
Development
System
Reference Guide

R

Development System Reference Guide www.xilinx.com
1-800-255-7778

http://www.xilinx.com

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, RocketIO, SelectIO, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability
for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2003 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

R

 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Development System Reference Guide www.xilinx.com
1-800-255-7778

http://www.xilinx.com

[Guide Title] Common UG Template Set www.xilinx.com 5
UG000 (v3.5.1) April 30, 2003 1-800-255-7778

R

Preface

About This Guide

The Development System Reference Guide contains information about the command line
software programs in the Xilinx Development System. Most chapters are organized as
follows:

• A brief summary of program functions

• A syntax statement

• A description of the input files used and the output files generated by the program

• A listing of the commands, options, or parameters used by the program

• Examples of how you can use the program

For an overview of the Xilinx Development System describing how these programs are
used in the design flow, see Chapter 2, “Design Flow”.

Guide Contents
The Development System Reference Guide provides detailed information about converting,
implementing, and verifying designs with the Xilinx command line tools. Check the
program chapters for information on what program works with each family of Field
Programmable Gate Array (FPGA) or Complex Programmable Logic Device (CPLD).
Following is a brief overview of the contents and organization of the Development System
Reference Guide:

Note: For information on timing constraints, UCF files, and PCF files, see the Constraints Guide.

• Chapter 1, “Introduction” —This chapter describes some basics that are common to
the different Xilinx Development System modules.

• Chapter 2, “Design Flow”—This chapter describes the basic design processes: design
entry, synthesis, implementation, and verification.

• Chapter 3, “Incremental Design”—Incremental Design allows a single small change to
be quickly processed through the implementation phases by using information
previously generated.

• Chapter 4, “Modular Design”—This chapter provides an overview of Modular
Design and describes how to run the Modular Design flow.

• Chapter 5, “PARTGen”—PARTGen allows you to obtain information about installed
devices and families.

• Chapter 6, “NGDBuild”—NGDBuild performs all of the steps necessary to read a
netlist file in XNF or EDIF format and create an NGD (Native Generic Database) file
describing the logical design reduced to Xilinx primitives.

http://www.xilinx.com

6 www.xilinx.com [Guide Title] Common UG Template Set
1-800-255-7778 UG000 (v3.5.1) April 30, 2003

Preface: About This Guide
R

• Chapter 7, “Logical Design Rule Check”—The logical Design Rule Check (DRC)
comprises a series of tests run to verify the logical design described by the Native
Generic Database (NGD) file.

• Chapter 8, “MAP”—MAP maps the logic defined by an NGD file into FPGA elements
such as CLBs, IOBs, and TBUFs.

• Chapter 9, “Physical Design Rule Check”—The physical Design Rule Check (DRC)
comprises a series of tests run to discover physical errors in your design.

• Chapter 10, “PAR”—PAR places and routes FPGA designs.

• Chapter 11, “XPower”—XPower is a power and thermal analysis tool that allows you
to have a power and thermal estimates after the PAR or CPLDFit stage of the design.

• Chapter 12, “PIN2UCF,”—PIN2UCF generates pin-locking constraints in a UCF file
by reading a a placed NCD file for FPGAs or GYD file for CPLDs.

• Chapter 13, “TRACE”—Timing Reporter and Circuit Evaluator (TRACE) performs
static timing analysis of the physical design based on input timing constraints.

• Chapter 14, “Speedprint”— Speedprint lists block delays for a specified device and its
speed grades.

• Chapter 15, “BitGen”—BitGen creates a configuration bitstream for an FPGA design.

• Chapter 16, “PROMGen” —PROMGen converts a configuration bitstream (BIT) file
into a file that can be downloaded to a PROM. PROMGen also combines multiple BIT
files for use in a daisy chain of FPGA devices.

• Chapter 17, “BSDLAnno” —BSDLAnno automatically modifies a BSDL file for post-
configuration interconnect testing.

• Chapter 18, “IBISWriter”—IBISWriter creates a list of pins used by the design, the
signals inside the device that connect those pins, and the IBIS buffer model that
applies to the IOB connected to the pins.

• Chapter 19, “CPLDfit” —CPLDfit reads in an NGD file and fits the design into the
selected CPLD architecture.

• Chapter 20, “TSIM” — TSIM formats implemented CPLD designs (VM6) into a
format usable by the NetGen timing simulation flow, which produces a back-
annotated timing file for simulation.

• Chapter 21, “TAEngine” —TAEngine performs static timing analysis on a successfully
implemented Xilinx CPLD design (VM6).

• Chapter 22, “Hprep6” —Hprep6 takes an implemented CPLD design (VM6) from
CPLDfit and generates a Jedec (JED) programming file.

• Chapter 23, “NetGen”—Netgen reads in applicable Xilinx implementation files,
extracts design data, and generates netlists that are used with supported third-party
simulation, equivalence checking, and static timing analysis tools. NetGen combines
the functionality of NGDAnno with the netlist writers (NGD2VER and NGD2VHDL).

• Chapter 24, “NGDAnno”—NGDAnno annotates timing information found in the
physical NCD design file back to the logical NGD file. See NetGen.

• Chapter 25, “NGD2VER”—NGD2VER converts an NGD file to a Verilog HDL file for
use in simulation. See NetGen.

• Chapter 26, “NGD2VHDL”—NGD2VHDL converts an NGD file to a VHDL file for
use in simulation. See NetGen.

• Chapter 27, “XFLOW”—XFLOW automates the running of Xilinx implementation
and simulation flows.

http://www.xilinx.com

[Guide Title] Common UG Template Set www.xilinx.com 7
UG000 (v3.5.1) April 30, 2003 1-800-255-7778

Additional Resources
R

• Chapter 28, “Data2MEM”—Data2MEM is a software tool that automates and
simplifies setting the contents of BRAM cells on Virtex™ devices.

• Appendix A, “Xilinx Development System Files”—This appendix gives an alphabetic
listing of the files used by the Xilinx Development System.

• Appendix B, “EDIF2NGD, and NGDBuild” —This appendix describes the netlist
reader, EDIF2NGD, and how it interacts with NGDBuild.

Additional Resources
For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLs.

Conventions
This document uses the following conventions. An example illustrates each convention.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

http://support.xilinx.com/xlnx/xil_ans_browser.jsp

Application Notes Descriptions of device-specific design techniques and approaches

http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contains
device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

http://support.xilinx.com/partinfo/databook.htm

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment

http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp
http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/partinfo/databook.htm
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

8 www.xilinx.com [Guide Title] Common UG Template Set
1-800-255-7778 UG000 (v3.5.1) April 30, 2003

Preface: About This Guide
R

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold Literal commands that you
enter in a syntactical statement

ngdbuild design_name

Helvetica bold Commands that you select
from a menu

File → Open

Keyboard shortcuts Ctrl+C

Italic font Variables in a syntax
statement for which you must
supply values

ngdbuild design_name

References to other manuals See the Development System
Reference Guide for more
information.

Emphasis in text If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets [] An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

http://www.xilinx.com

[Guide Title] Common UG Template Set www.xilinx.com 9
UG000 (v3.5.1) April 30, 2003 1-800-255-7778

Conventions
R

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Blue text Cross-reference link to a
location in the current file or
in another file in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Handbook.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com

10 www.xilinx.com [Guide Title] Common UG Template Set
1-800-255-7778 UG000 (v3.5.1) April 30, 2003

Preface: About This Guide
R

http://www.xilinx.com

Table of Contents
Preface: About This Guide
Guide Contents . 5
Additional Resources . 7
Conventions . 7

Typographical . 8
Online Document . 9

Chapter 1: Introduction
Command Line Program Overview . 31
Command Line Syntax . 32
Command Line Options . 32

–f (Execute Commands File) . 32
–p (Part Number) . 33
–h (Help) . 34

Invoking Command Line Programs. 35
Reading NCD Files with NCDRead . 36

Chapter 2: Design Flow
Design Flow Overview . 37
Design Entry and Synthesis . 40

Hierarchical Design . 41
Schematic Entry Overview . 42

Library Elements. 42
CORE Generator Tool (FPGAs Only) . 42

HDL Entry and Synthesis . 42
Functional Simulation . 43
Constraints . 43

Mapping Constraints (FPGAs Only). 43
Block Placement . 43
Timing Specifications . 43

Netlist Translation Programs . 44
Design Implementation . 44

Mapping (FPGAs Only) . 47
Placing and Routing (FPGAs Only) . 47
Bitstream Generation (FPGAs Only) . 47

Design Verification . 47
. 50
Simulation . 50

Back-Annotation . 50
Schematic-Based Simulation . 52
HDL-Based Simulation . 53

Static Timing Analysis (FPGAs Only) . 55
Development System Reference Guide www.xilinx.com 11
 1-800-255-7778

http://www.xilinx.com

R

In-Circuit Verification . 56
Design Rule Checker (FPGAs Only) . 56
Xilinx Design Download Cables . 56
Probe. 56
ChipScope ILA and ChipScope PRO . 56

FPGA Design Tips . 56
Design Size and Performance. 57
Global Clock Distribution . 57
Data Feedback and Clock Enable . 58
Counters . 59
Other Synchronous Design Considerations . 60

Chapter 3: Incremental Design
Incremental Design Overview . 61

Incremental Design Benefits . 62
Hierarchical Design Guidelines . 63
Setting Up Designs for Incremental Design . 63

Identifying Logic Groups . 63
Creating AREA GROUP RANGEs . 64
Incremental Synthesis . 65

Mentor Leonardo Spectrum . 65
Synopsys FPGA Compiler II . 65
Synplicity Synplify/Synplify Pro . 65
XST: Xilinx Synthesis Tool . 66

Incremental Design Flows . 66
Incremental Enabled Flow . 67

Setting Up Incremental Enabled Mode in Project Navigator . 67
Setting Up Incremental Enabled Mode using the command line 67

Incremental Guide Mode . 67
Setting Up the Incremental Guide Mode for Project Navigator 67
Setting Up Incremental Guide Mode for the Command Line . 68
Rules for External Changes that can cause Logic Group Reimplementation 68
Situations for Forcing a Reimplementation of a Logic Group. 68

Incremental Design Reports . 68
MAP Report File Information . 68
PAR Report File Information . 70

Description of the Design Totals Section: . 70
Description of the Guide File section: . 70

Vendor Specific Notes for Incremental Synthesis . 71
Incremental Synthesis Using Leonardo Spectrum . 71

Bottom-Up Methodology . 71
Top-Down Preserving Hierarchy Methodology . 73

Incremental Synthesis Using Synplify/ Synplify PRO. 76
Creating an EDIF for the Top Level . 76

Incremental Synthesis Using XST . 77

Chapter 4: Modular Design
Modular Design Overview . 81
Modular Design Entry and Synthesis . 84
12 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Modular Design Implementation . 85
Initial Budgeting Phase . 85
Active Module Implementation Phase . 87
Final Assembly Phase . 88

Setting Up Modular Design Directories. 89
Running the Standard Modular Design Flow . 90

Entering the Design . 90
General Coding Guidelines. 90
Top-Level Design Coding Guidelines. 90
Module Coding Guidelines. 91

Synthesizing your Designs . 92
Running Initial Budgeting . 92
Implementing an Active Module . 94
Assembling the Modules . 96
Simulating an Active Module . 97

Running Simulation with Top-Level Design as Context. 97
Running Independent Module Simulation . 97

Running the Sequential Modular Design Flows . 98
Running the Partial Design Assembly Flow . 98
Running the Sequential Guide Flow . 99

Modular Design Tips . 102
Constraints . 102

Partial Reconfigurability AREA_GROUP Constraint Attributes 103
Propagation of Constraints during Modular Design . 104

Design Size and Performance. 105
MAP Report . 105
PAR Reports . 105
XFLOW Automation of Modular Design . 106

Modular Design Troubleshooting . 106
Multiple Output Ports MAP Error . 106
Part Type Specification . 106
Constraints Not Working in Active Module Implementation 106
Resource Contention or Timing Constraints Not Met in Final Assembly 107

Vendor Specific Notes for Synthesis . 107
Synplify or FPGA Express/FPGA Compiler II, version 3.3.1 or earlier 107

Creating a Netlist for Each Module (Synplify or FPGA Express/FPGA Compiler II, version 3.3.1 or
earlier) . 107

Disabling I/O Insertion for a Module (Synplify or FPGA Express/FPGA Compiler II, version 3.3.1
or earlier) . 107

Disabling I/O Insertion for a Module (Synplify Pro) . 108
Disabling I/O Insertion for a Module (FPGA Express/FPGA Compiler II, version 3.3.1 or earlier)

108
Instantiating Primitives (Synplify and Synplify Pro) . 108
Instantiating Primitives (FPGA Express/FPGA Compiler II, version 3.3.1 or earlier) . 108

FPGA Express/FPGA Compiler II, version 3.4 or later . 108
Creating a Netlist for Each Module (FPGA Express/FPGA Compiler II, version 3.4 or later)108
Disabling I/O Insertion for a Module (FPGA Express/FPGA Compiler II, version 3.4 or later)109
Instantiating Primitives (FPGA Express/FPGA Compiler II, version 3.4 or later) 109

LeonardoSpectrum . 109
Creating a Netlist for Each Module (LeonardoSpectrum). 109
Disabling I/O Insertion for a Module (LeonardoSpectrum) . 110
Instantiating Primitives (LeonardoSpectrum). 110
Development System Reference Guide www.xilinx.com 13
 1-800-255-7778

http://www.xilinx.com

R

XST . 110
Creating a Netlist for Each Module (XST). 110
Disabling I/O Insertion for a Module (XST) . 110
Instantiating Primitives (XST). 110

HDL Code Examples . 111
Top-Level Design . 111

VHDL Example: Top-Level Design. 111
Verilog Example: Top-Level Design . 114

External I/Os in a Module . 116
VHDL Example: Module Design with Inserted I/Os . 116
Verilog Example: Module Design with Inserted I/Os . 117

Chapter 5: PARTGen
PARTGen Overview . 119
PARTGen Syntax . 119
PARTGen Input Files . 119
PARTGen Output Files. 120
PARTGen Options . 120

–arch (Print Information for Specified Architecture) . 120
–i (Print a List of Devices, Packages, and Speeds) . 122
–p (Creates Package file and Partlist.xct File) . 125
–nopkgfile . 125
–v (Creates Packages and Partlist.xct File) . 125

Partlist.xct File . 126
Header . 126
Device Attributes . 126

PKG File . 128

Chapter 6: NGDBuild
NGDBuild Overview. 131

Converting a Netlist to an NGD File . 132
NGDBuild Syntax. 133
NGDBuild Input Files . 133
NGDBuild Output Files . 135
NGDBuild Intermediate Files . 135
NGDBuild Options . 135

–a (Add PADs to Top-Level Port Signals) . 135
–aul (Allow Unmatched LOCs) . 136
–bm (Specify BMM Files) . 136
–dd (Destination Directory) . 136
–f (Execute Commands File) . 136
–i (Ignore UCF File) . 136
–insert_keep_hierarchy . 136
–intstyle . 137
–l (Libraries to Search) . 137
–modular assemble (Module Assembly) . 137
–modular initial (Initial Budgeting of Modular Design) . 138
–modular module (Active Module Implementation) . 138
–nt (Netlist Translation Type) . 139
14 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

–p (Part Number) . 139
–quiet (Report Warnings and Errors Only) . 139
–r (Ignore LOC Constraints) . 139
–sd (Search Specified Directory) . 140
–u (Allow Unexpanded Blocks) . 140
–uc (User Constraints File) . 140
–ur (Read User Rules File) . 141
–verbose (Report All Messages) . 141

Chapter 7: Logical Design Rule Check
Logical DRC Overview . 143
Logical DRC Checks . 144

Block Check . 144
Net Check . 144
Pad Check . 144
Clock Buffer Check . 145
Name Check . 145
Primitive Pin Check . 146

Chapter 8: MAP
MAP Overview . 147
MAP Syntax . 148
MAP Input Files . 149
MAP Output Files. 149
MAP Options . 150

–bp (Map Slice Logic) . 151
–c (Pack CLBs) . 151
–cm (Cover Mode) . 152
–detail (Write Out Detailed MAP Report) . 152
–f (Execute Commands File) . 152
–fp (Floorplanner) . 152
–gf (Guide NCD File) . 152
–gm (Guide Mode) . 153
–gm incremental (Guide Mode incremental) . 153
–ignore_keep_hierarchy . 153
–ir (Do Not Use RLOCs to Generate RPMs) . 153
–k (Map to Input Functions) . 153
–l (No logic replication) . 154
–o (Output File Name) . 154
–p (Part Number) . 155
–pr (Pack Registers in I/O) . 155
–quiet (Report Warnings and Errors Only) . 155
–r (No Register Ordering) . 155
–timing (Timing-Driven Packing) . 156
–tx (Transform Buses) . 156
–u (Do Not Remove Unused Logic) . 157

MAP Process . 157
Register Ordering . 158
Guided Mapping. 159
Simulating Map Results . 161
Development System Reference Guide www.xilinx.com 15
 1-800-255-7778

http://www.xilinx.com

R

MAP Report (MRP) File . 162
Halting MAP. 167

Chapter 9: Physical Design Rule Check
DRC Overview. 169
DRC Syntax . 170
DRC Input File. 170
DRC Output File . 170
DRC Options . 170

–e (Error Report). 170
–f (Execute Commands File) . 170
–o (Output file) . 170
–s (Summary Report) . 170
–v (Verbose Report) . 170
–z (Report Incomplete Programming) . 171

DRC Checks . 171
DRC Errors and Warnings . 171

Chapter 10: PAR
Place and Route Overview. 173
PAR Syntax . 174
PAR Input Files . 175
PAR Output Files . 175
PAR Options . 175
Detail Listing . 178

–f (Execute Commands File) . 178
–gf (Guide NCD File) . 178
–gm (Guide Mode) . 178
–intstyle . 178
–k (Re-Entrant Routing) . 178
–m (Multi-Tasking Mode) . 179
–n (Number of PAR Iterations) . 179
–nopad (No Pad) . 179
–ol (Overall Effort Level) . 179
–p (No Placement) . 180
–pl (Placer Effort Level) . 180
–r (No Routing) . 180
–rl (Router Effort Level) . 181
–s (Number of Results to Save) . 181
–t (Starting Placer Cost Table) . 181
–ub (Use Bonded I/Os) . 181
–w (Overwrite Existing Files) . 182
–x (Ignore Timing Constraints) . 182
–xe (Extra Effort Level) . 182
16 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

PAR Process . 183
Placing . 183
Routing . 183
Timing-driven PAR . 183
Automatic Timespecing . 184
Command Line Examples . 184

Guided PAR . 185
Guided Designs . 185
PCI Cores . 187

PAR Reports . 187
Place and Route Report File . 188
MPPR Reporting . 192

Select I/O Utilization and Usage Summary . 194
Importing the PAD File Information. 194

Guide Reporting . 195
Turns Engine (PAR Multi-Tasking Option) . 195

Turns Engine Overview . 195
Turns Engine Syntax . 196
Turns Engine Input Files . 197
Turns Engine Output Files . 197
Limitations . 197
System Requirements . 198
Turns Engine Environment Variables . 198
Debugging . 199
Screen Output . 200

ReportGen . 202
ReportGen Syntax . 202
ReportGen Input Files . 202
ReportGen Output Files . 202
ReportGen Options . 202

Halting PAR . 203

Chapter 11: XPower
XPower Overview . 205

XPower Syntax . 205
FPGA Flow . 205
CPLD Flow . 206

Using XPower . 206
VCD Data Entry . 206
Other Methods of Data Entry . 207

Files Used by XPower . 207
Command Line Options . 208

–v (Verbose Report) . 208
–l (Limit) . 208
–x (Specify XML Input File) . 208
–wx (Write XML File) . 208
–s (Specify VCD file) . 208
–tb (Turn On Time Based Reporting) . 208
–o (Rename Power Report) . 208
-ls (List Supported Devices) . 209
-h (Help) . 209
Development System Reference Guide www.xilinx.com 17
 1-800-255-7778

http://www.xilinx.com

R

Command Line Examples . 209
Power Reports . 209

Standard Reports . 209
Detailed Reports . 210
Advanced Reports . 210

Chapter 12: PIN2UCF
PIN2UCF Overview . 211
PIN2UCF Syntax . 213
PIN2UCF Input Files . 213
PIN2UCF Output Files . 213
PIN2UCF Options . 213

–f (Execute Commands File) . 213
–o (Output File Name) . 214
–r (Write to a Report File) . 214

PIN2UCF Scenarios . 214

Chapter 13: TRACE
TRACE Overview . 217
TRACE Syntax . 218
TRACE Input Files . 218
TRACE Output Files . 219
TRACE Options. 219

–a (Advanced Analysis) . 219
–e (Generate an Error Report) . 219
–f (Execute Commands File) . 220
–fastpaths (Report Fastest Paths) . 220
–intstyle . 220
–l (Limit Timing Report) . 220
–nodatasheet (No Data Sheet) . 220
–o (Output Timing Report File Name) . 220
–quiet (Quiet Switch) . 220
–s (Change Speed) . 221
–skew (Analyze Clock Skew for All Clocks) . 221
–stamp (Generates STAMP local timing model files) . 221
–tsi (Generate a Timing Specification Interaction Report) . 221
–u (Report Uncovered Paths) . 222
–v (Generate a Verbose Report) . 222
–xml (XML Output File Name) . 222

TRACE Command Line Examples . 222
TRACE Reports . 223

Timing Verification with TRACE . 224
Net Delay Constraints. 224
Net Skew Constraints . 224
Path Delay Constraints . 224
Clock Skew and Setup Checking . 225

Reporting with TRACE . 227
18 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Data Sheet Reports . 229
Data Sheet Tables . 231
Report Legend . 232

Guaranteed Setup and Hold Reporting . 232
Setup Times . 233
Hold Times . 233

Summary Report . 234
Summary Report (Without a Physical Constraints File Specified) 234

Error Report . 237
Verbose Report . 239
Constraints Interaction Report . 242

Extracted Coverage Constraints Interaction Report Example. 243
Duplicate Coverage Constraints Interaction Report Example 245

Halting TRACE . 249

OFFSET Constraints. 249
OFFSET IN Constraint Examples . 249

OFFSET IN Header . 249
OFFSET IN Path Details . 250
OFFSET IN Detailed Path Data. 250
OFFSET IN Detail Path Clock Path . 251
OFFSET In with Phase Shifted Clock . 251

OFFSET OUT Constraint Examples . 253
OFFSET OUT Header . 253
OFFSET OUT Path Details . 254
OFFSET OUT Detail Clock Path . 254
OFFSET OUT Detail Path Data . 255

-PERIOD Constraints . 256
PERIOD Constraints Examples . 256

PERIOD Header . 256
PERIOD Path . 257
PERIOD Path Details . 258
PERIOD Constraint with PHASE . 259

Chapter 14: Speedprint
Speedprint Overview . 261
Speedprint Syntax . 262
Speedprint Options . 262

–intstyle . 262
–min (Display Minimum Speed Data) . 262
–s (Speed Grade) . 262
–t (Specify Temperature) . 262
–v (Specify Voltage) . 262

Speedprint Example Commands. 263
Speedprint Example Reports . 263

Chapter 15: BitGen
BitGen Overview . 265
BitGen Syntax . 266
BitGen Input Files . 267
Development System Reference Guide www.xilinx.com 19
 1-800-255-7778

http://www.xilinx.com

R

BitGen Output Files . 267
BitGen Options . 268

–a (Tie All Interconnect) . 268
–b (Create Rawbits File) . 269
–bd (Update Block Rams) . 269
–d (Do Not Run DRC) . 269
–f (Execute Commands File) . 269
–g (Set Configuration) . 269
–g (Set Configuration—Virtex/-E/-II/-II Pro and Spartan-II/-IIE/3 Devices) 269

ActivateGCLK. 270
ActiveReconfig . 270
Binary . 270
CclkPin . 270
Compress . 271
ConfigRate . 271
CRC. 271
DCIUpdateMode . 272
DCMShutdown. 272
DebugBitstream . 272
DisableBandgap . 272
DONE_cycle . 273
DonePin . 273
DonePipe . 273
DriveDone . 273
Encrypt . 274
Gclkdel0, Gclkdel1, Gclkdel2, Gclkdel3 . 274
GSR_cycle . 274
GWE_cycle . 274
GTS_cycle . 275
HswapenPin . 275
Key0, Key1, Key2, Key3, Key4, Key5 . 275
KeyFile . 275
Keyseq0, Keyseq1, Keyseq2, Keyseq3, Keyseq4, Keyseq5. 276
LCK_cycle . 276
M0Pin . 276
M1Pin . 276
M2Pin . 277
Match_cycle . 277
PartialGCLK . 277
PartialMask0, PartialMask1, PartialMask2 . 277
PartialLeft . 278
PartialRight . 278
Persist . 278
ProgPin . 278
ReadBack . 279
Security . 279
StartCBC . 279
StartKey . 279
StartupClk. 280
TckPin . 280
TdiPin . 280
TdoPin . 281
TmsPin . 281
20 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

UnusedPin . 281
UserID. 281

–intstyle . 282
–j (No BIT File) . 282
–l (Create a Logic Allocation File) . 282
–m (Generate a Mask File) . 282
–n (Save a Tied Design) . 282
–r (Create a Partial Bit File) . 282
–t (Tie Unused Interconnect) . 283
–u (Use Critical Nets). 283
–w (Overwrite Existing Output File). 283

Chapter 16: PROMGen
PROMGen Overview . 285
PROMGen Syntax . 286
PROMGen Input Files . 286
PROMGen Output Files . 286
PROMGen Options . 286

–b (Disable Bit Swapping—HEX Format Only) . 286
–c (Checksum) . 286
–d (Load Downward) . 287
–f (Execute Commands File) . 287
–i (Select Initial Version) . 287
–l (Disable Length Count) . 287
–n (Add BIT FIles) . 287
–o (Output File Name) . 288
–p (PROM Format) . 288
–r (Load PROM File) . 288
–s (PROM Size) . 288
–t (Template File) . 289
–u (Load Upward) . 289
–ver (Version) . 289
–w (Overwrite Existing Output File). 289
–x (Specify Xilinx PROM) . 289
–z (Enable Compression) . 289

Bit Swapping in PROM Files . 290
PROMGen Examples . 290

Chapter 17: BSDLAnno
BSDLAnno Overview . 291
BSDLAnno Syntax . 292
BSDLAnno Input Files . 292
BSDLAnno Output Files . 292
BSDLAnno Options . 292

–s . 292
–intstyle . 292
Development System Reference Guide www.xilinx.com 21
 1-800-255-7778

http://www.xilinx.com

R

BSDLAnno File Composition. 293
Entity Declaration . 293
Generic Parameter . 293
Logical Port Description . 293
Package Pin-Mapping. 294
USE Statement . 294
Scan Port Identification. 295
TAP Description . 295
Boundary Register Description. 295
Modifications to the DESIGN_WARNING Section . 297
Header Comments . 297

Boundary Scan Behavior in Xilinx Devices. 297

Chapter 18: IBISWriter
IBISWriter Overview . 299
IBISWriter Syntax . 300
IBISWriter Input Files. 300
IBISWriter Output Files . 301
IBISWriter Options . 301

–allmodels (Include all available buffer models for this architecture) 301
–intstyle . 301
–g (Set Reference Voltage) . 301

Chapter 19: CPLDfit
CPLDfit Overview . 303
CPLDfit Syntax . 303
CPLDfit Input Files . 304
CPLDfit Output Files . 304
CPLDfit Options . 304

–p <part> . 304
–optimize density/speed . 304
–nomlopt . 305
–ignoretspec . 305
–exhaust . 305
–inputs <m> . 305
–pterms <m> . 305
–init < low|high|fpga > . 305
–slew <fast | slow |auto > . 306
–loc < on|off|try > . 306
–log <logfile> . 306
–wysiwyg . 306
–f <cmdfile> . 306
–h < xc9500 |xc9500xl |xc9500xv|xcr3|xc2c | xc2cs > . 306
–unused < ground | pulldown | pullup | keeper | float > . 307
–power < std|low|auto > . 307
–nogclkopt . 307
–nogsropt . 307
–nogtsopt . 307
–nouim . 307
–localfbk . 307
22 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

–pinfbk . 308
–blkfanin <x> . 308
–nofbnand . 308
–noisp . 308
–ignoredatagate . 308
–terminate < pullup|keeper|float > . 308
–iostd <LVTTL|LVCMOS18|LVCMOS25 |SSTL2_I|SSTL3_I|HSTL_I| LVCMOS15 >309
–tckterminate < pullup | float > . 309
–keepio . 309
outfile.vm6 . 309

Chapter 20: TSIM
TSIM Overview . 311
TSIM Syntax . 311
TSIM Input Files . 311
TSIM Output Files . 312
TSIM Options . 312

–intstyle [ise | xflow | silent] . 312

Chapter 21: TAEngine
TAEngine Overview . 313
TAEngine Syntax . 314
TAEngine Input Files . 314
TAEngine Output Files. 314
TAEngine Options . 314

