUI, follow
these steps:

1. Make an EDA Formal Verification Hierarchy assignment to the
entity with the value BLACKBOX.

Table 17–3. Black Boxes and Required User Action

Type of Black Box Required User Action

Altera library of parameterized modules (LPMs) and
megafunctions (refer to Table 17–5 for a complete list).

No action required. The Quartus II software
automatically black boxes the list of components
and preserves the hierarchy.

Any parametrized entity other than those listed in
Table 17–5.

User must black box the wrapper that instantiates
the parameterized entity.

Non parameterized entities that the user wants to black box. User can black box the entity itself.

17–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

2. Make a Preserve Hierarchical Boundary assignment to the entity
with the value Firm (Figure 17–6).

Figure 17–6. Setting the Black-Box Property on a Module

The Quartus II Software Generated Files, Formal Verification
Scripts, and Directories

After successful compilation, the Quartus II software generates a list of
files, formal verification scripts, and directories in the
<project_directory>fv/conformal/ directory (Table 17–4).

Table 17–4. The Quartus II Software Compiler-Generated Files and Directories (Part 1 of 2)

File or
Directory Name Details

Verilog
Output File

<proj rev>.vo The Quartus II software-generated netlist for formal verification.

Altera Corporation 17–17
October 2007 Preliminary

Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files

The script file contains the setup and constraints information to be used
with the formal verification tool. The file <entity>.v in the blackboxes
directory contains the module description of entities that are not defined
in the formal verification library. The file also contains entities that you

Script file <proj rev>.ctc The <proj rev>.ctc file references <proj rev>.clg and <proj rev>.clr
that read the library files and black box descriptions. The <proj
rev>.ctc file also references the <proj rev>.cmc file containing
information about the mapped points. (1)

<proj rev>.cec The <proj rev>.cec file contains the information for instance
equivalences.

<proj rev>.cep The <proj rev>.cep file contains the information for black box pin
equivalences in the design.

<proj rev>.cmp The <proj rev>.cmp file contains the information for the black box pin
mapping between the golden and revised sides. (2)

<proj rev>.cmc The <proj rev>.cmc file contains information about the additional
points to be mapped in addition to the points selected by the tool.

<proj rev>_trivial.cmc This <proj rev>_trivial.cmc file contains mapping information
for all the key points in the design. (3)

<proj rev>.clr The <proj rev>.clr file contains information about the macros and
libraries for the revised design.

<proj rev>.clg The <proj rev>.clg file contains information about the macros and
libraries for the golden design.

blackboxes
directory

<project directory>/fv/
conformal/<project rev>_
blackboxes

This directory contains top-level module descriptions for all the
user-defined black box entities and contains modules with definitions
other than Verilog or VHDL, for example, Block Design File (.bdf) in
the design directory
<project directory>/fv/conformal/<project rev>_blackboxes

Notes to Table 17–4:
(1) This file is used with the Encounter Conformal software.
(2) This file is called from the <proj rev>.ctc script file. By default, the line where this file is called is commented out.

These files are only useful for HardCopy II device families.
(3) In some cases, Encounter Conformal software performs incorrect key point mapping, resulting in formal

verification mismatches. To overcome the verification mismatches, the Quartus II software writes out the
<proj rev>_trivial.cmc file that contains mapping information for all the key points in the design. Reading this
file during the formal verification setup can result in increased run time. Therefore, the Quartus II software writes
out the top-level script file <proj rev>.ctc with the command to read the <proj rev>_trivial.cmc file commented.
If the formal verification results are not acceptable, the user can uncomment the command and read the
<proj rev>_trivial.cmc file. The command in the <proj rev>.ctc file is:

//Trivial mappings with same name registers
//read mapped points $PROJECT/fv/conformal/<proj rev>_trivial.cmc

Table 17–4. The Quartus II Software Compiler-Generated Files and Directories (Part 2 of 2)

File or
Directory Name Details

17–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

specify as black boxes. For example, if there is a reference to a black box
for an instance of the altdpram megafunction in the design, the
blackboxes directory does not contain a module description for the
altdpram megafunction because it is defined in the altdpram.v file of the
formal verification library. When a module does not have an RTL
description, or the description exists only in the formal verification
library and you do not want to compare the module using formal
verification, a file containing only the top-level module description with
port declaration is written out to the blackboxes directory and read into
the Encounter Conformal software.

Understanding
the Formal
Verification
Scripts for
Encounter
Conformal

The Quartus II software generates scripts to use with the Encounter
Conformal Logic Equivalence Check (LEC) software. This section
elaborates on the details of the Encounter Conformal commands used
within the scripts to help you compare the revised netlist with the golden
netlist. In most cases, you do not need to add any more Encounter
Conformal constraints to verify your netlists. Also, a sample script
generated by the Quartus II software is provided at the end of the
chapter.

The Encounter Conformal Commands within the Quartus II
Software-Generated Scripts

The value for the variable QUARTUS is the path to the Quartus II software
installation directory:

setenv QUARTUS <Quartus Installation Directory>

The Quartus II software assigns the current working directory of the
project to the PROJECT variable. Use this variable to change the project
directory to the directory where the design files are installed when
moving from a UNIX to a Windows environment, or vice versa:

setenv PROJECT <Quartus Project Directory>

The following command reads both the golden and the revised netlists,
along with the appropriate library models:

read design <design files>

1 You must update the project location when the files are moved
from the Windows environment to the UNIX environment.

The post place-and-route netlist from the Quartus II software might
contain net and instance names that are slightly different from those of
the golden netlist. By using the following command, the Quartus II

Altera Corporation 17–19
October 2007 Preliminary

Understanding the Formal Verification Scripts for Encounter Conformal

software defines temporary substitute string patterns enabling the
Encounter Conformal software to automatically map key points when the
names are not the same:

add renaming rule <rule>

The Encounter Conformal LEC software employs three name-based
methods to map key points to compare the revised netlist with the golden
netlist. Scripts set the correct method to get the best results.

set mapping method <mapping_rule>

The Quartus II software performs several optimizations, including
optimizing the registers whose input is driven by a constant. Under these
circumstances, for the formal verification software to compare the netlists
properly, the command set flatten model is used with the option
seq_constant.

set flatten model <flattening_rule>

When you use the command report black box, verify that the
following modules are listed as black boxes, along with any of the
modules black boxed by the user, in both the golden and revised netlists:

■ LPMs and megafunctions without the formal verification models
■ Encrypted IP functions
■ Entities not implemented in Verilog HDL or VHDL

Use the following command to set the same implementation on
multipliers for both the golden and revised netlists:

set multiplier implementation <implementation_name>

If there are any combinational loops or instances of LPM_LATCH, the
Quartus II software cuts the loop at the same point using the following
command on both the golden and revised netlists:

add cut point

17–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Encounter Conformal software does not always automatically map
all the keypoints, or can incorrectly map some keypoints. To help the
Encounter Conformal software successfully complete the mapping
process, the Quartus II software records optimizations performed on the
netlist as a series of add mapped points in the Encounter Conformal
<file_name>.cmc script.

add mapped points <key_points>

There are situations where the inverter in front of the register gets moved
after the register. In this situation, the following command is used:

add mapped points <key_points> -invert

The following command reads in the mapped point information from the
specified file:

read mapped points <file_name>.cmc

Figure 17–7. Instance Equivalence

During the process of optimization, the Quartus II software might merge
two registers into one (Figure 17–7). The Quartus II software informs the
formal verification tool that the U1 and U2 registers are equivalent to each
other using the following command:

add instance equivalence <instance_pathname ..> [-Golden]

If the register duplication takes place, the following command is used:

add instance equivalence <instance_pathname ..>
[-revised]

Golden Revised

U1

U2

DFF

DFF

PO PO
DFF

U1

Altera Corporation 17–21
October 2007 Preliminary

Comparing Designs Using Encounter Conformal

The following command is used when the inverter is moved beyond the
register along with either register duplication or merging:

add instance equivalences <instance_pathname>
[-invert <instance_pathname>]

At times, the register output is driven to a constant, either logic 0
or logic 1. The Quartus II software sets the value of the register to
a constraint using the add instance constraint command. For
more information about this command, refer to “Stuck-at Registers”
on page 17–7.

add instance constraint <constraint_value>

Comparing
Designs Using
Encounter
Conformal

This section addresses using the Encounter Conformal software to
compare designs; that is, how to prove logical equivalence between two
versions of the design.

Black Boxes in the Encounter Conformal Flow

The Quartus II software usually generates a flattened netlist. However,
there are some modules in the design that must be treated differently. The
following is a list of some of these modules:

■ LPMs and megafunctions without formal verification models
■ Encrypted IP functions
■ Entities not implemented in Verilog HDL or VHDL

To perform equivalence checking of a design between its version
consisting of the modules listed above and its implemented version, the
modules have to be treated as black boxes by the Encounter Conformal
software. To facilitate the formal verification flow, the Quartus II
software reconstructs the hierarchy on the black boxes with a port
interface that is identical to the module on the golden side of the design.

Verilog Output netlist files written by the Quartus II software also
contain the black box hierarchy when you make the following
assignments for a module:

■ An EDA Formal Verification Hierarchy assignment with the value
BLACKBOX

■ A Preserve Hierarchical Boundary assignment with the value Firm
(Figure 17–6)

17–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If these two assignments are not made for a module, the Quartus II
software implements that module with logic cells. When this happens,
the Verilog Output netlist file no longer contains the black box hierarchy
and does not preserve the port interface, resulting in a mismatch within
the Encounter Conformal software.

Running the Encounter Conformal Software

To run the Encounter Conformal software, use its GUI or a system
command prompt, and use the CTC script generated by the Quartus II
software.

Running the Encounter Conformal Software from the GUI

To run the Encounter Conformal software from the GUI, follow these
steps:

1. Open the Encounter Conformal software.

2. On the File menu, click Do Dofile.

3. Select the file <path to project directory>/fv/conformal/<proj rev>.ctc.

The Encounter Conformal software GUI displays the comparison results
(Figure 17–8). The Golden window displays the original RTL description
or the post synthesis VQM netlist from Synplify Pro, and the Revised
window displays the information of the post-fit netlist generated by the
Quartus II software. The message section at the bottom of the window
reports the verification results and the number of unmapped and
non-equivalent points found in the design.

Altera Corporation 17–23
October 2007 Preliminary

Comparing Designs Using Encounter Conformal

Figure 17–8. Encounter Conformal Software GUI Display of Functional
Comparisons

To investigate the verification results, click the Mapping Manager icon in
the toolbar, or on the Tools menu, click Mapping Manager. The
Encounter Conformal software reports the mapped, unmapped, and
compared points in the Mapped Points, Unmapped Points, and
Compared Points windows, respectively.

f For more information about how to diagnose non-equivalent points,
refer to the Encounter Conformal software user documentation.

17–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Running the Encounter Conformal Software From a System Command
Prompt

To run the Encounter Conformal Software without using the GUI, type
the command shown in Example 17–7 at a system command prompt.

Example 17–7. Conformal LEC Command to Run Formal Verification

lec -dofile /<path to project directory>/fv/conformal/<proj rev>.ctc -nogui r

To get a downloadable design example showing the formal verification
flow with Quartus II software, go to
www.altera.com/support/examples/quartus/exm-formal-
verification.html.

f To learn more about the latest debugging tips and solutions for formal
verification flow between Cadence Conformal LEC tool and Quartus II
software, go to www.altera.com and perform an advanced search with
keywords “formal verification.”

Known Issues
and Limitations

The following known issues and limitations can occur when using the
formal verification flow described in this chapter:

■ When a port on a black box entity drives two or more signals within
the black box, the Quartus II software pushes the connections
outside of the black box, and creates that many ports on the black
box. This problem is only associated with Stratix II and HardCopy II
designs.

The additional ports on the black box are named
_unassoc_inputs_[] and _unassoc_outputs_[]
(Figure 17–9). This issue is generally associated with reset and enable
signals. Figure 17–9 shows an example in which the reset pin is split
into two ports outside of the black box and the
_unassoc_inputs_[] is driven by the clkctrl block. In such
situations, the Verilog Output netlist generated by the Quartus II
software has signals driving these black box ports, but golden RTL
does not contain any signals to drive the _unassoc_inputs_[],
resulting in a formal verification mismatch of the black box. The
black box module definition generated by the Quartus II software in
the directory <Quartus_project>\fv\conformal*_blackboxes
contains these additional _unassoc_inputs_[] and
_unassoc_outputs_[] ports. This black box module is read on

Altera Corporation 17–25
October 2007 Preliminary

Known Issues and Limitations

both the golden and revised sides of the design, which results in
unconnected ports on the golden side and formal verification
mismatches.

Figure 17–9 shows the creation of _unassoc_inputs_[] and
_unassoc_outputs_[] for the reset signal.

Figure 17–9. Creation of _unassoc_inputs_[] and _unassoc_outputs_[]

Another common occurrence of this issue is in HardCopy II designs.
Whenever a port drives large fan-out within the black box, the Quartus II
software inserts a buffer on the net and moves the logic outside of the
black box (Figure 17–10).

To fix the problem of unassoc_input_[] ports causing blackbox
mismatches, use Cadence Conformal commands to change the type of the
blackbox unassoc_input_[] keypoint to a primary output keypoint,
and then marking the appropriate pin equivalences. Similarly, to fix the
problem of register mismatches due to unassoc_output_[] pins from
blackboxes, use Conformal commands to change the type of the blackbox
unassoc_output_[] keypoint to a primary input, and then marking
equivalent pins as such. The commands to perform these actions are
written in the <proj rev>.cep file.

reset

clkctrl _unassoc_inputs_[]

reset

_unassoc_outputs_[]

17–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 17–10 shows the creation of _unassoc_inputs_[] for a signal
with large fan-out.

Figure 17–10. Creation of _unassoc_inputs_[] for a Signal with Large Fan-out

■ In designs with combinational feedback loops, the Encounter
Conformal software can insert extra cut points in the revised netlist,
causing unmapped points and ultimately verification mismatches.

■ For Cyclone II designs, Conformal LEC may report non-equivalent
flipflops and extra cut points for the revised (post-fit) design when
your HDL source code instantiates the lpm_ff primitive with an
asynchronous load signal aload (with or without any other
asynchronous control signals) and when the asynchronous clear
signal aclr and asynchronous set signal aset are used together. To
avoid this problem, ensure that there is a wrapper module or entity
around the lpm_ff instantiation, and black box the module or entity
that instantiates the lpm_ff primitive.

