
Interactive Projection Game
CSEE 4840 Project
Design Document

Abdulhamid Ghandour Thomas John Jaime Peretzman Bharadwaj Vellore
(ag2672, tj2183, jp2642, vrb2102) @columbia.edu

March 14, 2008

Contents
1 Introduction 3
2 Top Level Design 4
2.1 System Configuration 4
2.2 Functional Description 6
3 Camera Interface 7
3.1 Camera Physical Interface 7
3.2 Camera Register Configuration 7
3.3 Hardware-Software partitioning 7
3.4 Pixel Timing 7
3.4.1 Preliminary Timing Estimates 9
3.4.2 Implications and Choices 10
3.4.3 I2C Interface 10
4 Vision-Input Processing Module 11
4.1 Interfaces 11
4.2 Algorithm 12
4.2.1 Tracking side boundaries 12
4.2.2 Tracking top and bottom boundaries 13
4.3 Implementation 14
5 Software Design 16
5.1 Calibration 16
5.2 Algorithm - Single Ball 16
6 VGA Controller Module 19
7 Open Points 20
8 Project Management 21
8.1 Versioning 21
8.2 Implementation Milestones 21
9 Glossary of Terms 22

1



List of Figures
1 Board Level Connection 4
2 Physical Component Organization 5
3 Vision System Block Diagram 11
4 Vision System IO Timing 12
5 Vision System Algorithm Illustration - Cue cuts Left and Right Boundaries 12
6 Vision System Algorithm Illustration - Cue cuts Top and Bottom Boundaries 14
7 Vision System Detailed Diagram 15
8 Calibration Algorithm 17
9 Primary Ball-Positioning Algorithm 18
10 Ball movements and collisions 19
11 Directory Tree Structure 21

List of Tables
1 TRDB-DC2 Register Settings 8
2 Camera Interface - Control/Status Register 9
3 Camera Interface - Register List 9

2



1 Introduction

The purpose of this document is to present a detailed design of the components in the ”Interactive
Project Game” system. ”Interactive Projection Game” is a virtual pool-like game designed using vision
and projection techniques. Game play is based on a projected image of a pool-table-like surface, with a
ball positioned on it. A player can then use a real cue or cue-like object to ’strike’ the ball. The ball is
then projected in the direction it was struck and made to settle at a new final position from where the
player can strike it once again. The images are projected using a projector that receives a VGA input,
and a camera is used to capture the projected image and the position and motion of the cue-stick.

In this document, component internals are detailed, as are the interfaces between the components in both
physical and logical terms. This document is based on the earlier proposal document for this system
which offers a very high level perspective of the data-flow path in the system.

Details of the design are listed starting from a top level and descending to each component by turn. In
particular, the interface with the external camera device is elucidated, as is the pixel processing module.
The final sections deal with the VGA controller module and a high-level view of the software design.

3



2 Top Level Design

2.1 System Configuration

The ”Interactive Projection Game”, referred to hereafter as IPG, system is built out of a combination
of hardware and software components. The system is centred around a NIOS-2 processor[3], a 32-bit
general purpose embedded processor. The NIOS-II is a configurable soft-core processor, and in this case,
it is targeted to be downloaded to the Cyclone-II[2] family FPGA from Altera.

The IPG systems comprises a camera and a projection system connected to the Altera DE2 board com-
prising the FPGA, memories and other peripherals for connectivity. The physical configuration of the
board is illustrated in Figure 1.

Figure 1: Board Level Connection

The NIOS-II core is connected in the IPG system to the peripherals shown in Figure 2. The connection to
the peripherals is via the Avalon[1] system interconnect fabric. The processor interface with an SDRAM,
out of which the software for the system is executed. A JTAG module attached to the processor enables
debugging. In addition to these standard peripherals, the following custom peripherals are created in
hardware on the said FPGA and attached to the Avalon bus in this design. Each of these peripherals is
an Avalon slave component. The NIOS-II core is the lone master.
• Camera Interface
• Pixel Processor
• VGA Driver
Each of the listed peripherals offers a programmable register (MMIO) view to software running on the
NIOS-II. This enables software to configure these peripherals, track their status, and co-ordinate their
activities.