–detail . 314
–l <filename> . 314
–iopath . 314
–help . 314

Chapter 22: Hprep6
Hprep6 Overview . 315
Hprep6 Syntax . 315
Hprep6 Input Files . 316
Hprep6 Output Files . 316
Hprep6 Options . 316

–intstyle <ise | xflow | silent> . 316
–n <signature> . 316
–nopullup . 316
–s <ieee1532 | ieee1149 > . 316
–help . 317
–autosig . 317
–tmv <tmv_file> . 317
Development System Reference Guide www.xilinx.com 23
 1-800-255-7778

http://www.xilinx.com

R

Chapter 23: NetGen
NetGen Overview . 320
NetGen Syntax . 321
NetGen Supported Flows . 321
NetGen Timing Simulation Flow . 321

Syntax for NetGen Timing Simulation . 322
FPGA Timing Simulation . 322
Output files for FPGA Timing Simulation . 323
CPLD Timing Simulation . 323
Input files for CPLD Timing Simulation . 324
Output files for CPLD Timing Simulation . 324
NetGen Options for Timing Simulation . 324

–aka (Write Also-Known-As Names as Comments) . 324
–bd (Block RAM Data File) . 324
–dir (Directory Name). 324
–fn (Control Flattening a Netlist) . 324
–gp (Bring Out Global Reset Net as Port) . 324
–intstyle (Reduce Screen Output) . 325
–ofmt (Output Format) . 325
–mhf (Multiple Hierarchical Files) . 325
–module (Simulation of Active Module). 325
–ngm (Design Correlation File). 325
–pcf (PCF File). 325
–s (Change Speed). 326
–sim (Generate Simulation Netlist) . 326
–tb (Generate Testbench Template File) . 326
–ti (Top Instance Name) . 326
–tm (Top Module Name) . 326
–tp (Bring Out Global 3-State Net as Port) . 326
–w (Overwrite Existing Files) . 327

Verilog-Specific Options for Timing Simulation . 327
–ism (Include SimPrim Modules in Verilog File) . 327
–ne (No Name Escaping) . 327
–pf (Generate PIN File) . 327
–sdf_anno (Include $sdf_annotate) . 327
–sdf_path (Full Path to SDF File) . 328
–shm (Write $shm Statements in Test Fixture File). 328
–ul (Write ‘uselib Directive) . 328
–vcd . 328

VHDL Specific Options for Timing Simulation . 328
–a (Architecture Only) . 328
–ar (Rename Architecture Name) . 328
–rpw (Specify the Pulse Width for ROC) . 328
–tpw (Specify the Pulse Width for TOC). 329
–xon (Select Output Behavior for Timing Violations) . 329

NetGen Equivalence Checking Flow. 329
Syntax for NetGen Equivalence Checking. . 330
Input files for NetGen Equivalence Checking . 330
Output files for NetGen Equivalence Checking . 331
24 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

NetGen Options for Equivalence Checking . 331
–aka (Write Also-Known-As Names as Comments) . 331
–bd (Block RAM Data File) . 331
–dir (Directory Name). 331
–ecn (Equivalence Checking) . 331
–fn (Control Flattening a Netlist) . 332
–intstyle (Reduce Screen Output) . 332
–mhf (Multiple Hierarchical Files) . 332
–module (Verification of Active Module) . 332
–ne (No Name Escaping) . 332
–ngm (Design Correlation File). 332
–tm (Top Module Name) . 332
–w (Overwrite Existing Files) . 333

NetGen Static Timing Analysis Flow . 333
Input files for Static Timing Analysis . 334
Output files for Static Timing Analysis . 334
Syntax for NetGen Static Timing Analysis . 334
NetGen Options for Static Timing Analysis . 334

–aka (Write Also-Known-As Names as Comments) . 334
–bd (Block RAM Data File) . 335
–dir (Directory Name). 335
–fn (Control Flattening a Netlist) . 335
–intstyle (Reduce Screen Output) . 335
–mhf (Multiple Hierarchical Files) . 335
–module (Simulation of Active Module). 335
–ne (No Name Escaping) . 335
–ngm (Design Correlation File). 336
–pcf (PCF File). 336
–s (Change Speed). 336
–sta (Generate Static Timing Analysis Netlist) . 336
–tm (Top Module Name) . 336
–w (Overwrite Existing Files) . 336

Preserving and Writing Hierarchy Files . 337
Testbench File . 337
Hierarchy Information File . 337

Hierarchical Modules with Secure Netlist Attributes. 338
Dedicated Global Signals in Back-Annotation Simulation 338

Global Signals in Verilog Netlist . 338
Global Signals in VHDL Netlist . 339

Chapter 24: NGDAnno
NGDAnno Overview. 341
NGDAnno Syntax. 342
NGDAnno Input Files . 343
NGDAnno Output Files . 343

Data Output . 343
Optimized (Trimmed) Ports, and Bus Information Preserved 344
Development System Reference Guide www.xilinx.com 25
 1-800-255-7778

http://www.xilinx.com

R

NGDAnno Options . 344
–bd (BRAM Data File) . 344
–f (Execute Commands File) . 344
–module (Simulation of Active Module) . 345
–o (Output File Name) . 345
–p (PCF File) . 345
–quiet (Report Warnings and Errors Only) . 345
–s (Change Speed) . 345

Preserving Hierarchy Annotation . 346
Hierarchical Design Annotation . 346

Dedicated Global Signals in Back-Annotation Simulation 347
Virtex/-II/II Pro/-E and Spartan-II/IIE . 347

External Setup and Hold Check . 348

Chapter 25: NGD2VER
NGD2VER Overview . 351
NGD2VER Syntax . 352
NGD2VER Input Files . 353
NGD2VER Output Files . 353
NGD2VER Options . 354

–10ps (Set Time Precision to be 10ps) . 354
–aka (Write Also-Known-As Names as Comments) . 354
–cd (Include `celldefine\`endcelldefine in Verilog File) . 354
–f (Execute Commands File) . 355
-fn (Control flattening a netlist) . 355
–gp (Bring Out Global Reset Net as Port) . 355
–ism (Include SimPrim Modules in Verilog File) . 355
–log (Rename the Log File) . 355
–ne (No Name Escaping) . 356
–pf (Generate Pin File) . 356
-quiet (Reduce Screen Output) . 356
–r (Retain Hierarchy) . 356
–sdf_path (Full Path to SDF File) . 356
–shm (Write $shm Statements in Test Fixture File) . 357
–tf (Generate Test Fixture File) . 357
–ti (Top Instance Name) . 357
–tm (Top Module Name) . 357
–tp (Bring Out Global 3-State Net as Port) . 357
–ul (Write ‘uselib Directive) . 357
–verbose (Report All Messages) . 358
–w (Overwrite Existing Files) . 358

Setting Global Set/Reset, 3-State, and PRLD . 358
Test Fixture File . 358
Bus Order in Verilog Files . 358
Verilog Identifier Naming Conventions . 359
Compile Scripts for Verilog Libraries . 359
Secure Netlist Attribute . 360

Example: Verilog Syntax: . 360
26 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 26: NGD2VHDL
NGD2VHDL Overview . 361
NGD2VHDL Syntax . 362
NGD2VHDL Input Files . 363
NGD2VHDL Output Files. 363
NGD2VHDL Options . 364

–a (Architecture Only) . 364
–aka (Write Also-Known-As Names as Comments) . 364
–ar (Rename Architecture Name) . 364
–f (Execute Commands File) . 364
–fn (Control flattening a netlist) . 364
–gp (Bring Out Global Reset Net as Port) . 364
–log (Specify the Log File). 365
–quiet (Reduce Screen Output) . 365
–r (Retain Hierarchy) . 365
–rpw (Specify the Pulse Width for ROC) . 365
–tb (Generate Testbench File) . 365
–te (Top Entity Name) . 365
–ti (Top Instance Name) . 366
–tp (Bring Out Global 3-State Net as Port) . 366
–tpw (Specify the Pulse Width for TOC) . 366
–verbose (Report All Messages) . 366
–w (Overwrite Existing Files) . 366
–xon (Select Output Behavior for Timing Violations) . 366

VHDL Global Set/Reset Emulation . 367
VHDL Only STARTUP_VIRTEX Block . 367
VHDL Only STARTBUF_VIRTEX Cell . 367
VHDL Only STARTUP_VIRTEX Block and STARTBUF_VIRTEX Cell 368
VHDL Only RESET-ON-CONFIGURATION (ROC) Cell . 368
VHDL Only ROCBUF Cell . 369
VHDL Only 3-State-On-Configuration (TOC) Cell . 369
VHDL Only TOCBUF . 370

Bus Order in VHDL Files. 370
VHDL Identifier Naming Conventions . 370
Compile Scripts for VHDL Libraries. 371
Secure Netlist Attribute . 371

Example: VHDL Syntax . 371

Chapter 27: XFLOW
XFLOW Overview. 373

XFLOW Syntax . 374
XFLOW Input Files. 375
XFLOW Output Files . 376
XFLOW Flow Types . 379

–assemble (Module Assembly) . 379
–config (Create a BIT File for FPGAs) . 380
–ecn (Create a File for Equivalence Checking) . 380
–fit (Fit a CPLD) . 381
–fsim (Create a File for Functional Simulation) . 381
Development System Reference Guide www.xilinx.com 27
 1-800-255-7778

http://www.xilinx.com

R

–implement (Implement an FPGA) . 382
–initial (Initial Budgeting of Modular Design) . 383
–module (Active Module Implementation) . 384
–mppr (Multi-Pass Place and Route for FPGAs) . 385
–sta (Create a File for Static Timing Analysis) . 385
–synth . 385

Synthesis Types . 386
Option Files for -synth Flow Types. 387

–tsim (Create a File for Timing Simulation) . 387
Flow Files . 388

Flow File Format . 389
User Command Blocks . 391

XFLOW Option Files . 391
Option File Format . 391

XFLOW Options . 392
–active (Active Module) . 392
–ed (Copy Files to Export Directory) . 392
–f (Execute Commands File) . 392
–g (Specify a Global Variable) . 392
–log (Specify Log File) . 393
–norun (Creates a Script File Only) . 393
–o (Change Output File Name) . 393
–p (Part Number) . 394
–pd (PIMS Directory) . 394
–rd (Copy Report Files) . 394
–wd (Specify a Working Directory) . 395

Running XFLOW. 395
Using XFLOW Flow Types in Combination . 395
Running “Smart Flow” . 395
Using the SCR, BAT, or TCL File . 396
Using the XIL_XFLOW_PATH Environment Variable . 396

Halting XFLOW . 396

Chapter 28: Data2MEM
Introduction . 397
Input and Output Files . 398

Block RAM Memory Map (.bmm) files . 398
Executable and Linkable Format (.elf) files . 398
Debugging Information Format DWARF (.drf) files . 399
Memory (.mem) files . 399

Memory Files as Output . 399
Memory Files as Input . 400

Bit (.bit) files . 400
Verilog (.v) files . 400
VHDL (.vhd) files . 401
UCF (.ucf) files . 401

Use Overview . 401
Process Overview . 403
Command Line Option Reference . 406

Listing 1- Example Block RAM Memory Map File . 410
28 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Appendix A: Xilinx Development System Files

Appendix B: EDIF2NGD, and NGDBuild
EDIF2NGD . 419

EDIF2NGD Syntax . 421
EDIF2NGD Input Files . 421
EDIF2NGD Output Files . 422
EDIF2NGD Options . 422

–a (Add PADs to Top-Level Port Signals). 422
–aul (Allow Unmatched LOCs). 422
–f (Execute Commands File) . 422
–instyle . 422
–l (Libraries to Search) . 423
–p (Part Number) . 423
–quiet (Report Warnings and Errors Only). 423
–r (Ignore LOC Constraints) . 423

NGDBuild . 424
Converting a Netlist to an NGD File . 424
Bus Matching . 426

Netlist Launcher (Netlister) . 426
Netlist Launcher Rules Files . 428
User Rules File . 428

User Rules and System Rules . 428
User Rules Format . 428
Value Types in Key Statements. 430

System Rules File . 430
Rules File Examples . 432

Example 1: EDF_RULE System Rule. 432
Example 2: User Rule . 432
Example 3: User Rule . 433
Example 4: User Rule . 433

NGDBuild File Names and Locations. 433

Glossary. 435

Index . 463
Development System Reference Guide www.xilinx.com 29
 1-800-255-7778

http://www.xilinx.com

R

30 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 1

Introduction

This chapter describes the basics of the different Xilinx Development System command
line programs. The chapter contains the following sections:

• “Command Line Program Overview”

• “Command Line Syntax”

• “Command Line Options”

• “Invoking Command Line Programs”

• “Reading NCD Files with NCDRead”

Command Line Program Overview
Xilinx command line programs allow you to implement and verify your design. The
following table lists which programs you can use for each step in the design flow. For
detailed information, see Chapter 2, “Design Flow”.

Each program has multiple options, which allow you to control how a program is
executed. For example, you can set options to change output file names, to set a part
number for your design, or to specify certain files to read in when executing the program.

You can run these programs in the standard design flow or use special options to run the
programs in a Modular Design flow, as described in Chapter 4, “Modular Design”.

Note: The command line programs described in this manual underlie many of the Xilinx Graphical
User Interfaces (GUIs). The GUIs can be used in conjunction with the command line programs. For
information on the GUIs, see the online Help provided with each tool.

Table 1-1: Command Line Programs in the Design Flow

Design Flow Step Command LIne Program

Design Implementation NGDBuild, MAP, PAR, BitGen

Timing Simulation

(Design Verification)

NGDAnno, NGD2EDIF,
NGD2VER, NGD2VHDL

Static Timing Analysis

(Design Verification)

TRACE

Back Annotation

(Design Verification)

NGDAnno, NGD2EDIF,
NGD2VER, NGD2VHDL
Development System Reference Guide www.xilinx.com 31
 1-800-255-7778

http://www.xilinx.com

Chapter 1: Introduction
R

Command Line Syntax
Command line syntax always begins with the command line program name. The program
name is followed by any options and then file names. Use the following rules when
specifying command line options:

• Enter options in any order.

• Precede options with a hyphen (–) and separate them with spaces. In some cases, you
can precede options by a plus sign (+).

• Be consistent with upper and lower case.

• When an option requires a parameter, separate the parameter from the option by
spaces or tabs.

♦ Correct: par -ol 5

♦ Incorrect: par -ol 5

• When specifying options that can be specified multiple times, precede the parameter
with the option letter.

♦ Correct: –l xilinxun -0l synopsys

♦ Incorrect: –l xilinxun synopsys

• Enter parameters that are bound to a particular option after the option.

♦ Correct: –f command_file

♦ Incorrect: command_file –f

Use the following rules when specifying file names:

• Enter file names in the order specified in the chapter that describes the program.

♦ Correct: par input.ncd output.ncd freq.pcf

♦ Incorrect: par input.ncd freq.pcf output.ncd

• Use lower case for all file extensions (for example, .ncd).

Command Line Options
The following options are common to many of the command line programs in the Xilinx
Development System.

–f (Execute Commands File)
For any Xilinx Development System program, you can store command line program
options and file names in a command file. You can then execute the arguments by entering
the program name with the –f option followed by the name of the command file. This is
useful if you frequently execute the same arguments each time you execute a program or if
the command line command becomes too long.

You can use the file in the following ways:

• To supply all the command options and file names for the program, as in the
following example:

par –f command_file

command_file is the name of the file that contains the command options and file names.
32 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Command Line Options
R

• To insert certain command options and file names within the command line, as in the
following example:

par –f placeoptions –s 4 –f routeoptions design_i.ncd design_o.ncd

placeoptions is the name of a file containing placement command parameters.

routeoptions is the name of a file containing routing command parameters.

You create the command file in ASCII format. Use the following rules when creating the
command file:

• Separate program options and file names with spaces.

• Precede comments with the pound sign (#).

• Put new lines or tabs anywhere white space is allowed on the UNIX or DOS
command line.

• Put all arguments on the same line, one argument per line, or a combination of these.

• All carriage returns and other non-printable characters are treated as spaces and
ignored.

• No line length limitation exists within the file.

Following is an example of a command file.

#command line options for par for design mine.ncd
-n 10
-w
0l 5
-s 2 #will save the two best results
/home/yourname/designs/xilinx/mine.ncd
#directory for output designs
/home/yourname/designs/xilinx/output.dir
#use timing constraints file
/home/yourname/designs/xilinx/mine.pcf

–p (Part Number)
You can use the –p option with the EDIF2NGD, NGDBuild, MAP, and XFLOW programs
to specify the part into which your design will be implemented. You can specify a part
number at the following different points in the design flow:

• In the input netlist (does not require the –p option)

• In a Netlist Constraints File (NCF) (does not require the –p option)

• With the –p option when you run a netlist reader (EDIF2NGD) User Constraints File
(UCF) (does not require the –p option)

• With the –p option when you run NGDBuild

By the time you run NGDBuild, you must have already specified a device architecture.

• With the –p option when you run MAP

When you run MAP, an architecture, device, and package must be specified, either on
the MAP command line or earlier in the design flow. If you do not specify a speed,
MAP selects a default speed. You can only run MAP using a part number from the
architecture you specified when you ran NGDBuild.

Note: Part numbers specified in a later step of the design flow override a part number specified in
an earlier step. For example, a part specified when you run MAP overrides a part specified in the
input netlist.
Development System Reference Guide www.xilinx.com 33
 1-800-255-7778

http://www.xilinx.com

Chapter 1: Introduction
R

A complete Xilinx part number consists of the following elements:

• Architecture (for example, Virtex-II)

• Device (for example, XC2V3000)

• Package (for example, BG728)

• Speed (for example, -4)

The following table lists ways to specify a part on the command line.

Note: Speedprint allows you to specify a speed grade. If you don’t specify a speed grade,
Speedprint reports the default speed grade for the device you are targeting. See “–s (Speed Grade)”
in Chapter 14 for details.

–h (Help)
When you enter a program name followed by
–help or –h, a message displays that lists all the available options and their parameters as
well as the legal file types for use with the program. The message also explains each of the
options.

Table 1-2: Part Number Examples

Specification Examples

Architecture only

Device only 2V3000

X2V3000

XC2V3000

DevicePackage 2V3000-BG728

Device–Package 4028ex-hq240

x4028ex-hq240

xc4028ex-hq240

DeviceSpeed–Package 4028exhq240-3

x4028exhq240-3

xc4028exhq240-3

Device–Package–Speed 4028ex-3-hq240

x4028ex-3-hq240

xc4028ex-3-hq240

Device–Speed–Package 4028ex-3-hq240

x4028ex-3-hq240

xc4028ex-3-hq240

Device–SpeedPackage 4028ex-3hq240

x4028ex-3hq240

xc4028ex-3hq240
34 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Invoking Command Line Programs
R

Following are descriptions for the symbols used in the help message:

Following are examples of syntax used for file names:

• <infile[.ncd]> indicates that the .ncd extension is optional but that the extension must
be .ncd.

• <infile<.edn>> indicates that the .edn extension is optional and is appended only if
there is no other extension in the file name.

For architecture-specific programs, such as BitGen, you can enter the following to get a
verbose help message for the specified architecture:

program_name –h architecture_name

On the UNIX command line, you can redirect the help message to a file to read later or to
print out by entering the following:

program_name –h >& filename

Invoking Command Line Programs
You start Xilinx Development System command line programs by entering a command at
the UNIX™ or DOS™ command line. See the chapters in this book for the appropriate
syntax.

In addition, Xilinx offers the XFLOW program, which allows you to automate the running
of several programs at one time. See Chapter 27, “XFLOW” for more information.

Symbol Description

[] Encloses items that are optional

{ } Encloses items that may be repeated

< > Encloses a variable name or number for which you
must substitute information

, Indicates a range for an integer variable

– Indicates the start of an option name

+ Indicates the start of an option name

: Binds a variable name to a range

| Logical OR to indicate a choice of one out of many
items. The OR operator may only separate logical
groups or literal keywords.

() Encloses a logical grouping for a choice between
subformats
Development System Reference Guide www.xilinx.com 35
 1-800-255-7778

http://www.xilinx.com

Chapter 1: Introduction
R

Reading NCD Files with NCDRead
A Native Circuit Description (NCD) file contains a physical description of your design in
terms of the components in the target architecture. NCDRead enables you to quickly
generate an ASCII (text) file based on the data found in one or more NCD files.

To start NCDRead from the UNIX or DOS command line, type the following.

ncdread [–o outfile_name] filename1.ncd {filename2.ncd ...}

Note: Standard output goes to your screen if you do not use the
–o option to write the output to a file.
36 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 2

Design Flow

This chapter describes the process for creating, implementing, verifying, and downloading
designs for FPGA and CPLD devices. For a complete description of FPGAs and CPLDs,
refer to the Xilinx Data Sheets at
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

This chapter contains the following sections:

• “Design Flow Overview”

• “Design Entry and Synthesis”

• “Design Implementation”

• “Design Verification”

• “FPGA Design Tips”

Design Flow Overview
The standard design flow comprises the following steps:

• Design Entry and Synthesis—In this step of the design flow, you create your design
using a Xilinx-supported schematic editor, a hardware description language (HDL)
for text-based entry, or both. If you use an HDL for text-based entry, you must
synthesize the HDL file into an EDIF or XNF file or, if you are using the Xilinx
Synthesis Technology (XST) GUI, into an NGC file.

• Design Implementation—By implementing to a specific Xilinx architecture, you
convert the logical design file format, such as EDIF, that you created in the design
entry or synthesis stage into a physical file format. The physical information is
contained in the native circuit description (NCD) file for FPGAs and the VM6 file for
CPLDs. Then you create a bitstream file from these files and optionally program a
PROM or EPROM for subsequent programming of your Xilinx device.

• Design Verification—Using a gate-level simulator or cable, you ensure that your
design meets your timing requirements and functions properly. See the iMPACT online
help for information about Xilinx download cables and demonstration boards.

Note: In addition to the standard design flow described in this section, you can break your design
into modules for team-based design and run the Modular Design flow. See Chapter 4, “Modular
Design” for details.
Development System Reference Guide www.xilinx.com 37
 1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

Chapter 2: Design Flow
R

The following figure shows the Xilinx design flow.

The full design flow is an iterative process of entering, implementing, and verifying your
design until it is correct and complete. The Xilinx Development System allows quick
design iterations through the design flow cycle. Because Xilinx devices permit unlimited
reprogramming, you do not need to discard devices when debugging your design in
circuit.

Figure 2-1: Xilinx Design Flow Overview

X9537

Design
Implementation

Optimization

FPGAs

Mapping
Placement
Routing

CPLDs

Fitting

Bitstream
Generation

Design
Synthesis

Design
Entry

Download to a
Xilinx Device

Design Verification

Functional
Simulation

Static Timing
Analysis

Timing
Simulation

Back
Annotation

In-Circuit
Verification
38 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Design Flow Overview
R

The following figure shows the Xilinx software flow chart for FPGA designs.

The following figure shows the Xilinx software flow chart for CPLD designs.

Figure 2-2: Xilinx Software Design Flow (FPGAs)

X9866

V &
SDF 2.1

VHD &
SDF 2.1

Simulation
Libraries

CORE Generator

Schematic Capture

Constraints Editor NGD

UCF

MEM

HDL

NGC
Symbol

Symbol

NGDAnnoNGM & PCF

EDIF
2 0 0

MAPFloorplanner

VEO

EDN

VHO VEI VHI

TRACE &
Timing Analyzer

PAR

BitGen

Synthesis Simulation

EDIF 2 0 0 &
Constraints/NCF

NGC
(XST Netlist)

XNF v6 &
Constraints

NGA

NGD2VER, NGD2VHDL, NGD2EDIF

Testbench
Stimulus

NCD & PCF

NCD

NGDBuild NGDBuildNGDBuild

Synthesis
Libraries

Schematic
Libraries

BIT

iMPACT

PROM File FormatterPROMGen
Development System Reference Guide www.xilinx.com 39
 1-800-255-7778

http://www.xilinx.com

Chapter 2: Design Flow
R

Design Entry and Synthesis
You can enter a design with a schematic editor or a text-based tool. Design entry begins
with a design concept, expressed as a drawing or functional description. From the original
design, a netlist is created, then synthesized and translated into a native generic object
(NGO) file. This file is fed into a program called NGDBuild, which produces a logical
native generic database (NGD) file.

The following figure shows the design entry and synthesis process.

Figure 2-3: Xilinx Software Design Flow (CPLDs)

X9492

V &
SDF 2.1

VHD &
SDF 2.1

Simulation
Libraries

CORE Generator LogiBLOX

Schematic Capture

NGD

MEM

HDL

NGC
Symbol

Symbol

NGDAnnoGYD

EDIF
2 0 0

CPLD Fitter

VEO

EDN

VHO VEI VHI

JED VM6

iMPACT Timing Analyzer

Synthesis Simulation

EDIF 2 0 0 &
Constraints/NCF

NGC
(XST Netlist)

XNF v6 &
Constraints

NGA

NGD2VER, NGD2VHDL, NGD2EDIF

Testbench
Stimulus

NGDBuild NGDBuildNGDBuild

Synthesis
Libraries

Schematic
Libraries
40 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Design Entry and Synthesis
R

Hierarchical Design
Design hierarchy is important in both schematic and HDL entry for the following reasons:

• Helps you conceptualize your design

• Adds structure to your design

• Promotes easier design debugging

• Makes it easier to combine different design entry methods (schematic, HDL, or state
editor) for different parts of your design

• Makes it easier to design incrementally, which consists of designing, implementing,
and verifying individual parts of a design in stages

• Reduces optimization time

• Facilitates concurrent design, which is the process of dividing a design among a
number of people who develop different parts of the design in parallel, such as in
Modular Design

A specific hierarchical name identifies each library element, unique block, and instance
you create. The following example shows a hierarchical name with a 2-input OR gate in the
first instance of a multiplexer in a 4-bit counter:

/Acc/alu_1/mult_4/8count_3/4bit_0/mux_1/or2

Xilinx strongly recommends that you name the components and nets in your design. These
names are preserved and used by the FPGA Editor. These names are also used for back-
annotation and appear in the debug and analysis tools. If you do not name your
components and nets, the schematic editor automatically generates the names. For
example, if left unnamed, the software might name the previous example, as follows:

/$1a123/$1b942/$1c23/$1d235/$1e121/$1g123/$1h57

Note: It is difficult to analyze circuits with automatically generated names, because they only have
meaning for Xilinx software.

Figure 2-4: Design Entry Flow

X9484

CORE Generator & LogiBLOX

Schematic Capture

UCF
NGC

(XST Netlist)

HDL

Synthesis

EDIF 2 0 0 &
Constraints/NCF

XNF v6 &
Constraints

Schematic
Libraries

Synthesis
Libraries

NGDBuild
Development System Reference Guide www.xilinx.com 41
 1-800-255-7778

http://www.xilinx.com

Chapter 2: Design Flow
R

Schematic Entry Overview
Schematic tools provide a graphic interface for design entry. You can use these tools to
connect symbols representing the logic components in your design. You can build your
design with individual gates, or you can combine gates to create functional blocks. This
section focuses on ways to enter functional blocks using library elements and the CORE
Generator and LogiBLOX tools.

Library Elements

Primitives and macros are the “building blocks” of component libraries. Xilinx libraries
provide primitives, as well as common high-level macro functions. Primitives are basic
circuit elements, such as AND and OR gates. Each primitive has a unique library name,
symbol, and description. Macros contain multiple library elements, which can include
primitives and other macros.

You can use the following types of macros with Xilinx FPGAs:

• Soft macros have pre-defined functionality, but have flexible mapping, placement,
and routing. Soft macros are available for all FPGAs.

• Relationally placed macros (RPMs) have fixed mapping and relative placement.
RPMs are available for all device families except the XC9500 family.

Macros are not available for synthesis because synthesis tools have their own module
generators and do not require RPMs. If you wish to override the module generation, you
can instantiate CORE Generator or LogiBLOX modules. For most leading-edge synthesis
tools, this does not offer an advantage unless it is for a module that cannot be inferred.

CORE Generator Tool (FPGAs Only)

The Xilinx CORE Generator design tool delivers parameterizable cores that are optimized
for Xilinx FPGAs. The library includes cores ranging from simple delay elements to
complex DSP (Digital Signal Processing) filters and multiplexers. For details, refer to the
CORE Generator Guide. You can also refer to the Xilinx IP (Intellectual Property) Center Web
site at http://www.xilinx.com/ipcenter, which offers the latest IP solutions. These
solutions include design reuse tools, free reference designs, DSP and PCI solutions, IP
implementation tools, cores, specialized system level services, and vertical application IP
solutions.

HDL Entry and Synthesis
A typical Hardware Description Language (HDL) supports a mixed-level description in
which gate and netlist constructs are used with functional descriptions. This mixed-level
capability enables you to describe system architectures at a high level of abstraction, then
incrementally refine the detailed gate-level implementation of a design.