■ For Stratix III designs, the Cadence Conformal LEC software creates
cut points for the combinational loops on the golden side and may
fail equivalence checking due to improper mapping. The
combinational loops are due to logic around the registers emulating
multiple set, resets, or both. These cut points are also reported during
the mapping step in Quartus II software with Warning messages.
You can manually add Cadence Conformal commands to add cut
points, which result in proper mapping and formal verification.

■ To perform formal verification, certain synthesis optimization
options, such as register retiming, optimization through black box
hierarchy boundaries, and disabling the ROM and shift register
inference, are turned off, which can have an impact on the area
resource and performance.

■ RAM and ROM instantiations, inferences, or both are not verified
using formal verification.

Signal A

_unassoc_inputs_[] Black Box

Signal A

Altera Corporation 17–27
October 2007 Preliminary

Conclusion

■ Incremental Compilation for the purpose of formal verification does
not support user-created design partitions.

■ Formal verification does not support clear box netlist due to
unconnected ports on its WYSIWYG instances.

■ Formal verification does not support VHDL megafunction variations
due to undriven ports on the megafunctions.

■ When a black box contains bidirectional ports, the Quartus II
software fails to reconstruct the hierarchy. For this reason, the black
box is represented by a flat netlist, resulting in formal verification
mismatches.

■ ROMs in the design have to be black boxed before compilation using
Quartus Integrated Synthesis, because the Quartus II software may
perform some optimizations on the ROM, resulting in Formal
Verification mismatches.

■ Conformal may report mismatches or abort comparison of some key
points when a DSP megafunction is implemented in LEs by the
Quartus II software due to implicit optimizations within the DSP
and the complexity of the multiplier logic in terms of LEs.

■ Unused logic optimized within and around a black box by the
Quartus II software can result in a black-box interface different from
the interface in the synthesized VQM netlist.

Conclusion Formal verification software enables verification of the design during all
stages from RTL to placement and routing. Verifying designs takes more
time as designs increase in size. Formal verification is a technique that
helps reduce the time needed for your design verification cycle.

17–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Black Box
Models

The black box models are interface definitions of entities, such as
primitives, atoms, LPMs, and megafunctions. These models have a
parameterized interface, and do not contain any definition of behavior.
They are specifically designed and tested to work with the Encounter
Conformal software, which uses these models along with your design to
generate black boxes for instances of the entity with varying sets of
parameters in the design. Table 17–5 describes the supported black box
models. Besides these black box models, you can set a black box property
on a specific module or entity as explained earlier in this chapter.

Table 17–5. Supported Black Box Models (Part 1 of 3)

Entity Type Entity Names

Megafunctions alt3pram, altaccumulate, altfp_mult, altsqrt, altlvds_rx, altlvds_tx, altshift_taps, sld_virtual_jtag
sld_virtual_jtag_basic dcfifo, scfifo, altsyncram, altsqrt

LPMs lpm_add_sub, lpm_divide

Altera Corporation 17–29
October 2007 Preliminary

Black Box Models

Atoms (1)

Cyclone:
cyclone_crcblock, cyclone_jtag, cyclone_pll, cyclone_ram_block,
cyclone_asmiblock, cyclone_dll

Stratix:
stratix_crcblock, stratix_jtag, stratix_lvds_receiver,
stratix_lvds_transmitter, stratix_pll, stratix_rublock,
stratix_ram_block, stratix_dll

Stratix II:
stratixii_crcblock, stratixii_jtag, stratixii_lvds_receiver,
stratixii_lvds_transmitter, stratixii_pll, stratixii_rublock,
stratixii_ram_block, stratixii_asm_block, stratixii_dll,
stratixii_termination, stratixii_asmiblock

Stratix GX:
stratixgx_crcblock, stratixgx_jtag, stratixgx_lvds_receiver,
stratixgx_lvds_transmitter, stratixgx_pll, stratixgx_rublock,
stratixgx_ram_block, stratixgx_dll

Stratix II GX:
stratixiigx_hssi_receiver, stratixiigx_hssi_transmitter,
stratixiigx_hssi_central_management_unit,
stratixiigx_hssi_cmu_pll, stratixiigx_hssi_cmu_clock_divider,
stratixiigx_hssi_refclk_divider,
stratixiigx_hssi_calibration_block, stratixiigx_crcblock,
stratixiigx_ram_block, stratixiigx_lvds_transmitter,
stratixiigx_lvds_receiver, stratixiigx_pll, stratixiigx_dll,
stratixiigx_jtag, stratixiigx_asmiblock, stratixiigx_termination,
stratixiigx_rublock

Cyclone II:
cycloneii_asmiblock, cycloneii_clk_delay_ctrl, cycloneii_clkctrl,
cycloneii_jtag, cycloneii_pll, cycloneii_ram_block

Arria GX:
arriagx_asmiblock, arriagx_crcblock, arriagx_dll,
arriagx_hssi_calibration_block,
arriagx_hssi_central_management_unit,
arriagx_hssi_cmu_clock_divider, arriagx_hssi_cmu_pll,
arriagx_hssi_receiver, arriagx_hssi_refclk_divider,
arriagx_hssi_transmitter, arriagx_jtag, arriagx_lvds_receiver,
arriagx_lvds_transmitter, arriagx_pll, arriagx_ram_block,
arriagx_rublock, arriagx_termination

HardCopy II:
hardcopyii_crcblock, hardcopyii_dll, hardcopyii_jtag,
hardcopyii_lvds_receiver, hardcopyii_lvds_transmitter,
hardcopyii_pll, hardcopyii_ram_block, hardcopyii_termination

Table 17–5. Supported Black Box Models (Part 2 of 3)

Entity Type Entity Names

17–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Conformal
Dofile/Script
Example

The following example script (17–8), generated by the Quartus II
software, lists some of the setup commands used in Conformal LEC
software:

Example 17–8. Conformal LEC Script

// Copyright (C) 1991-2007 Altera Corporation
// Your use of Altera Corporation's design tools, logic functions
// and other software and tools, and its AMPP partner logi
// functions, and any output files from any of the foregoing
// (including device programming or simulation files), and any
// associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License
// Subscription Agreement, Altera MegaCore Function License
// Agreement, or other applicable license agreement, including,
// without limitation, that your use is for the sole purpose of
// programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the
// applicable agreement for further details.

// Script generated by Quartus II

reset
set system mode setup
set log file mfs_3prm_1a.fv.log -replace
set naming rule "%s" -register -golden
set naming rule "%s" -register -revised
// Naming rules for Verilog
set naming rule "%L.%s" "%L[%d].%s" "%s" -instance
set naming rule "%L.%s" "%L[%d].%s" "%s" -variable
// Naming rules for VHDL
// set naming rule "%L:%s" "%L:%d:%s" "%s" -instance
// set naming rule "%L:%s" "%L:%d:%s" "%s" -variable
// set undefined cell black_box -both
// These are the directives that are not supported by the QIS RTL to gates FV flow
set directive off verplex ambit
set directive off assertion_library black_box clock_hold compile_off compile_on
set directive off dc_script_begin dc_script_end divider enum infer_latch
set directive off mem_rowselect multi_port multiplier operand state_vector template
add notranslate module alt3pram -golden

Stratix III:
stratixiii_asmiblock, stratixiii_crcblock, stratixiii_jtag,
stratixiii_lvds_receiver, stratixiii_lvds_transmitter,
stratixiii_mlab_cell,
stratixiii_pll, stratixiii_ram_block, stratixiii_rublock,
stratixiii_termination, stratixiii_tsdblock

Note to Table 17–5:
(1) The entity names are given for the specific device family listed.

Table 17–5. Supported Black Box Models (Part 3 of 3)

Entity Type Entity Names

Altera Corporation 17–31
October 2007 Preliminary

Conformal Dofile/Script Example

add notranslate module alt3pram -revised
setenv QUARTUS /data/quark/build/ajaishan/quartus
setenv PROJECT
/net/quark/build/ajaishan/quartus_regtest/eda/fv/conformal/synplify/stratix/mfs_3prm_1a_v1
_/mfs_3prm_1a/qu_allopt
read design \

$QUARTUS/eda/fv_lib/vhdl/dummy.vhd \
-map lpm $QUARTUS/eda/fv_lib/vhdl/lpms \
-map altera_mf $QUARTUS/eda/fv_lib/vhdl/mfs \
-map stratix $QUARTUS/eda/fv_lib/vhdl/stratix \
-vhdl -noelaborate -golden

read design \
-file $PROJECT/fv/conformal/mfs_3prm_1a.clg \
$PROJECT/p3rm_block.v \
$PROJECT/mfs_3prm_1a.v \
-verilog2k -merge none -golden

read design \
$QUARTUS/eda/fv_lib/vhdl/dummy.vhd \
-map lpm $QUARTUS/eda/fv_lib/vhdl/lpms \
-map altera_mf $QUARTUS/eda/fv_lib/vhdl/mfs \
-map stratix $QUARTUS/eda/fv_lib/vhdl/stratix \
-vhdl -noelaborate -revised

read design \
-file $PROJECT/fv/conformal/mfs_3prm_1a.clr \
$PROJECT/fv/conformal/mfs_3prm_1a.vo \
-verilog2k -merge none -revised

// add ignored inputs _unassoc_inputs_* -all -revised
add renaming rule r1 "~I\/" "\/" -revised
add renaming rule r2 "_I\/" "\/" -revised
set multiplier implementation rca -golden
set multiplier implementation rca -revised
set mapping method -name first
set mapping method -nounreach
set mapping method -noreport_unreach
set mapping method -nobbox_name_match
set flatten model -seq_constant
set flatten model -nodff_to_dlat_zero
set flatten model -nodff_to_dlat_feedback
set flatten model -nooutput_z
set root module mfs_3prm_1a -golden
set root module mfs_3prm_1a -revised
report messages
report black box
report design data
// report floating signals
dofile $PROJECT/fv/conformal/mfs_3prm_1a.cec
// dofile $PROJECT/fv/conformal/mfs_3prm_1a.cep
// Instance-constraints commands for constant-value registers removed
// during compilation
set system mode lec -nomap
read mapped points $PROJECT/fv/conformal/mfs_3prm_1a.cmc
// Trivial mappings with same name registers
// read mapped points $PROJECT/fv/conformal/mfs_3prm_1a_trivial.cmc
// dofile $PROJECT/fv/conformal/mfs_3prm_1a.cmp
map key points
remodel -seq_constant -repeat
add compare points -all
compare
usage
// exit -f

17–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Referenced
Documents

This chapter references the following documents:

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the
Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Altera Corporation 17–33
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 17–6 shows the revision history for this chapter.

Table 17–6. Document Revision History

Date and
Version Changes Made Summary of Changes

October 2007
v7.2.0

● Updated Introduction section on page 17–1.
● Updated Known Issues and Limitations section on

page 17–24.
● Updated Table 17–1.
● Updated Table 17–5.
● Updated Figure 17–10.

Updated for Quartus II software
version 7.2.

May 2007
v7.1.0

● Updated Formal Verification Design Flow section
on page 17–2.

● Updated Generating the Post-Fit Netlist Output
File and Encounter Conformal Setup Files section
on page 17–10.

● Updated Understanding the Formal Verification
Scripts for Encounter Conformal section title on
page 17–18.

● Updated Known Issues and Limitations on
page 17–24.

● Renamed Tcl Sample Script to Conformal
Dofile/Script Example and updated section
on page 17–29.

● Added Referenced Documents on page 17–31.
● Removed Debugging Tips section.
● Updated Figure 17–3.
● Updated Figure 17–5.
● Updated Table 17–1.
● Updated Table 17–4.
● Updated Table 17–5.

Updated for Quartus II software
version 7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date
only. No other changes made to chapter.

—

November 2006
v6.1.0

Changed date only. Updated for Quartus II software
version 6.1

May 2006
v6.0.0

Minor updates for the Quartus II software version
6.0.0.

—

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 15 was previously Chapter 13 in version

5.0.

—

May 2005
v5.0.0

New functionality for Quartus II software 5.0. —

January 2005
v1.0

Initial release. —

17–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 18–1
October 2007

18. Synopsys Formality
Support

Introduction Formal verification of FPGA designs is gaining momentum as
multi-million System-on-a-Chip (SoC) designs are targeted at FPGAs.
Use the Formality software to easily verify logic equivalency between the
RTL and DC FPGA post-synthesis netlist, and between the DC FPGA
post-synthesis netlist and Quartus II post-place-and-route netlist.
Beginning with version 4.2, the Quartus® II software interfaces with EDA
tools including the Formality and DC FPGA software from Synopsys.

This chapter discusses the following:

■ “Formal Verification”
■ “Formal Verification Support” on page 18–2
■ “Generating Post-Synthesis Netlist for Formal Verification” on

page 18–3
■ “Generating the VO File and Formality Script” on page 18–4
■ “Quartus II Scripts for Formality” on page 18–11
■ “Comparing Designs Using the Formality Software” on page 18–11
■ “Known Issues and Limitations” on page 18–12

Formal
Verification

Formal verification uses exhaustive mathematical techniques to verify
design functionality. There are two types of formal verification:
equivalence checking and model checking. This section discusses
equivalence checking.

Equivalence Checking

Equivalence checking compares the logical equivalence between the
original design and the modified or revised design using mathematical
techniques. This method reduces the verification time several-fold
compared to the traditional method of performing verification using test
vectors. Using a formal verification methodology provides the following
key advantages:

■ Faster time-to-market
■ No testbenches or test vectors
■ Results in hours compared to days using traditional verification

methods

QII53015-7.2.0

18–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Formal
Verification
Support

The Quartus II software supports formal verification using the Formality
software for the DC FPGA Synthesis tool as shown in Figure 18–1.

Figure 18–1. Equivalence Checking in the FPGA Design Flow

EDA Tools and Device Support

The formal verification flow using the Quartus II software and Synopsys
Formality software requires the following software versions:

■ Quartus II software, beginning with version 4.2
■ Synopsys DC FPGA software, beginning with version

W2005.03_EA1
■ Synopsys Formality software, beginning with version 2004.12

The formal verification flow, using the Quartus II and Synopsys
Formality software, supports Solaris and Linux platforms, and supports
Stratix series devices.

