
Altera’s Avalon Communication
Fabric

Prof. Stephen A. Edwards

sedwards@cs.columbia.edu

Columbia University

Spring 2008

Altera’s Avalon Communication Fabric – p.

Altera’s Avalon Bus

Something like “PCI on a chip”

Described in Altera’s Avalon Memory-Mapped
Interface Specification document.

Protocol defined between peripherals and the
“bus” (actually a fairly complicated circuit).

Altera’s Avalon Communication Fabric – p.

Intended System Architecture

Source: Altera
Altera’s Avalon Communication Fabric – p.

Masters and Slaves

Most bus protocols draw a distinction between

Masters: Can initiate a transaction, specify an
address, etc. E.g., the Nios II processor

Slaves: Respond to requests from masters, can
generate return data. E.g., a video controller

Most peripherals are slaves.

Masters speak a more complex protocol

Bus arbiter decides which master gains control

Altera’s Avalon Communication Fabric – p.

The Simplest Slave Peripheral

Avalon-MM

 Interface

(Avalon-MM

 Slave Port)

Application-

Specific

Interface

writedata[15..0]

write

chipselect

clk

pio_out[15..0]

CLK_EN

>

D Q

Avalon-MM Peripheral

Basically, “latch when I’m selected and written to.”

Altera’s Avalon Communication Fabric – p.

Naming Conventions

Used by the SOPC Builder’s New Component
Wizard to match up VHDL entity ports with
Avalon bus signals.

type_interface_signal

type is is typically avs for Avalon-MM Slave

interface is the user-selected name of the
interface, e.g., s1.

signal is chipselect, address, etc.

Thus, avs_s1_chipselect is the chip select signal
for a slave port called “s1.”

Altera’s Avalon Communication Fabric – p.

Slave Signals

For a 16-bit connection that spans 32 halfwords,

Slave

← clk
⇐ reset
← chipselect
← address[4:0]
← read
← write
⇐ byteenable[1:0]
⇐ writedata[15:0]
readdata[15:0] →

irq →

Avalon

Altera’s Avalon Communication Fabric – p.

Avalon Slave Signals

clk Master clock

reset Reset signal to peripheral

chipselect Asserted when bus accesses peripheral

address[..] Word address (data-width specific)

read Asserted during peripheral→bus transfer

write Asserted during bus→peripheral transfer

writedata[..] Data from bus to peripheral

byteenable[..] Indicates active bytes in a transfer

readdata[..] Data from peripheral to bus

irq peripheral→processor interrupt request

All are optional, as are many others for, e.g., flow-control

and burst transfers.

Altera’s Avalon Communication Fabric – p.

Bytes, Bits, and Words

The Nios II and Avalon bus are little-endian:

31 is the most significant bit, 0 is the least

Bytes and halfwords are right-justified:

msb lsb
Byte 3 2 1 0
Bit 31 24 23 16 15 8 7 0

Word 31 0
Halfword 15 0
Byte 7 0

Altera’s Avalon Communication Fabric – p.

In VHDL

entity avalon_slave is

port (

avs_s1_clk : in std_logic;

avs_s1_reset_n : in std_logic;

avs_s1_read : in std_logic;

avs_s1_write : in std_logic;

avs_s1_chipselect : in std_logic;

avs_s1_address : in std_logic_vector(4 downto 0);

avs_s1_readdata : out std_logic_vector(15 downto 0);

avs_s1_writedata : in std_logic_vector(15 downto 0);

);

end avalon_slave;

Altera’s Avalon Communication Fabric – p. 10

Basic Async. Slave Read Transfer

clk LLLLL�HHHH�LLLL�HHHH�LLLL�HHHHH

address,

byteenable UUUUUUUU�VVVVVVVVVVV�UUUUUUUUUUUUUU

read FFFFFFFFÆHHHHHHHHHHH�FFFFFFFFFFFFFF

chipselect FFFFFFFFFFÆHHHHHHHHHH�FFFFFFFFFFFFF

readdata UUUUUUUUUUUU�VVVVVV�UUUUUUUUUUUUUUU

Bus cycle starts on rising clock edge.

Data latched at next rising edge.

Such a peripheral must be purely combinational.

Altera’s Avalon Communication Fabric – p. 11

Slave Read Transfer w/ 1 wait state

clk LLLLL�HHHH�LLLL�HHHH�LLLL�HHHH�LLLLL

address,

byteenable UUUUUUUU�VVVVVVVVVVVVVVVVVVVVVVV�UUUUUUU

read FFFFFFFFÆHHHHHHHHHHHHHHHHHHHHHHH�FFFFFFF

chipselect FFFFFFFFFFÆHHHHHHHHHHHHHHHHHHHHHH�FFFFFF

readdata UUUUUUUUUUUUUUUUUUUUUUUUU�VVVV�UUUUUUUUU

Bus cycle starts on rising clock edge.