HDL descriptions offer the following advantages:

• You can verify design functionality early in the design process. A design written as an
HDL description can be simulated immediately. Design simulation at this high level,
at the gate-level before implementation, allows you to evaluate architectural and
design decisions.
42 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com/ipcenter
http://www.xilinx.com

Design Entry and Synthesis
R

• An HDL description is more easily read and understood than a netlist or schematic
description. HDL descriptions provide technology-independent documentation of a
design and its functionality. Because the initial HDL design description is technology
independent, you can use it again to generate the design in a different technology,
without having to translate it from the original technology.

• Large designs are easier to handle with HDL tools than schematic tools.

After you create your HDL design, you must synthesize it. During synthesis, behavioral
information in the HDL file is translated into a structural netlist, and the design is
optimized for a Xilinx device. Xilinx supports HDL synthesis tools for several third-party
synthesis vendor partners. In addition, Xilinx offers its own synthesis tool, Xilinx Synthesis
Technology (XST). See the Xilinx Synthesis Technology (XST) User Guide for information. For
detailed information on synthesis, see the Synthesis and Verification Design Guide.

Functional Simulation
After you enter your design, you can simulate it. Functional simulation tests the logic in
your design to determine if it works properly. You can save time during subsequent design
steps if you perform functional simulation early in the design flow. See “Simulation” for
more information.

Constraints
You may want to constrain your design within certain timing or placement parameters.
You can specify mapping, block placement, and timing specifications.

You can enter constraints by hand or use the Constraints Editor, Floorplanner, or FPGA
Editor. You can use the Timing Analyzer graphical user interface (GUI) or TRACE
command line program to evaluate the circuit against these constraints. See Chapter 13,
“TRACE” and the online Help provided with each GUI for information. See the Constraints
Guide for detailed information on constraints.

Mapping Constraints (FPGAs Only)

You can specify how a block of logic is mapped into CLBs using an FMAP or HMAP for all
Spartan FPGA families or an FMAP for all Virtex FPGA families. These mapping symbols
can be used in your schematic. However, if you overuse these specifications, it may be
difficult to route your design.

Block Placement

Block placement can be constrained to a specific location, to one of multiple locations, or to
a location range. Locations can be specified in the schematic, with synthesis tools, or in the
User Constraint File (UCF). Poor block placement can adversely affect both the placement
and the routing of a design. Only I/O blocks require placement to meet external pin
requirements.

Timing Specifications

You can specify timing requirements for paths in your design. PAR uses these timing
specifications to achieve optimum performance when placing and routing your design.
Development System Reference Guide www.xilinx.com 43
 1-800-255-7778

http://www.xilinx.com

Chapter 2: Design Flow
R

Netlist Translation Programs
Two netlist translation programs allow you to read netlists into the Xilinx software tools.
EDIF2NGD allows you to read an Electronic Data Interchange Format (EDIF) 2 0 0 file. The
NGDBuild program automatically invokes these programs as needed to convert your
EDIF or XNF file to an NGD file, the required format for the Xilinx software tools. NGC
files output from the Xilinx XST synthesis tool are read in by NGDBuild directly.

You can find detailed descriptions of the EDIF2NGD, and NGDBuild programs in Chapter
6, “NGDBuild” and Appendix B, “EDIF2NGD, and NGDBuild”.

Design Implementation
Design Implementation begins with the mapping or fitting of a logical design file to a
specific device and is complete when the physical design is successfully routed and a
bitstream is generated. You can alter constraints during implementation just as you did
during the Design Entry step. See “Constraints” for information.
44 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Design Implementation
R

The following figure shows the design implementation process for FPGA designs:

Figure 2-5: Design Implementation Flow (FPGAs)

X9485

Constraints Editor NGD

UCF

BIT

MAP

Floorplanner

TRACE &
Timing Analyzer

PAR

iMPACT

PROM File FormatterPROMGen

BitGen

NCD

NGDBuild

FPGA Editor NCD & PCF
Development System Reference Guide www.xilinx.com 45
 1-800-255-7778

http://www.xilinx.com

Chapter 2: Design Flow
R

The following figure shows the design implementation process for CPLD designs:

Figure 2-6: Design Implementation Flow (CPLDs)

X9493

Design Loader

NGDBuild

NGD

Auto Device/Speed Selector

Logic Synthesis
Technology Mapping

Global Net Optimization

Logic Optimization Partitioning

Exporting
Assignments

Export Level Generator

PTerm Mapping

Power/Slew Optimization

Post-Mapping
Enhancements

Routing

CPLD Fitter
Implementation Options

RPT GYD

Pin Feedback Generation

Fitter Report (Text)

JED

HPLUSAS6

HPREP6

iMPACT

VM6

VM6
46 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Design Verification
R

Mapping (FPGAs Only)
For FPGAs, the MAP command line program maps a logical design to a Xilinx FPGA. The
input to MAP is an NGD file, which contains a logical description of the design in terms of
both the hierarchical components used to develop the design and the lower-level Xilinx
primitives, and any number of NMC (hard placed-and-routed macro) files, each of which
contains the definition of a physical macro. MAP then maps the logic to the components
(logic cells, I/O cells, and other components) in the target Xilinx FPGA.

The output design is an NCD file, which is a physical representation of the design mapped
to the components in the Xilinx FPGA. The NCD file can then be placed and routed. See
Chapter 8, “MAP” for detailed information.

Placing and Routing (FPGAs Only)
For FPGAs, the PAR command line program takes an NCD file as input, places and routes
the design, and outputs an NCD file, which is used by the bitstream generator, BitGen. The
output NCD file can also act as a guide file when you reiterate placement and routing for
a design to which minor changes have been made after the previous iteration. See Chapter
10, “PAR” for detailed information.

You can also use the FPGA Editor GUI to do the following:

• Place and route critical components before running automatic place and route tools on
an entire design

• Modify placement and routing manually; the editor allows both automatic and
manual component placement and routing

Note: For more information, see the online Help provided with the FPGA Editor.

Bitstream Generation (FPGAs Only)
For FPGAs, the BitGen command line program produces a bitstream for Xilinx device
configuration. BitGen takes a fully routed NCD file as its input and produces a
configuration bitstream—a binary file with a .bit extension. The BIT file contains all of the
configuration information from the NCD file defining the internal logic and
interconnections of the FPGA, plus device-specific information from other files associated
with the target device. See Chapter 15, “BitGen” for detailed information.

After you generate your BIT file, you can download it to a device using the iMPACT GUI.
You can also format the BIT file into a PROM file using the PromGen command line
program and then download it to a device using the iMPACT GUI. See Chapter 16,
“PROMGen” of this guide or the iMPACT online help for more information.

Design Verification
Design verification is testing the functionality and performance of your design. You can
verify Xilinx designs in the following ways:

• Simulation (functional and timing)

• Static timing analysis

• In-circuit verification
Development System Reference Guide www.xilinx.com 47
 1-800-255-7778

http://www.xilinx.com

Chapter 2: Design Flow
R

The following tables lists the different design tools used for each verification type.

Design verification procedures should occur throughout your design process, as shown in
the following figures.

Table 2-1: Verification Tools

Verification Type Tools

Simulation Third-party simulators (integrated and
non-integrated)

Static Timing
Analysis

TRACE (command line program)

Timing Analyzer (GUI)

Mentor Graphics® TAU and Innoveda
BLAST software for use with the STAMP
file format (for I/O timing verification
only)

In-Circuit Verification Design Rule Checker (command line
program)

Download cable
48 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Design Verification
R

Figure 2-7: Three Verification Methods of the Design Flow (FPGAs)

X9556

Static Timing Analysis

Input Stimulus

Simulation Netlist

Simulation

Xilinx FPGA

Design Entry
Integrated Tool

Functional Simulator
Paths

Timing Simulation Path

Simulation

Static Timing

In-Circuit Verification

In-Circuit Verification

Basic Design Flow

NGD

NCD

BitGen

BIT

Mapping, Placement
and Routing

Translate to
Simulator Format

Translate to
Simulator Format

Back-Annotation

NGA

Translation
Development System Reference Guide www.xilinx.com 49
 1-800-255-7778

http://www.xilinx.com

Chapter 2: Design Flow
R

Simulation
You can run functional or timing simulation to verify your design. This section describes
the back-annotation process that must occur prior to timing simulation. It also describes
the functional and timing simulation methods for both schematic and HDL-based designs.

Back-Annotation

Before timing simulation can occur, the physical design information must be translated
and distributed back to the logical design. For FPGAs, this back-annotation process is done
with a program called NetGen. For CPLDs, back-annotation is performed with the TSim
Timing Simulator. These programs create a database, which translates the back-annotated
information into a netlist format that can be used for timing simulation. The following
figures show the back-annotation flows:

Figure 2-8: Three Verification Methods of the Design Flow (CPLDs)

X9538

In-Circuit Verification

Static Timing Analysis

Input Stimulus

Simulation Netlist

Simulation

Xilinx CPLD

Design Entry
Integrated Tool

Functional Simulator
Paths

Timing Simulation Path

Simulation

Static Timing

In-Circuit Verification

Basic Design Flow

NGD

VM6

Programming
File Creation

JED

Optimization and
Fitting

Translate to
Simulator Format

Translate to
Simulator Format

Back-Annotation

NGA

Translation
50 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Design Verification
R

NetGen

NetGen is a command line program that combines new functionality with the features of
NGDAnno and the Netlist Writers (NGD2VER and NGD2VHDL) found in previous
versions of Xilinx software. NetGen distributes information about delays, setup and hold
times, clock to out, and pulse widths found in the physical NCD design file back to the

Figure 2-9: Back-Annotation Flow for FPGAs

Figure 2-10: Back-Annotation (CPLDs)

X9980

PAR

NetGen

MAP

NGD
Logical Design

NCD
Physical Design

(Mapped)

NCD
Physical Design

(Placed and Routed)

NGM

Simulation Netlist

Equivalence Checking
Netlist

Static Timing Analysis
Netlist

PCF

NCD

X8814

TSIM
Timing Simulator

NGD2EDIF

Optimization
and Fitting

NGD
Logical Design

VM6
Physical Design

NGD2VER

NGD2VHDL

NGA

EDIF

VHD

SDF

SDF

V

Command line only
Development System Reference Guide www.xilinx.com 51
 1-800-255-7778

http://www.xilinx.com

Chapter 2: Design Flow
R

logical NGD file and generates a Verilog or VHDL netlist for use with supported timing
simulation, equivalence checking, and static timing analysis tools.

NetGen reads an NCD as input. The NCD file can be a mapped-only design, or a partial or
fully placed and routed design. An NGM file, created by MAP, is an optional source of
input. NetGen merges mapping information from the optional NGM file with placement,
routing, and timing information from the NCD file.

Note: NetGen reads an NGA file as input to generate a timing simulation netlist for CPLD designs.

See Chapter 23, “NetGen” for detailed information.

Schematic-Based Simulation

Design simulation involves testing your design using software models. It is most effective
when testing the functionality of your design and its performance under worst-case
conditions. You can easily probe internal nodes to check the behavior of your circuit, and
then use these results to make changes in your schematic.

Simulation is performed using third-party tools that are linked to the Xilinx Development
System. Use the various CAE-specific interface user guides, which cover the commands
and features of the Xilinx-supported simulators, as your primary reference.

The software models provided for your simulation tools are designed to perform detailed
characterization of your design. You can perform functional or timing simulation, as
described in the following sections.

Functional Simulation

Functional simulation determines if the logic in your design is correct before you
implement it in a device. Functional simulation can take place at the earliest stages of the
design flow. Because timing information for the implemented design is not available at this
stage, the simulator tests the logic in the design using unit delays.

Note: It is usually faster and easier to correct design errors if you perform functional simulation early
in the design flow.

You can use integrated and non-integrated simulation tools. Integrated tools, such as
Mentor Graphics or Innoveda, often contain a built-in interface that links the simulator and
a schematic editor, allowing the tools to use the same netlist. You can move directly from
entry to simulation when using a set of integrated tools.

Functional simulation in schematic-based tools is performed immediately after design
entry in the capture environment. The schematic capture tool requires a Xilinx Unified
Library and the simulator requires a library if the tools are not integrated. Most of the
schematic-based tools require translation from their native database to XNF or EDIF for
implementation. The return path from implementation is usually EDIF with certain
exceptions in which a schematic tool is tied to an HDL simulator.

Timing Simulation

Timing simulation verifies that your design runs at the desired speed for your device
under worst-case conditions. This process is performed after your design is mapped,
placed, and routed for FPGAs or fitted for CPLDs. At this time, all design delays are
known.

Timing simulation is valuable because it can verify timing relationships and determine the
critical paths for the design under worst-case conditions. It can also determine whether or
not the design contains set-up or hold violations.
52 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Design Verification
R

Before you can simulate your design, you must go through the back-annotation process, as
described in “Back-Annotation”. During this process, NetGen creates suitable formats for
various simulators.

Note: Naming the nets during your design entry is important for both functional and timing
simulation. This allows you to find the nets in the simulations more easily than looking for a software-
generated name.

HDL-Based Simulation

Xilinx supports functional and timing simulation of HDL designs at the following points:

• Register Transfer Level (RTL) simulation, which may include the following:

♦ Instantiated UniSim library components

♦ LogiBLOX modules

♦ LogiCORE models

• Post-synthesis functional simulation with one of the following:

♦ Gate-level UniSim library components

♦ Gate-level pre-route SimPrim library components

• Post-implementation back-annotated timing simulation with the following:

♦ SimPrim library components

♦ Standard delay format (SDF) file

The following figure shows when you can perform functional and timing simulation:
Development System Reference Guide www.xilinx.com 53
 1-800-255-7778

http://www.xilinx.com

Chapter 2: Design Flow
R

The three primary simulation points can be expanded to allow for two post-synthesis
simulations. These points can be used if the synthesis tool cannot write VHDL or Verilog,
or if the netlist is not in terms of UniSim components. The following table lists all the
simulation points available in the HDL design flow.

These simulation points are described in the “Simulation Points” section of the Synthesis
and Verification Design Guide.

Figure 2-11: Simulation Points for HDL Designs

Table 2-2: Five Simulation Points in HDL Design Flow

Simulation UniSim SimPrim SDF

RTL X

Post-Synthesis X

Functional Post-NGDBuild (Optional) X

Functional Post-MAP (Optional) X X

Post-Route Timing X X

X9243

HDL RTL
Simulation

Synthesis

Xilinx
Implementation

HDL Timing
Simulation

HDL
Design

Testbench
Stimulus

Post-Synthesis Gate-Level
Functional SimulationCORE Generator

Modules

SimPrim
Library

LogiBLOX
Modules

UniSim
Library
54 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Design Verification
R

The libraries required to support the simulation flows are described in detail in the
“VHDL/Verilog Libraries and Models” section of the Synthesis and Verification Design
Guide. The flows and libraries support close functional equivalence of initialization
behavior between functional and timing simulations. This is due to the addition of new
methodologies and library cells to simulate Global Set/Reset (GSR) and Global 3-State
(GTS) behavior.

You must address the built-in reset circuitry behavior in your designs, starting with the
first simulation, to ensure that the simulations agree at the three primary points. If you do
not simulate GSR behavior prior to synthesis and place and route, your RTL and
post-synthesis simulations may not initialize to the same state as your post-route timing
simulation. If this occurs, your various design descriptions are not functionally equivalent
and your simulation results do not match.

In addition to the behavioral representation for GSR, you must add a Xilinx
implementation directive. This directive is specifies to the place and route tools to use the
special purpose GSR net that is pre-routed on the chip, and not to use the local
asynchronous set/reset pins. Some synthesis tools can identify the GSR net from the
behavioral description, and place the STARTUP module on the net to direct the
implementation tools to use the global network. However, other synthesis tools interpret
behavioral descriptions literally and introduce additional logic into your design to
implement a function. Without specific instructions to use device global networks, the
Xilinx implementation tools use general-purpose logic and interconnect resources to
redundantly build functions already provided by the silicon.

Even if GSR behavior is not described, the chip initializes during configuration, and the
post-route netlist has a net that must be driven during simulation. The “Understanding the
Global Signals for Simulation” section of the Synthesis and Verification Design Guide
includes the methodology to describe this behavior, as well as the GTS behavior for output
buffers.

Xilinx VHDL simulation supports the VITAL standard. This standard allows you to
simulate with any VITAL-compliant simulator. Built-in Verilog support allows you to
simulate with the Cadence Verilog-XL and other compatible simulators. Xilinx HDL
simulation supports all current Xilinx FPGA and CPLD devices. Refer to the Synthesis and
Verification Design Guide for the list of supported VHDL and Verilog standards.

Static Timing Analysis (FPGAs Only)
Static timing analysis is best for quick timing checks of a design after it is placed and
routed. It also allows you to determine path delays in your design. Following are the two
major goals of static timing analysis:

• Timing verification

This is verifying that the design meets your timing constraints.

• Reporting

This is enumerating input constraint violations and placing them into an accessible
file. You can analyze partially or completely placed and routed designs. The timing
information depends on the placement and routing of the input design.

You can run static timing analysis using the Timing Reporter and Circuit Evaluator
(TRACE) command line program. See Chapter 13, “TRACE” for detailed information. You
can also use the Timing Analyzer GUI to perform this function. See the online Help
provided with the Timing Analyzer for additional information. Use either tool to evaluate
how well the place and route tools met the input timing constraints.
Development System Reference Guide www.xilinx.com 55
 1-800-255-7778

http://www.xilinx.com

Chapter 2: Design Flow
R

In-Circuit Verification
As a final test, you can verify how your design performs in the target application. In-circuit
verification tests the circuit under typical operating conditions. Because you can program
your Xilinx devices repeatedly, you can easily load different iterations of your design into
your device and test it in-circuit. To verify your design in-circuit, download your design
bitstream into a device with the Parallel Cable IV or MultiPRO cable.

Note: For information about Xilinx cables and hardware, see the iMPACT online help.

Design Rule Checker (FPGAs Only)

Before generating the final bitstream, it is important to use the DRC option in BitGen to
evaluate the NCD file for problems that could prevent the design from functioning
properly. DRC is invoked automatically unless you use the –d option. See Chapter 15,
“BitGen” and Chapter 9, “Physical Design Rule Check” for detailed information.

Xilinx Design Download Cables

Xilinx provides the Parallel Cable IV or MultiPRO cable to download the configuration
data containing the device design.

You can use the Xilinx download cables with the iMPACT Programming software for
FPGA and CPLD design download and readback, and configuration data verification. The
iMPACT Programming software cannot be used to perform real-time design functional
verification.

Probe

The Xilinx PROBE function in FPGA Editor provides real-time debug capability good for
analyzing a few signals at a time. Using PROBE a designer can quickly identify and route
any internal signals to available I/O pins without having to replace and route the design.
The real-time activity of the signal can then be monitored using normal lab test equipment
such as logic/state analyzers and oscilloscopes.

ChipScope ILA and ChipScope PRO

The ChipScope toolset was developed to assist engineers working at the PCB level.
ChipScope ILA actually embeds logic analyzer cores into your design. These logic cores
allow the user to view all the internal signals and nodes within an FPGA. ChipScope ILA
supports user selectable data channels from 1 to 256. The depth of the sample buffer ranges
from 256 to 16384 in Virtex-II devices. Triggers are changeable in real-0time without
affecting the user logic or requiring recompilation of the user design.

FPGA Design Tips
The Xilinx FPGA architecture is best suited for synchronous design. Strict synchronous
design ensures that all registers are driven from the same time base with no clock skew.
This section describes several tips for producing high-performance synchronous designs.
56 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

FPGA Design Tips
R

Design Size and Performance
Information about design size and performance can help you to optimize your design.
When you place and route your design, the resulting report files list the number of CLBs,
IOBs, and other device resources available. A first pass estimate can be obtained by
processing the design through the MAP program.

If you want to determine the design size and performance without running automatic
implementation software, you can quickly obtain an estimate from a rough calculation
based on the Xilinx FPGA architecture. See The Programmable Logic Data Book for more
information on all Xilinx FPGA architectures.

Global Clock Distribution
Xilinx clock networks guarantee small clock skew values. The following table lists the
resources available for the Xilinx FPGA families.

Note: In certain devices families, global clock buffers are connected to control pin and logic inputs.
If a design requires extensive routing, there may be extra routing delay to these loads.

Table 2-3: Global Clock Resources

FPGA Family Resource Number Destination Pins

Spartan BUFGS 4 Clock, control, or certain input

Virtex, Virtex-E,
Spartan-II,
Spartan-IIE

BUFG 4 Clock

Virtex-II, Virtex-II
Pro

BUFGMUX 16 Clock
Development System Reference Guide www.xilinx.com 57
 1-800-255-7778

http://www.xilinx.com

Chapter 2: Design Flow
R

Data Feedback and Clock Enable
The following figure shows a gated clock. The gated clock’s corresponding timing diagram
shows that this implementation can lead to clock glitches, which can cause the flip-flop to
clock at the wrong time.

The following figure shows a synchronous alternative to the gated clock using a data path.
The flip-flop is clocked at every clock cycle and the data path is controlled by an enable.
When the enable is Low, the multiplexer feeds the output of the register back on itself.
When the enable is High, new data is fed to the flip-flop and the register changes its state.

Figure 2-12: Gated Clock

X9201

Enable
Clock

D Q

Clock

Enable

Clock
Enable

Output

a) Gated Clock

b) Corresponding Timing Diagram

Clock
Enable
58 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

FPGA Design Tips
R

This circuit guarantees a minimum clock pulse width and it does not add skew to the clock.
The Spartan-II, and Virtex families’ flip-flops have a built-in clock-enable (CE).

Counters
Cascading several small counters to create a larger counter is similar to a gated clock. For
example, if two 8-bit counters are connected, the terminal counter (TC) of the first counter
is a large AND function gating the second clock input. The following figure shows how
you can create a synchronous design using the CE input. In this case, the TC of the first
stage is connected directly to the CE of the second stage.

Figure 2-13: Synchronous Design Using Data Feedback

X9202

Enable

Clock

D Q

Clock

Enable

Output

a) Using a Feedback Path

b) Corresponding Timing Diagram

D

Development System Reference Guide www.xilinx.com 59
 1-800-255-7778

http://www.xilinx.com

Chapter 2: Design Flow
R

Other Synchronous Design Considerations
Other considerations for achieving a synchronous design include the following:

• Use clock enables instead of gated clocks to control the latching of data into registers.

• If your design has more clocks than the number of global clock distribution networks,
try to redesign to reduce the number of clocks. Otherwise, put the clocks that have the
lowest fanout onto normally routed nets, and specify a low MAXSKEW rating. A
clock net routed through a normal net has skew.

• Use the Virtex low skew resources. Make sure the MAXSKEW rating is not specified
when using these resources.

Figure 2-14: Two 8-Bit Counters Connected to Create a 16-Bit Counter

a) 16-bit counter with TC connected to the clock.

TC

Q0 Q7. . . .

TC

Q8 Q15. . . .

CE

X2093

TC

b) 16-bit counter with TC connected to the clock-enable.

Q0 Q7. . . .

TC

Q8 Q15. . . .

CE

CLK

IM
PROPER M

ETHOD
60 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 3

Incremental Design

Incremental Design is compatible with the following device families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/-3

This chapter includes an overview of Incremental Design and describes how to set up a
design using hierarchical design methodologies and run an Incremental Design flow. It
contains the following sections:

• “Incremental Design Overview”

• “Hierarchical Design Guidelines”

• “Setting Up Designs for Incremental Design”

• “Incremental Design Flows”

• “Incremental Design Reports”

• “Vendor Specific Notes for Incremental Synthesis”

Incremental Design Overview
The Incremental Design flow is a new methodology for processing designs in a hierarchical
way that reuses results for unchanging portions of the design. This can save many hours of
processing or manual intervention each iteration; therefore, greatly reducing the Time to
Market for large and high speed designs. The Incremental Design flow uses hierarchical
design practices to preserve results and decrease runtimes in design compiles. In a simple,
productive way, Incremental Design takes advantage of the Xilinx guide methodology,
which uses output results from previous implementations as guide files for preserving
unchanged logic results.

Incremental Design requires that the design follow good hierarchical design
methodologies by using an “Incremental Synthesis” approach to partition the design into
separate logic groups., which are then constrained with an AREA GROUP constraint. The
logic partitions are floorplanned into regions of the device, which physically separate
them. When a design change is made, using an Incremental Synthesis approach, to one of
the logic groups, ensures that unchanged logic groups are preserved in the synthesis
output. This saves valuable time when debugging a design because the implementation
tools then re-place and re-route only the changed logic group, while the unchanged logic
groups are guided using the output files from a previous implementation. By guiding
unchanged logic groups, the performance in those logic groups is preserved, and place and
route runtimes are decreased.
Development System Reference Guide www.xilinx.com 61
 1-800-255-7778

http://www.xilinx.com

Chapter 3: Incremental Design
R

Note: Setting up a design using an Incremental Synthesis approach may be beneficial. It ensures
that an Incremental Design flow can be used if your design has issues that can be resolved using
Incremental Design.

It is important to define some of the terminology that is used with Incremental Design:

• A logic group is a hierarchical portion of the design that can be synthesized
separately. Each logic group is a module in Verilog or an entity in VHDL that is
instantiated in the top level of the design. Logic groups are identified in the
implementation tools using an AREA GROUP constraint. See the AREA GROUP
section of the Constraints Guide for more information.

• The AREA GROUP RANGE constraint specifies the physical location in the FPGA.
See the AREA GROUP section of the Constraints Guide for more information.

• Guide files are MAP and PAR output .ncd files from a previous implementation.
Guide files are used to guide unchanged logic groups from one implementation to the
next when you run in Incremental Guide Mode.

• An incremental design change is a change that affects only a few logic groups in a
design. It does not drastically alter the size, nor adversely affect the timing of the
whole design. Changes to state machines or control logic, and adding registers to
improve performance are examples of incremental design changes.

Note: Larger design changes like adding and removing an AREA GROUP, modifying
ungrouped top level logic and changing AREA GROUP port connections are not considered
incremental design changes because they are likely to compromise reduced runtime and timing
preservation by crossing AREA GROUP boundaries and affecting multiple area groups. Runtime
and logic group timing preservation cannot be guaranteed when large design changes are made.

Incremental Design Benefits
The following examples describe the benefits of using Incremental Design:

• Logic Group Timing Preservation

Incremental Design preserves the timing results (placement and routing) of
unchanged logic groups that remain stable. Unchanged logic is guided from one
implementation to the next with guide files from the previous run. This means that
when a logic group with critical timing requirements meets its timing and does not
change, it can be quickly guided from iteration to iteration.

• Runtime Reduction

Incremental Design reduces implementation runtimes by only reimplementing
changed logic. Separating a design into logic groups isolates any changes to a specific
part of the design. The more grouped a design is, the better the runtime advantage
when a change is made during Incremental Guide Mode. When changes are limited to
one logic group, all of the other (unchanged) logic groups are guided from the
previous implementation; therefore, PAR runtime is reduced.

Note: All top-level logic that is not located is reimplemented each time PAR is run. Limiting top-
level logic is recommended for this reason.

• PAR Effort Level Control

Incremental Design offers additional user control for preserving design performance
versus improving runtimes. When logic groups with difficult timing requirements are
being implemented or reimplemented, the PAR effort level can be set higher to help
automatically meet the timing requirements, which is a trade-off with runtime.
Alternatively, if the logic being implemented or reimplemented is easy for PAR to
handle, then the effort level may be reduced to improve the PAR runtime.
62 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Hierarchical Design Guidelines
R

Hierarchical Design Guidelines
Incremental Design takes advantage of design hierarchy to limit changes to smaller
portions of the design. In addition to partitioning the design into separate logic groups
with Incremental Synthesis, it is also important that the design follow good hierarchical
design methodologies. The MAP and PAR implementation tools prevent logic
optimizations across logic group boundaries when logic groups are defined on hierarchical
boundaries in the design. The following are guidelines for creating good hierarchical
designs:

• The design should be fully synchronous.

• The top-level of the design should only contain instantiated logic groups, IOB logic,
and clock logic (DCMs, BUFGs, etc.). Since area for top-level logic is generally not
reserved, this prevents changing top-level logic placed within AREA GROUP
RANGEs from causing changes in unchanged logic groups.

• Registers should be placed on all of the outputs of each logic group. This will ensure
that the critical paths are contained inside of a logic group and eliminate possible
problems with logic optimization across logic group boundaries.

• The timing constraints on the design should be realistic and should be attainable
when processing the design without using Incremental Design.

Setting Up Designs for Incremental Design
This section describes how designs should be set up and implemented for Incremental
Design.

Identifying Logic Groups
For Incremental Design to significantly reduce runtime and maintain performance for
unchanged portions of the design, the place and route implementation tools must see the
design in separate logic groups. Each logic group should occupy an assigned space on the
device. When a logic group is changed, the implementation tools can completely re-place
and re-route the logic group inside of its assigned area without affecting unchanged logic
group implementations. Having assigned ranges, which are completely open for
replacement and re-routing, allows the implementation tools to find the optimal
configuration. For unchanged logic groups, the placement and routing is guided from the
previous implementation of the design.

Logic groups are typically defined as the Verilog modules or VHDL entities instantiated in
the top level. If lower levels of hierarchy are considered logic groups, the partitioning
usually leaves some logic ungrouped. Having ungrouped logic in a design is not
recommended because ungrouped logic can be placed anywhere on the device and may
become an obstacle when re-placing and re-routing a changed logic group. If ungrouped
logic cannot be avoided, the ungrouped logic should be locked down outside of any AREA
GROUPs.