Formal Verification Between RTL and Post-Synthesis Netlist

The first step in the FPGA design flow is to synthesize the RTL code using
the DC FPGA to generate the synthesized verilog netlist. Equivalence
checking using formal verification is performed between the RTL and the
synthesized netlist to make sure the synthesis tool has not altered the
original functionality of the design.

RTL

Synthesized
Netlist

Post-Place-
and-Route

DC FPGA

Quartus II

Equivalence Checking/
Formality

Altera Corporation 18–3
October 2007 Preliminary

Generating Post-Synthesis Netlist for Formal Verification

1 For more information on how to use the DC FPGA software for
synthesizing Altera device designs, refer to the Synopsys Design
Compiler FPGA Support chapter in volume 1 of the Quartus II
Handbook.

Generating
Post-Synthesis
Netlist for
Formal
Verification

During the synthesis process, the DC FPGA synthesis tool performs
operations such as:

■ Modifying the net/instance names
■ Register duplication
■ State machine extraction by different methods

Changes caused by these synthesis operations cause comparison point
matching issues and false verification failures. In order to make sure that
the Formality software is aware of the design transformations performed
during the synthesis, the DC FPGA software writes out a Synopsys setup
verification file (.svf) to be read into the Formality software. To ensure the
SVF constraint file contains all the formal verification setup constraints,
you need to set certain commands in the DC FPGA software before
compiling the design as detailed in the following section.

DC FPGA Software Settings

The Formality software does not support the register merging or register
retiming synthesis operations, which are off by default, but it is necessary
to verify that these settings are turned off during synthesis. Some of the
commands necessary to turn off these options and generate a valid
Verilog netlist for the formal verification purpose are described in this
section.

1 For more information on creating the Tcl script file to perform
synthesis, refer to the DC FPGA User Guide or the Synopsys
Design Compiler FPGA Support chapter in volume 1 of the
Quartus II Handbook.

To set most of the required synthesis settings to generate a valid formal
verification netlist, use the following command:

set_fpga_defaults -formality <architecture_name>

For example:

set_fpga_defaults -formality altera_stratix

18–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

To view all of the settings performed by this command, add -verbose
to this command. In addition, you will need to execute the additional
commands shown in Table 18–1.

For a sample DC FPGA script that is ready for compilation, refer to “Tcl
Sample Script” on page 18–13.

Post synthesis Verilog netlist for formal verification can be generated by
executing the Tcl script either in fpga_vision (GUI) or fpga_shell-t
(command line).

1 For comparing RTL against post-synthesis netlist using the
Formality software, refer to the DC FPGA Software User Guide.

Generating the
VO File and
Formality Script

The following steps describe how to set up the Quartus II software
environment to generate the place-and-route, post-place-and-route VO
netlist file, and Formality script compatible for formal verification.

1. Create a new Quartus II project or open an existing project.

2. On the Assignments menu, click Settings. The Settings dialog box
is shown.

3. In the Category list, select Files. The Files page is shown.

4. Highlight the input file by clicking on it, then click Properties and
select Verilog Quartus Mapping File. Click OK.

Table 18–1. Commands and Affect of Each Command

Command Affect

set verilogout_write_constant_nets true Add this command at the beginning
of the script to allow unconnected
nets to be driven by either power or
ground.

change_names -rule verilog -hierarchy This command must be added after
the compile command to set the
Verilog naming rule to the output
netlist for all levels of hierarchy.

set_verification_friendly_mode -filename \
<top_level>.svf -append -allow_override

This command helps DC_FPGA to
write out a SVF constraint file to be
read into the Formality software.

write -hier -f verilog -o $outputdir/<top_level>.v This command writes out a Verilog
netlist for Formal Verification.

Altera Corporation 18–5
October 2007 Preliminary

Generating the VO File and Formality Script

5. In the Category list, select Design entry/synthesis under EDA Tool
Settings.

6. In the Tool name list, select Design Compiler FPGA (Figure 18–2).

These settings can also be performed using the following Tcl commands:

set_global_assignment -name VQM_FILE
<verilog_file_from_dc_fpga>

set_global_assignment -name \
EDA_DESIGN_ENTRY_SYNTHESIS_TOOL "Design Compiler FPGA"

set_global_assignment -name EDA_LMF_FILE \
dc_fpga.lmf -section_id eda_design_synthesis

Figure 18–2. EDA Tools Selection

18–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

7. In the Category list, select Formal verification. In the Tool name
list, select Formality (Figure 18–3).

Figure 18–3. EDA Tools Selection

8. Click OK.

9. From the Assignments menu, click Settings. The Settings dialog
box is shown.

10. In the Category list, click the + icon to expand Analysis and
Synthesis Settings and select Synthesis Netlist Optimizations. The
Synthesis Netlist Optimizations page is shown.

Altera Corporation 18–7
October 2007 Preliminary

Generating the VO File and Formality Script

11. Turn off the Perform gate-level register retiming option
(Figure 18–4).

Figure 18–4. Synthesis Netlist Optimizations

12. In the Category list, click the + icon to expand Fitter Settings and
select Physical Synthesis Optimizations. The Physical Synthesis
Optimizations page is shown.

18–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

13. Turn off the Perform register retiming option (Figure 18–5).

Figure 18–5. Setting Parameters for Netlist Optimizations

Performing register retiming on a design usually results in moving and
merging/duplicating registers along the critical path. Because
equivalence checkers compare the cones of logic terminating at registers,
you should not move or duplicate the registers during optimization by
the Quartus II software. If the options in this section are not selected, the
Formality software script could be presented with a different set of
compare points, and the resulting netlist is difficult to compare against
the reference netlist file.

The Quartus II software, beginning with version 4.2, supports register
duplication to improve the timing by duplicating the logic.

Altera Corporation 18–9
October 2007 Preliminary

Generating the VO File and Formality Script

f To learn more about register duplication, refer to the Analyzing and
Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

14. Perform a full compilation of the design either on the Processing
menu by clicking Start Compilation or by clicking on the start
compilation arrow icon located in the tool bar.

Handling Black Boxes

Every design entity in the golden netlist must have a corresponding
formal verification model in order to successfully run formal verification.
Design entities in the golden netlist without a corresponding formal
verification model are handled as black boxes whose boundary interfaces
must be preserved. These design entities appear in the netlist if one of the
following situations apply:

■ Altera megafunctions including library of parameterized modules
(LPM’s)

1 The black-box property is only applied to LPM modules
that do not have a formal verification model.

■ Encrypted intellectual property (IP) cores
■ Entities that are defined in the design format other than Verilog HDL

or VHDL

The Quartus II software has the capability of automatically identifying
the black boxes and sets the property Preserve Hierarchical Boundary to
Firm to preserve the boundary interfaces of the black boxes which helps
the formal verification.

You can also specify the black box property on entities that should be
compared by the Formality software. To do this make the following
assignments either using Tcl commands or GUI for the entities in
question:

Tcl Command

The following two commands preserves the boundary interface of the
entity: dram.

set_instance_assignment -name\
PRESERVE_HIERARCHICAL_BOUNDARY FIRM -to | -entity dram
set_instance_assignment -name EDA_FV_HIERARCHY\
BLACKBOX -to | -entity dram

18–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

GUI

Preserving the boundary interface of an entity using GUI.

■ Assign the EDA Formal Verification Hierarchy value as blackbox.

■ Assign the Preserve Hierarchical Boundary assignment with a value
of Firm to the entity (Figure 18–6).

Figure 18–6. Making a Black Box Assignment to an Entity

The Quartus II software compiler generates the following files and
directories:

■ VO file: <design_name>.vo.
■ Script file: <design_name>.fms used with Formality software.
■ A black-box directory: black boxes that contains all the user defined

black-box entities in the design which is located in the following
directory: /<project directory>/fv/formality/blackboxes.

The script file contains the setup constraints used along with the
Formality software. The <entity>.v file in the black-boxes directory
contains the module description of only those entities that are not defined
in the formal verification library.

For a sample script containing the setup commands generated by the
Quartus II software, refer to “Tcl Sample Script” on page 18–13.

Altera Corporation 18–11
October 2007 Preliminary

Quartus II Scripts for Formality

Quartus II
Scripts for
Formality

The Quartus II software generates scripts to use with the Formality
software. This section describes the Formality software commands used
within the scripts to help customers comparing the implementation and
reference netlists. Table 18–2 describes the Formality software commands
within Quartus II generated scripts.

Comparing
Designs Using
the Formality
Software

To verify the functional equivalence between post-synthesis and
post-place-and-route netlists, use the script file <file_name>.fms since it
contains references to the macros defined in the Altera formal verification
library. Some of the macros used are:

■ _ALTERA_FAMILY_IS_STRATIX_
■ POST_FIT
■ FORMALITY
■ GATES_TO_GATES

An example on the use of these macros is shown in the read_verilog
command in the previous section. This script file <file_name>.fms is
executed from either the GUI or using the following command:

%formality -file <file_name>.fms

f For more information about using the Formality software, refer to the
Formality User Guide.

Table 18–2. Formality Software Commands within Quartus II Generated Scripts

Command Affect

read_verilog <design files> This command reads both the reference and
implementation netlists in addition to the appropriate
library models.

set_compare_rule <rule> Adds a name matching rule that Formality software
applies to a design before creating compare points.

set signature_analysis_matching <value> Use this command to specify whether or not to use
signature analysis to match previously compared
points.

set_constant <value> This command allows you to set the logic state of a
design object to either 0 or 1.

set hdlin_altera_generate_naming <value> This command directs Formality software to apply alter
naming conventions for registers.

Set_user_match <mapping_point_name> Use this command to create pairs of matched points to
compare those that Formality software could not match
during its matching process.

18–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 The Formality software does not support inferred RAMs in RTL
while performing RTL-to-Gates verification. Therefore, you
should apply the black box property to RAM that is instantiated
by the RTL code.

Known Issues
and Limitations

This section discusses known issues and limitations of the formal
verification flow using the DC FPGA, Quartus II, and Formality software:

1. Formal verification of post synthesis verses post-place-and-route
netlist does not support latches because latches are implemented
using combinational logic with a feedback loop which poses a
problem to the Formality software.

2. If an LPM or an Altera megafunction module is inferred and all the
ports of the module are not used, then unused ports should be
connected to default values in the post-synthesis Verilog HDL
netlist.

3. The Quartus II software may optimize away logic feeding a black
box, resulting in mismatches on the blackbox inputs. For example, if
certain bits of a RAM output are not being used, then the Quartus II
software optimizes away the logic feeding the corresponding data
inputs.

Conclusion Formal verification enables verification of the design during all stages
from RTL to place-and-route. As designs become larger, design
verification using traditional methods becomes too time consuming.
Thus, formal verification easily verifies that any modifications to the
netlist in the physical domain have not altered from the Golden netlist.
Advanced debugging capabilities within Formality software pinpoints
the source of the differences between the Reference and Implementation
netlists, enabling the user to easily fix the differences.

Related Links Altera website: About Using the DC FPGA Software with the Quartus II
Software

http://www.altera.com/support/software/nativelink/synthesis/dcfpga/eda_view_using_dcfpga.html
http://www.altera.com/support/software/nativelink/synthesis/dcfpga/eda_view_using_dcfpga.html

Altera Corporation 18–13
October 2007 Preliminary

Tcl Sample Script

Tcl Sample
Script

This section provides an example of the DC FPGA software script to
perform synthesis and an example formal verification script generated by
the Quartus II software.

DC FPGA Synthesis Script

The following example script presents the Altera recommended settings
in the DC FPGA software for synthesizing the design for the Stratix
architecture. The script also generates the Verilog netlist file for formal
verification using the Formality software. These tasks are performed in
the following five sections of the script:

■ Setting up the library
■ Default synthesis settings for Altera Stratix
■ Analyzing the design files
■ Compiling the design
■ Generating the Verilog netlist for formal verification

Setup file for Altera Stratix Devices
Tcl style setup file but will work for
original DC shell as well
Need to define the root location of the
libraries by changing
the variable $dcfpga_lib_path
set dcfpga_lib_path "<dcfpga_rootdir>\
/libraries/fpga/altera"
set search_path ". $dcfpga_lib_path
$dcfpga_lib_path/STRATIX $search_path"
set target_library "stratix.db"
set synthetic_library "tmg.sldb altera_mf.sldb\
lpm.sldb"
set link_library "* stratix.db tmg.sldb\
altera_mf.sldb\ lpm.sldb"
set cache_dir_chmod_octal "1777"
set hdlin_enable_vpp "true"
set post_compile_cost_check "false"
set_fpga_defaults -formality altera_stratix
set formality_altera_debug true
set_verification_friendly_mode -filename
<top_level>.svf -append \
-allow_override
set verilogout_no_tri true
set verilogout_write_constant_nets true
set compile_fix_multiple_port_nets true
Setup design directory for database, temporary files
and netlist
#</OUTPUTDIR>#
set outputdir <directory_name>
file mkdir $outputdir/WORK
define_design_lib WORK -path $outputdir/WORK

18–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Setup the Top-level design name
set top <top_level_module>
##Setup synthesis optimization options
set dcfsm_force_encoding neutral
#<READFILES>#
##Analyze source files
##Elaborate design
elaborate $top
#</ELABORATE>#
##Specify Target device
current_design $top
set_fpga_target_device AUTOFASTEST
Insert pad during synthesis
set_port_is_pad [get_ports "*"]
#<FPGACONST>#
Specify clock constraints
#</FPGACONST>#
#<COMPILE>#
##Setup compile options
ungroup -small 500
Compile design
compile
change_names -rule verilog -hierarchy
#<REPORT>#
##Generate netlist/reports/constraints for PAR
write -hier -f verilog -o $outputdir/$top.v
report_fpga > $outputdir/fpga.rpt

Quartus II Software-Generated Formal Verification Script

The following example script shows the sample setup commands
generated by Quartus II software:

read_verilog -i -vcs \
"+define+_ALTERA_FAMILY_IS_STRATIX_ \
+define+POST_FIT \
+define+FORMALITY -y $QUARTUS/eda/fv_lib/verilog \
+libext+.v -y \
/home/formality/testcases/mult/quartus/fv/ \
formality/blackboxes" \
$PROJECT/fv/formality/mult_ram.vo
set_top mult_ram
set_black_box i:/WORK/altsyncram
report_black_box
set_compare_rule i:/WORK/mult_ram -from "_aI$" -to ""
set_compare_rule r:/WORK/mult_ram -from "\/" -to "_a"
set_compare_rule i:/WORK/mult_ram -from "\/" -to "_a"
match
verify

Altera Corporation 18–15
October 2007 Preliminary

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Formality User Guide
■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of

the Quartus II Handbook

Document
Revision History

Table 18–3 shows the revision history for this chapter.