Data latched two cycles later.

Approach used for synchronous peripherals.

Altera’s Avalon Communication Fabric – p. 12

Basic Async. Slave Write Transfer

clk LLLLL�HHHH�LLLL�HHHH�LLLL�HHHHH

address,

byteenable UUUUUUUU�VVVVVVVVVVV�UUUUUUUUUUUUUU

write FFFFFFFFÆHHHHHHHHHHH�FFFFFFFFFFFFFF

chipselect FFFFFFFFFFÆHHHHHHHHHH�FFFFFFFFFFFFF

writedata UUUUUUUU�VVVVVVVVVV�UUUUUUUUUUUUUUU

Bus cycle starts on rising clock edge.

Data available by next rising edge.

Peripheral may be synchronous, but must be fast.

Altera’s Avalon Communication Fabric – p. 13

Slave Write Transfer w/ 1 wait state

clk LLLLL�HHHH�LLLL�HHHH�LLLL�HHHH�LLLLL
address,

byteenable UUUUUUUU�VVVVVVVVVVVVVVVVVVVVVVV�UUUUUUU
write FFFFFFFFÆHHHHHHHHHHHHHHHHHHHHHHH�FFFFFFF
chipselect FFFFFFFFFFÆHHHHHHHHHHHHHHHHHHHHHH�FFFFFF
writedata UUUUUUUU�VVVVVVVVVVVVVVVVVVVVVVV�UUUUUUU

Bus cycle starts on rising clock edge.

Peripheral latches data two cycles later.

For slower peripherals.

Altera’s Avalon Communication Fabric – p. 14

The LED Flasher Peripheral

32 16-bit word interface

First 16 halfwords are data to be displayed on the
LEDS.

Halfwords 16–31 all write to a “linger” register
that controls cycling rate.

Red LEDs cycle through displaying memory
contents.

Altera’s Avalon Communication Fabric – p. 15

Entity Declaration
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity de2_led_flasher is

port (

clk : in std_logic;

reset_n : in std_logic;

read : in std_logic;

write : in std_logic;

chipselect : in std_logic;

address : in unsigned(4 downto 0);

readdata : out unsigned(15 downto 0);

writedata : in unsigned(15 downto 0);

leds : out unsigned(15 downto 0)

);

end de2_led_flasher;
Altera’s Avalon Communication Fabric – p. 16

Architecture (1)

architecture rtl of de2_led_flasher is

type ram_type is array(15 downto 0) of unsigned(15 downto 0);

signal RAM : ram_type;

signal ram_address, display_address : unsigned(3 downto 0);

signal counter_delay : unsigned(15 downto 0);

signal counter : unsigned(31 downto 0);

begin

ram_address <= address(3 downto 0);

Altera’s Avalon Communication Fabric – p. 17

Architecture (2)
process (clk)

begin

if rising_edge(clk) then

if reset_n = ’0’ then

readdata <= (others => ’0’);

display_address <= (others => ’0’);

counter <= (others => ’0’);

counter_delay <= (others => ’1’);

else

if chipselect = ’1’ then

if address(4) = ’0’ then read or write RAM

if read = ’1’ then

readdata <= RAM(to_integer(ram_address));

elsif write = ’1’ then

RAM(to_integer(ram_address)) <= writedata;

end if;

else

if write = ’1’ then Change delay

counter_delay <= writedata;

end if;

end if;
Altera’s Avalon Communication Fabric – p. 18

Architecture (3)

else No access to us: update display

leds <= RAM(to_integer(display_address));

if counter = x"00000000" then

counter <= counter_delay & x"0000";

display_address <= display_address + 1;

else

counter <= counter 1;

end if;

end if;

end if;

end if;

end process;

end rtl;

Altera’s Avalon Communication Fabric – p. 19

	Altera's Avalon Bus
	Intended System Architecture
	Masters and Slaves
	The Simplest Slave Peripheral
	Naming Conventions
	Slave Signals
	Avalon Slave Signals
	Bytes, Bits, and Words
	In VHDL
	Basic Async. Slave Read Transfer
	Slave Read Transfer w/ 1 wait state
	Basic Async. Slave Write Transfer
	Slave Write Transfer w/ 1 wait state
	The LED Flasher Peripheral
	Entity Declaration
	Architecture (1)
	Architecture (2)
	Architecture (3)

