
Physicalc:

A Language for (simple) Scientific Computation

Brian Foo, bwf2101@columia.edu
Changlong Jiang, cj2214@columbia.edu

Ici Li, il2117@columbia.edu
Stuart Sierra, ss2806@columbia.edu

Project Proposal – September 25, 2007

1 Introduction

Physicalc is a programming language for scientific computation, designed for
students studying beginning and intermediate-level physics, chemistry, or other
sciences.

Computer algebra systems are typically oriented towards higher mathemat-
ics, making them ill-suited to the sorts of calculations done by high-school and
undergraduate science students. At the same time, some computer algebra
features, such as symbolic computation using irrationals, could be helpful to
students. Physicalc presents itself initially as an intelligent calculator that un-
derstands physical units like “meters/second.” It can also solve simple prob-
lems involving physical equations. For more advanced users, it supports real
programming in an imperative style.

Physicalc is intended primarily as an educational tool, but may also be useful
for exploratory data analysis in scientific fields.

2 Language Overview

2.1 Interpreter

Physicalc is an interpreted programming language. The interpreter is written in
Java and can be run either interactively or on a file containing Physicalc source
code. The interface is text-mode, although a GUI could be layered on top of it.

2.2 Syntax

Physicalc syntax is as simple as possible, using mostly English words, more
reminiscent of BASIC than C. Statements are separated by newlines. State-
ment blocks are enclosed in “do. . . done” pairs. Standard imperative-language

1



features such as loops, if/then/else branching, and user-defined functions are
provided. Standard mathematical operators are provided, with the addition of
‘^’ for exponentiation.

Identifiers are both case-insensitive and inflection-insensitive. That is, ‘new-
ton’, ‘newtons’, ‘Newtons’, and ‘NEWTON’ are all the same identifier.

2.3 Types

The Physicalc type system uses physical units like “meters” and “seconds” as
types instead of mathematical partitions like “integers” and “floats.” Unit types
can be combined algebraically to form derived types such as “Newton*meters”
or “meters/second.”

All numbers are arbitrary-precision decimals or rationals. Limited symbolic
computation is supported—irrational numbers such as π and

√
2 can be used in

calculations and returned in results, or converted to decimals with an arbitrary
degree of precision. Complex numbers are supported.

Two-dimensional vectors may be written either as “x, y” components or as
magnitude-direction pairs, e.g. “3 Newtons at 36 degrees.” Directions given as
angle measures are assumed to be measured counterclockwise from the x-axis.

The following operations are supported on all types: addition, subtraction,
multiplication, division, exponentiation, and roots.

2.4 Semantics

A Physicalc program consists of definitions, queries, and expressions.

2.4.1 Definitions

1. Quantities define the types of measurements that can be made. These
may be fundamental quantities, such as length, or derived ones, such as
momentum. Quantities can be defined in terms of other quantities. Ex-
amples:

def quantity distance
def quantity time
def quantity velocity = distance / time

2. Units define units of measurement for a quantity. Units may be defined
in terms of other units. Examples:

def unit meter for distance
def unit centimeter = 0.01 meters
def unit foot = 30 centimeters

2



3. Aliases define alternate names for quantities or units. They may be used
for abbreviations or alternate names. Examples:

def alias length for distance
def alias N for Newton
def alias feet for foot

4. Constants are fundamental physical constants that can be used as quan-
tities in equations. Example:

def constant universal_gravitation = 6.67428e-11 N*m^2/kg^2

5. Equations define algebraic relationships between quantities. They are
written as expressions followed by a series of declarations describing the
quantities of each variable. Example:

def equation Fg = G * m1 * m2 / r^2 where
Fg = gravitational_force
G = universal_gravitation
m1 = mass
m2 = mass
r = distance

done

6. Functions are standard imperative-style functions, which may be recur-
sive. GCD in Physicalc looks like this:

def function gcd(a,b)
while a != b do

if a > b do
set a = a - b

else
set b = b - a

done
done
return a

done

2.4.2 Queries

Queries ask questions of the form “find unknown given knowns.” Example
(syntax to be determined):

find mass in pounds given
force = 12 Newtons
acceleration = 3 m/s^2

done

3



Queries work by exploring the graph of relationships among physical quan-
tities and units defined in a program. Based on the types of the givens and
the requested type, the interpreter infers the correct sequence of calculations
and/or conversions to be performed.

2.4.3 Expressions

Expressions are any combination of mathematical operators and function calls.

3 Prior Art

3.1 Google Calculator

Superficially, the behavior of Physicalc resembles that of the Google Calculator[3],
which can answer queries like “160 pounds * 4000 feet in Calories.” The differ-
ences from the Google Calculator are:

1. Physicalc is a full-featured imperative programming language with vari-
ables, loops, branching, and user-defined functions;

2. Physicalc programs can define new units and the relationships among
them; and

3. Physicalc can infer the necessary calculations to obtain a desired result
given a set of known variables.

3.2 Computer Algebra

Physicalc has some features in common with computer algebra systems such
as Maxima[8], Octave[2], and MATLAB[7], although it is much simpler. As
far as the authors know, none of those systems allow for unit types or inferred
calculation. Also, most such systems are oriented towards higher mathematics
and are far too complex to be useful to beginning science students.

Various Java libraries [1, 4, 6] provide computer algebra features; these may
be useful in the implementation of Physicalc, probably with some modification.

3.3 Logic

In some ways Physicalc behaves like logic languages such as Prolog, in which the
user enters a series of facts and then enters queries about those facts. However,
Physicalc is not a general-purpose logic or constraint programming language.

3.4 JScience

JScience[5] is an open-source Java library for calculations involving SI units and
arbitrary-precision arithmetic. JScience’s unit classes are of limited usefulness
within Physicalc because they are designed to be part of a statically-compiled

4



Java program. Also, JScience does not provide for inferred calculation. How-
ever, the JScience architecture is a useful model for designing Physicalc; and
some features of JScience, such as its arbitrary-precision arithmetic and algebra
classes, may be useful in the implementation.

4 Extras

The following features may be added given sufficient time and ambition.

• Three-dimensional vectors

• Pretty-printing expressions in plain text

• TEX output

• GUI interface

• Maximizing/minimizing functions

• Two-dimensional and solid geometry

• Plotting

• Simulation of physical systems

• Hash tables

• Objects

• More advanced algebra (trigonometric identities, factoring polynomials)

References

[1] Apfloat, http://www.apfloat.org/apfloat_java/

[2] GNU Octave, http://www.gnu.org/software/octave/

[3] Google Calculator, http://www.google.com/help/calculator.html

[4] Java Algebra System, http://krum.rz.uni-mannheim.de/jas/

[5] JScience, http://jscience.org/

[6] Jscl-meditor, http://jscl-meditor.sourceforge.net/

[7] MATLAB, http://www.mathworks.com/products/matlab/

[8] Maxima, http://maxima.sourceforge.net/

5