Table 18–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 18–15. —

May 2007
v7.1.0

Added Referenced Documents. —

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Added new revision history table format to the document. —

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0.0. —

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 15 was previously Chapter 13 in version 5.0.

—

May 2005
v5.0.0

New functionality for Quartus II software 5.0. —

January 2005
v1.0

Initial release. —

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.synopsys.com/

18–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation Section VII–i
Preliminary

Section VII. Device
Programming

The Quartus® II software offers a complete software solution for system
designers who design with Altera® FPGA and CPLD devices. The
Quartus II Programmer is part of the Quartus II software package that
allows you to program Altera CPLD and configuration devices, and
configure Altera FPGA devices. This section describes how you can use
the Quartus II Programmer to program or configure your device after you
successfully compile your design.

This section includes the following chapter:

■ Chapter 19, Quartus II Programmer

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section VII–ii Altera Corporation
Preliminary

Device Programming Quartus II Handbook, Volume 3

Altera Corporation 19–1
October 2007

19. Quartus II Programmer

Introduction The Quartus® II software offers a complete software solution for system
designers who design with Altera® FPGA and CPLD devices. The
Quartus II Programmer is part of the Quartus II software package that
allows you to program Altera CPLD and configuration devices, and
configure Altera FPGA devices. After your design successfully compiles,
you can use the Quartus II Programmer to program or configure your
device.

This chapter contains the following sections:

■ “Programming Flow”
■ “Programming and Configuration Modes” on page 19–4
■ “Programmer Overview” on page 19–6
■ “Hardware Setup” on page 19–12
■ “Device Programming and Configuration” on page 19–14
■ “Optional Programming Files” on page 19–18
■ “Flash Loaders” on page 19–21
■ “Other Programming Tools” on page 19–22
■ “Scripting Support” on page 19–22

Programming
Flow

The programming flow begins with design compilation, in which the
Quartus II Assembler generates the programming or configuration file,
then proceeds with the programming or configuration file conversion for
different configuration devices, or optional programming and
configuration file creation. The flow ends with the configuration or
programming of the FPGA, CPLD, or configuration devices with the
programming or configuration file using the Quartus II Programmer.

Figure 19–1 shows the programming file generation flow. This flow
covers the types of configuration and programming files that are used by
the Quartus II Programmer. Refer to “Optional Programming Files” on
page 19–18 for information on other optional programming files.

QII53022-7.2.0

19–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 19–1. Programming File Generation Flow

Table 19–1 shows the programming and configuration file formats
supported by Altera FPGAs, CPLDs, configuration devices, enhanced
configuration devices, and serial configuration devices.

Table 19–1. Programming and Configuration File Format

File Format FPGA CPLD

Configuration
Device and
Enhanced

Configuration
Device

Serial
Configuration

Device

SOF v — — —

POF — v v v
Jam v v v —

JBC v v v —

FPGA
.sof

Quartus II
Assembler

Quartus II Programmer

CPLD
.pof

EPC or
EPCS

.pof

.jam/
.jbc

Convert
programming

 files

Create optional
programming

files

.cdf

Altera Corporation 19–3
October 2007

Quartus II Programmer

Figure 19–2 shows the programming flow using the Quartus II
Programmer. Refer to “Generating Optional Programming Files” on
page 19–20 for detailed information about converting or creating
different programming files. Refer to “Device Programming and
Configuration” on page 19–14 for information about programming or
configuring the device.

Figure 19–2. Programming Flow

Start

Finish

Yes

No

Yes

Open the Quartus II
Programmer

Hardware Setup

Specify Programming/
Configuration File

Need to bypass
other device
in the chain?

Add device to
the programmer

Start Operation

Select Programming/
Configuration Mode

Select Programming/
Configuration Options

19–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Programming
and
Configuration
Modes

The Quartus II Programmer supports the following four programming or
configuration modes: JTAG, passive serial, active serial, and in-socket
programming.

JTAG Mode

You can use the Joint Test Action Group (JTAG) mode to configure FPGA
devices and program CPLDs, configuration devices, or enhanced
configuration devices. The JTAG mode allows multiple FPGAs, CPLDs,
and configuration devices connected in a JTAG chain to be configured or
programmed at the same time. JTAG programming or configuration uses
four JTAG pins: TCK, TDI, TMS, and TDO. The JTAG interface also allows
you to perform boundary-scan test using third-party boundary scan
tools.

POF files are used for programming CPLDs, and configuration or
enhanced configuration devices, while SOF files are used for configuring
FPGA devices. Jam and JBC files can be used for both programming and
configuration. Serial configuration devices do not support JTAG
programming.

f For more information about JTAG configuration or programming mode
and JTAG pin connection, refer to the Configuration Handbook, or the
device handbook or data sheet for the respective FPGA, CPLD, or
configuration devices.

Passive Serial Mode

You can use the passive serial (PS) mode to configure Altera FPGAs. PS
configuration uses the DCLK, CONF_DONE, nCONFIG, nSTATUS, and
DATA0 configuration pins. Unlike the JTAG scheme, the PS configuration
scheme can be used to configure the FPGA with a configuration device or
enhanced configuration device, not necessarily through a download
cable. If you are using the configuration device or enhanced configuration
device to configure the FPGA through PS mode, you can route the
configuration signals out to a header so that you can also configure the
FPGA through the download cable with the Quartus II Programmer.
Configuration through PS mode with a download cable is useful in the
design stage. This configuration method allows you to configure your
FPGA device directly from the Quartus II Programmer as you make
changes to your design for debugging and testing.

PS mode supports configuration of an FPGA chain. SOF files are used for
configuration through PS. Every FPGA device in the chain requires a
SOF, so the number of SOF files used depends on the number of FPGA
devices in the chain.

Altera Corporation 19–5
October 2007

Quartus II Programmer

f For more information about PS configuration mode and PS pin
connection, refer to the Configuration Handbook or the chapter on
configuration in the appropriate FPGA device handbook.

Active Serial Mode

You can use the active serial (AS) mode to program serial configuration
devices. After programming completes, the serial configuration device
then configures the FPGA. AS programming uses the DATA, DCLK, nCS,
and ASDI pins. If the download cable is connected to the nCONFIG and
nCE pins of the FPGA, the download cable disables the FPGA’s access to
the AS interface by holding the nCE pin high and the nCONFIG pin low.
Upon completion of the programming, the nCE and nCONFIG pins are
released and the FPGA configuration begins.

f For more information about programming the serial configuration
device, configuring the FPGA with the serial configuration device
through AS mode, or the AS pin connection, refer to the Serial
Configuration Data Sheet in the Configuration Handbook or the chapter on
configuration in the appropriate FPGA device handbook.

In-Socket Programming Mode

The in-socket programming mode is used for programming a single
device. This programming mode supports programming the MAX® 7000
and MAX 3000 CPLD families, configuration devices, enhanced
configuration devices, and serial configuration devices. Instead of using
a download cable, in-socket programming mode uses the Altera
Programming Unit (APU) hardware together with the programming
adapter for the corresponding device to program the device. The
programming unit with the programming adapter has a socket for the
device and the hardware powers the device for programming. In-socket
programming is normally used in the production environment to
pre-program devices before they are mounted on the printed circuit
boards on the assembly line.

1 Refer to www.altera.com or the Quartus II Help for a list of
programming adapters available for Altera devices.

19–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Table 19–2 shows the programming and configuration modes supported
by Altera devices.

Programmer
Overview

The Quartus II Programmer graphical user interface (GUI) is a window in
which you can add your programming and configuration files, specify
the programming options and hardware, and then proceed with the
programming or configuration of the device.

To open the Programmer window, on the Tools menu, click Programmer.
Figure 19–3 shows the programmer GUI. The status of each operation,
whether programming is successful or not, is reported in the Quartus II
message window. Figure 19–4 shows a typical programming message
after the programmer has successfully programmed a device.

Table 19–2. Programming and Configuration Modes

Mode FPGA CPLD

Configuration
Device and
Enhanced

Configuration
Device

Serial
Configuration

Device

JTAG v v v —

PS v — — —

AS — — — v
In-Socket
Programming

— v(1) v v
Note to Table 19–2:
(1) MAX II CPLDs do not support in-socket programming mode.

Altera Corporation 19–7
October 2007

Quartus II Programmer

Figure 19–3. The Programmer Window

Figure 19–4. Status Report in the Message Window

Setup Progress IndicatorProgramming
 Options

Action
Buttons

File/Chain
Information

19–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Table 19–3 describes the items available in the programmer window.

Table 19–3. Programmer Window Items (Part 1 of 3)

Items Description

Hardware Setup Opens the Hardware Setup dialog box in the programmer and enables you to
perform the following:
● add and remove hardware items from the Hardware list.
● add and remove JTAG servers from the JTAG Servers list.
● configure your local JTAG server.
● specify a programming hardware or download cable for device

programming and configuration.

Mode Specifies the programming or configuration mode (either JTAG, In-Socket
Programming, Passive Serial, or Active Serial Programming).

Progress Shows the progress of a specific operation.

Action Buttons

Start Starts the operations of the specified programming options.

Stop Stops all operations in progress.

Auto Detect Scans the JTAG chain to check for devices in the chain and the chain
connection.

Delete Removes the selected programming or configuration files from the
programmer.

Add File Adds programming or configuration files to the programmer.

Change File Replaces the selected programming or configuration file with another file.

Save File Allows you to save the data read out from CPLD or configuration devices using
the “examine” process into a POF file.

Add Device Adds a device into the JTAG device chain in the programmer. If no
programming or configuration file is specified, the programmer will bypass this
device during programming or configuration. You can also add your
user-defined device into the chain.

Up Moves the selection up to another programming or configuration file or device
in the programmer window.

Down Moves the selection down to another programming or configuration file or
device in the programmer window.

File or Device Chain Information

File Displays the programming or configuration file name.

Device The Device column shows:
● the target device of the file, if you add a programming or configuration file

into the programmer.
● the devices in the JTAG chain detected by the programmer, if you click Auto

Detect in JTAG mode.
● the device added to the programmer, if you manually add a device into the

programmer.

Altera Corporation 19–9
October 2007

Quartus II Programmer

Checksum The Checksum column shows:
● the checksum of the file, if you add a programming or configuration file into

the programmer.
● the checksum for the data read out, if you examine a device.

The checksum is calculated by the Quartus II software. The programmer does
not display the checksum for the Jam or JBC files generated for a multi-device
JTAG chain.

Usercode The Usercode column shows:
● the usercode of the file, if you add a programming or configuration file into

the programmer.
● the usercode read out from the device, if you examine a device.

You can specify the usercode before design compilation, or use the Auto
usercode feature that uses the checksum as the usercode. The programmer
does not show the usercode information in PS configuration mode or for the
Jam or JBC files generated for a multi-device JTAG chain.

Programming Options

Enable real-time ISP to allow
background programming

Can only be turned on if you are targeting a MAX II device, and is turned off for
all other device families. When this option is turned on, you can do the real-time
in-system programming (ISP) for the MAX II device. The existing design in the
MAX II device functions normally during and after the real-time ISP is
completed. The new design starts to function after a power cycle to the device
occurs.

Program or Configure Can be used for programming CPLDs, configuration devices, or configuring
FPGA devices.

Verify Verifies the content of the CPLD and all configuration devices against the
respective programming files. This option is not available for FPGAs.
Verification fails if the data in the file is different from the data in the device.
Stand-alone verification for the CPLD with the programming file used for the
programming will fail if the security bit is set when the device is programmed
initially.

Blank-Check Checks whether the CPLD or configuration device is blank or not.

Examine Reads back the contents of the CPLD or configuration device. You can then
save the examined data as a POF file. Examining a CPLD with the security bit
set does not produce a usable POF file. MAX 7000S devices require you to add
a valid MAX 7000S POF file that targets the same device before you can
examine the data back from the device.

Security Bits Protects the design in the CPLD from being examined. If the security bit is set
when the CPLD is programmed, you cannot read the correct data out using the
examine process. Security bits cannot be set for the configuration devices or
FPGAs.

Table 19–3. Programmer Window Items (Part 2 of 3)

Items Description

19–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Table 19–4 shows the programming and configuration options supported
by Altera devices.

Erase Erases the contents of the CPLD and all configuration devices. You can also
erase the user flash memory (UFM) of the MAX II CPLD. MAX 7000S devices
require you to add a valid MAX 7000S POF file that targets the same device
before you can erase the device.

ISP CLAMP Allows the MAX II or MAX 7000B CPLD’s I/O pins to be clamped to certain
states during normal programming. ISP CLAMP can only be turned on if certain
pins of the device have the ISP Clamp State assignment enabled, or you have
added an I/O Pin State (IPS) file in the programmer.

IPS File Shows the IPS file used for ISP Clamp of the MAX II or MAX 7000B CPLDs.
The IPS File column only appears if your programmer window has a MAX II or
MAX 7000B POF file. To add in the IPS file, click once on the row of the
programming file and on the Edit menu, click Add IPS File.

Table 19–3. Programmer Window Items (Part 3 of 3)

Items Description

Table 19–4. Programming and Configuration Options

Option FPGA CPLD

Configuration
Device and
Enhanced

Configuration
Device

Serial
Configuration

Device

Program or
Configure v v v v
Verify — v v v
Blank-Check — v v v
Examine — v v v
Security Bit — v — —

Erase — v v v
ISP Clamp — v(1) — —

IPS File (2) — v — —

Real-time ISP — v(3) — —

Notes to Table 19–4:
(1) Only MAX II and MAX 7000B CPLDs support the ISP Clamp feature.
(2) IPS file is used for ISP Clamp.
(3) Only MAX II CPLDs support the real-time ISP feature.

Altera Corporation 19–11
October 2007

Quartus II Programmer

Tools Menu

More programmer options are available from the Tools menu. On the
Tools menu, click Options and then click Programmer. For descriptions
of these options, refer to Table 19–5.

Table 19–5. Programmer Options

Option Description

Show checksum without usercode Determines whether the checksum values displayed in the
programmer are calculated with or without JTAG usercodes. This
option allows you to have multiple versions of a programming or
configuration file with different user codes, but share the same
checksum.

Initiate configuration after
programming

Specifies that configuration devices configure attached FPGA devices
automatically after the programmer completes programming the
configuration devices.

