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Altera’s Avalon Bus

Something like “PCI on a chip”

Described in Altera’s Avalon Memory-Mapped
Interface Specification document.

Protocol defined between peripherals and the
“bus” (actually a fairly complicated circuit).
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Intended System Architecture

Source: Altera
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Masters and Slaves

Most bus protocols draw a distinction between

Masters: Can initiate a transaction, specify an
address, etc. E.g., the Nios II processor

Slaves: Respond to requests from masters, can
generate return data. E.g., a video controller

Most peripherals are slaves.

Masters speak a more complex protocol

Bus arbiter decides which master gains control
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The Simplest Slave Peripheral
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D Q

Avalon-MM Peripheral

Basically, “latch when I’m selected and written to.”
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Naming Conventions

Used by the SOPC Builder’s New Component
Wizard to match up VHDL entity ports with
Avalon bus signals.

type_interface_signal

type is is typically avs for Avalon-MM Slave

interface is the user-selected name of the
interface, e.g., s1.

signal is chipselect, address, etc.

Thus, avs_s1_chipselect is the chip select signal
for a slave port called “s1.”
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Slave Signals

For a 16-bit connection that spans 32 halfwords,

Slave

← clk
⇐ reset
← chipselect
← address[4:0]
← read
← write
⇐ byteenable[1:0]
⇐ writedata[15:0]
readdata[15:0] →

irq →

Avalon
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Avalon Slave Signals

clk Master clock

reset Reset signal to peripheral

chipselect Asserted when bus accesses peripheral

address[..] Word address (data-width specific)

read Asserted during peripheral→bus transfer

write Asserted during bus→peripheral transfer

writedata[..] Data from bus to peripheral

byteenable[..] Indicates active bytes in a transfer

readdata[..] Data from peripheral to bus

irq peripheral→processor interrupt request

All are optional, as are many others for, e.g., flow-control

and burst transfers.
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Bytes, Bits, and Words

The Nios II and Avalon bus are little-endian:

31 is the most significant bit, 0 is the least

Bytes and halfwords are right-justified:

msb lsb
Byte 3 2 1 0
Bit 31 24 23 16 15 8 7 0

Word 31 0
Halfword 15 0
Byte 7 0
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In VHDL

entity avalon_slave is

port (

avs_s1_clk : in std_logic;

avs_s1_reset_n : in std_logic;

avs_s1_read : in std_logic;

avs_s1_write : in std_logic;

avs_s1_chipselect : in std_logic;

avs_s1_address : in std_logic_vector(4 downto 0);

avs_s1_readdata : out std_logic_vector(15 downto 0);

avs_s1_writedata : in std_logic_vector(15 downto 0);

);

end avalon_slave;

Altera’s Avalon Communication Fabric – p. 10

Basic Async. Slave Read Transfer

clk LLLLL�HHHH�LLLL�HHHH�LLLL�HHHHH

address,

byteenable UUUUUUUU�VVVVVVVVVVV�UUUUUUUUUUUUUU

read FFFFFFFFÆHHHHHHHHHHH�FFFFFFFFFFFFFF

chipselect FFFFFFFFFFÆHHHHHHHHHH�FFFFFFFFFFFFF

readdata UUUUUUUUUUUU�VVVVVV�UUUUUUUUUUUUUUU

Bus cycle starts on rising clock edge.

Data latched at next rising edge.

Such a peripheral must be purely combinational.
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Slave Read Transfer w/ 1 wait state

clk LLLLL�HHHH�LLLL�HHHH�LLLL�HHHH�LLLLL

address,

byteenable UUUUUUUU�VVVVVVVVVVVVVVVVVVVVVVV�UUUUUUU

read FFFFFFFFÆHHHHHHHHHHHHHHHHHHHHHHH�FFFFFFF

chipselect FFFFFFFFFFÆHHHHHHHHHHHHHHHHHHHHHH�FFFFFF

readdata UUUUUUUUUUUUUUUUUUUUUUUUU�VVVV�UUUUUUUUU

Bus cycle starts on rising clock edge.

Data latched two cycles later.

Approach used for synchronous peripherals.
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Basic Async. Slave Write Transfer

clk LLLLL�HHHH�LLLL�HHHH�LLLL�HHHHH

address,

byteenable UUUUUUUU�VVVVVVVVVVV�UUUUUUUUUUUUUU

write FFFFFFFFÆHHHHHHHHHHH�FFFFFFFFFFFFFF

chipselect FFFFFFFFFFÆHHHHHHHHHH�FFFFFFFFFFFFF

writedata UUUUUUUU�VVVVVVVVVV�UUUUUUUUUUUUUUU

Bus cycle starts on rising clock edge.

Data available by next rising edge.

Peripheral may be synchronous, but must be fast.
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Slave Write Transfer w/ 1 wait state

clk LLLLL�HHHH�LLLL�HHHH�LLLL�HHHH�LLLLL
address,

byteenable UUUUUUUU�VVVVVVVVVVVVVVVVVVVVVVV�UUUUUUU
write FFFFFFFFÆHHHHHHHHHHHHHHHHHHHHHHH�FFFFFFF
chipselect FFFFFFFFFFÆHHHHHHHHHHHHHHHHHHHHHH�FFFFFF
writedata UUUUUUUU�VVVVVVVVVVVVVVVVVVVVVVV�UUUUUUU

Bus cycle starts on rising clock edge.

Peripheral latches data two cycles later.

For slower peripherals.

Altera’s Avalon Communication Fabric – p. 14

The LED Flasher Peripheral

32 16-bit word interface

First 16 halfwords are data to be displayed on the
LEDS.

Halfwords 16–31 all write to a “linger” register
that controls cycling rate.

Red LEDs cycle through displaying memory
contents.
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Entity Declaration
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity de2_led_flasher is

port (

clk : in std_logic;

reset_n : in std_logic;

read : in std_logic;

write : in std_logic;

chipselect : in std_logic;

address : in unsigned(4 downto 0);

readdata : out unsigned(15 downto 0);

writedata : in unsigned(15 downto 0);

leds : out unsigned(15 downto 0)

);

end de2_led_flasher;
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Architecture (1)

architecture rtl of de2_led_flasher is

type ram_type is array(15 downto 0) of unsigned(15 downto 0);

signal RAM : ram_type;

signal ram_address, display_address : unsigned(3 downto 0);

signal counter_delay : unsigned(15 downto 0);

signal counter : unsigned(31 downto 0);

begin

ram_address <= address(3 downto 0);
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Architecture (2)
process (clk)

begin

if rising_edge(clk) then

if reset_n = ’0’ then

readdata <= (others => ’0’);

display_address <= (others => ’0’);

counter <= (others => ’0’);

counter_delay <= (others => ’1’);

else

if chipselect = ’1’ then

if address(4) = ’0’ then  read or write RAM

if read = ’1’ then

readdata <= RAM(to_integer(ram_address));

elsif write = ’1’ then

RAM(to_integer(ram_address)) <= writedata;

end if;

else

if write = ’1’ then  Change delay

counter_delay <= writedata;

end if;

end if;
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Architecture (3)

else  No access to us: update display

leds <= RAM(to_integer(display_address));

if counter = x"00000000" then

counter <= counter_delay & x"0000";

display_address <= display_address + 1;

else

counter <= counter  1;

end if;

end if;

end if;

end if;

end process;

end rtl;
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