It is important to identify the logic groups and assign them to their own AREA GROUP
RANGEs before trying to run the Incremental Design flow. If each logic group is not
assigned to its own area, logic from different AREA GROUPs may be placed together.

Consider these rules when dividing a design into separate logic groups:

• All logic in the design, except IOB logic and clock logic, should be part of a logic
group. This rule applies for making runtime improvements. The more a design is
grouped, the less reimplementing there is when a change is made.
Development System Reference Guide www.xilinx.com 63
 1-800-255-7778

http://www.xilinx.com

Chapter 3: Incremental Design
R

• Each logic group should be assigned to an AREA GROUP using an AREA GROUP
constraint.

• Outputs of the logic group should be registered.

• Logic groups should be single hierarchical instances in the top-level netlist. Lower
level instances cannot be separated from top-level instances using AREA GROUPs.

Creating AREA GROUP RANGEs
AREA GROUP floorplanning is the most important step in the Incremental Design flow.
Poor AREA GROUP floorplanning can increase runtime, reduce performance, and
possibly create an unroutable design.

An AREA GROUP constraint should be created for each logic group in the design with the
PACE floorplanning tool. After logic groups are selected and drawn, the AREA GROUP
and AREA GROUP RANGE constraints are written to the user constraints file (UCF).

Follow these rules when creating AREA GROUPs:

• Lock down all I/Os. if already specified.

• Place AREA GROUPs near the I/Os that they communicate with.

• Position communicating AREA GROUPs next to each other.

• Place AREA GROUPs on CLB tile boundaries. PACE will snap to this grid when
drawing the AREA GROUP RANGEs. Floorplanner will show these boundaries as
double lines when zoomed in.

• Do not overlap AREA GROUPs.

• Keep the slice utilization inside each AREA GROUP similar. One AREA GROUP
should not be 99% full and another 10% full.

• If an AREA GROUP contains multiple components such as TBUFs, Block RAMS, and
Multipliers, it may be necessary to create separate ranges in the AREA GROUP to
avoid consuming an unnecessary amount of slice logic. If an AREA GROUP contains
all of these types of components, the syntax should look something like the following:

INST Logic_Group_A AREA_GROUP = AG_Logic_Group_A ;

AREA_GROUP "AG_Logic_Group_A" RANGE = SLICE_X0Y20:SLICE_X20Y30 ;

AREA_GROUP "AG_Logic_Group_A" RANGE = RAMB16_X0Y2:RAMB16_X0Y2 ;

AREA_GROUP "AG_Logic_Group_A" RANGE =
MULT18X18_X0Y1:MULT18X18_X0Y1;

AREA_GROUP "AG_Logic_Group_A" RANGE = TBUF_X0Y0:X1Y0;

Note: This Syntax is for Virtex-II™ and Virtex-II Pro™ only. Refer to the Constraints Guide
for more information.

Separate ranges for an AREA GROUP can be defined using PACE. See the PACE online
help for additional information.
64 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/cgd/cgd.pdf
http://toolbox.xilinx.com/docsan/xilinx6/help/pace/pace.htm
http://toolbox.xilinx.com/docsan/xilinx6/help/pace/pace.htm
http://toolbox.xilinx.com/docsan/xilinx6/help/pace/pace.htm
http://www.xilinx.com

Setting Up Designs for Incremental Design
R

Incremental Synthesis
With an Incremental Synthesis approach, unchanged logic groups are preserved and only
changed logic groups are affected. Any changes to logic groups must meet timing in a flat
compile for Incremental Design to work, and only changed logic groups should have
updated netlist outputs.

Currently synthesis tools re-synthesize the entire design, even for an incremental design
change, which means that Incremental Synthesis is needed to keep the output the same for
any unchanged logic groups. See the following sections for information on how specific
synthesis tools work with Incremental Synthesis.

Mentor Leonardo Spectrum

Mentor supports both a bottom-up and a top-down methodology for Incremental
Synthesis, but suggests using the bottom-up methodology. Using the bottom-up
methodology, separate EDIF files are created for each Logic Group and for the top level.
This flow is suggested because only one script needs to be rerun when a design change is
made, making it easier to manage design changes. Since the bottom-up methodology is
suggested, it is the only method described in this section.

The first step in the bottom-up method is to synthesize the lower level Logic Groups. Each
lower level Logic Group is synthesized in macro mode, which automatically disables I/O
and clock buffer insertion. A separate EDIF file is created for each.

Read {a.v}

Optimize.-macro

auto-write a.edf

The second step is to synthesize the top level file. The previously synthesized Logic
Groups are read into the database and then the top level is read. The dont_touch attribute
is assigned to each Logic Group to prevent any optimization and the noopt attribute is
used to prevent the Logic Groups from being written out in the top.edf.

Read {a.xdb b.xdb c.xdb}

Read top.v

dont_touch {a b c}

noopt {a b c }

Optimize .. -chip

The Xilinx Translate (ngdbuild) process will read in the top level edif and the lower level
edif files to create one design file (design.ngd).

Synopsys FPGA Compiler II

Synopsys uses BLIS, Block Level Incremental Synthesis. More information on this flow is
found in the FPGA Compiler II User Guide.

Synplicity Synplify/Synplify Pro

Synplify Pro always resynthesizes the entire design. This often results in different signal
and component names in unchanged Logic Groups. This causes the Xilinx Incremental
Design flow to assume that this is changed logic and will replace and re-route the entire
design. In order to preserve unchanged Logic Groups, separate projects must be created
for each Logic Group and for the top level.
Development System Reference Guide www.xilinx.com 65
 1-800-255-7778

http://www.xilinx.com

Chapter 3: Incremental Design
R

The goal is to create a top level EDIF that instantiates the lower level EDIF files. A change
in one EDIF file will not affect the other EDIF files. This has the advantage of faster
synthesis runtimes, because only a portion of the design will be resynthesized. Synplify
attributes are used to guide the synthesis.

The first step is to create a top level EDIF that instantiates the lower level EDIF files as black
boxes.

To instantiate Logic Groups as block box, use the syn_black_box attribute.

The second step is to create all of the lower level EDIF files. The Logic Group EDIF files
must be synthesized without inferring I/Os or clock buffers.

• To disable I/O insertion, select "Disable I/O Insertion" in the Synplify Pro GUI.

• No clock buffer will be inferenced when "Disable I/O Insertion" is turned on.

The Xilinx Translate (ngdbuild) process will read in the top level edif and the lower level
EDIF files to create one design file (design.ngd).

For more information please see “Incremental Synthesis Using Synplify/ Synplify PRO”.

XST: Xilinx Synthesis Tool

XST supports block level incremental synthesis, within a single project. Attributes are
applied to each Logic Group in the XST constraints file (.xcf) to define Logic Group
boundaries. An HDL change in one of these Logic Groups will only affect that Logic
Group; the rest of the Logic Groups will not be changed. For VHDL designs, detection of
modified logic is done automatically. For Verilog designs, the "resynthesize" attribute
must be used.

Here is an example XCF file for Verilog where the module "A" has changed.

MODEL "top" incremental_synthesis = yes;

MODEL "A" incremental_synthesis = yes;

MODEL "B" incremental_synthesis = yes;

MODEL "C" incremental_synthesis = yes;

MODEL "top" resynthesize = no;

MODEL "A" resynthesize = yes;

MODEL "B" resynthesize = no;

MODEL "C" resynthesize= no;

Incremental Design Flows
This section describes recommended Incremental Design flows for new and existing
designs. Before running any Incremental Design flow, your design should meet timing
requirements without using Incremental Design.
66 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Incremental Design Flows
R

Incremental Enabled Flow
The Incremental Enabled flow conveys that special considerations must be followed
during the MAP process. MAP normally performs certain optimizations across the design,
regardless of defined AREA GROUP boundaries. To ensure that MAP respects the same set
of boundaries that synthesis has, it must know that the design will be used in Incremental
Guide Mode. Therefore, the Incremental Enabled flow, which uses the -gm incremental
option, informs MAP of this process. This ensures that later, when guide mode is entered,
MAP will not optimize the design with a different set of rules, and allows the last
Incremental Enabled result to be a valid guide file.

After design changes are limited to one or two logic groups, or timing is met on critical
timing logic groups, use the MAP and PAR results from the previous implementation as
the Incremental Design Guide files.

Note: It is important that your design follow good hierarchical design methodologies and meet
timing requirements before running an Incremental Design flow. Incremental Design should not be
used to solve timing issues.

Setting Up Incremental Enabled Mode in Project Navigator

In Project Navigator, do the following to set up the Incremental Enabled flow:

1. Right-click on the Implement Design item in the Processes for Source window.

2. Click Incremental Design Properties in the Process Properties dialog.

3. Check the Enable Incremental Design Flow checkbox.

Setting Up Incremental Enabled Mode using the command line

For running Incremental Design from the command line, do the following to set up the
Incremental Enabled flow:

• Set the -gm incremental option and argument on both the MAP and PAR
command lines.

Incremental Guide Mode
In Incremental Guide Mode, MAP determines what logic has changed and informs PAR
that the changed logic must be reimplemented.

Setting Up the Incremental Guide Mode for Project Navigator

In Project Navigator, do the following to setup Incremental Guide Mode:

1. Right-click the Implement Design item in the Processes for Source window.

2. Click Incremental Design Properties in the Process Properties dialog. The Enable
Incremental Design Flow checkbox should already be checked, thus setting the MAP
and PAR Guide Mode values to Incremental.

3. Select the Run Guided Incremental Design Flow to set the MAP and PAR guide files to
use the results from the previous iteration by default.

If you are setting the guide files to another set of results for guiding, then follow these
directions:

• Next to MAP Guide Design File (.ncd), browse to and select another_map_design.ncd.

Note: Make sure that the .ngm file is the same name as another_map_design.ncd. This file will
automatically be read in if it has the same name as the mapped .ncd file.
Development System Reference Guide www.xilinx.com 67
 1-800-255-7778

http://www.xilinx.com

Chapter 3: Incremental Design
R

• Next to PAR Guide Design File (.ncd), browse to and select another_par_design.ncd.

Setting Up Incremental Guide Mode for the Command Line

For MAP:

• Rename the mapped .ncd and .ngm files from the previous implementation to
something like the following:

<design_name>_map_guide.ncd and <design_name>_map_guide.ngm.

• Make sure that both files have the same name, or the .ngm file will not be read and
guide mode will fail.

• Add -gf <design_name>_map_guide.ncd to the previously used options,
including the -gm incremental option.

For PAR:

• Rename the placed and routed .ncd file from the previous implementation to
something like the following:

<design_name>_par_guide.ncd

• Add the -gf <design_name>_par_guide.ncd to the par options, including the -
gm incremental option.

Rules for External Changes that can cause Logic Group Reimplementation

The following is a list of rules to follow to prevent the inadvertent reimplementation of a
logic group during Incremental Guide Mode.

• Do not change AREA GROUP RANGEs

• Do not change MAP switches

• Do not change the design or AREA GROUP compression factors

• Do not change either the PLACE, GROUP or MODE properties for a logic group

Situations for Forcing a Reimplementation of a Logic Group

When timing constraints that affect a logic group are changed, you should either not guide
the current iteration or use

AREA_GROUP area_group_name IMPLEMENT = FORCE;

After the iteration is done, guiding may resume as normal or IMPLEMENT should be
removed or changed from FORCE to AUTO, depending on which method was used.

Incremental Design Reports
Incremental Design adds information to both the MAP (.mrp) and the PAR(.par) report
files. The following are examples from MAP and PAR reports:

MAP Report File Information

The MAP report includes specific Incremental Design information in section 8 of the
report. The MAP report shows how many slices were guided when using Incremental
Guide Mode and if an AREA GROUP was re-implemented.
68 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Incremental Design Reports
R

Reasons that an AREA GROUP was re-implemented are:

• A logic group change was detected.

• A property change was detected. COMPRESSION, RANGE, PLACE, and GROUP
properties are checked during Incremental Guide Mode.

• The IMPLEMENT=FORCE constraint is being used. See the AREA GROUP section of
the Constraints Guide for more information.

If no design changes are made and MAP is run in Incremental Guide Mode, the MAP
report should show that 100% of the slices were guided. The report will look something
like the following examples:

Example of the Guide Report section, which reports what was not guided.

Section 8 - Guide Report

NCD slice controller/ddr_rasb_o_P1 was NOT guided.

NCD slice controller/read_cmd_reg was NOT guided.

NCD slice controller/state[2] was NOT guided.

NCD slice controller/state[4] was NOT guided.

NCD slice controller/state[6] was NOT guided.

NCD slice controller/state[8] was NOT guided.

NCD slice row_addr was NOT guided.

NCD slice controller/ddr_casb_o_P1 was NOT guided.

Example of a property change:

Section 9 - Area Group Summary

AREA_GROUP AG_cslt_cntr

RANGE: SLICE_X13Y19:SLICE_X18Y16

COMPRESSION: 80

The following change(s) were detected in this AREA_GROUP:

COMPRESSION was set to 100 in the guide file but is set to 80 in the
current design.

AREA_GROUP will be re-implemented due to this change.

AREA_GROUP Logic Utilization:

Number of Slice Flip Flops:4 out of 48 8%

Logic Distribution:

Number of occupied Slices: 6 out of 24 25%

Number of Slices containing only related logic: 6 out of 6 100%

Total Number 4 input LUTs: 7 out of 48 14%

Number used as logic: 7

Example of a Logic Group Change:

AREA_GROUP AG_controller

RANGE: SLICE_X12Y27:SLICE_X22Y22

No COMPRESSION specified for AREA_GROUP AG_controller

The following change(s) were detected in this AREA_GROUP:

A logic change was detected.
Development System Reference Guide www.xilinx.com 69
 1-800-255-7778

http://www.xilinx.com

Chapter 3: Incremental Design
R

AREA_GROUP will be re-implemented due to this change.

AREA_GROUP Logic Utilization:

Number of Slice Flip Flops: 30 out of 132 22%

Logic Distribution:

Number of occupied Slices: 31 out of 66 46%

Number of Slices containing only related logic: 31 out of 100%

Total Number 4 input LUTs: 32 out of 132 24%

Number used as logic: 32

PAR Report File Information
The PAR report includes specific Incremental Design information in the Xilinx Place and
Route Guide Results File section. The PAR report file has guide information.In the
following example, a design change was made in the AG_express_car AREA GRUOP.

Xilinx Place and Route Guide Results File

===

Guide Summary Report:

Incremental Design Totals:

 Area Groups Guided: 3 out of 4 75%

 Comps Guided: 146 out of 146 100%

 Signals Guided: 102 out of 179 56%

 Area Group AG_express_car was guided.

 Area Group AG_Tracking_Module was guided.

 Area Group AG_Main_Car was guided.

 Area Group AG_controller was re-implemented.

 Ungrouped Logic was re-implemented.

Description of the Design Totals Section:

• Component AREA GROUPs Placed - Indicates how many AREA GROUPs were
guided. In the Incremental flow, all but one of the AREA GROUPs should typically be
guided. In the above example, four out of the five AREA GROUPs were guided.

• Name matched - Indicates how many component names or signal names in the guide
file matched the names in the new design.

• Total Guided - Indicates how many of the matched components or signals were
guided. Matched components and signals are not guided if they are part of a changed
Logic Group.

• LOGIC0/LOGIC1 nets ignored - None of the power and ground signals are guided.

Description of the Guide File section:

• Name matched - Indicates how many component names inside each AREA GROUP
were matched.

• Total guided - Indicates how many of the matched components were guided.
70 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Vendor Specific Notes for Incremental Synthesis
R

• Notes: Inside each AREA GROUP, all or none of the matched components should be
guided.

There are two AREA GROUPS for Tracking Module. One for slices and one for block
RAMS.

Vendor Specific Notes for Incremental Synthesis
Use the following procedures for the synthesis tool you are using. If the tool is not listed,
refer to the user documentation.

Incremental Synthesis Using Leonardo Spectrum
Leonardo Spectrum supports both a bottom-up and a top-down methodology for
Incremental Synthesis, but suggests using the bottom-up methodology. A description of
how to use each method and example TCL scripts for each are provided below.

Bottom-Up Methodology

The bottom-up methodology requires that all Logic Groups and the top level be
synthesized separately and that separate EDIF netlists be created for each Logic Group and
for the top level. This method is recommended because only the synthesis script for the
changed Logic Group needs to be rerun when a small design change is made. The steps to
use this method are provided below.

Note: The example TCL scripts below assume a design with three Logic Groups, a,b,c and a
top level, top.

For more information on Logic Groups, refer to the “Identifying Logic Groups”
section.

1. Synthesize each Logic Group and write out a separate EDIF file for each. When
synthesizing each Logic Group, it is important to use macro mode, which will
automatically disable I/O and clock buffer insertion. An example TCL script for Logic
Group “a” is provided below:

#Clear database and libraries of any previously existing designs

clean_all

#Set the technology environment for a Virtex-II

set part 2V80fg256

set process 5

set wire_table xcv2-80-5_avg

load_library xcv2

#Read in the design file or files for this Logic Group

read -technology "xcv2" { a.v }

#Set the timing constraints

set input2register 9

set register2output 14

set_clock -name .work.a.INTERFACE.clk -clock_cycle "10.000000"
Development System Reference Guide www.xilinx.com 71
 1-800-255-7778

http://www.xilinx.com

Chapter 3: Incremental Design
R

set_clock -name .work.a.INTERFACE.clk -pulse_width "5.000000"

#Optimize the Logic Group in macro mode to prevent I/O or clock buffer
insertion

optimize .work.a.INTERFACE -target xcv2 -macro -area -effort standard -
hierarchy auto

#Optimize for timing

optimize_timing .work.a.INTERFACE

#Disable NCF creation

set novendor_constraint_file TRUE

#Write out the Logic Group as a binary XDB database and EDIF netlist

auto_write a.edf

Note: The above script synthesizes Logic Group “a."

A separate script is needed for Logic Groups “b” and “c."

2. Synthesize the top level. Each of the previously optimized Logic Groups are read in
and the DONT TOUCH and NOOPT attributes are applied to each. The DONT
TOUCH attribute is used to prevent the previously optimized Logic Groups from
being reoptimized. The NOOPT attribute is used to prevent the previously optimized
Logic Groups from being written out inside the top level EDIF. An example TCL script
is provided below:

#Clear database and libraries of any previously existing designs

clean_all

#Set the technology environment for a Virtex-II and enable register
mapping to the I/Os

set part 2V80fg256

set process 5

set wire_table xcv2-80-5_avg

set virtex_map_iob_registers TRUE

load_library xcv2

#Load previously optimized Logic Groups

read -technology "xcv2" { a.xdb }

read -technology "xcv2" { b.xdb }

read -technology "xcv2" { c.xdb }

#Read in and elaborate the top level

read -technology "xcv2" { top.v }

#DONT_TOUCH attribute prevents each Logic Group from being reoptimized

DONT_TOUCH .work.a.INTERFACE

DONT_TOUCH .work.b.INTERFACE
72 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Vendor Specific Notes for Incremental Synthesis
R

DONT_TOUCH .work.c.INTERFACE

#NOOPT attribute prevents each Logic Group from being written into the
top level edif

NOOPT .work.a.INTERFACE

NOOPT .work.b.INTERFACE

NOOPT .work.c.INTERFACE

#Set timing constraints

set input2register 10

set register2output 15

set_clock -name .work.top.INTERFACE.clk -clock_cycle "10.000000"

set_clock -name .work.top.INTERFACE.clk -pulse_width "5.000000"

#Optimize top level and preserve hierarchy

optimize .work.top.INTERFACE -target xcv2 -chip -area -effort standard
-hierarchy preserve

optimize_timing .work.top.INTERFACE

#Generate Reports

report_area area.txt -cell_usage

report_delay delay.txt -num_paths 1 -longest_path -clock_frequency

#Enable NCF creation

set novendor_constraint_file FALSE

#Write out the top level as a binary XDB database and EDIF netlist

auto_write top.edf

3. The design is now ready to be run through the Xilinx Implementation Tools. When a
design change is made, only the script for the changed Logic Group needs to be rerun
and thus only one EDIF file will be changed.

Note: It is also possible for Leonardo to combine the entire design into one top level EDIF file.
To do this, remove the NOOPT attributes.

Without the NOOPT attribute, the previously optimized Logic Groups will be written
out into the top level EDIF. This is not recommended, as both the script for the changed
Logic Group and the script for the top level must be rerun when a design change is
made, but it can be done if it is required to only have one EDIF file.

Top-Down Preserving Hierarchy Methodology

Leonardo Spectrum Level 3 provides the necessary hierarchy control and optimization
capabilities necessary to accommodate the top-down preserving hierarchy methodology.
Using this flow, one EDIF file will be created. One script is used to run an Initial Synthesis
and a second script is used for Incremental Synthesis passes.
Development System Reference Guide www.xilinx.com 73
 1-800-255-7778

http://www.xilinx.com

Chapter 3: Incremental Design
R

Initial Synthesis Using Top-Down Preserving Hierarchy

This section contains an example script for running the Initial Synthesis pass for the top-
down preserving hierarchy method. When running this pass, it is important to set
bubble_tristates to FALSE and to set no_boundary_optimization to TRUE. These settings
will keep the hierarchy “pure” and unchanged. It is also important to preserve hierarchy
when synthesizing. Below is an example TCL script:

#Clear database and libraries of any previously existing designs

clean_all

#Set bubble_tristates FALSE to ensure that the tristates will not moved
across hierarchy boundary.

#Users must place all tristate I/O at the top level to use a block-based
flow

set bubble_tristates FALSE

#Set no_boundary_optimization to prevent constant propagation and other
boundary

#effect optimizations. This may cause degradation in QoR if the design
makes use

of constants across hierarchical boundaries

set no_boundary_optimization TRUE

#Set the technology environment for a Virtex-II and enable register
mapping to the I/Os

set part 2V80fg256

set process 5

set wire_table xcv2-80-5_avg

set virtex_map_iob_registers TRUE

load_library xcv2

#Read the entire design with top.v as the top level module

read -technology "xcv2" {

a.v

b.v

c.v

top.v}

#Set timing constraints

set input2register 10

set register2output 10

set_clock -port -name .work.top.INTERFACE.clk -clock_cycle "10.000000"

set_clock -port -name .work.top.INTERFACE.clk -pulse_width "5.000000"

#Optimize the design and preserve hierarchy
74 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Vendor Specific Notes for Incremental Synthesis
R

optimize .work.top.INTERFACE -target xcv2 -chip -area -effort standard
-hierarchy preserve

optimize_timing .work.top.INTERFACE

#Generate reports

report_area area.txt -cell_usage

report_delay delay.txt -num_paths 1 -longest_path -clock_frequency

#Write out entire design as a binary XDB database and EDIF netlist

auto_write top.edf

After running the above script, the design is ready for an initial implementation pass.
When small design changes are made to one of the Logic Groups, the incremental script in
the next section must be used to update the EDIF.

Incremental Synthesis Using Top-Down Preserving Hierarchy

When a change is made to a Logic Group, the commands for synthesizing the design are
slightly different in this flow. The key to a successful incremental synthesis is to ensure that
only the modified Logic Group is modified in the EDIF netlist. To achieve this, Leonardo
has the ability to reload and re-optimize a changed Logic Group, while leaving the other
Logic Groups unchanged. An example TCL script is provided below:

#Clear database and libraries of any previously existing designs

clean_all

#Set bubble_tristates FALSE to ensure that the tristates will not moved
across hierarchy boundary.

#Users must place all tristate I/O at the top level to use a block-based
flow

set bubble_tristates FALSE

#Set no_boundary_optimization to prevent constant propagation and other
boundary

#effect optimizations. This may cause degradation in QoR if the design
makes use

#of constants across hierarchical boundaries

set no_boundary_optimization TRUE

#Set the technology environment for a Virtex-II and enable register
mapping to the I/Os

set part 2V80fg256

set process 5

set wire_table xcv2-80-5_avg

set virtex_map_iob_registers TRUE

load_library xcv2
Development System Reference Guide www.xilinx.com 75
 1-800-255-7778

http://www.xilinx.com

Chapter 3: Incremental Design
R

#Reload the previously optimized design

read -technology "xcv2" { TOP.xdb }

#Read in the modified Logic Group

read -technology "xcv2" { b.v }

#Set Timing Constraints

set input2register 10

set register2output 10

set_clock -name .work.top.INTERFACE.clk -clock_cycle "10.000000"

set_clock -name .work.top.INTERFACE.clk -pulse_width "5.000000"

#Optimize the modified Logic Group in macro mode

optimize .work.b.INTERFACE -target xcv2 -macro -delay -effort standard
-hierarchy preserve

#Set top as the present design

present_design .work.top.INTERFACE

#Optimize the timing of the modified Logic Group

optimize_timing .work.b.INTERFACE

#Generate Reports

report_area area.txt -cell_usage

report_delay delay.txt -num_paths 1 -longest_path -clock_frequency

#Write out the entire design as a binary XDB database and EDIF netlist

auto_write top.edf

The new EDIF is now ready to be run through the Incremental Implementation flow. Each
time a Logic Group is modified, this script is used to update the EDIF file.

Incremental Synthesis Using Synplify/ Synplify PRO
When using Synplify Pro for Incremental Synthesis, a separate project is created for each
Logic Group and for the Top Level. When changes are made to a Logic Group, the project
for that Logic Group is used to generate a new EDIF file, while the EDIF files for the top
level and for the unchanged logic groups will remain the same. This will allow the design
to be used with the Incremental Design flow.

Creating an EDIF for the Top Level

The first step is to create a top level EDIF that instantiates the lower level EDIF files as black
boxes. Below is an example of the steps used to create the top level EDIF file.

1. Create a new Project File named TOP.

2. Click on Impl Options to select the target device
76 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Vendor Specific Notes for Incremental Synthesis
R

3. Add the library file for the target device. For example, if the design is coded in Verilog
and a Virtex-II device is being targeted, add virtex2.v. The library files are located in
\lib\xilinx in the directory where Synplify is installed.

4. Add the top level file:

♦ In the Top Level, “/* synthesis syn_black_box */” must be applied to each
instantiated Logic Group. This will tell Synplify to treat each instantiation as a
black box.

♦ "/* synthesis syn_isclock = 1 */” should be applied to the clock ports of
instantiated Logic Groups. This will instruct Synplify to infer a BUFG if one has
not already been assigned to the signal that drives this port.

5. Press Run.

♦ At this stage a top level EDIF file should be created. The EDIF will contain all of
the I/O and clock logic, as well as black box instantiations of all of the Logic
Groups in the design.

6. Save the Project.

Creating an EDIF for each Logic Group
The following steps describe how to create an EDIF file for a Logic Group:

1. Create a new Project File with the name of the Logic Group.

2. Click on Impl Options

3. Select the target device.

4. Check the option to Disable I/O insertion. This will also disable clock buffer insertion.

5. Add the library file for the target device.

6. Add the file or files for this Logic Group.

7. Press Run.

8. Save the Project.

Note: The above steps must be followed for each Logic Group in the design. After EDIF files
have been created for each Logic, all of the EDIF files can be copied to an implementation
directory where Xilinx Incremental Design flow can be run.

When a design change is made, reopen the project for the changed Logic Group and
recreate the EDIF file. Then copy the new EDIF file into the implementation directory and
rerun the Incremental Implementation flow.

Incremental Synthesis Using XST
XST supports block level incremental synthesis. An HDL change in one of these Logic
Groups will only affect that Logic Group; the rest of the Logic Groups will not be changed.
The unmodified portions of the design will still be parsed, but new netlists (.NGC files)
will not be written.

Logic Groups are defined are defined using the incremental_synthesis attribute. Attributes
to define Logic Group boundaries are entered in the XST constraints file (.XCF) or within
the HDL source itself. The top level does not require this attribute. An NGC file will be
created for each Logic Group and for the top level. If a module/entity is instantiated
within a design more than once and is defined as the top of a Logic Group, a unique .ngc
file will be created for each instance.
Development System Reference Guide www.xilinx.com 77
 1-800-255-7778

http://www.xilinx.com

Chapter 3: Incremental Design
R

When a logic change is made to any module/entity within one of the Logic Groups, only
that Logic Group should be reoptimized. For VHDL designs, XST automatically detects
any changes to the source HDL files and resynthesizes only the Logic Groups containing
modified modules/entities. For Verilog designs, the "resynthesize" attribute is required for
XST to be made aware of logic changes.

You will see evidence of Incremental Synthesis in the XST log file in a number of locations.
First, when the Incremental Synthesis attributes are parsed, you will see:

Reading constraint file C:\design\top.xcf.

 Set property "INCREMENTAL_SYNTHESIS = yes" for unit <a>.

 Set property "INCREMENTAL_SYNTHESIS = yes" for unit .

 Set property "INCREMENTAL_SYNTHESIS = yes" for unit <c>.

XCF parsing done.

During the initial synthesis run, you will see that each Logic Group is optimized and
multiple .ngc files are created:

==
=

* Low Level Synthesis *

==
=

Optimizing unit <top> ...