Display message when
programming finishes

Displays a message when programming or other operation such as
examining or blank-checking is complete.

Enable real-time ISP to allow
background programming (for
MAX II devices)

Can only be turned on if you are targeting a MAX II device. This option
is turned off for all other device families. When this option is turned on,
you can do the real-time in-system programming (ISP) for the MAX II
device. The existing design in the MAX II device functions normally
during and after the real-time ISP is completed. The new design starts
to function after a power cycle to the device occurs.
This option is also available in the programmer window.

Halt on-chip configuration controller Halts the on-chip auto-configuration controller of the FPGA device for
AS configuration, or the configuration device for PS or Fast Passive
Parallel (FPP) configuration to allow JTAG configuration through a
download cable. If you want to configure your FPGA through JTAG
while the FPGA MSEL pins are set to AS mode, you should halt the
on-chip configuration controller if any of the following occurs:
● the active serial configuration device connected to your FPGA is

blank
● the active serial configuration device is not present
● an error occurs during AS configuration prior to JTAG configuration

If the MSEL pins are set to PS or FPP mode, halt the configuration
controller of the configuration device if an error occurs during PS or
FPP configuration prior to JTAG configuration. The FPGA pulls the
nSTATUS pin (which is connected to the OE pin of the configuration
device) low to disable the configuration device.

Automatically check the
Program/Configure checkbox when
adding SOF

Automatically enables the program or configuration operation when
adding an SRAM Object File (.sof) to the file list in the programmer
window.

19–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Hardware Setup The Quartus II Programmer provides the flexibility to choose the
download cable or programming hardware. Before you can program or
configure your device, you must have the correct hardware setup.

Hardware Settings

Click Hardware Setup to bring up the Hardware Setup dialog box. On
the Hardware Settings tab (Figure 19–5), you can select a download cable
or programming hardware available from the Currently selected
hardware list. If the download cable or programming hardware you
require is not displayed, click Add Hardware and specify the download
cable or programming hardware. Make sure that you have installed the
download cable driver before adding the hardware.

1 You do not need to manually add the USB-Blaster™ download
cable to the list. After installing the driver, simply connect the
download cable to the PC before opening the Hardware Setup
dialog box. The USB-Blaster appears automatically in the list
when the dialog box is opened.

Figure 19–5. Hardware Settings

f More information about programming hardware driver installation is
available in the Design Software section under Support on the Altera
website (www.altera.com/support).

Altera Corporation 19–13
October 2007

Quartus II Programmer

JTAG Settings

The JTAG server allows programs such as the Quartus II Programmer to
access the JTAG hardware. This application software is installed together
with the Quartus II software. You can also access the JTAG download
cable or programming hardware connected to a remote computer
through the JTAG server of that computer. With the JTAG server, you can
control the programming or configuration of devices from a single
computer through other computers at remote locations. The JTAG server
uses the TCP/IP communications protocol.

Click Hardware Setup to bring up the Hardware Setup dialog box. On
the JTAG Settings tab (Figure 19–6), you can add or remove JTAG servers
from the list. By default, you have only the local JTAG server (which is on
your computer) in the list. By adding a remote JTAG server, you can
access the JTAG hardware in that remote computer from your computer.
You need the password of the remote JTAG server to add the server to
your list. Click Add Server, then enter the IP address of that computer in
the Server name field and the password in the Server password field.

Figure 19–6. JTAG Settings

You can also allow remote clients to access the JTAG server on your
computer and program or configure devices connected to your computer
through the JTAG interface of your computer. Click Configure Local
JTAG Server to enable the server and then enter the password that the
remote clients require to access your JTAG server.

19–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Device
Programming
and
Configuration

The Quartus II Programmer supports single- or multi-device
programming and configuration. This section describes the steps
required to program or configure Altera devices, as well as how to bypass
Altera and non-Altera devices in a JTAG chain.

Single Device Programming and Configuration

To program or configure a single device with the Quartus II Programmer,
perform the following steps:

1. On the Tools menu, click Programmer to open the Programmer
window.

2. Click Hardware Setup and select the programming hardware or
download cable. If you are using JTAG mode, you can specify the
correct JTAG settings for programming or configuration involving
remote JTAG servers. Click Close.

3. From the Mode list, select the programming or configuration mode.

4. Click Add File to add the POF or SOF file to the programmer (you
can omit this step if the file is already displayed). To change the file,
select it and click Change File. To remove the file from the
programmer, select it and click Delete.

1 If you are using JTAG, AS, or in-socket programming mode,
after the file has been added to the programmer, select the
programming or configuration option by turning on the
corresponding check box in the programmer.

5. Click Start.

Multi-Device Programming and Configuration

JTAG and PS modes allow you to program or configure a device chain. A
JTAG chain can consist of a combination of FPGA, CPLD, and
configuration devices that support JTAG mode. A PS chain consists of
FPGAs that support PS mode. The steps for programming or configuring
a device chain is similar to the steps for programming or configuring a
single device. One exception is that in a device chain you must specify all
the programming or configuration files for the devices you want to
program or configure. JTAG mode allows you to bypass some of the
devices in the JTAG chain while programming or configuring the rest of
the devices. PS mode does not allow you to bypass devices in the FPGA
chain.

Altera Corporation 19–15
October 2007

Quartus II Programmer

Bypassing an Altera Device

If you have the programming or configuration file for the Altera device
you want to bypass, in the programmer, turn off all the options in the row
for that device before you program or configure other devices. If you do
not have the programming or configuration file for that device, click Add
Device to specify the device.

Bypassing a Non-Altera Device

The JTAG chain of the device you want to program or configure may
contain non-Altera devices. To program or configure your Altera device
in the JTAG chain, you must bypass those non-Altera devices. The
non-Altera devices are not in the list of devices that you can select when
you click Add Device in the programmer.

To bypass the devices, you must manually define these devices. Click
Add Device to open the Select Device dialog box. Click New to define a
device. In the New Device dialog box (Figure 19–7), enter the name of the
device and the JTAG instruction register length of the device. You can find
the JTAG instruction register length in the device’s data sheet. You can
also specify the JTAG ID code for the device by clicking Add JTAG ID.
This is optional and you can turn on Allow none to set the ID code to all
0s. If you do not specify the JTAG ID code, the default value is all 0s.

Figure 19–7. New Device Dialog Box

19–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

After defining the device, the device appears in the device list
(Figure 19–8). Click Export to save the information in a Quartus
User-Defined Device (QUD) file. This file saves the information for the
user-defined devices that appear under Device name in the dialog box
and can be used by other Quartus II projects as well. To obtain
information on the user-defined devices from the QUD file, click Import
and the devices are listed under Device name.

Figure 19–8. Select Devices

Altera Corporation 19–17
October 2007

Quartus II Programmer

Figure 19–9 shows the programmer window for a JTAG chain.

Figure 19–9. Multi-Device JTAG Chain

Chain Description File

All the information in the Quartus II Programmer, including the
programming or configuration mode, programming or configuration
files used, device chain information, and the programming options
specified can be saved in a chain description file (CDF). You do not have
to specify the information each time you program the device chain.
Simply open the CDF in the Quartus II software and information appears
in the Quartus II Programmer GUI.

Design Security Key Programming

The Quartus II Programmer supports the generation of encryption key
programming files and encrypted configuration files for Altera FPGAs
that support the design security feature. You can also use the Quartus II
Programmer to program the encryption key into the FPGA.

f Refer to AN 341: Using the Design Security Feature in Stratix II Devices for
more information about using the design security feature with the
Quartus II software.

Program MAX II CPLD

Bypass Stratix II FPGA
Configure Cyclone FPGA

Bypass MAX 7000AE CPLD
Bypass User-defined Device

19–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Optional
Programming
Files

The Quartus II software is able to generate optional programming or
configuration files in various formats to be used with programming tools
other than the Quartus II Programmer. In addition, you can convert the
FPGA configuration files to programming files for configuration devices.

Types of Programming and Configuration Files

The Quartus II software generates programming files of various formats
for use with different programming tools. Table 19–6 shows the
programming and configuration files generated by the Quartus II
software.

Table 19–6. Types of Programming and Configuration Files (Part 1 of 2)

File Format
Generated by
the Quartus II

Software

Supported by
the Quartus II
Programmer

Description

SOF v v This configuration data file is used for configuring FPGA
devices. The Quartus II Assembler generates this file
when you compile your FPGA design.

POF v v This programming data file is used for programming
CPLDs and configuration devices. The Quartus II
Assembler generates the CPLD POF file when you
compile your CPLD design. The configuration device
POF file is converted from the FPGA SOF file.

Jam v v This ASCII-format file is used for configuring or
programming one or more FPGAs, CPLDs, and
configuration devices in a JTAG chain. The Jam file
includes both programming algorithm and data.
Apart from the Quartus II Programmer, you can use
Altera’s Jam Standard Test and Programming Language
(STAPL) player, the quartus_jli executable, or other
third-party programming tools together with the Jam file.
The Jam file is also suitable for embedded
processor-type programming environments.

JBC v v Similar to the Jam file, this binary-format file is used for
configuring or programming one or more FPGAs,
CPLDs, and configuration devices in a JTAG chain. The
JBC file includes both the programming algorithm and
data, and the size is smaller than the Jam file.
In addition to the Quartus II Programmer, you can use
Altera’s Jam Byte-Code player, the quartus_jli
executable, or other third-party programming tools
together with the JBC file. The JBC file is also suitable for
embedded processor-type programming environments.

Altera Corporation 19–19
October 2007

Quartus II Programmer

SVF v — This ASCII-format file is used for configuring,
programming, blank-checking, and verifying one or more
FPGAs, CPLDs, and configuration devices in a JTAG
chain. The SVF file, which includes programming
algorithm and data, is suitable for an automated test
equipment (ATE) environment that requires a fixed
programming algorithm.

ISC v — This data file is used with the IEEE 1532 BSDL file for
programming a single device that supports IEEE 1532
programming.
The Quartus II software supports generating the ISC file
for MAX 7000AE, MAX 7000B, and MAX 3000A CPLDs.

Hexout v — The Hexout file is used for programming FPGA
configuration data into enhanced configuration devices
or other storage devices. For enhanced configuration
devices, use the enhanced configuration device POF to
generate the Hexout file. Use the FPGA SOF file to
generate the Hexout file for other storage devices (for
example, the flash or EEPROM devices). You can use a
microcontroller to read back the data from the storage
device and configure the FPGA.
To program the enhanced configuration device or other
storage devices with the Hexout file, you can use other
third-party programming tools.

RBF v — This binary file contains configuration data for one or
more FPGAs. You can use Altera’s JRunner software to
configure your FPGA device with the RBF file. The RBF
file is also suitable for embedded processor configuration
environments.

TTF v — This ASCII file contains configuration data for one or
more FPGAs. The TTF file is used for embedded
processor-type configuration.

RPD v — This binary file is used for programming serial
configuration devices. Use the serial configuration
device POF file to generate this file. You can use Altera’s
SRunner software to program your serial configuration
device with the RPD file.

JIC v v The JIC file is used for programming serial configuration
devices through JTAG with the Quartus II Programmer
and Altera FPGAs that support AS configuration mode.

Table 19–6. Types of Programming and Configuration Files (Part 2 of 2)

File Format
Generated by
the Quartus II

Software

Supported by
the Quartus II
Programmer

Description

19–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

f Refer to the Quartus II Help or the Configuration File Formats chapter of
the Configuration Handbook for more information about the programming
and configuration file formats.

f Refer to AN 425: Using Command-Line Jam STAPL Solution for Device
Programming for more information about using the Jam and JBC
programming files with the Jam STAPL Player, Jam STAPL Byte-Code
Player, and the quartus_jli command-line executable.

Generating Optional Programming Files

When you compile your design, the Quartus II Assembler generates the
SOF file for an FPGA or a POF file for a CPLD. With the SOF or POF for
your design, you can then create other optional programming or
configuration files, or convert the SOF to target a particular configuration
device.

Create Programming Files

The Quartus II software allows you to create optional Jam, JBC, SVF, or
ISC programming or configuration files. In addition, you can create Jam,
JBC, and SVF files for a JTAG chain that consists of more than one device.

To create the files, open the Quartus II Programmer, set the programming
or configuration mode to JTAG, and then add the programming or
configuration files or devices to the programmer. On the File menu, click
Create/Update and then click Create JAM, SVF, or ISC File. Select the file
format and name the file accordingly.

For SVF files, you can create an SVF file for programming or verification
only. In addition, you can specify whether or not to do the optional
blank-check operation with the SVF file.

Convert Programming Files

To store the FPGA data into configuration devices, you can convert the
SOF data to another format and program the configuration device. The
Quartus II software supports converting the data into POF, Hexout, RBF,
TTF, RPD, or JIC format.

f For more information about converting programming files with the
Quartus II software, refer to the Configuration File Formats chapter of the
Configuration Handbook.

Altera Corporation 19–21
October 2007

Quartus II Programmer

Generating Optional Programming or Configuration Files During
Compilation

The Quartus II software can generate optional programming or
configuration files automatically when you compile your design. To
select the format of the optional programming or configuration files to be
generated during compilation, on the Assignments menu, click Settings.
Under Device, click Device and Pin Options.

You can select the configuration device from the Configuration tab for
the configuration device POF generation. For other optional
programming and configuration file generation, you can select the file
format under the Programming Files tab.

Flash Loaders Serial configuration devices and the common flash interface (CFI) flash
devices do not support JTAG interface and cannot be programmed
directly through the normal JTAG programming. Flash loaders allow the
programming of the serial configuration device and the CFI flash from
the Quartus II Programmer through JTAG.

Parallel Flash Loader

The parallel flash loader (PFL) performs two functions:

■ Allows the programming of the CFI flash through the JTAG interface
■ Acts as the configuration controller that reads the configuration data

from the CFI flash and configures the FPGA

To program the CFI flash, the PFL uses the MAX II device as a bridge
between the JTAG interface of the Quartus II Programmer and the CFI of
the CFI flash device. You can program FPGA configuration data and user
data into the flash with a flash POF generated by the Quartus II software.
After the flash is programmed with the FPGA configuration data, the PFL
is then used to read the configuration data back from the CFI flash to
configure the FPGA.

f Refer to AN 386: Using the MAX II Parallel Flash Loader with the Quartus II
Software for more information about PFL.