4



Figure 2: Physical Component Organization 5



2.2 Functional Description

Figure 2 also illustrates the data-flow and the processing steps undertaken to achieve the required func-
tionality. The processing steps are briefly visited here and explored in detail in future sections.
• The camera interface configures the camera, and then receives images from it at a frame rate and

resolution agreed with the camera. The captured image is then forwarded to the pixel processing
module one pixel at a time, as and when pixel arrive. These are accompanied by control signals
which help the pixel processing module synchronize with frame timing.

• The pixel processing module analyses incoming pixels to determine the position of the tip of the
cue-stick. Pixels are processed as they arrive and discarded. An algorithm within this module does
suitable book-keeping to enable the position of the tip to be determined. When a frame has been
processed and a new position is available, the position is forwarded to a ball-dynamics simulator.

• The ball-dynamics simulator is a piece of software that uses cue-stick position information to
calculate the angle and velocity of impact on a ball placed at a known location. It then computes
the trajectory of the ball and generates a series of images using a VGA controller module.

• The VGA controller module is a piece of hardware which draws out images of a ball in motion
(at video refresh rates) and drives a VGA output that is supplied to a projector.

• A calibration system is implemented in software to synchronize the projected image and the image
as perceived by the camera.

6



3 Camera Interface

This section details the interfacing of the external camera with the FPGA. The camera used in this system
has the Micron MT9M011 CMOS active-pixel digital image sensor[4], which is able to capture frames
at SXGA, VGA and CIF resolutions at close-to-video refresh rates.

3.1 Camera Physical Interface

The camera, a TRDB-DC2 from Terasic[5], interfaces with the board via a 40-pin flat cable as illustrated
in Figure 1. The DE2 board provides two 40 pin expansion headers. Each header connects directly to
36 pins on the Cyclone-II FPGA. In this case, the GPIO_1 slot is used for connecting the camera. Of
the two sensors available in the MT9M011, sensor 1 is used. The signals corresponding to this sensor
- serial control, clock and data - are carried on pins 1 to 18 of the 40-pin interface. Details of the pin
specification can be obtained from [5].

3.2 Camera Register Configuration

Table 1 gives a full list of the registers available to be configured on the MT9M011 and the manner in
which they are expected to be configured for purposes of this application. This configuration is subject
to change on the basis of choices, particularly in the matter of the frame rate and resolution, and for
colour-specific gains, which are expected to be based on observations from initial tests. Hence some of
these register values are left to be undefined. It may be noted that the configuration of these registers
is controlled in software, which enables the application to use these setting flexibly. The hardware for
the camera interface only provided the I2C interface to send values to the camera hardware and receive
values from it.

3.3 Hardware-Software partitioning

To enable flexibility in configuring various parameters in the camera, the configurations are chosen in
and set in software running on then NIOS processor. The I2C controller in hardware is an Avalon slave
and an I2C master! It received configuration settings from software and purely implements the physical
communication with the camera.

The configuration happens via a tiny handshake protocol implemented between hardware and software.
This handshake is through a Status/Control register in the I2C controller. The details of the register are
as in the Table 2.

Together with the Status/Control register, there are two other registers that are available to be read
from/written to by software. Table 3 details their names and purpose.

3.4 Pixel Timing

This section presents some numbers on the timing given the configuration of registers that has been
presented earlier. This calculation is based on the selected number of horizontal and vertical active video

7



Table 1: TRDB-DC2 Register Settings
Register Offset Default Configured Notes

Chip Version 0x00 0x1433 - Read Only
Row Start 0x01 0x000C 0x000C There are 8 dark rows and 4 rows skipped to allow

for boundary effects
Column Start 0x02 0x001E 0x001E There are 26 dark column and 4 columns skipped

to allow for boundary effects
Row Width 0x03 0x0400 0x01E0 480 rows of active video

Column Width 0x04 0x0500 0x0280 640 columns of active video pixels
Horizontal Blanking B 0x05 0x018C 0x00CA 202 (minimum permitted when using two ADCs)

pixel horizontal blanking
Vertical Blanking B 0x06 0x0032 0x0019 25 row vertical blanking

Horizontal Blanking A 0x07 0x00C6 0x00C6 Unused (Relevant only when context switching is
employed)

Vertical Blanking A 0x08 0x0019 0x0019 Unused (Relevant only when context switching is
employed)