Optimizing unit <a> ...

Optimizing unit ...

Optimizing unit <c> ...

…

==
=

* Final Report *

==
=

Final Results

Top Level Output File Name : top

Output File Name : a.ngc

Output File Name : b.ngc

Output File Name : c.ngc

…

Finally, during the incremental pass, you will see that only the
modified Logic Group is reoptimized:

==
=

* Low Level Synthesis *

==
=

78 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Vendor Specific Notes for Incremental Synthesis
R

Incremental synthesis: Unit <a> is up to date ...

Incremental synthesis: Unit is up to date ...

Incremental synthesis: Unit <top> is up to date ...

Optimizing unit ...

…

Here is an example XCF file. Consult the XST User Guide for more details
about XST Constraint File syntax.

Use the "incremental_synthesis" attribute to denote Logic Groups

MODEL "a"

incremental_synthesis=yes;

MODEL "b"

incremental_synthesis=yes;

MODEL "c"

incremental_synthesis=yes;

The "resynthesize" attribute is only required for Verilog designs

MODEL "top" resynthesize=no;

MODEL "a" resynthesize=no;

MODEL "b" resynthesize=yes;

MODEL "c" resynthesize=no;

End .XCF file

Note: If you have previously synthesized your design without the incremental synthesis attributes,
or if you have changed the structure of the Logic Groups of the design, you must remove the existing
.ngc files before you can synthesize again. This is easily done within ISE by selecting Project >
Cleanup Project Files.

XST needs to have an initial set of .ngc files that build the current proper hierarchy before
an incremental synthesis run can be performed.
Development System Reference Guide www.xilinx.com 79
 1-800-255-7778

http://www.xilinx.com

Chapter 3: Incremental Design
R

80 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 4

Modular Design

Modular Design is compatible with the following device families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/-3

This chapter includes an overview of Modular Design and describes how to run the
Modular Design flow. It contains the following sections:

• “Modular Design Overview”

• “Modular Design Entry and Synthesis”

• “Modular Design Implementation”

• “Setting Up Modular Design Directories”

• “Running the Standard Modular Design Flow”

• “Running the Sequential Modular Design Flows”

• “Modular Design Tips”

• “Modular Design Troubleshooting”

• “Vendor Specific Notes for Synthesis”

• “HDL Code Examples”

Modular Design Overview
Modular Design allows a team of engineers to independently work on different pieces, or
“modules,” of a design and later merge these modules into one FPGA design. This parallel
development saves time and allows for independent timing closure on each module.
Modular Design also allows you to modify a module while leaving other, more stable
modules intact.

Note: Modular Design is a Xilinx Development System Option. For more information on obtaining
this optional feature, go to
http://support.xilinx.com/xlnx/xil_prodcat_product.jsp?title=modular_design

The Modular Design flow consists of the following steps:

• Modular Design Entry and Synthesis—In this step, the team creates designs using a
Hardware Description Language (HDL) and synthesizes them. This step must be
done for both the top-level design and the modules as follows:

♦ Top-Level Design

The team leader must complete design entry and synthesis for the top-level design
before the Initial Budgeting phase of Modular Design Implementation can begin.
Development System Reference Guide www.xilinx.com 81
 1-800-255-7778

http://support.xilinx.com/xlnx/xil_prodcat_product.jsp?title=modular_design
http://www.xilinx.com

Chapter 4: Modular Design
R

♦ Modules

Each team member must complete design entry and synthesis for his or her
module before moving on to the Active Module Implementation phase for that
module. Team members can complete module design entry and synthesis in
parallel and can complete this step while the team leader is working on the Initial
Budgeting phase of Modular Design Implementation.

• Modular Design Implementation—This step comprises the following phases:

♦ Initial Budgeting

In this phase, the team leader assigns top-level constraints to the top-level design.

Note: Initial Budgeting is not required for modules.

♦ Active Module Implementation

In this phase, the team members implement the modules.

♦ Final Assembly

In this phase, the team leader assembles the top-level design and the implemented
modules into one design.

The following figure shows the Modular Design flow:
82 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Modular Design Overview
R

Modular Design requires up front planning to ensure that the design is partitioned
properly. It also requires communication among team members to ensure that partitions
work together during the Final Assembly phase. The number of modules should be kept to
a minimum. Modular Design is best used for large designs that can easily be partitioned
into self-contained modules.

Note: Modular Design is not recommended for the direct conversion of large ASIC designs that
contain heavily interconnected logic. Such designs cannot be easily partitioned into independent
modules.

Figure 4-1: Modular Design Flow Overview

X9479

(Top-Level Design)

Design Entry
HDL Entry/Synthesis

(Module)

Design Entry
HDL Entry/Synthesis

Download to a
Xilinx Device

 Mapping
 Placement
 Routing

 Mapping
 Placement
 Routing

(Top-Level Design)
Initial Budgeting

(Module)

Active Module
Implementation

(Top-Level Design
and Modules)

Final Assembly
Development System Reference Guide www.xilinx.com 83
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

Modular Design Entry and Synthesis
The team leader creates the top-level design using an HDL and synthesizes this design.
The top-level design includes all global logic, including I/Os, all modules instantiated as
“black boxes” with only ports and port directions, and the signals that connect modules to
each other and to I/O ports. This step must occur before Modular Design Implementation
can begin.

The team members create individual module designs using an HDL and synthesize the
designs. However, this does not need to occur before the Modular Design Implementation
step begins. Team members can work on their module designs while the team leader
moves on to the Initial Budgeting phase of Modular Design Implementation. Team
members must complete design entry and synthesis for their modules prior to the Active
Module Implementation phase of Modular Design Implementation.

You can enter your design with a text-based tool using Verilog or VHDL. To synthesize
your design, you can use Xilinx-supported third-party tools, which produce a design file in
third party netlist formats, or you can use the Xilinx synthesis tool, Xilinx Synthesis
Technology (XST) that produces a netlist in NGC format. For more information on XST, see
the Xilinx Synthesis and Verification Design Guide.

As with standard design entry, Modular Design entry begins with a design concept,
expressed as a functional description. From the original design, a netlist is created. For
details on HDL design entry, see “HDL Entry and Synthesis” in Chapter 2. Also, see the
Synthesis and Verification Design Guide.

The following figure shows the Modular Design entry and synthesis flow.

Figure 4-2: Modular Design Entry and Synthesis Flow

X9841

CORE Generator

HDL

Synthesis

EDIF 2 0 0 & NCF
NGC

(XST Netlist)

Synthesis
Libraries
84 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com
http://toolbox.xilinx.com/docsan/xilinx4/pdf/docs/sim/sim.pdf

Modular Design Implementation
R

Modular Design Implementation
Modular Design implementation includes the three phases described in this section. After
the final phase is complete, you can use the implemented design to generate a bitstream.

Initial Budgeting Phase
In this phase, the team leader positions the top-level logic for the design. Properly
positioning the logic in this phase is critical. Repositioning top-level logic later in the
design process requires that you rerun each phase of the Modular Design flow, which is
time consuming. Following are the objectives of the Initial Budgeting phase:

• Position global logic

• Size and position each module on the target chip

• Position the input and output ports for each module

• Budget initial timing constraints

The first step in this phase is to run ngdbuild in initial budgeting mode. Ngdbuild
generates an NGD file with all of the instantiated modules represented as unexpanded
blocks. This NGD file cannot be mapped but can be used with the Constraints Editor,
PACE, or Floorplanner. Using the Constraints Editor, you assign timing constraints to the
top-level design. Using PACE, you assign pin location constraints for the design. Using the
Floorplanner, you assign location constraints for each module.

You must position all top-level logic during this phase. This ensures that the remainder of
the logic for the design is optimally positioned during the Active Module Implementation
phase. Location constraints must be assigned for the following elements:

Note: Top-level logic should be kept to a minimum.

• Top-level I/O ports

These are the top-level ports of the design that are mapped into IOB components. In a
typical design, these IOB locations are already well defined because of board layout
requirements. PACE can position the I/O ports for the design on the targeted device.

• Top-level logic

This is logic positioned at the top-level of a design, such as global buffers, 3-state
buffers, flip-flops, and look-up tables. In a typical design, there is only a small amount
of top-level logic.

When positioning BUFTs, follow these rules:

♦ If more than one BUFT is driving the same net, position the BUFTs in the same
row

♦ If BUFTs are driving different nets, position each in a different row

♦ If there are multiple 3-state nets and each 3-state net is driven by multiple BUFTs,
position one BUFT for each 3-state net

Note: All top-level TBUFs must be located with the LOC constraint to a TBUF site during the Initial
Budgeting phase. This is necessary to avoid contention between the 3-state signals. For additional
information on this topic, please refer to Answer Record #12437 at http://support.xilinx.com.

• Each module

Estimate how many resources each module will take to generate a rectangular
bounding region that will contain this module. Next position each module bounding
region accordingly. Xilinx recommends that you allow space between modules so you
can position the module ports.
Development System Reference Guide www.xilinx.com 85
 1-800-255-7778

http://support.xilinx.com/
http://www.xilinx.com

Chapter 4: Modular Design
R

• “Pseudo logic” that represents module ports

When two modules are connected at this stage in the design flow, they are not
connected directly. Instead, each of the modules has a module port that is connected to
pseudo logic. This pseudo logic is either a “pseudo load” or a “pseudo driver.” A
pseudo load is a temporary load for the module output, because its actual load is
located in an unexpanded module. A pseudo driver is a temporary driver for a
module, because its actual driver is located in an unexpanded module.

The following figure shows the relationship between the modules and pseudo logic
during the Initial Budgeting phase:

The following figure shows a detailed view of the pseudo logic shown in the preceding
figure. In the following figure, the output port for unexpanded Module A is connected
to a pseudo load, and the input port for Module B is connected to a pseudo driver.

Figure 4-3: Modules and Pseudo Logic

X9558

Module A Module B

Module C

Top-Level Logic

Pseudo Logic

Module Ports

I/O Ports
86 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Modular Design Implementation
R

The term “pseudo logic” is used, because it is logic that is temporarily inserted to
facilitate the relative placement of the connected logic within a module. In the final
assembled design, the pseudo logic does not appear, instead the actual logic is directly
connected.

Note: Pseudo logic is only created on a net that connects two modules. If a net connects a
module to top-level logic, pseudo logic is unnecessary, because the top-level logic constrains the
module logic.

The following figure shows the flow through the Initial Budgeting phase:

Active Module Implementation Phase
In this phase, team members implement the top-level design with one module expanded at
a time. This must be done separately for each module and takes place in the individual
module directories, rather than at the top-level directory. Active Module Implementation
can be done in parallel, that is each team member can implement his or her module at the
same time.

To accomplish this, you run ngdbuild in active module mode. ngdbuild reads the top-level
design, the module netlist, and the top-level UCF file as input. Ngdbuild generates the top-
level design as an NGD file (design_name.ngd) with just the specified “active” module
expanded. At this point, you can use the Constraints Editor to apply any additional local
timing constraints for the active module. You can then map, place, and route the NGD file.

Figure 4-4: Pseudo Driver and Pseudo Load

Figure 4-5: Initial Budgeting Flow

X9561

Module A
Pseudo

Load
Pseudo
Driver

Module B

X9481

EDIF 2 0 0 & NCF
(Top-Level Design)

NGC
(XST Netlist)

(Top-Level Design)

UCF

NGD

NGDBuild

Constraints Editor
&

Floorplanner
Development System Reference Guide www.xilinx.com 87
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

After a module is fully placed and routed and meets the desired timing constraints, it is
published back to the team leader for inclusion in the final design. A published module is
called a physically implemented module (PIM).

The pimcreate utility automatically copies the module’s NGO, NCD, and NGM files to the
appropriate directory in preparation for the Final Assembly phase. It also renames the files
design_name.ncd and design_name.ngm to module_name.ncd and module_name.ngm as
needed for later phases of Modular Design.

The following figure shows the flow through the Active Module Implementation phase:

Final Assembly Phase
In this phase, the team leader assembles the modules into one design by running ngdbuild
in final assembly mode. Ngdbuild reads in the top-level NGO file, the top-level UCF file,
and all of the PIMs to create a fully expanded design file that you can map, place, and
route. During this phase, the place and route tools copy the placement and routing
information from each PIM. This preserves the exact timing performance from the Active
Module Implementation phase for each module in the design.

Figure 4-6: Active Module Implementation Flow

X9482

UCF
(Top-Level Design)

NGO
(Top-Level Design)

NGC
(XST Netlist)

(Module)

EDIF 2 0 0 & NCF
(Module)

UCF
(Module)

NGD

NCD

(Module)

NGDBuild

Constraints Editor

MFP

Floorplanner
(Optional)

MAP

(Module)

NCD
(Module)

PAR

PIMCreate

NCD NGM NGO

PIM Files
88 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Setting Up Modular Design Directories
R

Automatic trimming of unconnected output ports occurs during the final assembly phase
to remove any loadless signals in the design. Trimming cleans up the design, which may
result in modest quality improvements.

The following figure shows the flow through the Final Assembly phase.

Setting Up Modular Design Directories
Before the team starts designing, it is essential that the team leader sets up an organized
directory structure that works for the team. These directories are used for synthesis of the
top-level design and during the Initial Budgeting and Final Assembly phases. Following is
the recommended directory structure for the standard Modular Design flow:

• “Synthesis” directory

This directory must contain a directory for the top-level design. The team leader
synthesizes the top-level design in the top-level design directory. The top-level design
directory must include the appropriate HDL file, the project file, and project
directories.

Note: Synthesis of individual modules can take place in the team members’ local directories.
Xilinx recommends setting up a directory to synthesize your module that is separate from the
directory used to implement your module. The synthesis directory must include the appropriate
HDL file, the project file, and project directories.

Figure 4-7: Final Assembly Flow

X9842

NGD

NCD

(Top-Level Design)

UCF
(Top-Level Design)

NGO
(Top-Level Design)

NGDBuild

MAP

(Top-Level Design)

NCD
(Top-Level Design)

PAR

Continue with TRACE,
BACK ANNOTATION,

and BITSTREAM

NCD NGM NGO

PIM Files
Development System Reference Guide www.xilinx.com 89
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

• “Implementation” directory

This directory must contain the following:

♦ Directory for the top-level design

The team leader sets up initial budgeting for the design in this directory. After
team members publish the implemented modules to the PIMs directory, the team
leader also assembles the top-level design and PIMs into the final design in this
directory.

♦ Directory for the PIMs

The PIMs directory stores the implemented module files. When a team member
runs the pimcreate utility during the Active Module Implementation phase,
pimcreate creates the appropriate module directory in the PIMs directory and
copies the implemented module files to the module directory.

Note: Implementation of individual modules can take place in the team members’ local
directories. However, each implemented module must be published to the PIMs directory using
the pimcreate command line tool.

Running the Standard Modular Design Flow
Use the standard Modular Design flow for most designs. This flow requires that all
modules are implemented and published to the PIMs directory before they are assembled
together. After you are comfortable running this flow, you can also run it “sequentially.”
For more information, see “Running the Sequential Modular Design Flows”.

Entering the Design
Create your top-level and module designs with a text-based tool using Verilog or VHDL.
Use the following guidelines when creating your code.

General Coding Guidelines

In creating HDL code for both the top-level design and individual modules, it is extremely
important to follow “good” coding practices. Following are general guidelines:

• Ensure that your design is fully synchronous

• Use realistic timing requirements (period constraints for entire design)

• Register all module outputs

Top-Level Design Coding Guidelines

The top-level design must include all global logic, including I/Os, all design modules
instantiated as “black boxes,” and the signals that connect modules to each other and to
I/O ports. Each module must be instantiated as a “black box,” with only ports and port
directions. Following are “good” coding practices specific to the top-level design:

Note: Top-level logic should be kept to a minimum.

• Declare all design level ports at the top-level

• Use meaningful signal names to connect to module ports or between modules

Note: Using the same name for the signal and its associated port aids in simulation, because
top-level signal names are used during back-annotated simulation.

• Include a minimum number of modules
90 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Running the Standard Modular Design Flow
R

In addition to these practices, you must do the following when creating the top-level
design:

• Instantiate each module as a “black box”

• Include “black box” definitions of the lower-level modules in the top-level file to
determine port direction and bus width

♦ VHDL Notes

Synthesis requires component declarations for all instantiated components in the
HDL code.The component can be declared in the code or in a library package
included in the HDL.

♦ Verilog Notes

Synthesis requires declarations for user modules only, not library primitives. If
user modules are defined and described in the same project, module declarations
are unnecessary. For example, module declarations are unnecessary if your
synthesis tool produces multiple EDIF netlists from a single project. However, if a
user module is described in a different project, or if it is a CORE Generator
module, then a module declaration is required. All port directions must be
declared with explicit statements in the module definition.

• Infer the following resources:

♦ All I/O registers

♦ 3-state buffers that drive the same net or bus

Note: If bidirectional signals are outputs of a lower-level module, declare them in the HDL code
as “inout” signal types in both the top-level component declaration and the module-level port
map.

Note: You cannot include a module inside of another module though you can use multiple
netlists to generate a module. In addition, multiple instantiations of the same module are not
directly supported. Each module instantiation must have a separate module definition, even if
module instantiations will use the same port definitions and functions.

Module Coding Guidelines

Unlike top-level design entry, design entry for individual modules can occur after the
Initial Budgeting phase and even at the same time as another module’s Active Module
Implementation phase.

In creating HDL code for the individual modules, adhere to the following
recommendations to make your design implementation go smoothly:

• Write individual modules as independent designs

Self-contained modules with minimal dependence on outside resources are
implemented optimally. Following are examples of how to achieve independence:

♦ Use the minimum number of ports on each module

♦ Do not design modules to be dependent on chip resources with specific locations

For example, a module should not require that a BRAM be located in the column
adjacent to the module.

♦ Include minimal global logic

Examples of global logic are I/O pins leading onto or off of the chip, DLLs, or
global clock resources.
Development System Reference Guide www.xilinx.com 91
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

• Define ports exactly as they appear in the top-level design

Ports are connections in and out of a module that are connected to a wire or signals in
the top-level design.

Synthesizing your Designs
Synthesize your HDL files as described in the documentation for your synthesis tool. You
must create a separate netlist file for each of the modules and for the top-level design.
Synthesis of a Modular Design requires the following special considerations:

• Each module in the design must have a unique netlist.

Most synthesis tools generate only one netlist for each project. To meet the “separate
netlist” requirement of Modular Design, you must synthesize lower-level modules
separately from the top-level design, and you must create a separate project for each
module as well as for the top-level design. This will prohibit the synthesis tool from
‘optimizing’ logic across module boundaries.

Note: LeonardoSpectrum allows you to create multiple EDIF netlists from a single project. See
“Creating a Netlist for Each Module (LeonardoSpectrum)” for more information.

• In each module design, disable settings that insert I/O pads.

See “Vendor Specific Notes for Synthesis” for information on how to disable this
setting for your synthesis tool.

• In the top-level design, enable settings that insert I/O pads.

• In the top-level design, the names of lower-level modules must be identical to their
file names.

If these names do not match, ngdbuild cannot match the module names specified in
the top-level netlist to the module netlists.

• In the top-level design, synthesize all lower-level modules as black boxes.

Black box instantiation may require the use of a synthesis tool directive. If lower-level
modules are not synthesized as black boxes, ngdbuild outputs an error during the
Initial Budgeting phase.

Running Initial Budgeting
During the Initial Budgeting phase, the team leader assigns top-level constraints to the
design. Both the top-level timing constraints and the area constraints for each module
must be defined.

1. Change directories to your top-level design directory inside your “implementation”
directory.

2. Translate your top-level netlist file into a Xilinx file format using the following
command. You can use either an EDIF netlist or an NGC netlist from XST. If you use an
NGC file as your top-level design, be sure to specify the .ngc extension as part of your
design name.

ngdbuild -modular initial design_name

Module files must not be included in the top-level directory. At this point, the modules
instantiated in the top-level design must be represented as unexpanded blocks in the
resulting NGD file. The design_name.bld should be consulted to make sure that only the
modules expected are listed as being unexpanded.
92 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Running the Standard Modular Design Flow
R

Note: In this step, ngdbuild produces two files, design_name.ngd and design_name.ngo. The
design_name.ngo file is used during subsequent Modular Design steps, while design_name.ngd
is not.

3. Apply top-level constraints, such as clock periods, using the Constraints Editor. Use
the following command to invoke the Constraints Editor:

constraints_editor design_name.ngd

Note: If a clock net in the top-level design does not have a clock load, the clock does not appear
in the Constraints Editor. You must enter the timing constraints manually in the UCF file.

Refer to the Constraints Editor online Help for details about commands and settings.
Also refer to the Constraints Guide for information on constraints.

4. Select File → Save to save your UCF file and then close the Constraints Editor.

5. Use the following command to invoke the Floorplanner to create module sizes,
locations and to position all module ports:

floorplanner design_name.ngd

6. Select File → Read Constraints to read in the UCF file you modified in the Constraints
Editor.

7. Apply location constraints, including constraints for the following:

♦ Top-level I/O ports

In the Design Hierarchy window, expand the Primitives icon. Drag the port to the
Floorplan window.

♦ Top-level logic, such as global buffers, 3-state buffers, flip-flops, and look-up
tables

In the Design Hierarchy window, expand the Primitives icon. Drag the primitive
to the Floorplan window.

Note: BUFTs require some special considerations. See “Initial Budgeting Phase” for
details.

♦ “Pseudo logic” that represents module ports

Before assigning area constraints for each module, make sure that autofloorplanning is
enabled. Select Floorplan → Distribute Options. In the Distribution Options dialog
box, make sure Autofloorplan as needed is selected. When you assign an area
constraint for a module, the Floorplanner positions the pseudo logic automatically.

To reposition a port manually, select the port in the Floorplan window and drag it to its
desired location. For best results, place the ports just outside the defined area for the
module.

Manually positioned ports are marked as unavailable for automatic floorplanning. To
revert back to automatic floorplanning, delete the manually placed ports from the
floorplanned design. The ports are automatically positioned the next time you resize
or move an assigned area, assuming the Autofloorplan as needed option is selected
in the Distribution Options dialog box. If this option is not selected, you can select the
All Ports option in the Distribution Options dialog box and click the Floorplan button
to place the ports automatically.

Refer to the Floorplanner online Help for details about commands and settings.

8. Select File → Write Constraints to write out the UCF file.

9. Close the Floorplanner and save the FNF file.
Development System Reference Guide www.xilinx.com 93
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

Implementing an Active Module
During this phase, the team members implement the top-level design with only the
“active” module expanded. “Active” refers to the module on which you are working. The
full suite of Xilinx implementation tools is available for this phase. You can use any map or
par command line options as well as the Constraints Editor and Floorplanner.

Note: PAR’s re-entrant routing feature is not supported. If you use the FPGA Editor, be sure to leave
area constraints and placement information from previous steps intact.

You must perform the following steps for each module. Team members can implement
their modules in parallel.

Note: You should not use NCD files from previous software releases with Modular Design in this
release. You must generate new NCD files with the current release of the software.

1. Copy the following files to the local module directory in which you will implement the
module:

Note: Xilinx recommends keeping a separate directory for the files you synthesize and the files
you implement.

♦ Synthesized module netlist file (for example, module_name.edf or
module_name.ngc)

♦ UCF the team leader created in the Initial Budgeting phase (from the top-level
directory in the “implementation” directory). Rename this file from
design_name.ucf to module _name.ucf.

Note: Copying the UCF ensures that each module is implemented with a consistent set of
timing and placement constraints. It also allows you to add module-specific constraints to
the local copy of the UCF as needed.

2. Change directories to the local module directory.

3. Run ngdbuild in active module mode as follows:

ngdbuild -uc module_name.ucf -modular module
-active module_name top_level_design_directory_path/design_name.ngo

The output NGD file is named after the top-level design and contains implementation
information for both the top-level design and the individual module.

4. If necessary, create module-level timing constraints using the Constraints Editor as
follows:

a. Use the following command to invoke the Constraints Editor:

constraints_editor design_name.ngd

b. In the New dialog box, select the module_name.ucf file and click OK.

c. Modify the constraints. Do not modify the timing or placement constraints entered
in the original top-level UCF.

Note: If you define an OFFSET constraint relative to a module port, a TPSYNC constraint
is automatically created for that port net. The path from the synchronous element within the
module to the module port is analyzed to create offset timing. Offset timing does not include
the clock delay to the synchronous element within the module.

d. Select File → Save to save your UCF file and then close the Constraints Editor.

Refer to the Constraints Editor online Help for details about commands and settings.
Also refer to the Constraints Guide for information on constraints.
94 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Running the Standard Modular Design Flow
R

5. Annotate the constraints from the local UCF file to the module using the following
command. The –uc option ensures that the constraints from the local UCF file are
annotated.

ngdbuild -uc module_name.ucf -modular module
-active module_name top_level_directory_path/design_name.ngo

6. Map the module using the following command. In this step, you are mapping the logic
of the design with only the active module expanded.

map design_name.ngd

No modular design specific command line options are required, because all the
modular design information is encoded in the input NGD file.

7. Place and route the module using the following command. In this step, you are placing
and routing the logic of the design with only the active module expanded.

par -w design_name.ncd design_name_routed.ncd

The “_routed” syntax ensures that you do not overwrite your mapped design. The –w
option ensures that any previous versions of design_name_routed.ncd are overwritten.
However, you can use any syntax you prefer. No modular design specific command
line options are required, because all the modular design information is encoded in the
input NCD file.

If the area specified for the module cannot contain the physical logic for the module
because it is sized incorrectly, you must regenerate the UCF file generated during the
Initial Budgeting phase, and you must run the entire Initial Budgeting phase
again.This would then imply that new UCF files would need to be copied to each
module and that each module needs to be reimplemented.

8. Run TRACE on the implemented design to check the timing report (TWR or TWX file)
for timing issues. Verify that your top-level timing constraints are met.

trce design_name_routed.ncd

Note: By default, a summary report is generated. You can also choose to generate an error or
verbose report. See Chapter 13, “TRACE” for details.

9. If necessary, use the Floorplanner to reposition logic as follows:

Note: The Floorplanner should only be used if the module implementation is unsatisfactory, for
example, if it does not meet timing constraints.

a. Use the following command to invoke the Floorplanner:

floorplanner design_name.ncd

b. Reposition the logic. Use the MFP flow so that only the mapper needs to be rerun.

c. Map, place, and route your design again, as described in steps 6 and 7.

Note: When mapping your design, you must use the MAP –fp option to ensure that your
updated MFP file is used.

10. Publish the implemented module file to the centrally located PIMs directory set up by
the team leader:

pimcreate pim_directory_path -ncd design_name_routed.ncd

This command creates the appropriate module directory inside the PIMs directory that
you specify. It then copies the local, implemented module files, including the NGO,
NGM and NCD files, to the module directory inside the PIMs directory and renames
the NCD and NGM files to module_name.ncd and module_name.ngm. The –ncd option
specifies the fully routed NCD file that should be published.

Note: You can simulate the module after running MAP or PAR as described in “Simulating an Active
Module”.
Development System Reference Guide www.xilinx.com 95
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

Assembling the Modules
This is the final phase of Modular Design, in which the team leader assembles the
previously implemented modules into one design. You use the physically implemented
modules located in the PIMs directory as well as the top-level design file in the top-level
directory to accomplish this.

1. Change directories to your top-level design directory in your “implementation”
directory.

2. To incorporate all the logic for each module into the top-level design, run ngdbuild as
follows:

ngdbuild -modular assemble -pimpath pim_directory_path design_name.ngo

Ngdbuild generates an NGD file from the top-level UCF file, the top-level design’s
NGO file, and each PIM’s NGO file.

Note: Because you are using all of the PIMs published to the PIMs directory, you do not need
to specify the –use_pim option. If you want to use only some of the PIMs in the PIMs directory,
do not run the standard Modular Design flow. Instead, see “Running the Sequential Modular
Design Flows”.

3. Map the logic of the full design as follows:

map design_name.ngd

No modular design specific command line options are required, because all the
modular design information is encoded in the input NGD file. MAP uses the NCD and
NGM files from each of the module directories inside the PIMs directory to accurately
recreate the module logic.

4. Place and route the logic of the full design as follows:

par -w design_name.ncd design_name_routed.ncd

No modular design specific command line options are required, because all the
modular design information is encoded in the input NCD file. PAR uses the NCD file
from each of the module directories inside the PIMs directory to accurately
reimplement the module logic.

5. Run TRACE on the implemented design to check the timing report (TWR or TWX file)
for timing issues. Verify that your top-level timing constraints are met.

trce design_name_routed.ncd

Note: By default, a summary report is generated. You can also choose to generate an error or
verbose report. See Chapter 13, “TRACE” for details.

6. If desired, simulate the design and create a netlist that can be simulated:

a. Run NetGen as follows:

netgen -sim -ofmt [verilog or vhdl] design_name.ncd design_name.ngm

Note: Using an NGM file is optional but recommended. It provides valuable information,
such as a record of the design hierarchy including internal signal and instance names, that
may not be preserved in the NCD file.

b. Use a simulator to simulate the netlist.
96 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Running the Standard Modular Design Flow
R

Simulating an Active Module
In addition to simulating the final design, you can simulate the active module
(design_name.ncd) after running MAP or PAR. Following are the two simulation methods
available during the Active Module Implementation phase. Each has its advantages and
disadvantages.