Serial Flash Loader

The serial flash loader (SFL) allows programming of the serial
configuration devices through JTAG. The SFL uses the FPGA device that
supports AS configuration mode as a bridge between the active serial
memory interface (ASMI) of the serial configuration device and the JTAG

19–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

interface of the programmer. The Quartus II Programmer uses the JIC file
converted from the FPGA SOF file to program the serial configuration
device though JTAG.

f Refer to AN 370: Using the Serial Flash Loader with the Quartus II Software
for more information about SFL.

Other
Programming
Tools

This section covers other programming tools that are related to the
Quartus II Programmer and can be used for programming or debugging
programming problems.

Quartus II Stand-Alone Programmer

If you do not have the full version of the Quartus II software, Altera offers
the free Quartus II Stand-Alone Programmer. This stand-alone
programmer has the full function of the normal Quartus II Programmer,
and enables you to create or convert programming files from the SOF or
POF of your design. You can download the Quartus II Stand-Alone
Programmer from the Download Center page found through the
Support page on the Altera website at www.altera.com.

jtagconfig Debugging Tool

The jtagconfig command-line utility is included with the Quartus II
software. You can use this utility (which is similar to the auto detect
operation in the Quartus II Programmer) to check the devices in a JTAG
chain and the user-defined devices.

For more information about the jtagconfig utility, type one of the
following commands at the command prompt:

jtagconfig –h r
jtagconfig –-help r

Scripting
Support

Apart from the Quartus II Programmer GUI, you can perform
programming with the Quartus II command-line programmer
(quartus_pgm). This quartus_pgm command-line programmer comes
with the Quartus II Programmer. You can run this programmer
separately from the Quartus II software. You can also run the procedures
for the programmer in a Tcl script. The programmer accepts the POF,
SOF, and JIC programming or configuration files. You can also use the
CDF.

Altera Corporation 19–23
October 2007

Quartus II Programmer

For more information about the command-line syntax, type one of the
following commands at the command prompt:

quartus_pgm -h r
quartus_pgm --help r
For more information about a specific programmer option or topic, type
the following command at the command prompt:

quartus_pgm --help=<option|topic> r
The following is an example of a command that programs a device:

quartus_pgm –c byteblasterII –m jtag –o bpv;design.pof r
where:

-c byteblasterII specifies the ByteBlaster II download cable
-m jtag specifies the JTAG programming mode
-o bpv represents the blank-check, program, and verify operations
design.pof represents the POF file used for the programming

The programmer automatically executes the erase operation before
programming the device.

For detailed information about scripting command options, you can also
refer to the Quartus II Command-Line and Tcl API Help browser. To run
the Help browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Scripting Reference Manual includes the same information in PDF
format.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information on all settings and
constraints in the Quartus II software. Refer to the Command-Line
Scripting chapter in volume 2 of the Quartus II Handbook for more
information about command-line scripting.

Conclusion The Quartus II Programmer offers you a wide variety of options to
program and configure your Altera devices. With the Quartus II
Programmer, the Quartus II software provides you with a complete
solution for your FPGA or CPLD design prototyping, which can even be
performed in the production environment.

19–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Referenced
Documents

This chapter references the following documents:

■ AN 341: Using the Design Security Feature in Stratix II and Stratix II GX
Devices

■ AN 370: Using the Serial FlashLoader with the Quartus II Software
■ AN 386: Using the MAX II Parallel Flash Loader with the Quartus II

Software
■ AN 425: Using Command-Line Jam STAPL Solution for Device

Programming
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook
■ Configuration File Formats chapter of the Configuration Handbook
■ Configuration Handbook
■ Quartus II Scripting Reference Manual
■ Quartus II Settings File Reference Manual
■ Serial Configuration Devices (EPCS1, EPCS4, EPCS16, and EPCS64) and

EPCS128) Data Sheet of the Configuration Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document
Revision History

Table 19–7 shows the revision history for this chapter.

Table 19–7. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007,
v7.2.0

Reorganized “Referenced Documents”. —

May 2007
v7.1.0

Initial release —

http://www.altera.com/literature/lit-config.jsp
http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
http://www.altera.com/literature/hb/cfg/cfg_cf52007.pdf
http://www.altera.com/literature/an/an425.pdf
http://www.altera.com/literature/an/an425.pdf
http://www.altera.com/literature/an/an386.pdf
http://www.altera.com/literature/an/an386.pdf
http://www.altera.com/literature/an/an370.pdf
http://www.altera.com/literature/an/an341.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

	Quartus II Version 7.2 Handbook Volume 3: Verification
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

	Section I. Simulation
	1. Quartus II Simulator
	Introduction
	Simulation Flow
	Functional Simulation
	Timing Simulation
	Timing Simulation Using Fast Timing Model Simulation

	Waveform Editor
	Creating VWFs
	Count Value
	Clock
	Arbitrary Value
	Random Value

	Generating a Testbench
	Grid Size
	Time Bars
	Stretch or Compress a Waveform Interval
	End Time
	Arrange Group or Bus in LSB or MSB Order

	Simulator Settings
	Simulation Verification Options
	Simulation Output Files Options

	Simulation Report
	Simulation Waveform
	Simulating Bidirectional Pin
	Logical Memories Report
	Simulation Coverage Reports
	Comparing Two Waveforms

	Debugging with the Quartus II Simulator
	Breakpoints
	Updating Memory Content
	Last Simulation Vector Outputs
	Conventional Debugging Process
	Accessing Internal Signals for Simulation

	Scripting Support
	Conclusion
	Referenced Documents
	Document Revision History

	2. Mentor Graphics ModelSim Support
	Introduction
	Background
	Software Compatibility
	Altera Design Flow with ModelSim or ModelSim- Altera Software
	Functional RTL Simulation
	Functional Simulation Libraries
	lpm Simulation Models
	Altera Megafunction Simulation Models
	Low-Level Primitive Simulation Models

	Simulating VHDL Designs
	Create Simulation Libraries
	Create Simulation Libraries Using the ModelSim GUI
	Create Simulation Libraries Using the ModelSim Command Prompt

	Compile Simulation Models into Simulation Libraries
	Compile Simulation Models into Simulation Libraries Using the ModelSim GUI
	Compile Simulation Models into Simulation Libraries at the ModelSim Command Prompt

	Compile Testbench and Design Files into Work Library
	Compile Testbench and Design Files into Work Library Using the ModelSim Command Prompt

	Loading the Design
	Loading the Design Using the ModelSim Command Prompt

	Running the Simulation
	Running the Simulation Using the ModelSim Command Prompt

	Simulating Verilog HDL Designs
	Create Simulation Libraries
	Create Simulation Libraries Using the ModelSim GUI
	Create Simulation Libraries Using the ModelSim Command Prompt

	Compile Simulation Models into Simulation Libraries
	Compile Simulation Models into Simulation Libraries Using the ModelSim GUI
	Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

	Compile Testbench and Design Files into Work Library
	Compile Testbench and Design Files into Work Library Using the ModelSim Command Prompt

	Loading the Design
	Loading a Design Using the ModelSim Command Prompt

	Running the Simulation
	Running the Simulation Using the ModelSim Command Prompt

	Verilog HDL Functional RTL Simulation with Altera Memory Blocks

	Post-Synthesis Simulation
	Generating a Post-Synthesis Simulation Netlist
	Simulating VHDL Designs
	Create Simulation Libraries
	Create Simulation Libraries Using the ModelSim GUI
	Create Simulation Libraries Using the ModelSim Command Prompt
	Compile Simulation Models into Simulation Libraries Using the ModelSim GUI
	Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

	Compile Testbench and VHDL Output File into Work Library
	Compile Testbench and VHDL Output File into Work Library Using ModelSim Command Prompt

	Loading the Design
	Loading the Design Using the ModelSim Command Prompt

	Running the Simulation
	Running the Simulation Using the ModelSim Command Prompt

	Simulating Verilog HDL Designs
	Create Simulation Libraries
	Create Simulation Libraries Using the ModelSim GUI
	Create Simulation Libraries Using the ModelSim Command Prompt
	Compile Simulation Models into Simulation Libraries Using the ModelSim GUI
	Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

	Compile Testbench and Verilog Output File into Work Library
	Compile Testbench and Verilog Output File into Work Library Using the ModelSim Command Prompt

	Loading the Design
	Loading the Design Using the ModelSim Command Prompt

	Running the Simulation
	Running the Simulation Using the ModelSim Command Prompt

	Gate-Level Timing Simulation
	Generating a Gate-Level Timing Simulation Netlist
	Generating a Different Timing Model
	Operating Condition Example: Generate All Timing Models for Stratix III Devices

	Perform Timing Simulation Using Post-synthesis Netlist

	Gate-Level Simulation Libraries
	Simulating VHDL Designs
	Create Simulation Libraries
	Create Simulation Libraries Using the ModelSim GUI
	Create Simulation Libraries Using the ModelSim Command Prompt
	Compile Simulation Models into Simulation Libraries Using the ModelSim GUI
	Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

	Compile Testbench and VHDL Output File into Work Library
	Compile Testbench and VHDL Output File into Work Library Using the ModelSim Command Prompt

	Loading the Design
	Loading a Design Using the ModelSim Command Prompt

	Running the Simulation
	Running a Simulation Using the ModelSim Command Prompt

	Simulating Verilog HDL Designs
	Create Simulation Libraries
	Create Simulation Libraries Using the ModelSim GUI
	Create Simulation Libraries Using the ModelSim Command Prompt
	Compile Simulation Models into Simulation Libraries Using the ModelSim GUI
	Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

	Compile Testbench and Verilog Output File into Work Library
	Compile Testbench and Verilog Output File into Work Libraries Using the ModelSim Command Prompt

	Loading the Design
	Loading the Design Using the ModelSim Command Prompt

	Running the Simulation
	Running the Simulation Using the ModelSim Command Prompt

	Simulating Designs that Include Transceivers
	Stratix GX Functional Simulation
	Example: Performing Functional Simulation for Stratix GX in Verilog HDL
	Example: Performing Functional Simulation for Stratix GX in VHDL

	Stratix GX Post-Fit (Timing) Simulation
	Example: Performing Timing Simulation for Stratix GX in Verilog HDL
	Example: Performing Timing Simulation for Stratix GX in VHDL

	Stratix II GX Functional Simulation
	Example: Performing Functional Simulation for Stratix II GX in Verilog HDL
	Example: Performing Functional Simulation for Stratix II GX in VHDL

	Stratix II GX Post-Fit (Timing) Simulation
	Example: Performing Timing Simulation for Stratix II GX in Verilog HDL
	Example: Performing Timing Simulation for Stratix II GX in VHDL

	Transport Delays
	+transport_path_delays
	+transport_int_delays

	Using the NativeLink Feature with ModelSim
	Setting Up NativeLink
	Performing an RTL Simulation Using NativeLink
	Performing a Gate-Level Simulation Using NativeLink
	Setting Up a Testbench
	Creating a Testbench

	Scripting Support
	Generating a Post-Synthesis Simulation Netlist for ModelSim
	Tcl Commands
	Command Prompt

	Generating a Gate-Level Timing Simulation Netlist for ModelSim
	Tcl Commands
	Command Line

	Software Licensing and Licensing Setup
	LM_LICENSE_FILE Variable

	Conclusion
	Referenced Documents
	Document Revision History

	3. Synopsys VCS Support
	Introduction
	Software Requirements
	Using VCS in the Quartus II Design Flow
	Functional Simulations
	Megafunctions Requiring Atom Libraries
	Functional RTL Simulation with Altera Memory Blocks
	Compiling Functional Library Files with Compiler Directives

	Post-Synthesis Simulation
	Generating a Post-Synthesis Simulation Netlist

	Gate-Level Timing Simulation
	Generating a Gate-Level Timing Simulation Netlist
	Generating Different Timing Model
	Operating Condition Example: Generate All Timing Models for Stratix III Devices

	Perform Timing Simulation Using Post-Synthesis Netlist

	Common VCS Software Compiler Options
	Using VirSim
	Debugging Support Command-Line Interface
	Simulating Designs that Include Transceivers
	Stratix GX Functional Simulation
	Example of Compiling Library Files for Functional Stratix GX Simulation in Verilog HDL

	Stratix GX Post-Fit (Timing) Simulation
	Example of Compiling Library Files for Timing Stratix GX Simulation in Verilog HDL

	Stratix II GX Functional Simulation
	Example of Compiling Library Files for Functional Stratix II GX Simulation in Verilog HDL

	Stratix II GX Post-Fit (Timing) Simulation
	Example of Compiling Library Files for Timing Stratix II GX Simulation in Verilog HDL

	Using PLI Routines with the VCS Software
	Preparing and Linking C Programs to Verilog HDL Code

	Transport Delays
	+transport_path_delays
	+transport_int_delays

	Using NativeLink with the VCS Software
	Setting Up NativeLink
	Performing an RTL Simulation Using NativeLink
	Performing a Gate-Level Simulation Using NativeLink
	Setting Up a Testbench
	Creating a Testbench

	Scripting Support
	Generating a Post-Synthesis Simulation Netlist for VCS
	Tcl Commands
	Command Prompt

	Generating a Gate-Level Timing Simulation Netlist for VCS
	Tcl Commands
	Command Prompt

	Conclusion
	Referenced Documents
	Document Revision History

	4. Cadence NC-Sim Support
	Introduction
	Software Requirements
	Simulation Flow Overview
	Operation Modes
	Quartus II Software and NC Simulation Flow Overview

	Functional and RTL Simulation
	Create Libraries
	Basic Library Setup
	Using Multiple cds.lib Files
	Create a cds.lib File in Command-Line Mode
	Create a cds.lib File in GUI Mode

	LPM Functions, Altera Megafunctions, and Altera Primitives Libraries
	Megafunctions Requiring Atom Libraries

	Simulating a Design with Memory
	Compile Source Code and Testbenches
	Compilation in Command-Line Mode
	Compilation in GUI Mode

	Elaborate Your Design
	Elaboration in Command-Line Mode
	Elaboration in GUI Mode

	Add Signals to View
	Adding Signals in Command-Line Mode
	Adding Signals in GUI Mode

	Simulate Your Design
	Functional/RTL Simulation in Command-Line Mode
	Functional/RTL Simulation in GUI Mode

	Post-Synthesis Simulation
	Quartus II Simulation Output Files
	Create Libraries
	Compile Project Files and Libraries
	Elaborate Your Design
	Add Signals to the View
	Simulate Your Design

