Altera's Avalon Communication Fabric

Prof. Stephen A. Edwards sedwards@cs.columbia.edu

> **Columbia University** Spring 2008

Most bus protocols draw a distinction between

Masters: Can initiate a transaction, specify an

Slaves: Respond to requests from masters, can

Bus arbiter decides which master gains control

Vitera's Avalon Communication Fabric -

generate return data. E.g., a video controller

address, etc. E.g., the Nios II processor

Masters speak a more complex protocol

Masters and Slaves

Most peripherals are slaves.

Altera's Avalon Bus

Something like "PCI on a chip"

Described in Altera's Avalon Memory-Mapped Interface Specification document.

Protocol defined between peripherals and the "bus" (actually a fairly complicated circuit).

The Simplest Slave Peripheral

Naming Conventions

Used by the SOPC Builder's New Component Wizard to match up VHDL entity ports with Avalon bus signals.

type_interface_signal

type is is typically avs for Avalon-MM Slave

interface is the user-selected name of the interface, e.g., s1.

signal is chipselect, address, etc.

Thus, avs_s1_chipselect is the chip select signal for a slave port called "s1."

clk	Master clock				
reset	Reset signal to peripheral				
chipselect	Asserted when bus accesses peripheral				
address[]	Word address (data-width specific)				
read	Asserted during peripheral→bus transfer				
write	Asserted during bus→peripheral transfer				
writedata[]	Data from bus to peripheral				
byteenable[]	Indicates active bytes in a transfer				
readdata[]	Data from peripheral to bus				
irq	peripheral-processor interrupt request				
All are optional, as are many others for, e.g., flow-control					

All and burst transfers.

Bytes, Bits, and Words

The Nios II and Avalon bus are little-endian:

31 is the most significant bit, 0 is the least

Bytes and halfwords are right-justified:

msb									sb
Byte	3		2		1		0		
Bit	31	24	23	16	15	8	7		0

Word	31			0
Halfwo	ord	15		0
Byte			7	0

Architecture (3)

else -- No access to us: update display
leds <= RAM(to_integer(display_address));
if counter = x"00000000" then
 counter <= counter_delay & x"0000";
 display_address <= display_address + 1;
 else
 counter <= counter - 1;
 end if;
end if;
end if;
end if;
end process;</pre>

end rtl;

Altera's Avalon Communication Fabric - p. 1