• Simulation with the top-level design as context

With this method, you back-annotate and completely simulate the top-level design.

♦ Advantage: The logic in the top-level design is included in the simulation.

♦ Disadvantage: Inactive modules are undefined and signals connected to module
ports are left dangling. As a result, you must probe and stimulate these signals to
obtain meaningful simulation results.

Note: If you use VHDL, internal signals cannot be driven from the testbench, but some
simulation tools allow access to these signals through a GUI or command line tool.

• Independent module simulation

With this method, you simulate the module independent of the design context. The
simulation netlist contains only module-level logic and ports and can be instantiated
in a testbench that exercises just the module.

♦ Advantage: You can see exactly how the module behaves, independent of the top-
level design. You do not need to provide stimuli for dangling signals as you do
when simulating with the top-level design as context. In addition, you can use
module-level testbench files with the resulting timing simulation netlist.

♦ Disadvantage: Because port loads and drivers are unknown, you must ignore
delay and timing values of module ports until you can perform a complete design
simulation. In addition, all ports and internal signal names appear in the back-
annotated netlist in terms of the top-level netlist. The ports are named after the
top-level signals to which they connect, and the internal signals are preceded with
the instance name.

Running Simulation with Top-Level Design as Context

To run this type of simulation, do the following:

1. Run NetGen as follows:

netgen -sim -ofmt [verilog or vhdl] design_name.ncd design_name.ngm

Note: Using an NGM file is optional but recommended. It provides valuable information, such
as a record of the design hierarchy including internal signal and instance names, that may not be
preserved in the NCD file.

2. Use a simulator to simulate the netlist.

Running Independent Module Simulation

To run this type of simulation, do the following:

1. Run NetGen as follows:

netgen -sim -ofmt [verilog or vhdl]-module design_name.ncd
design_name.ngm

Note: Using an NGM file is optional but recommended. It provides valuable information, such
as a record of the design hierarchy including internal signal and instance names, that may not be
preserved in the NCD file.

2. Use a simulator to simulate the netlist.
Development System Reference Guide www.xilinx.com 97
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

Running the Sequential Modular Design Flows
If you are comfortable running the standard Modular Design flow, you can also run this
flow “sequentially.” This means taking information generated from previous module
implementations and using it to improve other module implementations and your final
design. The two sequential flows (Partial Design Assembly and Sequential Guide) and
their advantages are described in the following sections.

Running the Partial Design Assembly Flow
This Modular Design flow allows the team leader to run the Final Assembly phase with
only some of the PIMs published. This allows you to check your partially assembled
design for timing problems before all modules are completed. You can analyze the timing
budget for the following:

• Nets that connect implemented and unimplemented modules

• Nets that connect the implemented modules to one another

The Initial Budgeting and Active Module Implementation phases are the same as in the
standard flow. The Final Assembly phase differs slightly, as shown in the following figure.

Figure 4-8: Final Assembly Phase for Partial Design Assembly Flow

X9843

NGD

NCD

(Top-Level Design)

UCF
(Top-Level Design)

NGO
(Top-Level Design)

NGDBuild

MAP

(Top-Level Design)

NCD
(Top-Level Design)

PAR

NCD NGM NGO

PIM Files Unimplemented
Modules

Continue with TRACE,
BACK ANNOTATION,

and BITSTREAM
98 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Running the Sequential Modular Design Flows
R

Run the Partial Design Assembly flow as follows:

1. Enter your design using the guidelines described in “Entering the Design”.

2. Synthesize your HDL files as described in the documentation for your synthesis tool.
You must create a separate netlist file for each of the modules as well as the top-level
design. For guidelines, see “Synthesizing your Designs”.

Note: For modules, disable settings that insert I/O pads.

3. Run Initial Budgeting for your design as described in “Running Initial Budgeting”.

4. Implement and publish the appropriate modules as described in “Implementing an
Active Module”.

5. Change directories to the top-level design directory in your “implementation”
directory to begin the Final Assembly phase.

6. To incorporate the logic for the specified modules into the top-level design, run
ngdbuild as follows.

ngdbuild -u -modular assemble -pimpath pim_directory_path -use_pim
module_name1 -use_pim module_name2... design_name

The –u option instructs NGDBuild to ignore the modules that are missing from the
PIMs directory. See “–u (Allow Unexpanded Blocks)” and “–modular assemble
(Module Assembly)” in Chapter 6 for information on the ngdbuild options.

Note: Use the –use_pim option to specify only the modules that were published to the PIMs
directory. You must use the same naming conventions used during the Active Module
Implementation phase, including the proper capitalization.

7. Map the logic of the partially implemented design as follows:

map design_name.ngd

Note: MAP does not trim port nets associated with unimplemented modules. The MAP report
(MRP file) lists each unimplemented module and its associated untrimmed logic.

8. Place and route the logic of the partially implemented design as follows:

par -w design_name.ncd design_name_routed.ncd

9. Run TRACE on the implemented design to check the timing report (TWR or TWX file)
for timing issues. Verify that your top-level timing constraints are met.

trce design_name_routed.ncd

Note: By default, a summary report is generated. You can also choose to generate an error or
verbose report. See Chapter 13, “TRACE” for details.

Running the Sequential Guide Flow
This flow allows the team leader to implement the top-level design with both the
previously implemented module or modules and the “active” module expanded. By
implementing your design this way, you minimize both global resource contention issues
and the requirement to assign all pseudo logic, because each active module is aware of the
resources used by previously implemented modules.

The Initial Budgeting phase is similar to that of the standard flow. The Active Module
Implementation phase differs slightly, as shown in the following figure. In addition, the
Final Assembly phase is not needed in this flow.

Note: The NGM and NCD files from the previously implemented modules are automatically read
into MAP and PAR. You do not need to specify these files at the command line.
Development System Reference Guide www.xilinx.com 99
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

Run the Sequential Guide flow as follows:

1. Enter you design using the guidelines described in “Entering the Design”.

2. Synthesize the HDL files as described in the documentation for your synthesis tool.
You must create a separate netlist file for each of the modules as well as the top-level
design. For guidelines, see “Synthesizing your Designs”.

Note: For modules, disable settings that insert I/O pads.

3. Run Initial Budgeting for your design as described in “Running Initial Budgeting”.

Note: You do not need to automatically position pseudo logic for the entire design, only pseudo
logic associated with the first module. Using the Sequential Guide flow, the logic from the
previously implemented module or modules is used rather than the pseudo logic created for the
top-level design.

4. In your “implementation” directory, create a directory for each module to be
implemented. These directories are different from those in the PIMs directory.

5. Implement the first module as described in “Implementing an Active Module”.

Figure 4-9: Active Module Implementation Phase for Sequential Guide Flow

X9532

UCF
(Top-Level Design)

NGO
(Top-Level Design)

NGC
(XST Netlist)

(Active Module)

EDIF 2 0 0 & NCF
(Active Module)

UCF
(Active Module)

NGD
(Active Module)

NCD
(Active Module)

NCD
(Active Module)

NGDBuild

Constraints Editor

MFP

Floorplanner
(Optional)

PAR

MAP

PIMCreate

NCD NGM NGO

PIM Files

NGO NGM NCD

PIM Files

(Previously Implemented Module)
100 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Running the Sequential Modular Design Flows
R

6. To implement the next module, copy the following files of the module that you are
going to implement to the appropriate module directory in your “implementation”
directory:

♦ Synthesized module netlist file (for example, module_name.edf or
module_name.ngc).

♦ UCF file you created in the Initial Budgeting phase (from the top-level directory
in the “implementation” directory). Rename this file from design_name.ucf to
module _name.ucf.

Note: Copying the UCF file ensures that each module is implemented with a consistent set of
timing and placement constraints. It also allows you to add module-specific constraints to the
local copy of the UCF file as needed.

7. Change directories to the appropriate module directory.

8. Run ngdbuild as follows. During this step, the top-level design is implemented with
both the previously implemented module or modules and the active module
expanded.

ngdbuild -uc design_name.ucf -modular module
-active module_name -pimpath pim_directory_path
-use_pim module_name1 -use_pim module_name2
top_level_directory_path\design_name.ngo

Note: Use the –use_pim option to specify only the modules that were published to the PIMs
directory. You must specify all published modules each time you run this command. You must
use the same naming conventions used during the Active Module Implementation phase,
including the proper capitalization.

9. If necessary, create module level timing constraints using the Constraints Editor as
follows:

a. Use the following command to invoke the Constraints Editor:

constraints_editor design_name.ngd

b. In the New dialog box, select the module_name.ucf file and click OK.

c. Modify the constraints.

Note: If you define an OFFSET constraint relative to a module port, a TPSYNC constraint
is automatically created for that port net. The path from the synchronous element within the
module to the module port is analyzed to create offset timing. Offset timing does not include
the clock delay to the synchronous element within the module.

d. Select File → Save to save your UCF file and then close the Constraints Editor.

Refer to the Constraints Editor online Help for details about commands and settings.
Also refer to the Constraints Guide for information on constraints.

10. Annotate the constraints from the local UCF file to the module using the following
command. The –uc option ensures that the constraints from the local UCF file are
annotated.

ngdbuild -uc module_name.ucf -modular module -active module_name -pimpath
pim_directory_path
-use_pim module_name1 top_level_directory_path\design_name.ngo

11. Map the module using the following command. In this step, you are mapping the logic
of the design with both the “active” module and the previously implemented module
or modules expanded.

map design_name.ngd
Development System Reference Guide www.xilinx.com 101
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

12. Place and route the module using the following command. In this step, you are placing
and routing the logic of the design with both the “active” module and the previously
implemented module or modules expanded.

par -w design_name.ncd design_name_routed.ncd

Note: The “_routed” syntax ensures that you do not overwrite your mapped design. However,
you can use any syntax you prefer. The –w options ensures that any previous versions of
design_name_routed.ncd are overwritten.

13. Publish the implemented module file to a centrally located PIMs directory.

pimcreate -ncd design_name_routed.ncd pim_directory_path

This command creates the appropriate module directory inside the PIMs directory that
you specify. It then copies the local, implemented module files, including the NGO,
NGM and NCD files, to the module directory inside the PIMs directory and renames
the NCD and NGM files to module_name.ncd and module_name.ngm.

14. Repeat steps 6 through 13 for each succeeding module.

There is no need to run Modular Design in Final Assembly Mode. When you place and
route your last module, your resulting NCD file is your final design file.

Note: If any of the constraints you alter affect your previously implemented modules, you must re-
implement the previously implemented modules and also your active module. To do this, start with
step 5 of this procedure. If your constraints only affect your active module, you do not need to re-
implement your previously implemented modules.

Modular Design Tips
Following are tips for working with Modular Design. For additional help, use the
resources at http://support.xilinx.com.

Constraints
The following constraints are used to implement a Modular Design. You can use these
constraints to improve your Modular Design results. For more information, see the
Constraints Guide.

• AREA_GROUP

• COMPGRP

• FROM-TO

• LOC (on module ports using PIN statements)

• NET TPSYNC

• OFFSET (on module ports through TPSYNC groups)

• PERIOD

• PIN

• RESERVED_SITES

Note: This constraint is not supported for TBUFs, slices, multipliers, block RAMs, or CLBs.

• ROUTE

• TIG

Note: Many of these constraints are automatically generated by the Floorplanner when sizing or
positioning modular regions or positioning module ports. Other constraints are automatically
generated by the Floorplanner, PACE, and the Constraints Editor GUIs when constraining a design.
In general it is not necessary to manually add them to your design.
102 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com

Modular Design Tips
R

Partial Reconfigurability AREA_GROUP Constraint Attributes

Partial Reconfigurability, as described in Xilinx application note 290, is a form of Modular
Design used for generating designs that can be actively reconfigured on a device while it is
running. The following constraints need to be manually inserted into the top-level design
UCF to enable this functionality. Their use is not required for strict Modular Design. All of
these are supported as optional ‘attributes’ or subfields of the AREA_GROUP constraint:

♦ ROUTE_AREA

This optional ‘attribute’ of an AREA_GROUP constraint can be used to specify
that a given module is going to be used for Partial Reconfigurability and that its
area should be extended to include all device resources that are part of the same
configuration frames. The values for this constraint can be either MODULAR
(default if not present) or RECONFIG. The latter value is used to indicate that this
module is going to be used with the Partial Reconfigurability flow. The format of
this constraint would be as follows:

AREA_GROUP module_name ROUTE_AREA=RECONFIG;

♦ DISALLOW_BOUNDARY_ CROSSING

This optional ‘attribute’ of an AREA_GROUP constraint can be used to specify
that a given module is going to be used for Partial Reconfigurability, and that its
internal routing should not consume device resources that lie outside of the
boundary of the defined region. Since final assembly is not used in Partial
Reconfigurability, there is no guarantee that conflicting resources across modules
will not be used. If this attribute is not specified, or an attribute of
ALLOW_BOUNDARY_ CROSSING is specified, then internal module routing can
use resources that cross a module boundary as long as that resource is used on and
off within the module boundary. The format of this constraint is as follows:

AREA_GROUP module_name DISALLOW_BOUNDARY_CROSSING;

♦ RECONFIG_MODE

This optional ‘attribute’ of an AREA_GROUP constraint can be used to specify
that a given module is used for Partial Reconfigurability, therefore the mapper
should MUX programming to generate local constant signals. Since final assembly
is not used in Partial Reconfigurability, there is no way to generate global constant
signals that work for the whole design. They need to be generated on a module by
module basis. If this attribute is not specified, global constant signals are generated
during final assembly. The format of this constraint is as follows:

AREA_GROUP module_name RECONFIG_MODE ;

Note: A value of FIXED_MODE is accepted but SHOULD NOT be used.

Types of Modular Design Errors during Partial Reconfigurability

The following consists of the types of routing or other errors that can occur during
Modular Design:

• Route areas for reconfigurable regions can overlap.

• Route areas for reconfigurable regions can be non-contiguous.

• Route areas for module designs targeted to the same reconfigurable region can be of
different size.

• Routes can be incomplete inside of a route area for a module design.

• Connections between the clock_iob, global clock buffer, and DCM/DLL using non
clock structures.
Development System Reference Guide www.xilinx.com 103
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

• Nets can have loads in multiple route areas.

• TBUF bus macro can be misaligned with respect to the route areas.

Note: All top-level TBUFs must be located with the LOC constraint to a TBUF site during the Initial
Budgeting phase. This is necessary to avoid contention between the 3-state signals. For additional
information on this topic, please refer to Answer Record #12437 at http://support.xilinx.com.

• ROUTE_AREAs can be defined on a slice boundary, when it should be defined on a
CLB (tile) boundary. The RANGEs for an AREA_GROUP as defined in the PCF file
can be different than the RANGEs for the ROUTE_AREA placed on the
NC_ACTIVEMODULE object during mapping. This results in the placement are
differing from the routing area, which could make completion of routing impossible.

Propagation of Constraints during Modular Design

When assembling PIMs, whether for a partial or standard design, or when running the
Sequential Guide flow, the implementation tools generally guide and implement each
module identically to its individual module implementation. However, conflicts may
occur that cause PAR to reroute the initial routing. If a PIM that originally met timing fails
to meet timing in the assembled design, this indicates that this particular type of conflict
and rerouting occurred. Properly constraining the paths within the modules during final
assembly ensures that any rerouting is done correctly. These constraints need to be stored
in the top-level UCF rather than NCF since ngdbuild discards module constraints from the
NCF file in a PIM. Following are some general guidelines:

• Remove constraints on module ports before the Final Assembly phase.

For example, remove any PIN LOC, TPSYNC/FROM-TO, or TPSYNC/OFFSET
constraints on module ports. When the module is used as a PIM, the tools may
improperly constrain or overconstrain the design.

• Place OFFSET constraints on module ports relative to the actual clock pad net, not to
the module clock port.

Note: This is a current limitation with Modular Design.

• Before assembling modules or using a PIM for the Sequential Guide flow, copy the
relevant constraints from the module’s UCF file to the top-level UCF file.

Copy only those constraints that apply to paths completely contained within the
module. This ensures that all relevant constraints are considered during routing.
Following are examples of constraints you should copy:

♦ FROM-TO specifications (and associated TNM, TNM_NET, and TIMEGROUP
definitions) for which both endpoints are within the module

♦ PERIOD specifications (and associated TNM, TNM_NET, and TIMEGROUP
definitions) for clocks that are used only within the module

Note: A PERIOD specification on a top-level clock controls paths inside any PIM that is
clocked by that signal, so it is not necessary to replicate the specification.

♦ TIG directives on nets or pins within the module, provided that the TIG is global
(that is, it has no value) or applies to a specification (TSid) that has also been
copied

Note: You can enter global and top-level constraints with the synthesis tools, but most module-
specific constraints must be entered manually or using the Constraints Editor or Floorplanner. See
the online Help available from each of these GUIs for more information.
104 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/

Modular Design Tips
R

Design Size and Performance
To take full advantage of Modular Design, use this design flow with large designs that
have been created with Modular Design in mind. When working with very large designs
the issues of memory usage, run time, and sheer complexity often make implementation
difficult. Because Modular Design allows multiple designers to work in parallel and make
changes to previously implemented modules in an assembled design, overall efficiency is
improved when compared with implementing a large, flat design. These advantages
include reduced run time overall and efficient use of resources.

Note: Modular Design can be used on small designs to learn Modular Design techniques, but many
of the steps may be burdensome and complex for a small design.

MAP Report
After the Active Module Implementation and Final Assembly phases, review the following
sections of the MAP report (MRP file) to help improve your area groups in the top-level
floorplan:

• Modular Design Summary

You can use this section to help you do the following: determine which components of
your design are part of a module, distinguish whether you are running a partial or full
Modular Design Assembly, and verify your design.

• Guide Report

If you mapped your design using a guide file, you can use this section to find out the
guide mode used (EXACT or LEVERAGE) and the percentage of objects that were
successfully guided.

• Area Group Summary

You can use this section to find out the results for each area group. MAP uses area
groups to specify a group of logical blocks that are packed into separate physical areas.

Note: If you want to debug NOMERGE errors and warnings after the Active Module Implementation
phase, set the XIL_MAP_LISTPORTNETS environment variable. When you set this environment
variable, the Modular Design Summary section of the MRP report includes a list of the port nets for
the active modules.

PAR Reports
After the Final Assembly phase, review the “Guide Summary Report” section of the PAR
report file (design_name.par). This section provides a summary of how many components
and signals in the design were guided by the files in the PIMs directory.

For a more detailed report, review the Guide Reporting file (design_name.grf). This file
includes the same “Guide Summary Report” section as the PAR file and also includes a
“Detail Report” section. The “Detail Report” section contains a section for each PIM guide
file. Each of these sections contains the following information about the components and
signals that PAR guided or attempted to guide in the final design:

• Guided comps located in the guided site

This section lists the components that were matched and guided from the PIM to the
final design. It also lists the component’s location on the chip.
Development System Reference Guide www.xilinx.com 105
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

• Guided comps unable to be located in the guided site

This section lists the components that were matched but could not be guided in the
final design based on their location in the PIM. It also lists the component’s location on
the chip.

• Components in the Guide File that did not match Placement

This section lists the components in the PIM that could not be matched in the final
design.

• Signals in the Guide File that did not match

This section lists the signals in the PIM that could not be matched in the final design.

XFLOW Automation of Modular Design
You can use Xilinx’s XFLOW command line tool to automate the Modular Design flow. See
Chapter 27, “XFLOW” for general information on this tool. For information on the flow
types specific to Modular Design, see the following sections:

• “–initial (Initial Budgeting of Modular Design)”

• “–module (Active Module Implementation)”

• “–assemble (Module Assembly)”

Modular Design Troubleshooting
Following are troubleshooting tips for working with Modular Design. For additional
troubleshooting help, use the resources at http://support.xilinx.com.

Multiple Output Ports MAP Error
If you include a signal in a module that drives more than one output port, the tools attempt
to replicate this signal, and its driving logic such that distinct identical signals are used for
each output port. This replication is needed to maintain the permanence of the defined
module boundary against signal collapse. This type of replication can be noted by
Warnings in the Map report file. If this automatic replication is unacceptable for your
design, then you should manually address this problem in your HDL code for the module.

Part Type Specification
If you are targeting a part different from the one specified in your source design, you must
specify the exact same part type using the -p option every time you run ngdbuild. The
syntax for the –p option is described in “–p (Part Number)” in Chapter 1. Failure to adhere
to this generates modules with different part types that cannot be assembled into a final
design.

Constraints Not Working in Active Module Implementation
If it appears that a constraint is not being processed, make sure there are not multiple
versions of the same constraint defined in the NCF or UCF file. In most cases, if a constraint
is defined multiple times, the last definition of the constraint overwrites any previous
definitions. To specify more than one value for a particular constraint, list all the values on
the same line.
106 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com

Vendor Specific Notes for Synthesis
R

Following are examples of correct and incorrect syntax:

• Correct

The following syntax reserves both site “PAD43” and site “PAD21” for the module
named “A”:

MODULE A RESERVED_SITES = “PAD43, PAD21”;

• Incorrect

In the following syntax, the second RESERVED_SITE constraint overwrites the first,
and the site “PAD43” is not reserved:

MODULE A RESERVED_SITES = “PAD43”;

MODULE A RESERVED_SITES = “PAD21”;

Resource Contention or Timing Constraints Not Met in Final Assembly
Resource contention among modules can occur due to module use of global logic or
routing resources. Also, even if each module meets its timing constraints, the overall
design may not meet its timing constraints due to additive delays. If either of these
conditions occur, reimplement one or more modules as described in “Implementing an
Active Module” before proceeding to the Final Assembly phase.

Note: Although it is possible to use tools during the Final Assembly phase to directly manipulate
resources contained in a module, this is not recommended, because it renders published module
information invalid for future iterations.

Vendor Specific Notes for Synthesis
Use the following procedures for your particular synthesis tool. If your tool is not listed,
refer to your tool’s user documentation.

Synplify or FPGA Express/FPGA Compiler II, version 3.3.1 or earlier
Use the following procedures if you are synthesizing with Synplify or FPGA
Express/FPGA Compiler II (version 3.3.1 or earlier).

Creating a Netlist for Each Module (Synplify or FPGA Express/FPGA
Compiler II, version 3.3.1 or earlier)

Each design project creates one netlist. To create a netlist for each module, do the following:

1. Create a project for the top-level design and for each lower-level module.

2. Synthesize the top-level project with I/O insertion and the
lower-level modules without I/O insertion.

Disabling I/O Insertion for a Module (Synplify or FPGA Express/FPGA
Compiler II, version 3.3.1 or earlier)

To disable I/O insertion for a module, do the following:

1. Select Target → Set Device Options.

2. In the Set Device Options dialog box, select Disable I/O Insertion.
Development System Reference Guide www.xilinx.com 107
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

Disabling I/O Insertion for a Module (Synplify Pro)

To disable I/O insertion for a module, do the following:

1. Select Impl Options

2. In the Options for Implementation dialog box, select the box next to Disable I/O
insertions in the Device Mapping Option portion of the dialog box.

Disabling I/O Insertion for a Module (FPGA Express/FPGA Compiler II,
version 3.3.1 or earlier)

To disable I/O insertion for a module, do the following:

1. Select Synthesis→ Create Implementation.

2. In the Create Implementation dialog box, select Do not insert I/O pads.

Instantiating Primitives (Synplify and Synplify Pro)

For both VHDL and Verilog, you do not need to declare modules when calling primitives
and mapping ports. Synplify provides Virtex primitives in the following areas:

• VHDL: “library architecture” located in $SYNPLICITY/lib/xilinx

• Verilog: and “architecture.v” located in $SYNPLICITY/lib/xilinx

Instantiating Primitives (FPGA Express/FPGA Compiler II, version 3.3.1 or
earlier)

For both VHDL and Verilog, you do not need to declare modules when calling primitives
and mapping ports. FPGA Express/FPGA CompilerII provides Virtex primitives in the
following areas:

• VHDL: “library virtex” located in $SYNPLICITY/lib/xilinx

• Verilog: “virtex.v”located in $SYNPLICITY/lib/xilinx

FPGA Express/FPGA Compiler II, version 3.4 or later
Use the following procedures if you are synthesizing with FPGA Express/FPGA Compiler
II (version 3.4 or later).

Creating a Netlist for Each Module (FPGA Express/FPGA Compiler II,
version 3.4 or later)

Use the Incremental Synthesis feature to synthesize each design module individually
within a project. To create a netlist for each module, do the following:

1. In the FPGA Express/FPGA Compiler II Constraints Editor, select the Modules tab.

2. In the Block Partition column, set the Block Root attribute for the top-level design and
for each module listed.

3. Export the design to produce a separate EDIF file for each module.
108 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Vendor Specific Notes for Synthesis
R

Disabling I/O Insertion for a Module (FPGA Express/FPGA Compiler II,
version 3.4 or later)

To disable I/O insertion for a module, do the following:

1. Select Synthesis in the process area.

2. Select Properties.

3. In the Create Implementation dialog box, select Do not insert I/O pads.

Instantiating Primitives (FPGA Express/FPGA Compiler II, version 3.4 or
later)

Instantiating primitives differs based on whether you use VHDL or Verilog.

• VHDL: You must declare all instantiated components in the VHDL.

• Verilog: You do not need to declare modules in the Verilog code.

Note: If you instantiate an IBUFG in the top-level design code, FPGA Express inserts IBUF
before IBUFG, which causes an ngdbuild error. To avoid this, instantiate the IPAD, omitting the
port declaration.

LeonardoSpectrum
Use the following procedures if you are synthesizing with LeonardoSpectrum.

Creating a Netlist for Each Module (LeonardoSpectrum)

To create a netlist for each module, you can create multiple netlists from a single project
using the GUI or using a script.

Following is a script example for a VHDL design:

set part v50ecs144
load_library xcve
read ./top.vhd
optimize -target xcve -hier preserve
present_design .work.top.modular
auto_write -format edf top.edf
read ./module_a.vhd
read ./module_b.vhd
read ./module_c.vhd
optimize -target xcve -hier preserve
present_design .work.module_a.modular
auto_write -format edf module_a.edf
present_design .work.module_b.modular
auto_write -format edf module_b.edf
present_design .work.module_c.modular
auto_write -format edf module_c.edf

Following is a script example for a Verilog design:

set part v50ecs144
load_library xcve
read ./module_a.v
read ./module_b.v
read ./module_c.v
read ./top.v
optimize -target xcve -hier preserve
Development System Reference Guide www.xilinx.com 109
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

present_design .work.module_a.INTERFACE
auto_write -format edf module_a.edf
present_design .work.module_b.INTERFACE
auto_write -format edf module_b.edf
present_design .work.module_c.INTERFACE
auto_write -format edf module_c.edf
NOOPT .work.module_a.INTERFACE
NOOPT .work.module_b.INTERFACE
NOOPT .work.module_c.INTERFACE
present_design .work.top.INTERFACE
auto_write -format edf top.edf

Disabling I/O Insertion for a Module (LeonardoSpectrum)

To disable I/O insertion for a module, do the following:

1. Select the Quick Setup tab.

2. Make sure the Insert I/O Pads checkbox is deselected.

Instantiating Primitives (LeonardoSpectrum)

Instantiating primitives differs based on whether you use VHDL or Verilog.

• VHDL: You must declare all instantiated components in the code.

• Verilog: You do not need to declare modules in the code.

XST

Creating a Netlist for Each Module (XST)

Use the Incremental Synthesis feature to synthesize each design module individually
within a project. To create a netlist for each module, do the following:

1. In the Project Navigator, select your module design in the Source window.

2. Select Synthesize in the Process window.

3. Select Process → Properties.

4. Export the design to produce a separate NGC file for each module.

Disabling I/O Insertion for a Module (XST)

To disable I/O insertion for a module, do the following:

1. In the Xilinx Project Navigator, select your module design in the Source window.

2. Select Synthesize in the Process window.

3. Select Process → Properties.

4. In the Xilinx Specific Options tab of the Process Properties dialog box, make sure the
Add I/O Buffers checkbox is deselected.

Instantiating Primitives (XST)

XST instantiates primitives automatically.
110 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

HDL Code Examples
R

HDL Code Examples
Following are code examples for your reference.

Top-Level Design
The top-level design should include all global logic, all design modules, and the logic that
connects modules to each other and to
I/O ports. Each module should be instantiated as a “black box,” with only ports and port
directions. For general coding guidelines, see “General Coding Guidelines”.