Shutter Width 0x09 0x0432 0x0432 Unchanged
Row Speed 0x0A 0x0001 0x0001 Unchanged
Extra Delay 0x0B 0x0000 0x0000 To be defined

Shutter Delay 0x0C 0x0000 0x0000 To be defined
Reset 0x0D 0x0008 0x0008 Unchanged

FRAME_VALID Control 0x1F 0x0000 0x0000 To be defined
Read Mode - Context B 0x20 0x0020 0x0020 To be defined
Read Mode - Context A 0x21 0x040C 0x040C Unused

Show Control 0x22 0x0129 0x0129 Unchanged
Flash Control 0x23 0x0608 0x0608 Unchanged
Green 1 Gain 0x2B 0x0020 0x0020 To be defined

Blue Gain 0x2C 0x0020 0x0020 Unchanged
Red Gain 0x2D 0x0020 0x0020 Unchanged

Green 2 Gain 0x2E 0x0020 0x0020 To be defined
Global Gain 0x2F 0x0020 0x0020 To be defined

Context Control 0xC8 0x000B 0x000B Unchanged

pixels and the number of horizontal and vertical blanking pixels. These are programmable in the sensor.
the sensor always produced images in progressive scan. Also, at the start of each line, it generates a
LINE_VALID signal, and at the start of each new frame, a FRAME_VALID. Information for each pixel
is 10 bits wide and is sent with a pixel clock whose frequency is a function of the window size and the
frame rate.

The design will use a VGA resolution of 640∗480 active video pixels at video-like frame rates. This
latter choice is based on the need for near error free detection of the movement of the cue stick. The
combination of the window size and the frame rate dictates the pixel clock frequency or pixel readout

8



Table 2: Camera Interface - Control/Status Register
Register Value Description

0 Indicates that the I2C bus is idle and that therefore, the I2C controller is able to take
commands from software to begin a new send or receive over the bus. This is the
initial state of the register. This is also the state to which the register is restored by
hardware each time it completes a send or receive.

1 Indicates that a receive is to be executed or is in execution. This is the value to
which the software must set this register to initiate a receive from the camera.

2 Indicate that a send is to be executed or is in execution. This is the value to which
the software must set this register to initiate a send to the camera.

>= 3 Invalid

Table 3: Camera Interface - Register List
Register Name Default Value Description

REG 0 Holds the address of the register to which a value must be written
or from which a value must be read. For reliable operation, this reg-
ister should be written to by software only when the Status/Control
register is ”0”. The value in this register should be valid before a
send is initiated by switching the Status/Control register from ”0”
to ”2” or a receive is initiated by switching the value from ”0” to
”1”.

DATA 0 Holds the data which must be written or has been read from a reg-
ister in the camera. For reliable operation, this register should be
read from or written to by software only when the Status/Control
register is ”0”. The value in this register should be valid before
a send is initiated by switching the Status/Control register from
”0” to ”2”. Also the value in this register is valid following a re-
ceive only once the hardware has swtched the Status/Control reg-
ister from ”1” to ”0”. The width of this register is 16 bits.

rate. This read-out rate is constrained by the pixel processing algorithm that the camera interface feeds.
The current design aims to eliminate the need for storage of pixels by processing each pixel as it arrives
from the camera. The processing of each pixel is complete in a single pixel-clock, following which the
pixel is discarded. Evidently, the pixel clock therefore needs to be influenced also by the timerequired to
complete processing one pixel.

3.4.1 Preliminary Timing Estimates

Preliminary back-of-the-envelope calculations throw of the following numbers, which indicate that the
design is very much feasible at the desired frame rate and window size.

In this design, both ADCs available in the camera are used at all times. Each ADC quantizes at half

9



the pixel clock frequency; full resolution images are therefore capturesd at all times. A consequence of
this is that the camera is configures to perpetually operate in a single context (context B). No rows or
columns are ever skipped, and the Bayer pattern is fully preserved.