	Gate-Level Timing Simulation
	Generating a Gate-Level Timing Simulation Netlist
	Generating a Different Timing Model
	Operating Condition Example: Generate All Timing Models for Stratix III and Cyclone III Devices

	Perform Timing Simulation Using Post-Synthesis Netlist
	Quartus II Timing Simulation Libraries
	Create Libraries
	Compile the Project Files and Libraries
	Elaborate Your Design
	Compiling the Standard Delay Output File (VHDL Only) in Command-Line Mode
	Compiling the Standard Delay Output File (VHDL Only) in GUI Mode

	Add Signals to View
	Simulate Your Design

	Simulating Designs that Include Transceivers
	Stratix GX Functional Simulation
	Example of Compiling Library Files for Functional Stratix GX Simulation in Verilog HDL
	Example of Compiling Library Files for Functional Stratix GX Simulation in VHDL

	Stratix GX Post-Fit (Timing) Simulation
	Example of Compiling Library Files for Timing Stratix GX Simulation in Verilog HDL
	Example of Compiling Library Files for Timing Stratix GX Simulation in VHDL

	Stratix II GX Functional Simulation
	Example of Compiling Library Files for Functional Stratix II GX Simulation in Verilog HDL
	Example of Compiling Library Files for Functional Stratix II GX Simulation in VHDL

	Stratix II GX Post-Fit (Timing) Simulation
	Example of Compiling Library Files for Timing Stratix II GX Simulation in Verilog HDL
	Example of Compiling Library Files for Timing Stratix II GX Simulation in VHDL

	Pulse Reject Delays
	-PULSE_R
	-PULSE_INT_R

	Using the NativeLink Feature with NC-Sim
	Setting Up NativeLink
	Performing an RTL Simulation Using NativeLink
	Performing a Gate Level Simulation Using NativeLink
	Setting Up a Testbench
	Creating a Testbench

	Incorporating PLI Routines
	Dynamically Link a PLI Library
	Dynamically Load a PLI Library
	Statically Link the PLI Library with NC-Sim

	Scripting Support
	Generate NC-Sim Simulation Output Files
	Tcl Commands:
	Command Prompt

	Conclusion
	Referenced Documents
	Document Revision History

	5. Simulating Altera IP in Third-Party Simulation Tools
	Introduction
	IP Functional Simulation Flow
	Verilog and VHDL IP Functional Simulation (IPFS) Models

	Instantiate the IP in Your Design
	Perform Simulation
	Simulating Altera IP Using the Quartus II NativeLink Feature
	Set up a Quartus II Project
	Select the Third-Party Simulation Tool
	Specify the Path for the Third-Party Simulator
	Specify the Testbench Settings
	Analyze and Elaborate the Quartus II Project
	Run RTL Functional Simulation

	Simulating Altera IP Without the Quartus II NativeLink Feature

	Design Language Examples
	Verilog HDL Example: Simulating the IPFS Model in the ModelSim Software
	VHDL Example: Simulating the IPFS Model in the ModelSim Software
	NC-VHDL Example: Simulating the IPFS Model in the NC-VHDL Software
	Verilog HDL Example: Simulating Your IPFS Model in VCS
	Single-Step Process
	Two-Step Process (Compilation and Simulation)

	Conclusion
	Referenced Documents
	Document Revision History

	Section II. Timing Analysis
	6. The Quartus II TimeQuest Timing Analyzer
	Introduction
	Getting Started with the Quartus II TimeQuest Timing Analyzer
	Setting Up the Quartus II TimeQuest Timing Analyzer

	Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines
	Running the Quartus II TimeQuest Timing Analyzer
	Directly from the Quartus II Software
	Stand-Alone Mode
	Command-Line Mode

	Timing Analysis Overview
	Clock Analysis
	Clock Setup Check
	Clock Hold Check
	Recovery and Removal
	Multicycle Paths

	Specify Design Timing Requirements
	Create a Timing Netlist
	Specify Timing Constraints
	Generate SDC Constraint Reports

	The Quartus II TimeQuest Timing Analyzer Flow Guidelines
	Create a Timing Netlist
	Read the Synopsys Design Constraints File
	Update Timing Netlist
	Generate Timing Reports

	Collections
	Application Examples

	Constraints Files
	Fitter and Timing Analysis SDC Files
	Specifying SDC Files for Place-and-Route
	Specifying SDC Files for Static Timing Analysis

	Synopsys Design Constraints File Precedence

	Clock Specification
	Clocks
	Generated Clocks
	Virtual Clocks
	Multi-Frequency Clocks
	Automatic Clock Detection
	Derive PLL Clocks
	Default Clock Constraints
	Clock Groups
	Clock Effect Characteristics
	Clock Latency
	Clock Uncertainty

	Derive Clock Uncertainty
	Inter-Clock Transfers
	Intra-Clock Transfers
	I/O Interface Clock Transfers

	I/O Specifications
	Input and Output Delay
	Set Input Delay
	Set Output Delay

	Timing Exceptions
	Precedence
	False Path
	Minimum Delay
	Maximum Delay
	Multicycle Path
	Clock-as-Data Analysis
	Application Examples

	Constraint and Exception Removal
	Timing Reports
	report_timing
	report_clock_transfers
	report_clocks
	report_min_pulse_width
	report_net_timing
	report_sdc
	report_ucp
	report_path
	report_datasheet
	report_rskm
	report_tccs
	report_path
	check_timing
	report_clock_fmax_summary
	create_timing_summary

	Timing Analysis Features
	Multi-Corner Analysis
	Advanced I/O Timing and Board Trace Model Assignments
	Wildcard Assignments and Collections
	Resetting a Design

	The TimeQuest Timing Analyzer GUI
	The Quartus II Software Interface and Options
	View Pane
	View Pane: Splitting
	View Pane: Removing Split Windows

	Tasks Pane
	Opening a Project and Writing a Synopsys Design Constraints File
	Netlist Setup Folder
	Reports Folder
	Macros Folder

	Console Pane
	Report Pane
	Constraints
	Name Finder
	Target Pane
	SDC Editor

	Conclusion
	Referenced Documents
	Document Revision History

	7. Switching to the Quartus II TimeQuest Timing Analyzer
	Introduction
	Benefits of Switching to the Quartus II TimeQuest Analyzer
	Chapter Contents

	Switching to the Quartus II TimeQuest Analyzer
	Compile Your Design
	Create an SDC File
	Conversion Utility

	Perform Timing Analysis with the Quartus II TimeQuest Timing Analyzer
	Run the Quartus II TimeQuest Analyzer

	Set the Default Timing Analyzer

	Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers
	Terminology
	Netlist
	Collections

	Constraints
	Constraint Files
	Constraint Entry
	Time Units
	MegaCore Functions
	Bus Name Format

	Constraint File Priority
	Constraint Priority
	Ambiguous Constraints

	Clocks
	Related and Unrelated Clocks
	Clock Offset
	Clock Latency
	Offset and Latency Example
	Clock Offset Scenario
	Clock Latency Scenario

	Clock Uncertainty
	Derived and Generated Clocks
	Automatic Clock Detection
	derive_clocks Command
	derive_pll_clocks Command

	Hold Relationship

	Clock Objects
	Hold Multicycle
	Fitter Behavior
	Fitter Performance

	Reporting
	Paths and Pairs
	Default Reports
	Netlist Names
	Non-Integer Clock Periods
	Other Features

	Scripting API

	Timing Assignment Conversion
	Setup Relationship
	Hold Relationship
	Clock Latency
	Clock Uncertainty
	Inverted Clock
	Not a Clock
	Default Required fMAX Assignment
	Virtual Clock Reference
	Clock Settings
	Multicycle
	Clock Enable Multicycle
	I/O Constraints
	Input and Output Delay
	tSU Requirement
	tH Requirement
	tCO Requirement
	Minimum tCO Requirement
	tPD Requirement
	Combinational Path Delay Scenario

	Minimum tPD Requirement
	Cut Timing Path
	Maximum Delay
	Minimum Delay
	Maximum Clock Arrival Skew
	Maximum Data Arrival Skew
	Constraining Skew on an Output Bus

	Conversion Utility
	Unsupported Global Assignments
	Recommended Global Assignments
	Clock Conversion
	Instance Assignment Conversion
	PLL Phase Shift Conversion
	tCO Requirement Conversion

	Entity-Specific Assignments
	Paths between Unrelated Clock Domains
	Unsupported Instance Assignments
	Reviewing Conversion Results
	Warning Messages
	Ignored QSF Variable <assignment>
	Global <name> = <value>
	QSF: Expected <name> to be set to <expected value> but it is set to <actual value>
	QSF: Found Global Fmax Requirement. Translation will be done using derive_clocks
	TAN Report Database not found. HDL based assignments will not be migrated
	Ignored Entity Assignment (Entity <entity>): <variable> = <value> -from <from> -to <to>
	Ignoring OFFSET_FROM_BASE_CLOCK assignment for clock <clock>
	Clock <clock> has no FMAX_REQUIREMENT - No clock was generated
	No Clock Settings defined in QSF file

	Clocks
	Clock Transfers
	Path Details
	Unconstrained Paths
	Bus Names
	Other

	Re-Running the Conversion Utility

	Notes
	Output Pin Load Assignments
	Constraint Target Types
	DDR Constraints with the DDR Timing Wizard
	HardCopy Stratix Device Handoff
	Unsupported SDC Features
	Constraint Passing
	Optimization
	Clock Network Delay Reporting
	PowerPlay Power Analysis
	Project Management
	Conversion Utility
	tPD and Minimum tPD Requirement Conversion

	Referenced Documents
	Document Revision History

	8. Quartus II Classic Timing Analyzer
	Introduction
	Timing Analysis Tool Setup
	Static Timing Analysis Overview
	Clock Analysis
	Clock Setup Check
	Clock Hold Check

	Multicycle Paths

	Clock Settings
	Individual Clock Settings
	Default Clock Settings

	Clock Types
	Base Clocks
	Derived Clocks
	Undefined Clocks
	PLL Clocks

	Clock Uncertainty
	Clock Latency
	Timing Exceptions
	Multicycle
	Destination Multicycle Setup Exception
	Destination Multicycle Hold Exception
	Source Multicycle Setup Exception
	Source Multicycle Hold Exception
	Default Hold Multicycle
	Clock Enable Multicycle

	Setup Relationship and Hold Relationship
	Maximum Delay and Minimum Delay
	False Paths

	I/O Analysis
	External Input Delay and Output Delay Assignments
	Input Delay Assignment
	Output Delay Assignment

	Virtual Clocks

	Asynchronous Paths
	Recovery and Removal
	Recovery Report
	Removal Report

	Skew Management
	Maximum Clock Arrival Skew
	Maximum Data Arrival Skew

	Generating Timing Analysis Reports with report_timing
	Other Timing Analyzer Features
	Wildcard Assignments
	Assignment Groups
	Fast Corner Analysis
	Early Timing Estimation
	Timing Constraint Checker
	Latch Analysis

	Timing Analysis Using the Quartus II GUI
	Assignment Editor
	Timing Settings
	Clock Settings Dialog Box
	More Timing Settings Dialog Box

	Timing Reports
	Advanced List Path
	Early Timing Estimate
	Assignment Groups

	Scripting Support
	Creating Clocks
	Base Clocks
	Derived Clocks

	Clock Latency
	Clock Uncertainty
	Cut Timing Paths
	Input Delay Assignment
	Maximum and Minimum Delay
	Maximum Clock Arrival Skew
	Maximum Data Arrival Skew
	Multicycle
	Output Delay Assignment
	Report Timing
	Setup and Hold Relationships
	Assignment Group
	Virtual Clock

	MAX+PLUS II Timing Analysis Methodology
	fMAX Relationships
	Slack

	I/O Timing
	tSU Timing
	tH Timing
	tCO Timing
	Minimum tCO (min tCO)
	tPD Timing
	Minimum tPD (min tPD)

	The Timing Analyzer Tool

	Conclusion
	Referenced Documents
	Document Revision History

	9. Synopsys PrimeTime Support
	Introduction
	Quartus II Settings for Generating the PrimeTime Software Files
	Files Generated for the PrimeTime Software Environment
	The Netlist
	The SDO File
	Generating Multiple Operating Conditions with TimeQuest

	The Tcl Script
	Generated File Summary

	Running the PrimeTime Software
	Analyzing Quartus II Projects
	Other pt_shell Commands

	PrimeTime Timing Reports
	Sample of the PrimeTime Software Timing Report
	Comparing Timing Reports from the Quartus II Classic Timing Analyzer and the PrimeTime Software
	Clock Setup Relationship and Slack
	Clock Hold Relationship and Slack
	Input Delay and Output Delay Relationships and Slack

	Static Timing Analyzer Differences
	The Quartus II Classic Timing Analyzer and the PrimeTime Software
	Rise/Fall Support
	Minimum and Maximum Delays
	Recovery/Removal Analysis
	Encrypted Intellectual Property Blocks
	Registered Clock Signals
	Multiple Source and Destination Register Pairs
	Latches
	LVDS I/O
	Clock Latency
	Input and Output Delay Assignments
	Generated Clocks Derived from Generated Clocks

	The Quartus II TimeQuest Timing Analyzer and the PrimeTime Software
	Encrypted Intellectual Property Blocks
	Latches
	LVDS I/O
	The Quartus II TimeQuest Timing Analyzer SDC File and PrimeTime Compatibility
	Clock and Data Paths
	Inverting and Non-Inverting Propagation
	Multiple Rise/Fall Numbers For a Timing Arc
	Virtual Generated Clocks
	Generated Clocks Derived from Generated Clocks

	Conclusion
	Referenced Documents
	Document Revision History

	Section III. Power Estimation and Analysis
	10. PowerPlay Power Analysis
	Introduction
	Quartus II Early Power Estimator File
	PowerPlay Early Power Estimator File Generator Compilation Report

	Types of Power Analyses
	Factors Affecting Power Consumption
	Device Selection
	Environmental Conditions
	Air Flow
	Heat Sink and Thermal Compound
	Ambient Temperature
	Board Thermal Model

	Design Resources
	Number, Type, and Loading of I/O Pins
	Number and Type of Logic Elements, Multiplier Elements, and RAM Blocks
	Number and Type of Global Signals

	Signal Activities

	PowerPlay Power Analyzer Flow
	Operating Conditions
	Signal Activities Data Sources
	Simulation Results