VHDL Example: Top-Level Design

library IEEE;
use IEEE.std_logic_1164.all;

entity top is port (ipad_dll_clk_in: in std_logic;
dll_rst : in std_logic;
top2a_c: in std_logic;
top2b: in std_logic;
obuft_out: out std_logic;
mod_c_out: out std_logic;
moda_clk_pad: in std_logic;
moda_data: in std_logic;
moda_out: out std_logic;
modb_clk_pad: in std_logic;
modb_data: in std_logic;
modb_out: out std_logic;
modc_clk_pad: in std_logic;
modc_data: in std_logic;
modc_out: out std_logic

) ;
end top;

architecture modular of top is

signal dll_clk_in : std_logic;
signal clk_top : std_logic;
signal dll_clk_out: std_logic;
signal a2top_obuft_i: std_logic;
signal a2c: std_logic;
signal a2b: std_logic;
signal b2top_obuft_t: std_logic;
signal b2c: std_logic;
signal b2a: std_logic;
signal c2and2: std_logic;
signal c2a: std_logic;
signal a_and_c: std_logic;
signal moda_clk: std_logic;
signal modb_clk: std_logic;
signal modc_clk: std_logic;

component IBUFG is port
(I : in std_logic;
O : out std_logic);
end component;
Development System Reference Guide www.xilinx.com 111
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

component CLKDLL is port (
CLKIN : in std_logic;
CLKFB : in std_logic;
RST : in std_logic;
CLK0 : out std_logic;
CLK90 : out std_logic;
CLK180 : out std_logic;
CLK270 : out std_logic;
CLKDV : out std_logic;
CLK2X : out std_logic;
LOCKED : out std_logic);
end component;

component BUFG is port
I : in std_logic;
O : out std_logic);
end component;

component BUFGP
port (
I : in std_logic;
O : out std_logic);
end component;

-- Declare modules at top-level to get port directionality
component module_a is port(CLK_TOP: in std_logic;

B2A_IN: in std_logic;
TOP2A_IN: in std_logic;
C2A_IN: in std_logic;
MODA_DATA : in std_logic;
MODA_CLK : in std_logic;
A2B_OUT: out std_logic;
A2TOP_OBUFT_I_OUT: out std_logic;
A2c_ouT: out std_logic;
MODA_OUT : out std_logic

);
end component;

component module_b is port(CLK_TOP: in std_logic;
A2B_IN: in std_logic;
TOP2B_IN: in std_logic;
A_AND_C_IN: in std_logic;
MODB_DATA: in std_logic;
MODB_CLK: in std_logic;
MODB_OUT : out std_logic;
B2A_OUT: out std_logic;
B2TOP_OBUFT_T_OUT: out std_logic;
B2C_OUT: out std_logic);

end component;

component module_c is port(CLK_TOP: in std_logic;
B2C_IN: in std_logic;
TOP2A_C_IN: in std_logic;
A2C_IN: in std_logic;
MODC_DATA: in std_logic;
MODC_CLK: in std_logic;
MODC_OUT: out std_logic;
C2A_OUT: out std_logic;
C2TOP_OUT: out std_logic;
112 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

HDL Code Examples
R

C2AND2_OUT: out std_logic);
end component;

begin
ibuf_dll: IBUFG port map(I =>ipad_dll_clk_in,

O => dll_clk_in);
dll_1: CLKDLL port map(CLKIN => dll_clk_in,

CLKFB => clk_top,
CLK0 => dll_clk_out,
RST => dll_rst);

globalclk: BUFG port map(O => clk_top,
I => dll_clk_out);

bufg_moda : BUFGP port map (O => moda_clk,
I => moda_clk_pad);

bufg_modb : BUFGP port map (O => modb_clk,
I => modb_clk_pad);

bufg_modc : BUFGP port map (O => modc_clk,
I => modc_clk_pad);

-- A simple piece of external logic at top level
a_and_c <= c2and2 and b2a;
-- Tri-state output
obuft_out <= a2top_obuft_i when b2top_obuft_t = ’0’ else ’Z’;
instance_a: module_a port map (CLK_TOP =>clk_top,

TOP2A_IN =>top2a_c,
C2A_IN =>c2a,
B2A_IN => b2a,
MODA_DATA => moda_data,
MODA_CLK => moda_clk,
MODA_OUT => moda_out,
A2B_OUT => a2b,
A2TOP_OBUFT_I_OUT => a2top_obuft_i,
A2C_OUT => a2c) ;

instance_b: module_b port map (CLK_TOP => clk_top,
TOP2B_IN => top2b,
A2B_IN => a2b,
A_AND_C_IN => a_and_c,
MODB_DATA => modb_data,
MODB_CLK => modb_clk,
MODB_OUT => modb_out,
B2TOP_OBUFT_T_OUT => b2top_obuft_t,
B2C_OUT => b2c,
B2A_OUT => b2a);

instance_c: module_c port map (CLK_TOP => clk_top,
TOP2A_C_IN => top2a_c,
B2C_IN => b2c,
A2C_IN => a2c,
MODC_DATA => modc_data,
MODC_CLK => modc_clk,
MODC_OUT => modc_out,
C2TOP_OUT => mod_c_out,
C2AND2_OUT => c2and2,
C2A_OUT => c2a);

end modular;
Development System Reference Guide www.xilinx.com 113
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

Verilog Example: Top-Level Design

module top (ipad_dll_clk_in, dll_rst, top2a_c, top2b, obuft_out,
mod_c_out, moda_data, moda_clk_pad, moda_out, modb_data,
modb_clk_pad, modb_out, modc_data, modc_clk_pad, modc_out) ;
input ipad_dll_clk_in;
input dll_rst;
input top2a_c;
input top2b;
output obuft_out;
output mod_c_out;
input moda_data;
input moda_clk_pad;
output moda_out;
input modb_data;
input modb_clk_pad;
output modb_out;
input modc_data;
input modc_clk_pad;
output modc_out;

//wire ipad_dll_clk_out;
wire clk_top;
wire dll_clk_out;
wire a2top_obuft_i;
wire a2c;
wire a2b;
wire b2top_obuft_t;
wire b2c;
wire b2a;
wire c2and2;
wire c2a;
wire a_and_c;
wire moda_clk;
wire modb_clk;
wire modc_clk;

IBUFG ibuf_dll (.I(ipad_dll_clk_in),
.O(dll_clk_in));

CLKDLL dll_1 (.CLKIN(dll_clk_in),
.CLKFB(clk_top),
.CLK0(dll_clk_out),
.RST(dll_rst));

BUFG globalclk (.O(clk_top),
.I(dll_clk_out));

BUFGP bufg_moda (.O(moda_clk),
.I(moda_clk_pad));

BUFGP bufg_modb (.O(modb_clk),
.I(modb_clk_pad));

BUFGP bufg_modc (.O(modc_clk),
.I(modc_clk_pad));
114 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

HDL Code Examples
R

// A simple piece of external logic at top level
assign a_and_c = c2and2 && b2a;
// Tri-state output
assign obuft_out = (!b2top_obuft_t) ? a2top_obuft_i : 1’bz;

module_a instance_a (.CLK_TOP(clk_top),
.B2A_IN(b2a),
.TOP2A_IN(top2a_c),
.C2A_IN(c2a),
.MODA_DATA(moda_data),
.MODA_CLK (moda_clk),
.MODA_OUT (moda_out),
.A2B_OUT(a2b),
.A2TOP_OBUFT_I_OUT(a2top_obuft_i),
.A2C_OUT(a2c)) ;

module_b instance_b (.CLK_TOP(clk_top),
.TOP2B_IN(top2b),
.A2B_IN(a2b),
.A_AND_C_IN(a_and_c),
.MODB_DATA(modb_data),
.MODB_CLK(modb_clk),
.MODB_OUT(modb_out),
.B2TOP_OBUFT_T_OUT(b2top_obuft_t),
.B2C_OUT(b2c),
.B2A_OUT(b2a));

module_c instance_c (.CLK_TOP(clk_top),
.TOP2A_C_IN(top2a_c),
.B2C_IN(b2c),
.A2C_IN(a2c),
.MODC_DATA(modc_data),
.MODC_CLK(modc_clk),
.MODC_OUT(modc_out),
.C2TOP_OUT(mod_c_out),
.C2AND2_OUT(c2and2),
.C2A_OUT(c2a));

endmodule

// Declare modules at top-level to get port directionality
module module_a (CLK_TOP, B2A_IN, TOP2A_IN, C2A_IN, MODA_DATA,
MODA_CLK, MODA_OUT, A2B_OUT, A2TOP_OBUFT_I_OUT, A2C_OUT) ;
input CLK_TOP ;
input B2A_IN ;
input TOP2A_IN ;
input C2A_IN ;
input MODA_DATA;
input MODA_CLK;
output MODA_OUT;
output A2B_OUT ;
output A2TOP_OBUFT_I_OUT ;
output A2C_OUT ;

endmodule
Development System Reference Guide www.xilinx.com 115
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

module module_b (CLK_TOP, A2B_IN, TOP2B_IN, A_AND_C_IN, MODB_DATA,
MODB_CLK, MODB_OUT, B2A_OUT, B2TOP_OBUFT_T_OUT, B2C_OUT) ;
input CLK_TOP ;
input A2B_IN ;
input TOP2B_IN ;
input A_AND_C_IN ;
input MODB_DATA;
input MODB_CLK;
output MODB_OUT;
output B2A_OUT ;
output B2TOP_OBUFT_T_OUT ;
output B2C_OUT ;

endmodule

module module_c (CLK_TOP, B2C_IN, TOP2A_C_IN, A2C_IN, MODC_DATA,
MODC_CLK, MODC_OUT, C2A_OUT, C2TOP_OUT, C2AND2_OUT) ;
input CLK_TOP ;
input B2C_IN ;
input TOP2A_C_IN ;
input A2C_IN ;
input MODC_DATA;
input MODC_CLK;
output MODC_OUT;
output C2A_OUT ;
output C2TOP_OUT ;
output C2AND2_OUT ;

endmodule

External I/Os in a Module
It is recommended that you declare external I/Os in the top-level design. However, you
can include external I/Os in a module without modifying the top-level code. This may be
useful if you want to add a temporary external I/O in the module for simulation. To do
this, explicitly instantiate IBUF/IBUFG/BUFGP and OBUF connections. Following are
examples of code.

Note: Do not directly connect these I/Os to module ports.

VHDL Example: Module Design with Inserted I/Os

library IEEE;
use IEEE.std_logic_1164.all;
entity module_a is port (CLK_TOP : in std_logic;

B2A_IN: in std_logic;
TOP2A_IN: in std_logic;
C2A_IN: in std_logic;
MODA_DATA : in std_logic;
MODA_CLK : in std_logic;
MODA_OUT : out std_logic;
A2B_OUT: out std_logic;
A2TOP_OBUFT_I_OUT: out std_logic;
A2C_OUT: out std_logic) ;

end module_a;
architecture modular of module_a is
-- add your signal declarations here
signal Q0_OUT, Q1_OUT, Q2_OUT, Q3_OUT : std_logic;
signal AND4_OUT: std_logic ;
signal OR4_OUT : std_logic;
116 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

HDL Code Examples
R

begin
AND4_OUT <= Q0_OUT and Q1_OUT and Q2_OUT and Q3_OUT ;
OR4_OUT <= Q0_OUT or Q1_OUT or Q2_OUT or Q3_OUT ;
TOP_CLK: process(CLK_TOP)
begin
if (CLK_TOP’event and CLK_TOP = ’1’) then
Q0_OUT <= MODA_DATA ;
Q2_OUT <= TOP2A_IN ;
MODA_OUT <= OR4_OUT ;
A2B_OUT <= AND4_OUT ;

end if;
end process TOP_CLK;
CLK_MODA: process(MODA_CLK)
begin
if (MODA_CLK’event and MODA_CLK = ’1’) then
Q1_OUT <= B2A_IN ;
Q3_OUT <= C2A_IN ;
A2TOP_OBUFT_I_OUT <= AND4_OUT ;
A2C_OUT <= OR4_OUT ;

end if;
end process CLK_MODA;
end modular;

Verilog Example: Module Design with Inserted I/Os

In the following example, the module has two external inputs (IPAD_MODA_CLK and
IPAD_MODA_DATA) and one external output (OPAD_MODA_OUT). These external
I/Os, IBUF, OBUF, and BUFGP are instantiated.

The lower-level port declaration is different from the top-level declaration of module_a.
Lower-level module_a has three additional ports. With Modular Design, ngdbuild ignores
this port mismatch and uses module_a.edf to describe module_a. These
I/Os will be present in the design and available for simulation.

module module_a (CLK_TOP, B2A_IN, TOP2A_IN, C2A_IN, MODA_DATA,
MODA_CLK, MODA_OUT, A2B_OUT, A2TOP_OBUFT_I_OUT, A2C_OUT);
input CLK_TOP ;
input B2A_IN ;
input TOP2A_IN ;
input C2A_IN ;
input MODA_DATA, MODA_CLK;
output MODA_OUT;
output A2B_OUT ;
output A2TOP_OBUFT_I_OUT ;
output A2C_OUT ;
// add your declarations here
reg Q0_OUT, Q1_OUT, Q2_OUT, Q3_OUT ;
reg A2B_OUT, A2TOP_OBUFT_I_OUT, A2C_OUT ;
reg MODA_OUT;
wire AND4_OUT ;
wire OR4_OUT ;
// add your code here
assign AND4_OUT = Q0_OUT && Q1_OUT && Q2_OUT && Q3_OUT ;
assign OR4_OUT = Q0_OUT || Q1_OUT || Q2_OUT || Q3_OUT ;
always @ (posedge CLK_TOP)
begin : TOP_CLK
Q0_OUT <= MODA_DATA ;
Q2_OUT <= TOP2A_IN ;
Development System Reference Guide www.xilinx.com 117
 1-800-255-7778

http://www.xilinx.com

Chapter 4: Modular Design
R

MODA_OUT <= OR4_OUT ;
A2B_OUT <= AND4_OUT ;

end
always @ (posedge MODA_CLK)
begin : CLK_MODA
Q1_OUT <= B2A_IN ;
Q3_OUT <= C2A_IN ;

A2TOP_OBUFT_I_OUT <= AND4_OUT ;
A2C_OUT <= OR4_OUT ;

end
endmodule
118 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 5

PARTGen

The PARTGen program is compatible with the following Xilinx devices.

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/3

• CoolRunner™ XPLA3/-II/-IIS

• XC9500™/XL/XV

This chapter describes PARTGen. The chapter contains the following sections.

• “PARTGen Overview”

• “PARTGen Syntax”

• “PARTGen Input Files”

• “PARTGen Output Files”

• “PARTGen Options”

• “Partlist.xct File”

• “PKG File”

PARTGen Overview
The PARTGen command displays various levels of information about installed Xilinx
devices and families depending on which options are selected.

PARTGen Syntax
Following is the syntax for PARTGen:

partgen [options]

options can be any number of the options listed in “PARTGen Options”. They need not be
listed in any order. Use spaces to separate multiple options.

PARTGen Input Files
PARTGen does not have any user input files.
Development System Reference Guide www.xilinx.com 119
 1-800-255-7778

http://www.xilinx.com

Chapter 5: PARTGen
R

PARTGen Output Files
PARTGen optionally outputs the following files if you use the –p and –v options:

• XCT file—This file contains detailed information about architectures and devices. See
the “Partlist.xct File” for a detailed description.

• PKG files—These files correlate IOBs with output pin names. The –p option generates
a three column entry describing the pins. The –v option adds five more columns of
descriptive pin information. See the “PKG File”.

• XML files—These files are generated with the use of the -v or -p command line
options.

• ASCII files—These files are generated with the use of the -v or -p command line
options.

PARTGen Options
This section describes the command line options and how they affect the behavior of
PARTGen.

–arch (Print Information for Specified Architecture)
–arch architecture_name

The –arch option prints a list of devices, packages, and speeds for a specified architecture
that has been installed.

Valid entries for architecture_name and the corresponding device product name are listed in
the following table:

Table 5-1: Values for architecture_name

architecture_name
Corresponding Device

Product Name

virtex Virtex

virtex2 Virtex-II

virtex2p Virtex-II Pro

virtexe Virtex-E

spartan2 Spartan-II

spartan2e Spartan-IIE

spartan3 Spartan-3

xc9500 XC9500

xc9500xl XC9500XL

xc9500xv XC9500XV

xpla3 CoolRunner XPLA3

xbr CoolRunner II

cr2s CoolRunner IIS
120 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PARTGen Options
R

For example, entering the command partgen -arch spartan displays the following
information:

Build: /build/bcxfndry/HEAD/rtf

command: partgen -arch virtex

Release 6.1i - PartGen HEAD

Copyright (c) 1995-2003 Xilinx, Inc. All rights reserved.

v50 SPEEDS: -6 -5 -4 (Minimum speed data
available)

 bg256

 cs144

 fg256

 pq240

 tq144

v100 SPEEDS: -6 -5 -4 (Minimum speed data
available)

 bg256

 cb228

 cs144

 fg256

 pq240

 tq144

v150 SPEEDS: -6 -5 -4 (Minimum speed data
available)

 bg256

 bg352

 fg256

 fg456

 pq240

v200 SPEEDS: -6 -5 -4 (Minimum speed data
available)

 bg256

 bg352

 fg256

 fg456

 pq240

v300 SPEEDS: -6 -5 -4 (Minimum speed data
available)

 bg352

 bg432

 cb228

 fg456

 pq240
Development System Reference Guide www.xilinx.com 121
 1-800-255-7778

http://www.xilinx.com

Chapter 5: PARTGen
R

v400 SPEEDS: -6 -5 -4 (Minimum speed data
available)

 bg432

 bg560

 fg676

 hq240

v600 SPEEDS: -6 -5 -4 (Minimum speed data
available)

 bg432

 bg560

 cb228

 fg676

 fg680

 hq240

v800 SPEEDS: -6 -5 -4 (Minimum speed data
available)

 bg432

 bg560

 fg676

 fg680

 hq240

v1000 SPEEDS: -6 -5 -4 (Minimum speed data
available)

 bg560

 cg560

 fg680

–i (Print a List of Devices, Packages, and Speeds)
The –i option prints out a list of devices, packages, and speeds that have been installed.
Following is a portion of a sample display:

2s15 SPEEDS: -6 -5 -5Q (Minimum speed data
available)

 cs144

 tq144

 vq100

2s30 SPEEDS: -6 -5 -5Q (Minimum speed data
available)

 cs144

 tq144

 pq208

 vq100
122 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PARTGen Options
R

2s50 SPEEDS: -6 -5 -5Q (Minimum speed data
available)

 tq144

 fg256

 pq208

2s100 SPEEDS: -6 -5 -5Q (Minimum speed data
available)

 tq144

 fg256

 fg456

 pq208

2s150 SPEEDS: -6 -5 -5Q (Minimum speed data
available)

 fg456

 fg256

 pq208

2s200 SPEEDS: -6 -5 -5Q (Minimum speed data
available)

 fg256

 fg456

 pq208

2s50e SPEEDS: -7 -6 -6Q (Minimum speed data
available)

 ft256

 pq208

 tq144

2s100e SPEEDS: -7 -6 -6Q (Minimum speed data
available)

 ft256

 fg456

 pq208

 tq144

2s150e SPEEDS: -7 -6 -6Q (Minimum speed data
available)

 ft256

 fg456

 pq208

2s200e SPEEDS: -7 -6 -6Q (Minimum speed data
available)

 ft256

 fg456

 pq208
Development System Reference Guide www.xilinx.com 123
 1-800-255-7778

http://www.xilinx.com

Chapter 5: PARTGen
R

2s300e SPEEDS: -7 -6 -6Q (Minimum speed data
available)

 ft256

 fg456

 pq208

2s400e SPEEDS: -7 -6 -6Q (Minimum speed data
available)

 ft256

 fg456

 fg676

2s600e SPEEDS: -7 -6 -6Q (Minimum speed data
available)

 fg456

 fg676

3s50 SPEEDS: -4

 pq208

 tq144

 vq100

3s200 SPEEDS: -4

 ft256

 pq208

 tq144

 vq100

3s400 SPEEDS: -4

 fg456

 ft256

 pq208

 tq144

3s1000 SPEEDS: -4

 fg456

 fg676

 ft256

3s1500 SPEEDS: -4

 fg456

 fg676

3s2000 SPEEDS: -4

 fg676

 fg900

3s4000 SPEEDS: -4

 fg900

 fg1156

3s5000 SPEEDS: -4

 fg900

 fg1156
124 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PARTGen Options
R

v50 SPEEDS: -6 -5 -4 (Minimum speed data
available)

 bg256

 cs144

 fg256

 pq240

 tq144

v100 SPEEDS: -6 -5 -4 (Minimum speed data
available)

–p (Creates Package file and Partlist.xct File)
–p name

The –p option generates a partlist.xct file for the specified name and also creates package
files. All files are placed in the working directory. Valid name entries include architectures,
devices, and parts. Following are example command line entries of each type:

–p virtex (Architecture)

–p xcv400 (Device)

–p v400bg432 (Part)

If an architecture, device, or part is not specified with the –p option, detailed information
for every installed device is submitted to the partlist.xct file.

The –p option generates more detailed information than the -arch options but less
information than the –v option. The -p option generates a three column entry describing
the pins. For each pin the following data appears:

• Column 1: contains either pin (user accessible pin) or pkgpin (dedicated pin).

• Column 2: specifies the pin name.

• Column 3: specifies the package pin.

For a description of the entries in the partlist.xct file, see the “Partlist.xct File”.

–nopkgfile
The –nopkgfile option cancels the production of the .pkg files when the – p and –v options
are used. The –nopkgfile option allows you to bypass creating of the .pkg files altogether.

–v (Creates Packages and Partlist.xct File)
–v name

The –v option generates a partlist.xct file for the specified name and also creates package
files. Valid name entries include architectures, devices, parts. Following are example
command line entries of each type:

–v virtex (Architecture)

–v xcv400 (Device)

–v v400bg432 (Part)

If no architecture, device, or part is specified with the –v option, information for every
installed device is submitted to the partlist.xct file.
Development System Reference Guide www.xilinx.com 125
 1-800-255-7778

http://www.xilinx.com

Chapter 5: PARTGen
R

The –v option generates more detailed information than the –p option. The –p and –v
options are mutually exclusive, that is, you can specify one or the other but not both. The -
p option generates a three column entry describing the pins. The -v option adds five more
columns of descriptive pin information.For each pin the following data appears:

• Column 1: contains either pin (user accessible pin) or pkgpin (dedicated pin).

• Column 2: specifies the pin name.

• Column 3: specifies the package pin.

• Column 4: IO_BANK is a positive integer associated with a VREF bank, or -1 to
indicate no VREF bank association.

• Column 5: specifies the function name, and consists of a string indicating how the pin
is used. If the pin is dedicated, then the string will indicate the specific function. If the
pin is a generic user pin, the string will be "IO." If the pin is multipurpose, an
underscore-separated set of characters will make up the string.

• Column 6: indicates the closest CLB row/column to the pin.

• Column 7: indicates LVDS IOB association, consisting of an index (ranging from 0 to
the number of LVDS pairs - 1) and the letter M or S. The value "N.A." indicates a non-
LVDS pin.

• Column 8: indicates the flight time data (trace length) in units of microns. If no data is
available, the column will contain zeros.

Note: For a description of the entries in the partlist.xct file, see the “Partlist.xct File”.

Partlist.xct File
The partlist.xct file contains detailed information about architectures and devices,
including supported synthesis tools.

The partlist.xct file is a series of part entries. There is one entry for every part supported in
the installed software. The following subsections describe the information contained in the
partlist.xct file.

Header
The first part is a header for the entry. The format of the entry looks like the following:

part architecture family partname diename packagefilename

Following is an example for the XCV50bg256:

partVIRTEX V50bg256 NA.die v50bg256.pkg

Device Attributes
The header is followed by a list of device attributes. Not all attributes are applicable to all
devices.

• CLB row and column sizes: NCLBROWS=# NCLBCOLS=#

• Sub-family designation: STYLE=sub_family
(For example, STYLE = Virtex2)

• Input registers: IN_FF_PER_IOB=#

• Output registers: OUT_FF_PER_IOB=#
126 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Partlist.xct File
R

• Number of pads per row and per column: NPADS_PER_ROW=#
NPADS_PER_COL=#

• Bitstream information:

♦ Number of frames: NFRAMES=#

♦ Number bits/frame: NBITSPERFRAME=#

The preceding bulleted items display for both the -p and -v options. The following bulleted
items are displayed only when using the -v option:

• Number of IOBS in device: NIOBS=#

• Number of bonded IOBS: NBIOBS=#

• Slices per CLB: SLICES_PER_CLB=#

For slice-based architectures, such as Virtex.

(For non-slice based architectures, assume one slice per CLB)

• Flip-flops for each slice: FFS_PER_SLICE=#

• Latches for each slice: CAN BE LATCHES={TRUE|FALSE}

• DLL blocks for Virtex, Vritex-E, and Spartan-II families, and DCMs for Virtex-II and
Virtex-IIP that include the DLL functionality.

• Number of direct connects per slice.

• LUTs in a slice: LUT_NAME=name LUT_SIZE=#

• Number of global buffers: NUM_GLOBAL_BUFFERS=#

(The number of places where a buffer can drive a global clock combination)

• External Clock IOB pins:

♦ For the Virtex, Virtex-E, and Spartan-II:

GCLKBUF0=PAD#, GCLKBUF1=PAD#,
GCLKBUF2=PAD#, GCLKBUF3=PAD#

♦ For Virtex-II and Virtex-II Pro:

BUFGMUX0P=PAD#, BUFGMUX1P=PAD#,
BUFGMUX2P=PAD#, BUFGMUX3P=PAD#, BUFGMUX4P=PAD#,
BUFGMUX5P=PAD#,
BUFGMUX6P=PAD#, BUFGMUX7P=PAD#

• Block RAM:

NUM_BLK_RAMS=#
BLK_RAM_COLS=# BLK_RAM_COL0=# BLK_RAMCOL1=# BLK_RAM_COL2=#
BLK_RAM_COL_3=#
BLK_RAM_SIZE=4096x1 BLK_RAM_SIZE=2048x2 BLK_RAM_SIZE=512x8
BLK_RAM_SIZE=256x16

Block RAM locations are given with reference to CLB columns. In the following
example, Block RAM 5 is positioned in CLB column 32.

NUM_BLK_RAMS=10 BLK_RAM_COL_5=32 BLK_RAM_SIZE=4096X1

• Select RAM:

NUM_SEL_RAMS=# SEL_RAM_SIZE=#X#

• Select Dual Port RAM:

SEL_DP_RAM={TRUE|FALSE}
Development System Reference Guide www.xilinx.com 127
 1-800-255-7778

http://www.xilinx.com

Chapter 5: PARTGen
R

This field indicates whether the select RAM can be used as a dual port ram. The
assumption is that the number of addressable elements is reduced by half, that is, the
size of the select RAM in Dual Port Mode is half that indicated by SEL_RAM_SIZE.

• Speed grade information: SPEEDGRADE=#

• Typical delay across a LUT for each speed grade: LUTDELAY=#

• Typical IOB input delay: IOB_IN_DELAY=#

• Typical IOB output delay: IOB_OUT_DELAY=#

• Maximum LUT constructed in a slice:

MAX_LUT_PER_SLICE=#

(From all the LUTs in the slice)

• Max LUT constructed in a CLB: MAX_LUT_PER_CLB=#

This field describes how wide a LUT can be constructed in the CLB from the available
LUTs in the slice.

• Number of internal 3-state buffers in a device: NUM_TBUFS PER ROW=#

PKG File
The PKG files correlate IOBs with output pin names. The –p option generates a three
column entry describing the pins. The –v option adds five more columns of descriptive pin
information.

For example, the command partgen –p xc2v40 generates the package files:
2v40cs144.pkg and 2v40fg256.pkg. Following is a portion of the package file for the
2v40cs144:

package 2v40cs144
pin PAD96 D3
pin PAD2 A3
pin PAD3 C4
pin PAD4 B4
.
.
.

The first column contains either pin (user accessible pin) or pkgpin (dedicated pin). The
second column specifies the pin name. For user accessible pins, the name of the pin is the
bonded pad name associated with an IOB on the device, or the name of a multi-purpose
pin. For dedicated pins, the name is either the functional name of the pin, or no connection
(N.C.). The third column specifies the package pin.
128 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PKG File
R

The command partgen –v generates package (.pkg) files and generates a eight column
entry describing the pins. The first three columns are described in the preceding section.

The fourth column, IO_BANK, is a positive integer associated with a bank, or –1 for no
bank association. The fifth column, specifying function name, consists of a string
indicating how the pin is used. If the pin is dedicated, then the string will indicate a specific
function. If the pin is a generic user pin, the string is IO. If the pin is multipurpose, an
underscore-separated set of characters will make up the string. The sixth column indicates
the closest CLB row or column to the pin, and appears in the form R[0-9]C[0-9]. The
seventh column is comprised of a string for each pin associated with a LVDS IOB. The
string consists of and index and the letter M or S. Index values will go from 0 to the number
of LVDS pairs. The value for a non-LVDS pin will default to N.A. The eighth column is
composed of flight-time data in units of microns. If no flight-time data is available, this
column contains zeros.

Following are examples of the verbose pin descriptors in PARTGen:

package 2v40fg256
pkpin N.C. D9 -1 N.C. N.A. N.A. 0
pkpin DONE M12 -1 DONE N.A. N.A. 0
pkpin VCCO N1 -1 VCCO N.A. N.A. 0
.
.
.