Master Clock Frequency = 25MHz

Number of horizontal active pixels (A) = 640
Number of rows of active pixels (N) = 480
Number of pixels of horizontal blanking (Q) = 202
Number of rows of vertical blanking (V ) = 25
Frame time = (A + Q)(N + V ) ∗ PxlClkT ime

For a refresh rate of 25fps, frame time = 40ms

Therefore,
PxlClkFreq = 10.63 MHz ≈ 12.5MHz

3.4.2 Implications and Choices

The above result implies that the pixel clock frequency can be configured to be equal to half the master
clock frequency. Further, the modules in the FPGA (including the pixel processsing module are clocked
at 50MHz. This translates to a 4-clock cycle interval for the entire pixel processing chain to operate on
each pixel. Clearly, should the algorithm take fewer cycles to complete, the resolution and/or the frame
rate may be scaled update to reduce error. The improved resolution may be particularly useful should
the area of projection of the picture be large.

3.4.3 I2C Interface

The configuration of the registers happens through an I2 interface which comprises two lines - a clock,
and a serial data line. Each write to a register in the sensor happens in the following steps
• Send a START bit; this is done by first pulling the data line low and then pulling the clock line

low.
• Send the WRITE mode slave address (0xBA) with the SDATA being clocked by the SCLK line
• Receive a single bit ACK
• Send the register address (8 bits) on the SDATA line, again accompanied by the SCLK
• Receive a single bit ACK
• Send the MSB of the value to be written to the register on the SDATA line
• Receive a single bit ACK
• Send the LSB of the value to be written to the register on the SDATA line
• Receive a single bit ACK
• Send a STOP bit; this is done by pulling up the clock line and then pulling up the data line

10



4 Vision-Input Processing Module

The Vision System is a hardware block which processes the input from the camera to identify the tip of
the cue stick.

4.1 Interfaces

The interface signals to this block are shown in Figure 3.

Figure 3: Vision System Block Diagram

The Pixel_Data input is the 10-bit color data from the camera. The camera uses a Bayer color system,
with every alternate pixel being a green pixel. Since the camera and the vision system operate at differ-
ent frequencies, a Valid_Green signal is asserted for a period of one clock cycle to indicate when the
Pixel_Data input has new green data. Figure 4 illustrates the timing of the signals mentioned here.

The End_of_Row signal is asserted at the end of one row of pixel data. Similarly, End_of_Frame is
asserted for a period of one clock period at the end of each frame. End_of_Frame also serves as a reset
for the Vision System and must be asserted during system startup.

Threshold is a 10-bit color signal which indicates the threshold color value. Any pixel darker than this
threshold is interpreted as part of the cue stick by the Vision System. The Threshold is typically calcu-
lated during system reset and is kept constant during operation.

X_Out and Y_Out are 16-bit values which provide the position of the tip of the cue stick. Each period
of logic ’1’ on Valid_Green is interpreted as a new pixel in the row and therefore, the units for the X
co-ordinate is the number of green pixels. Similarly, Y_Out gives the number of rows, each de-limited
by a pulse on the End_of_Row input.

The output latches X_Out and Y_Out are updated everytime End_of_Frame is asserted with the value
computed during the previous frame.

11



Figure 4: Vision System IO Timing

4.2 Algorithm

The cue-stick blocks out the light from the display and is registered as pixels with color value less
than threshold by the camera. The cue-stick can enter the frame from any one of the four sides. The
computation is done by breaking down these possible cases into two:
1. the cue stick enters the frame from the top or bottom
2. the cue-stick enters the frame from either side

4.2.1 Tracking side boundaries

Figure 5: Vision System Algorithm Illustration - Cue cuts Left and Right Boundaries

The information in the frame can be fully represented by the start and end co-ordinates of the cue stick
on each row of the frame. If the cue-stick enters the frame from the left, then the maximum value of the
end co-ordinates and the corresponding y-co-ordinate gives the location of the tip. On the other hand, if
the cue-stick enters the frame from the right, then the minimum value of the start co-ordinates and the
corresponding y co-ordinate gives the location of the tip.

The pixel color data is input to the system from left to right, row by row. Scanning each value, we register
the cue stick if a pre-defined number CUEWIDTH of contiguous dark pixels are identified. The start and
end co-ordinates of the dark pixels are identified in this manner.

As soon as this identification is done, it is compared with the current Min and Max values. If the start
co-ordinate for the current row is less than all previous start co-ordinates, the Min value is updated. The
same applied for the Max value.

12



The pseudo-code below demonstrates this in greater detail. Figure 5 illustrates exactly the steps followed
in the algorithm, together with the manner in which the minimum and maximum start and end positions
are maintained and updated together with their y co-ordinates.