	Using Simulation Files in Modular Design Flows
	Complete Design Simulation
	Modular Design Simulation
	Multiple Simulations on the Same Entity
	Overlapping Simulations
	Partial Simulations
	Node Name Matching Considerations
	Glitch Filtering
	Node and Entity Assignments
	Timing Assignments to Clock Nodes

	Default Toggle Rate Assignment
	Vectorless Estimation

	Using the PowerPlay Power Analyzer
	Common Analysis Flows
	Signal Activities from Full Post-Fit Netlist (Timing) Simulation
	Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
	Signal Activities from Vectorless Estimation, User-Supplied Input Pin Activities
	Signal Activities from User Defaults Only

	Generating a SAF or VCD File Using the Quartus II Simulator
	Generating a VCD File Using a Third-Party Simulator
	Running the PowerPlay Power Analyzer Using the Quartus II GUI
	PowerPlay Power Analyzer Compilation Report
	Summary
	Settings
	Simulation Files Read
	Operating Conditions Used
	Thermal Power Dissipated by Block
	Thermal Power Dissipation by Block Type (Device Resource Type)
	Thermal Power Dissipation by Hierarchy
	Core Dynamic Thermal Power Dissipation by Clock Domain
	Current Drawn from Voltage Supplies
	Confidence Metric Details
	Signal Activities
	Messages
	Specific Rules for Reporting

	Scripting Support
	Running the PowerPlay Power Analyzer from the Command Line

	Conclusion
	Referenced Documents
	Document Revision History

	Section IV. Signal Integrity
	11. Signal Integrity Analysis with Third-Party Tools
	Introduction
	The Need for FPGA to Board Signal Integrity Analysis
	The Double Counting Problem for FPGA Output Timing
	Defining the Double Counting Problem
	The Solution to Double Counting

	I/O Model Selection: IBIS or HSPICE
	FPGA to Board Signal Integrity Analysis Flow
	Create I/O and Board Trace Model Assignments
	Enable Output File Generation
	Generate the Output Files
	Customize the Output Files
	Set Up and Run Simulations in Third-Party Tools
	Interpret Simulation Results

	Simulation with IBIS Models
	Elements of an IBIS Model
	Creating Accurate IBIS Models
	Download IBIS Models
	Generate Custom IBIS Models with the IBIS Writer

	Design Simulation Using the Mentor Graphics HyperLynx Software
	Configuring LineSim to Use Altera IBIS Models
	Integrating Altera IBIS Models into LineSim Simulations
	Running and Interpreting LineSim Simulations

	Simulation with HSPICE Models
	Supported Devices and Signaling
	Creating Accurate HSPICE Models
	Creating HSPICE Model Files Using the Quartus II GUI
	Creating HSPICE Model Files Using Tcl Scripting and the Command Line

	Customizing HSPICE Model Files
	Design Simulation Using Synopsys HSPICE
	Running HSPICE Simulations
	Viewing and Interpreting Tabular Simulation Results
	Viewing Graphical Simulation Results
	Making Design Adjustments Based on HSPICE Simulations

	Conclusion
	Referenced Documents
	Document Revision History

	Section V. In-System Design Debugging
	12. Quick Design Debugging Using SignalProbe
	Introduction
	On-Chip Debugging Tool Comparison
	Debugging Using the SignalProbe Feature
	Reserve the SignalProbe Pins
	Perform a Full Compilation
	Assign a SignalProbe Source
	Add Registers to the Pipeline Path to SignalProbe Pin
	Perform a SignalProbe Compilation
	Analyze the Results of the SignalProbe Compilation
	Generate the Programming File
	SignalProbe ECO flows
	SignalProbe ECO Flow with Quartus II Incremental Compilation
	SignalProbe ECO Flow without Quartus Incremental Compilation

	Common Questions About the SignalProbe Feature
	Why Did I Get the Following Error Message, “Error: There are No Enabled SignalProbes to Process”?
	How Can I Retain My SignalProbe ECOs during Re-compilation of My Design?
	Why Did My SignalProbe Source Disappear in the Change Manager?
	What is an ECO and Where Can I Find More Information on ECO?
	How Do I Migrate My Previous SignalProbe Assignments in the Quartus II Software Versions 5.1 and below to Versions 6.0 and Higher?
	What are all the Changes for the SignalProbe Feature between the Quartus II Software Version 5.1 and Earlier, and Version 6.0 and Later?

	Scripting Support
	Make a SignalProbe Pin
	Delete a SignalProbe Pin
	Enable a SignalProbe Pin
	Disable a SignalProbe Pin
	Perform a SignalProbe Compilation
	Migrating Previous SignalProbe Pins to the Quartus II Software Versions 6.0 and Later
	Script Example

	Using SignalProbe with the APEX Device Family
	Adding SignalProbe Sources
	Performing a SignalProbe Compilation
	Running SignalProbe with Smart Compilation

	Understanding the Results of a SignalProbe Compilation
	Analyzing SignalProbe Routing Failures

	SignalProbe Scripting Support for APEX Devices
	Reserving SignalProbe Pins
	Adding SignalProbe Sources
	Assigning I/O Standards
	Adding Registers for Pipelining
	Run SignalProbe Automatically
	Run SignalProbe Manually
	Enable or Disable All SignalProbe Routing
	Running SignalProbe with Smart Compilation
	Allow SignalProbe to Modify Fitting Results

	Conclusion
	Referenced Documents
	Document Revision History

	13. Design Debugging Using the SignalTap II Embedded Logic Analyzer
	Introduction
	Hardware and Software Requirements

	On-Chip Debugging Tool Comparison
	Design Flow Using the SignalTap II Logic Analyzer
	SignalTap II Logic Analyzer Task Flow
	Add the SignalTap II Logic Analyzer to Your Design
	Configure the SignalTap II Logic Analyzer
	Define Triggers
	Compile the Design
	Program the Target Device or Devices
	Run the SignalTap II Logic Analyzer
	View, Analyze, and Use Captured Data

	Add the SignalTap II Logic Analyzer to Your Design
	Creating and Enabling a SignalTap II File
	Creating a SignalTap II File
	Enabling and Disabling a SignalTap II File for the Current Project

	Using the MegaWizard Plug-In Manager to Create Your Embedded Logic Analyzer
	Creating an HDL Representation Using the MegaWizard Plug-In Manager
	SignalTap II Megafunction Ports
	Instantiating the SignalTap II Logic Analyzer in Your HDL

	Embedding Multiple Analyzers in One FPGA
	Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer

	Configure the SignalTap II Logic Analyzer
	Assigning an Acquisition Clock
	Adding Signals to the SignalTap II File
	Signal Preservation
	Assigning Data Signals
	Node List Signal Use Options
	Untappable Signals

	Adding Signals with a Plug-In
	Specifying the Sample Depth
	Capturing Data to a Specific RAM Type
	Choosing the Buffer Acquisition Mode
	Circular Buffer
	Segmented Buffer

	Managing Multiple SignalTap II Files and Configurations

	Define Triggers
	Creating Basic Trigger Conditions
	Creating Advanced Trigger Conditions
	Examples of Advanced Triggering Expressions

	Trigger Condition Flow Control
	Sequential Triggering
	Custom State-Based Triggering
	State Diagram Pane
	State Machine Pane
	Resources Pane

	SignalTap II Trigger Flow Description Language
	State Labels
	Boolean_expression
	Action_list
	Resource Manipulation Action
	Buffer Control Action
	State Transition Action

	Specifying the Trigger Position
	Creating a Power-Up Trigger
	Enabling a Power-Up Trigger
	Managing and Configuring Power-Up and Runtime Trigger Conditions

	Using External Triggers
	Trigger In
	Trigger Out
	Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer

	Compile the Design
	Faster Compilations with Quartus II Incremental Compilation
	Enabling Incremental Compilation for your Design
	Using Incremental Compilation with the SignalTap II Logic Analyzer

	Preventing Changes Requiring Recompilation
	Timing Preservation with the SignalTap II Logic Analyzer
	Performance and Resource Considerations

	Program the Target Device or Devices
	Programming a Single Device
	Programming Multiple Devices to Debug Multiple Designs

	Run the SignalTap II Logic Analyzer
	Running with a Power-Up Trigger
	Running with Runtime Triggers
	Performing a Force Trigger
	SignalTap II Status Messages

	View, Analyze, and Use Captured Data
	Viewing Captured Data
	Creating Mnemonics for Bit Patterns
	Automatic Mnemonics with a Plug-In
	Locating a Node in the Design
	Saving Captured Data
	Converting Captured Data to Other File Formats
	Creating a SignalTap II List File

	Other Features
	Using the SignalTap II MATLAB MEX Function to Capture Data
	Using SignalTap II in a Lab Environment
	Remote Debugging Using the SignalTap II Logic Analyzer
	Equipment Setup
	Software Setup on the Remote PC
	Software Setup on the Local PC
	SignalTap II Setup on the Local PC

	SignalTap II Scripting Support
	SignalTap II Command Line Options
	SignalTap II Tcl Commands

	Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems
	Custom Triggering Flow Application Examples
	Design Example 1: Specifying a Custom Trigger Position
	Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	Conclusion
	Referenced Documents
	Document Revision History

	14. In-System Debugging Using External Logic Analyzers
	Introduction
	Choosing a Logic Analyzer
	Required Components
	FPGA Device Support

	Debugging Your Design Using the Logic Analyzer Interface
	Creating a Logic Analyzer Interface File
	Creating a New Logic Analyzer Interface File
	Opening an Existing External Analyzer Interface File
	Saving the External Analyzer Interface File

	Configuring the Logic Analyzer Interface File Core Parameters
	Mapping the Logic Analyzer Interface File Pins to Available I/O Pins
	Mapping Internal Signals to the Logic Analyzer Interface Banks
	Using the Node Finder
	Enabling the Logic Analyzer Interface Before Compiling Your Quartus II Project
	Compiling Your Quartus II Project
	Programming Your FPGA Using the Logic Analyzer Interface
	Using the Logic Analyzer Interface with Multiple Devices
	Configuring Banks in the Logic Analyzer Interface File
	Acquiring Data on Your Logic Analyzer

	Advanced Features
	Using the Logic Analyzer Interface with Incremental Compilation
	Creating Multiple Logic Analyzer Interface Instances in One FPGA

	Conclusion
	Document Revision History

	15. In-System Updating of Memory and Constants
	Introduction
	Overview
	Device Megafunction Support
	Using In-System Updating of Memory Constants with Your Design
	Creating In-System Modifiable Memories Constants
	Running the In-System Memory Content Editor
	Instance Manager
	Editing Data Displayed in the Hex Editor
	Importing Exporting Memory Files
	Viewing Memories Constants in the Hex Editor
	Scripting Support
	Programming the Device Using the In-System Memory Content Editor
	Example: Using the In-System Memory Content Editor with the SignalTap II Embedded Logic Analyzer

	Conclusion
	Referenced Documents
	Document Revision History

	16. Design Debugging Using In-System Sources and Probes
	Introduction
	Overview
	Hardware and Software Requirements

	Design Flow Using In-System Sources and Probes
	Configuring the altsource_probes Megafunction
	Instantiating the altsource_probe Megafunction
	Compiling the Design

	Running the In-System Sources and Probes Editor
	Programming Your Device Using the JTAG Chain Configuration Window
	Instance Manager
	Sources and Probes Editor Window
	Reading Probe Data
	Writing Data
	Data Organization

	TCL Support
	Design Example: Dynamic PLL Reconfiguration
	Conclusion
	Referenced Documents
	Document Revision History

	Section VI. Formal Verification
	17. Cadence Encounter Conformal Support
	Introduction
	Formal Verification Versus Simulation
	Formal Verification: What You Need to Know

	Formal Verification Design Flow
	Quartus II Integrated Synthesis
	EDA Tool Support for Quartus II Integrated Synthesis
	Synplify Pro
	EDA Tool Support for Synplify Pro

	RTL Coding Guidelines for Quartus II Integrated Synthesis
	Synthesis Directives and Attributes
	Stuck-at Registers
	ROM, LPM_DIVIDE, and Shift Register Inference
	RAM Inference
	Latch Inference
	Combinational Loops
	Finite State Machine Coding Styles

	Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files
	Tcl Command
	GUI
	The Quartus II Software Generated Files, Formal Verification Scripts, and Directories

	Understanding the Formal Verification Scripts for Encounter Conformal
	The Encounter Conformal Commands within the Quartus II Software-Generated Scripts

	Comparing Designs Using Encounter Conformal
	Black Boxes in the Encounter Conformal Flow
	Running the Encounter Conformal Software
	Running the Encounter Conformal Software from the GUI
	Running the Encounter Conformal Software From a System Command Prompt

	Known Issues and Limitations
	Conclusion
	Black Box Models
	Conformal Dofile/Script Example
	Referenced Documents
	Document Revision History

	18. Synopsys Formality Support
	Introduction
	Formal Verification
	Equivalence Checking

	Formal Verification Support
	EDA Tools and Device Support
	Formal Verification Between RTL and Post-Synthesis Netlist

	Generating Post-Synthesis Netlist for Formal Verification
	DC FPGA Software Settings

	Generating the VO File and Formality Script
	Handling Black Boxes
	Tcl Command
	GUI

	Quartus II Scripts for Formality
	Comparing Designs Using the Formality Software
	Known Issues and Limitations
	Conclusion
	Related Links
	Tcl Sample Script
	DC FPGA Synthesis Script
	Quartus II Software-Generated Formal Verification Script

	Referenced Documents
	Document Revision History

	Section VII. Device Programming
	19. Quartus II Programmer
	Introduction
	Programming Flow
	Programming and Configuration Modes
	JTAG Mode
	Passive Serial Mode
	Active Serial Mode
	In-Socket Programming Mode

	Programmer Overview
	Tools Menu

	Hardware Setup
	Hardware Settings
	JTAG Settings

	Device Programming and Configuration
	Single Device Programming and Configuration
	Multi-Device Programming and Configuration
	Bypassing an Altera Device
	Bypassing a Non-Altera Device
	Chain Description File
	Design Security Key Programming

	Optional Programming Files
	Types of Programming and Configuration Files
	Generating Optional Programming Files
	Create Programming Files
	Convert Programming Files
	Generating Optional Programming or Configuration Files During Compilation

	Flash Loaders
	Parallel Flash Loader
	Serial Flash Loader

	Other Programming Tools
	Quartus II Stand-Alone Programmer
	jtagconfig Debugging Tool

	Scripting Support
	Conclusion
	Referenced Documents
	Document Revision History