Algorithm 1 Finds the tip of a cue stick from an image map when cue enters from sides
1: MinStartV al← XMAX + 1
2: MaxEndV al← 0
3: repeat
4: DarkP ixelCounter ← 0
5: repeat
6: Get Pixel Colour
7: if colour < THRESHOLD then
8: DarkP ixelCounter + +
9: end if

10: if DarkP ixelCounter = CUEWIDTH then
11: Save XSTART

12: Save XEND

13: end if
14: if XSTART < MinStartV al then
15: MinStartV al← XSTART

16: Save y {y is the y-co-ordinate corresponding to MinStartV al}
17: end if
18: if XEND > MaxEndV al then
19: MaxEndV al← XEND

20: Save y {y is the y-co-ordinate corresponding to MaxEndV al}
21: end if
22: until EndOfLine = 1
23: until EndOfFrame = 1
24:
25: if MinStartV al = 0 then
26: return (MaxEndV al, y) {Cue enters frame from left}
27: end if
28: if MaxEndV al = XMAX then
29: return (MinStartV al, y) {Cue enters frame from right}
30: end if

4.2.2 Tracking top and bottom boundaries

If the cue stick enters the frame from the top of bottom, the tip of the cue can be identified by tagging
each row depending on whether the procedure given above registers the cue stick or not as shown in
Figure 6. The point where this tag changes gives the tip of the cue stick. The X co-ordinate is obtained
from X_START computed for that row in the previous section.

13



Figure 6: Vision System Algorithm Illustration - Cue cuts Top and Bottom Boundaries

4.3 Implementation

The block diagram of the module is shown in Figure 7. The computation is performed on the fly as each
pixel data comes in. Further, the pixels are not stored in a frame buffer, eliminating the need for memory.
At the end of each frame, a decision is made as to which of the x, y co-ordinates from case a or b above
is to be output. The output latches are updated when Frame Buffer is asserted.

14



Figure 7: Vision System Detailed Diagram 15



5 Software Design

This section details the two primary tasks of the software running on the NIOS-II processor. The software
is to be written entirely in ’C’. During and after start-up of the application, the software performs these
tasks:
• Configure the camera
• Calibrate the system
• Forever, process inputs from the vision system, compute new frame information and provide in-

puts to the VGA controller

5.1 Calibration

The calibration of the system will be done by using four known frames. Each frame will consist of a
cue-stick positioned to be intersecting the frame from a different side (left, right, top, bottom) and will
delimit the edge of the table. The software part of the calibration will consist of sending three bits to the
VGA controller. The first two bits will choose the frame that has to be projected on the screen, while the
third bit will specify the mode of use (calibration, normal).

Depending on the screen that is being displayed, an X sample (Xs) and a Y sample (Ys) will be compared
with the incoming bits from the edge detection algorithm. In case that the incoming X1 and Y1 match
within a threshold of Xs1 and the Ys1, the second frame will be projected. The calibration algorithm will
hold its current state until the X2 and Y2 values arrive. This procedure is repeated until all four frames
are matched consecutively. In case the frames do not match, the projector or camera has to be calibrated
manually until they match; once they are matched, the software will confirm the normal mode bit to the
VGA controller and the calibration procedure will be terminated.

5.2 Algorithm - Single Ball

After the calibration has terminated and the normal mode has been started, the one-ball algorithm will
begin reading X and Y values from the edge detection hardware. The X and Y coordinates will be stored
in a FIFO queue, where a total number of three coordinates will be stored. Using these coordinates, an
estimation of the velocity and location of the stick will be calculated. In case a collision between the
stick and the ball is estimated, the direction and velocity of the ball will be calculated.

Once the ball has an initial direction and velocity, a forecast of a ball to wall collision is computed. If
there is no imminent collision, the next location and velocity of the ball will be recalculated. In case a
collision is forecast, the ball direction will be adjusted to create the effect of hitting the wall and then, the
location and the velocity of the ball will be recalculated. In either case, the ball will be damped and the
new location will be sent to the VGA controller. Once the ball comes to a complete stop, the algorithm
is restarted.

16



Figure 8: Calibration Algorithm

17



Figure 9: Primary Ball-Positioning Algorithm

18



6 VGA Controller Module

The VGA Controller is an Avalon component that is responsible for displaying a green background and
a colored ball. The ball is pre-drawn, and is displayed like a sprite. There is also a yellow border for the
table that will be drawn and will play an important role during calibration.

This controller communicates with the software by reading and writing on a bus. The software provides
the coordinates and the color of the ball by writing it on the bus so that the controller can read it. In
addition to that, the controller keeps synchrony with the software by writing on the bus when it is ready
to receive new data.

Calibration is important in our system, and the controller plays a role in that by displaying a stick
somewhere on the screen as requested but the software. During calibration period, the green table with
no balls will be displayed, in addition to cue-like sticks that will be displayed horizontally or vertically
touching each one of the yellow borders of the table. The software chooses the border where the stick
is to be displayed and sends its choice in two bits to the controller in addition to a bit indicating if it is
in calibration mode or not. By this we ensure that the hardware and software are referring to the same
area. This calibration usually happens when the system starts, but it can also be initiated at any time if
the software request that.

Figure 10: Ball movements and collisions

This design is expandable to a constant number of balls where the software provides the co-ordinates of
all balls, their corresponding colors and whether they are to be displayed or not. In this case the controller
will have to wait for all information about all balls to be received, wait till the end of the frame it is
already displaying, update the current position values in its registry and then signal the software that is it
ready for the next data. At the same time it starts displaying the new frame with the new ball positions.
Basically is a process running for every ball, and this will indicate the location of the square area on
the screen where its sprite will be displayed. Since the ball shape doesn’t fill the whole square, there
is a chance that two or more squares are intersecting but the balls are still not touching, as shown in
Figure 10. For the intersected area, part of it can display a ball from one of the sprites, another part can
display the ball of another sprite, in addition to a blank area that gets displayed in the background. To
achieve this we have to read from all sprites, compare the values and draw only the dominant one. These
conditions will make sure that the display process will include the green table, the yellow border, and
complete non-overlapping balls correctly.

19



7 Open Points

1. One of the signals in the interface between the TRDB-DC2 and the FPGA is a ground. It is unclear
whether this should be designed as an inout pin that is tied to 0 within the FPGA.

2. The pixel processing module is designed to interrupt the software running on NIOS-II each time
a new position is available for the cue-tip. The mechanism of creating interrupts in the SOPC
systems is to be determined.

3. Should a user be able to initiate a calibration at any time during the life of the application? Is an
external interface required for this?

20



8 Project Management

8.1 Versioning

Configuration management for all project artefacts, code as well as documentation, is done online using
Google Code. All users employ an SVN client to access the repository. The project can be accessed
online at http://code.google.com/p/projection-billiards.

The code tree appears as indicated in Figure 11. Test benches for the VHDL sources are included within
the vhdsrc directory.

8.2 Implementation Milestones

1. Milestone 1
• Hardware implementation of the camera interface
• Hardware implementation of the object detection algorithm through pixel scanning
• Hardware implementation of basic VGA controller module (not including calibration re-

quirements).
2. Milestone 2

• Thorough calibration of the system to fine-tune the projection and camera modules and
achieve accuracy in determining object location.

• Basic implementation of the software bouncing ball
3. Milestone 3

• Optimization of hardware
• Full development of software design, and testing

4. Final Milestone
• Testing with a projector
• Report and presentation completion

Figure 11: Directory Tree Structure

21



9 Glossary of Terms

ADC Analog to Digital Converter
FPGA Field Programmable Gate Array
GPIO General Purpose Input Output
I2C Inter-IC Communication
IC Integrated Circuit
MMIO Memory Mapped Input Output
VGA Video Graphics Adapter
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

References

[1] Altera Corporation. Avalon Memory-Mapped Interface Specification. www.altera.com, San Jose,
CA, 2007.

[2] Altera Corporation. Cyclone II Device Handbook. www.altera.com, San Jose, CA, 2007.
[3] Altera Corporation. NIOS II Processor Reference Handbook. www.altera.com, San Jose, CA, 2007.
[4] Micron Technology Inc. 1/3-Inch Megapixel CMOS Active-Pixel Digital Image Sensor. Prelimi-

nary, www.micron.com/imaging, 2004.
[5] Terasic. TRDB-DC2 - 1.3 Mega Pixel Digital Camera Development Kit. Version 1.1, Preliminary,

www.terasic.com, 2006.

22