Development System Reference Guide www.xilinx.com 129
 1-800-255-7778

http://www.xilinx.com

Chapter 5: PARTGen
R

130 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 6

NGDBuild

This program is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/3

• CoolRunner™ XPLA3/-II/-IIs

• XC9500™/XL/XV

This chapter describes the NGDBuild program. The chapter contains the following
sections

• “NGDBuild Overview”

• “NGDBuild Syntax”

• “NGDBuild Input Files”

• “NGDBuild Output Files”

• “NGDBuild Intermediate Files”

• “NGDBuild Options”

NGDBuild Overview
NGDBuild performs all the steps necessary to read a netlist file in EDIF, or NGC format
and create an NGD file describing the logical design (a logical design is in terms of logic
elements such as AND gates, OR gates, decoders, flip-flops, and RAMs). The NGD file
resulting from an NGDBuild run contains both a logical description of the design reduced
to Xilinx Native Generic Database (NGD) primitives and a description in terms of the
original hierarchy expressed in the input netlist. The output NGD file can be mapped to the
desired device family.

The following figure shows a simplified version of the NGDBuild design flow. NGDBuild
invokes other programs that are not shown in the drawing.
Development System Reference Guide www.xilinx.com 131
 1-800-255-7778

http://www.xilinx.com

Chapter 6: NGDBuild
R

Converting a Netlist to an NGD File
NGDBuild performs the following steps to convert a netlist to an NGD file:

1. Reads the source netlist

NGDBuild invokes the Netlist Launcher. The Netlist Launcher determines the input
netlist type and starts the appropriate netlist reader program. The netlist reader
incorporates NCF files associated with each netlist. NCF files contain timing and
layout constraints for each module. The Netlist Launcher is described in detail in the
“Netlist Launcher (Netlister)” in Appendix B.

2. Reduces all components in the design to NGD primitives

NGDBuild merges components that reference other files. NGDBuild also finds the
appropriate system library components, physical macros (NMC files), and behavioral
models.

3. Checks the design by running a Logical Design Rule Check (DRC) on the converted
design

Logical DRC is a series of tests on a logical design. It is described in Chapter 7, “Logical
Design Rule Check”.

4. Writes an NGD file as output

Note: This procedure, the Netlist Launcher, and the netlist reader programs are described in more
detail in Appendix B, “EDIF2NGD, and NGDBuild”.

Figure 6-1: NGDBuild Design Flow

X10031

NMC
Physical Macros

Referenced in Netlist

NGDBuild

Netlist Reader

UCF
User Constraints File

URF
User Rules File

BLD
Build Report

NGD
Generic Database

NGO
Intermediate File

NCF
Netlist Constraints File

EDIF 2 0 0
Netlist

NGC Netlist
(XST File)
132 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGDBuild Syntax
R

NGDBuild Syntax
The following command reads the design into the Xilinx Development system and
converts it to an NGD file:

ngdbuild [options] design_name [ngd_file[.ngd]]

options can be any number of the NGDBuild command line switches listed in “NGDBuild
Options”. They can be listed in any order. Separate multiple options with spaces.

design_name is the top-level name of the design file you want to process. To ensure the
design processes correctly, specify a file extension for the input file, using one of the legal
file extensions specified in “NGDBuild Input Files”. Using an incorrect or nonexistent file
extension causes NGDBuild to fail without creating an NGD file. If you use an incorrect file
extension, NGDBuild may issue an “unexpanded” error.

Note: If you are using an NGC file as your input design, it is recommended that you specify the .ngc
extension. If NGDBuild finds an EDIF netlist or NGO file in the project directory, it does not check for
an NGC file.

ngd_file[.ngd] is the output file in NGD format. The output file name, its extension, and its
location are determined as follows:

• If you do not specify an output file name, the output file has the same name as the
input file, with an .ngd extension.

• If you specify an output file name with no extension, NGDBuild appends the .ngd
extension to the file name.

• If you specify a file name with an extension other than .ngd, you get an error message
and NGDBuild does not run.

• If the output file already exists, it is overwritten with the new file.

NGDBuild Input Files
NGDBuild uses the following files as input:

• Design file—The input design can be an EDIF 2 0 0 or NGC netlist file. If the input
netlist is in another format that the Netlist Launcher recognizes, the Netlist Launcher
invokes the program necessary to convert the netlist to EDIF format, then invokes the
appropriate netlist reader, EDIF2NGD.

With the default Netlist Launcher options, NGDBuild recognizes and processes files
with the extensions shown in the following table. NGDBuild searches the top-level
design netlist directory for a netlist file with one of the extensions. By default,
NGDBuild searches for an EDIF file first.

Note: Remove all out of date netlist files from your directory. Obsolete netlist files may cause
errors in NGDBuild.

File Type Recognized Extensions

EDIF .sedif, .edn, .edf, .edif

NGC .ngc
Development System Reference Guide www.xilinx.com 133
 1-800-255-7778

http://www.xilinx.com

Chapter 6: NGDBuild
R

• UCF file—The User Constraints File is an ASCII file that you create. You can create
this file by hand or by using the Constraints Editor. See the online Help provided with
the Constraints Editor for more information. The UCF file contains timing and layout
constraints that affect how the logical design is implemented in the target device. The
constraints in the file are added to the information in the output NGD file. For
detailed information on constraints, see the Constraints Guide.

By default, NGDBuild reads the constraints in the UCF file automatically if the UCF
file has the same base name as the input design file and a .ucf extension. You can
override the default behavior and specify a different constraints file with the –uc
option. See “–uc (User Constraints File)” for more information.

Note: NGDBuild allows one UCF file as input.

• NCF —The netlist constraints file is produced by a CAE vendor toolset. This file
contains constraints specified within the toolset. The netlist reader invoked by
NGDBuild reads the constraints in this file if the NCF has the same name as the input
EDIF netlist. It adds the constraints to the intermediate NGO file and the output NGD
file. NCF files do no bind to NGC files because they are read in and annotated to the
NGO file during an edif2ngd conversion. This also implies that unlike UCF files,
NCF constraints only bind to a single edif netlist; they do not cross file hierarchies.

Note: NGDBuild checks to make sure the NGO file is up-to-date and reruns edif2ngd only
when the EDIF has a timestamp that is newer than the NGO file. Updating the NCF has no affect
on whether edif2ngd is rerun. Therefore, if the NGO is up-to-date and you only update the
NCF file (not the EDIF), use the –nt on option to force the regeneration of the NGO file from the
unchanged EDIF and new NCF. See “–nt (Netlist Translation Type)” for more information.

• URF file — The User Rules File (URF) is an ASCII file that you create. The Netlist
Launcher reads this file to determine the acceptable netlist input files, the netlist
readers that read these files, and the default netlist reader options. This file also allows
you to specify third-party tool commands for processing designs. The URF can add to
or override the rules in the system rules file.

You can specify the location of the user rules file with the NGDBuild –ur option. The
user rules file must have a .urf extension. See “–ur (Read User Rules File)” for more
information. The user rules file is described in the “User Rules File” in Appendix B.

• NGC file—This binary file can be used as a top-level design file or as a module file:

♦ Top-level design file

This file is output by the Xilinx Synthesis Technology (XST) tool. See the
description of design files earlier in this section for details.

Note: This is not a “true” netlist file. However, it is referred to as a netlist in this context to
differentiate it from the NGC module file. NGC files are equivalent to NGO files created by
edif2ngd, but are created by other Xilinx applications: XST and CORE Generator.

• NMC files—These physical macros are binary files that contain the implementation of
a physical macro instantiated in the design. NGDBuild reads the NMC file to create a
functional simulation model for the macro.

Unless a full path is provided to NGDBuild, it searches for netlist, NGC, NMC, and MEM
files in the following locations:

• The working directory from which NGDBuild was invoked

• The path specified for the top-level design netlist on the NGDBuild command line

• Any path specified with the “–sd (Search Specified Directory)” on the NGDBuild
command line
134 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGDBuild Output Files
R

NGDBuild Output Files
NGDBuild creates the following files as output:

• NGD file—This binary file contains a logical description of the design in terms of both
its original components and hierarchy and the NGD primitives to which the design is
reduced.

• BLD file—This build report file contains information about the NGDBuild run and
about the subprocesses run by NGDBuild. Subprocesses include EDIF2NGD, and
programs specified in the URF. The BLD file has the same root name as the output
NGD file and a .bld extension. The file is written into the same directory as the output
NGD file.

NGDBuild Intermediate Files
NGO files—These binary files contain a logical description of the design in terms of its
original components and hierarchy. These files are created when NGDBuild reads the
input EDIF netlist. If these files already exist, NGDBuild reads the existing files. If these
files do not exist or are out of date, NGDBuild creates them.

NGDBuild Options
This section describes the NGDBuild command line options.

–a (Add PADs to Top-Level Port Signals)
If the top-level input netlist is in EDIF format, the –a option causes NGDBuild to add a
PAD symbol to every signal that is connected to a port on the root-level cell. This option
has no effect on lower-level netlists.

Using the –a option depends on the behavior of your third-party EDIF writer. If your EDIF
writer treats pads as instances (like other library components), do not use –a. If your EDIF
writer treats pads as hierarchical ports, use –a to infer actual pad symbols. If you do not use
–a where necessary, logic may be improperly removed during mapping.

For EDIF files produced by Mentor Graphics and Cadence schematic tools, the
–a option is set automatically; you do not have to enter –a explicitly for these vendors.

Note: The NGDBuild –a option corresponds to the EDIF2NGD –a option. If you run EDIF2NGD on
the top-level EDIF netlist separately, rather than allowing NGDBuild to run EDIF2NGD, you must use
the two –a options consistently. If you previously ran NGDBuild on your design and NGO files are
present, you must use the –nt on option the first time you use –a. This forces a rebuild of the NGO
files, allowing EDIF2NGD to run the –a option.
Development System Reference Guide www.xilinx.com 135
 1-800-255-7778

http://www.xilinx.com

Chapter 6: NGDBuild
R

–aul (Allow Unmatched LOCs)
By default (without the –aul option), NGDBuild generates an error if the constraints
specified for pin, net, or instance names in the UCF or NCF file cannot be found in the
design. If this error occurs, an NGD file is not written. If you enter the –aul option,
NGDBuild generates a warning instead of an error for LOC constraints and writes an NGD
file.

You may want to run NGDBuild with the –aul option if your constraints file includes
location constraints for pin, net, or instance names that have not yet been defined in the
HDL or schematic. This allows you to maintain one version of your constraints files for
both partially complete and final designs.

Note: When using this option, make sure you do not have misspelled net or instance names in your
design. Misspelled names may cause inaccurate placing and routing.

–bm (Specify BMM Files)
-bm file_name [.bmm]

The –bm option specifies a switch for the .bmm files. If the file extension is missing, a .bmm
file extension is assumed. If this option is unspecified, the ELF or MEM root file name with
a .bmm extension is assumed. If only this option is given, then Ngdbuild verifies that the
.bmm file is syntactically correct and makes sure that the instances specified in the .bmm
file exist in the design. Only one –bm option can be used

–dd (Destination Directory)
–dd ngo_directory

The –dd option specifies the directory for intermediate files (design NGO files and netlist
files). If the –dd option is not specified, files are placed in the current directory.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file. For
more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.

–i (Ignore UCF File)
By default (without the –i option), NGDBuild reads the constraints in the UCF file
automatically if the UCF file in the top-level design netlist directory has the same base
name as the input design file and a .ucf extension. The –i option ignores the UCF file.

Note: If you use this option, do not use the –uc option.

–insert_keep_hierarchy
This option inserts an automated KEEP_HIERARCHY constraint for all modules and
blocks associated with multiple input netlists (.ngo) files. See KEEP_HIERARCHY
constraint in the Constraints Guide for more details.
136 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGDBuild Options
R

–intstyle
–intstyle {ise | xflow | silent}

The –intstyle option sets the integration style for NGDBuild to reduce screen output. This
option is useful if you only want a summary of the NGDBuild run.

–intstyle silent

Reduces the screen output to warnings and errors only. This option replaces the –quiet
option, which will not be available in future releases.

–l (Libraries to Search)
–l libname

The –l option indicates the list of libraries to search when determining what library
components were used to build the design. This option is passed to the appropriate netlist
reader. The information allows NGDBuild to determine the source of the design’s
components so it can resolve the components to NGD primitives.

You can specify multiple libraries by entering multiple –l libname entries on the NGDBuild
command line.

The allowable entries for libname are the following:

• xilinxun (Xilinx Unified library)

• synopsys

Note: You do not have to enter xilinxun with a –l option. The Xilinx Development System tools
automatically access these libraries. In cases where NGDBuild automatically detects Synopsys
designs (for example, the netlist extension is .sedif), you do not have to enter synopsys with a –l
option.

–modular assemble (Module Assembly)
–modular assemble -pimpath pim_directory_path
-use_pim module_name1 -use_pim module_name2 ...

Note: This option is supported for Virtex/-II/-II Pro/-E and Spartan-II/-IIE device families only.

The –modular assemble option starts the final phase of the Modular Design flow. In this
“Final Assembly” phase, the team leader uses this option to create a fully expanded NGD
file that contains logic from the top-level design and each of the Physically Implemented
Modules (PIMs). The team leader then implements this NGD file.

Run this option from the top-level design directory.

If you are running the standard Modular Design flow, you do not need to use the –pimpath
option. If you do not use the –use_pim option, NGDBuild searches the PIM directory’s
subdirectories for NGO files with names that match their subdirectory. It assembles the
final design using these NGO files.

If you are running Modular Design in a Partial Assembly flow, use the –pimpath option to
specify the directory that contains the PIMs. Use the –use_pim option to identify all the
modules in the PIM directory that have been published. Be sure to use exact names of the
PIMs, including the proper spelling and capitalization. The input design file should be the
NGO file of the top-level design.

Note: When running Modular Design in a Partial Assembly flow, you must use the –modular
assemble option with the –u option. For details, see “Running the Partial Design Assembly Flow” in
Chapter 4.
Development System Reference Guide www.xilinx.com 137
 1-800-255-7778

http://www.xilinx.com

Chapter 6: NGDBuild
R

See “Assembling the Modules” in Chapter 4 for more information.

–modular initial (Initial Budgeting of Modular Design)
Note: This option is supported for Virtex/-II/-II Pro/-E and Spartan-II/-IIE device families only.

The –modular initial option starts the first phase of the Modular Design flow. In this
“Initial Budgeting” phase, the team leader uses this option to generate an NGO and NGD
file for the top-level design with all of the instantiated modules represented as
unexpanded blocks. After running this option, the team leader sets up initial budgeting for
the design. This includes assigning top-level timing constraints and location constraints
for various resources, including each module, using the Floorplanner and Constraints
Editor tools.

Note: You cannot use the NGD file for mapping.

Run this option from the top-level design directory. The input design file should be an
EDIF netlist or an NGC netlist from XST.

See “Running Initial Budgeting” in Chapter 4 for more information.

–modular module (Active Module Implementation)
–modular module -active module_name

Note: This option is supported for Virtex/-II/-II Pro/-E and Spartan-II/-IIE device families only. You
cannot use NCD files from previous software releases with Modular Design in this release. You must
generate new NCD files with the current release of the software.

The –modular module option starts the second phase of the Modular Design flow. In this
“Active Module Implementation” phase, each team member creates an NGD file with just
the specified “active” module expanded. This NGD file is named after the top-level design.

Run this option from the active module directory. This directory should include the active
module netlist file and the top-level UCF file generated during the Initial Budgeting phase.
You must specify the name of the active module after the –active option, and use the top-
level NGO file as the input design file.

After running this option, you can then run MAP and PAR to create a Physically
Implemented Module (PIM). Then, you must run PIMCreate to publish the PIM to the
PIMs directory. PIMCreate copies the local, implemented module file, including the NGO,
NGM and NCD files, to the appropriate module directory inside the PIMs directory and
renames the files to module_name.extension. To run PIMCreate, type the following on the
command line:

pimcreate pim_directory -ncd design_name_routed.ncd

See “Implementing an Active Module” in Chapter 4 for more information.

Note: When running Modular Design in an Incremental Guide flow, run NGDBuild with the –pimpath
and –use_pim options normally reserved for the –modular assemble option. See “Running the
Sequential Guide Flow” in Chapter 4 for more information.
138 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGDBuild Options
R

–nt (Netlist Translation Type)
–nt {timestamp | on | off}

The –nt option determines how timestamps are treated by the Netlist Launcher when it is
invoked by NGDBuild. A timestamp is information in a file that indicates the date and
time the file was created. The timestamp option (which is the default if no –nt option is
specified) instructs the Netlist Launcher to perform the normal timestamp check and
update NGO files according to their timestamps. The on option translates netlists
regardless of timestamps (rebuilding all NGO files), and the off option does not rebuild an
existing NGO file, regardless of its timestamp.

–p (Part Number)
–p part

The –p option specifies the part into which the design is implemented. The –p option can
specify an architecture only, a complete part specification (device, package, and speed), or
a partial specification (for example, device and package only).

The syntax for the –p option is described in “–p (Part Number)” in Chapter 1. Examples of
part entries are XCV50-TQ144 and XCV50-TQ144-5.

When you specify the part, the NGD file produced by NGDBuild is optimized for mapping
into that architecture.

You do not have to specify a –p option if your NGO file already contains information about
the desired vendor and family (for example, if you placed a PART property in a schematic
or a CONFIG PART statement in a UCF file). However, you can override the information in
the NGO file with the –p option when you run NGDBuild.

Note: If you are running the Modular Design flow and are targeting a part different from the one
specified in your source design, you must specify the part type using the -p option every time you run
NGDBuild.

–quiet (Report Warnings and Errors Only)
The –quiet option reduces NGDBuild screen output to warnings and errors only.

The –quiet option is being deprecated in 6.1i and will not be available in future releases.
Use the –intstyle option instead.

–r (Ignore LOC Constraints)
The –r option eliminates all location constraints (LOC=) found in the input netlist or UCF
file. Use this option when you migrate to a different device or architecture, because
locations in one architecture may not match locations in another.
Development System Reference Guide www.xilinx.com 139
 1-800-255-7778

http://www.xilinx.com

Chapter 6: NGDBuild
R

–sd (Search Specified Directory)
–sd search_path

The –sd option adds the specified search_path to the list of directories to search when
resolving file references (that is, files specified in the schematic with a FILE=filename
property) and when searching for netlist, NGO, NGC, NMC, and MEM files. You do not
have to specify a search path for the top-level design netlist directory, because it is
automatically searched by NGDBuild.

The search_path must be separated from the –sd by spaces or tabs (for example, –sd designs
is correct, –sddesigns is not). You can specify multiple –sd options on the command line.
Each must be preceded with –sd; you cannot combine multiple search_path specifiers after
one –sd. For example, the following syntax is not acceptable.

–sd /home/macros/counter /home/designs/pal2

The following syntax is acceptable.

–sd /home/macros/counter –sd /home/designs/pal2

–u (Allow Unexpanded Blocks)
In the default behavior of NGDBuild (without the –u option), NGDBuild generates an
error if a block in the design cannot be expanded to NGD primitives. If this error occurs, an
NGD file is not written. If you enter the –u option, NGDBuild generates a warning instead
of an error if a block cannot be expanded, and writes an NGD file containing the
unexpanded block.

You may want to run NGDBuild with the –u option to perform preliminary mapping,
placement and routing, timing analysis, or simulation on the design even though the
design is not complete. To ensure the unexpanded blocks remains in the design when it is
mapped, run the MAP program with the –u (Do Not Remove Unused Logic) option, as
described in “–u (Do Not Remove Unused Logic)” in Chapter 8.

–uc (User Constraints File)
–uc ucf_file[.ucf]

The –uc option specifies a User Constraints File (UCF) for the Netlist Launcher to read. The
UCF file contains timing and layout constraints that affect the way the logical design is
implemented in the target device.

The user constraints file must have a .ucf extension. If you specify a user constraints file
without an extension, NGDBuild appends the .ucf extension to the file name. If you specify
a file name with an extension other than .ucf, you get an error message and NGDBuild
does not run.

If you do not enter a –uc option and a UCF file exists with the same base name as the input
design file and a .ucf extension, NGDBuild automatically reads the constraints in this UCF
file.

See the Constraints Guide for more information on the UCF file.

Note: NGDBuild only allows one UCF file as input. Therefore, you cannot specify multiple –uc
options on the command line. Also, if you use this option, do not use the –i option.
140 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGDBuild Options
R

–ur (Read User Rules File)
–ur rules_file[.urf]

The –ur option specifies a user rules file for the Netlist Launcher to access. This file
determines the acceptable netlist input files, the netlist readers that read these files, and the
default netlist reader options. This file also allows you to specify third-party tool
commands for processing designs.

The user rules file must have a .urf extension. If you specify a user rules file with no
extension, NGDBuild appends the .urf extension to the file name. If you specify a file name
with an extension other than .urf, you get an error message and NGDBuild does not run.

The user rules file is described in “User Rules File” in Appendix B.

–verbose (Report All Messages)
The –verbose option enhances NGDBuild screen output to include all messages output by
the tools run: NGDBuild, the netlist launcher, and the netlist reader. This option is useful if
you want to review details about the tools run.
Development System Reference Guide www.xilinx.com 141
 1-800-255-7778

http://www.xilinx.com

Chapter 6: NGDBuild
R

142 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 7

Logical Design Rule Check

This program is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE

• CoolRunner™ XPLA3/-II/-IIS

• XC9500™/XL/XV

This chapter describes the Logical Design Rule Check (DRC). The chapter contains the
following sections:

• “Logical DRC Overview”

• “Logical DRC Checks”

Logical DRC Overview
The Logical Design Rule Check (DRC), also known as the NGD DRC, comprises a series of
tests to verify the logical design in the Native Generic Database (NGD) file. The Logical
DRC performs device-independent checks.

The Logical DRC generates messages to show the status of the tests performed. Messages
can be error messages (for conditions where the logic will not operate correctly) or
warnings (for conditions where the logic is incomplete).

The Logical DRC runs automatically at the following times:

• At the end of NGDBuild, before NGDBuild writes out the NGD file

NGDBuild writes out the NGD file if DRC warnings are discovered, but does not write
out an NGD file if DRC errors are discovered.

• At the end of NGD2EDIF, NGD2VER, or NGD2VHDL, before writing out the netlist
file

The netlist writers do not perform the entire DRC. They only perform the Net and
Name checks. A netlist writer writes out a netlist file even if DRC warnings or errors
are discovered.
Development System Reference Guide www.xilinx.com 143
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Logical Design Rule Check
R

Logical DRC Checks
The Logical DRC performs the following types of checks:

• Block check

• Net check

• Pad check

• Clock buffer check

• Name check

• Primitive pin check

The following sections describe these tests.

Block Check
The block check verifies that each terminal symbol in the NGD hierarchy (that is, each
symbol that is not resolved to any lower-level components) is an NGD primitive. A block
check failure is treated as an error. As part of the block check, the DRC also checks user-
defined properties on symbols and the values on the properties to make sure they are legal.

Net Check
The net check determines the number of NGD primitive output pins (drivers), 3-state pins
(drivers), and input pins (loads) on each signal in the design. If a signal does not have at
least one driver (or one 3-state driver) and at least one load, a warning is generated. An
error is generated if a signal has multiple non-3-state drivers or any combination of 3-state
and non-3-state drivers. As part of the net check, the DRC also checks user-defined
properties on signals and the values on the properties to make sure they are legal.

Pad Check
The pad check verifies that each signal connected to pad primitives obeys the following
rules.

• If the PAD is an input pad, the signal to which it is connected can only be connected to
the following types of primitives:

♦ Buffers

♦ Clock buffers

♦ PULLUP

♦ PULLDOWN

♦ KEEPER

♦ BSCAN

The input signal can be attached to multiple primitives, but only one of each of the
above types. For example, the signal can be connected to a buffer primitive, a clock
buffer primitive, and a PULLUP primitive, but it cannot be connected to a buffer
primitive and two clock buffer primitives. Also, the signal cannot be connected to both
a PULLUP primitive and a PULLDOWN primitive. Any violation of the rules above
results in an error, with the exception of signals attached to multiple pull-ups or pull-
downs, which produces a warning. A signal which is not attached to any of the above
types of primitives also produces a warning.
144 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Logical DRC Checks
R

• If the PAD is an output pad, the signal it is attached to can only be connected to one of
the following primitive outputs:

♦ A single buffer primitive output

♦ A single 3-state primitive output

♦ A single BSCAN primitive

In addition, the signal can also be connected to one of the following primitives:

♦ A single PULLUP primitive

♦ A single PULLDOWN primitive

♦ A single KEEPER primitive

Any other primitive output connections on the signal results in an error.

If the condition above is met, the output PAD signal may also be connected to one
clock buffer primitive input, one buffer primitive input, or both.

• If the PAD is a bidirectional or unbonded pad, the signal it is attached to must obey
the rules stated above for input and output pads. Any other primitive connections on
the signal results in an error. The signal connected to the pad must be configured as
both an input and an output signal; if it is not, you receive a warning.

• If the signal attached to the pad has a connection to a top-level symbol of the design,
that top-level symbol pin must have the same type as the pad pin, except that output
pads can be associated with 3-state top-level pins. A violation of this rule results in a
warning.

• If a signal is connected to multiple pads, an error is generated. If a signal is connected
to multiple top-level pins, a warning is generated.

Clock Buffer Check
The clock buffer configuration check verifies that the output of each clock buffer primitive
is connected to only inverter, flip-flop or latch primitive clock inputs, or other clock buffer
inputs. Violations are treated as warnings.

Name Check
The name check verifies the uniqueness of names on NGD objects using the following
criteria:

• Pin names must be unique within a symbol. A violation results in an error.

• Instance names must be unique within the instance’s position in the hierarchy (that is,
a symbol cannot have two symbols with the same name under it). A violation results
in a warning.

• Signal names must be unique within the signal’s hierarchical level (that is, if you push
down into a symbol, you cannot have two signals with the same name). A violation
results in a warning.

• Global signal names must be unique within the design. A violation results in a
warning.
Development System Reference Guide www.xilinx.com 145
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Logical Design Rule Check
R

Primitive Pin Check
The primitive pin check verifies that certain pins on certain primitives are connected to
signals in the design. The following table shows which pins are tested on each NGD
primitive type.

Note: If one of these pins is not connected to a signal, you receive a warning.

Table 7-1: Checked Primitive Pins

NGD Primitive Pins Checked

X_MUX SEL

X_TRI IN, OUT, and CTL

X_FF IN, OUT, and CLK

X_LATCH IN, OUT, and CLK

X_IPAD PAD

X_OPAD PAD

X_BPAD PAD
146 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 8

MAP

This program is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E/3

This chapter describes MAP. The chapter contains the following sections:

• “MAP Overview”

• “MAP Syntax”

• “MAP Input Files”

• “MAP Output Files”

• “MAP Options”

• “MAP Process”

• “Register Ordering”

• “Guided Mapping”

• “Simulating Map Results”

• “MAP Report (MRP) File”

• “Halting MAP”

MAP Overview
The MAP program maps a logical design to a Xilinx FPGA. The input to MAP is an NGD
file, which contains a logical description of the design in terms of both the hierarchical
components used to develop the design and the lower level Xilinx primitives. The NGD
file also contains any number of NMC (macro library) files, each of which contains the
definition of a physical macro. MAP first performs a logical DRC (Design Rule Check) on
the design in the NGD file. MAP then maps the logic to the components (logic cells, I/O
cells, and other components) in the target Xilinx FPGA. The output design is an NCD
(Native Circuit Description) file—a physical representation of the design mapped to the
components in the Xilinx FPGA. The NCD file can then be placed and routed.

The following figure shows the MAP design flow:
Development System Reference Guide www.xilinx.com 147
 1-800-255-7778

http://www.xilinx.com

Chapter 8: MAP
R

MAP Syntax
The following syntax maps your design:

map [options] infile[.ngd] [pcf_file[.pcf]]

Options can be any number of the MAP options listed in “MAP Options”. They do not
need to be listed in any particular order. Separate multiple options with spaces.

infile[.ngd] is the input NGD file. You do not have to enter the .ngd extension.

pcf_file[.pcf] is the output Physical Constraints File in PCF format. A constraints file name
is optional on the command line, but if one is entered it must be entered after the input file
name. You do not have to enter the .pcf extension. The constraints file name and its
location are determined in the following ways:

• If you do not specify a physical constraints file name on the command line, the
physical constraints file has the same name as the output file, with a .pcf extension.
The file is placed in the output file’s directory.

• If you specify a physical constraints file with no path specifier (for example, cpu_1.pcf
instead of /home/designs/cpu_1.pcf), the .pcf file is placed in the current working
directory.

• If you specify a physical constraints file name with a full path specifier (for example,
/home/designs/cpu_1.pcf), the physical constraints file is placed in the specified
directory.

• If the physical constraints file already exists, MAP reads the file, checks it for syntax
errors, and overwrites the schematic-generated section of the file. MAP also checks the
user-generated section for errors and corrects errors by commenting out physical
constraints in the file or by halting the operation. If no errors are found in the user-
generated section, the section remains the same.

For a discussion of the output file name and its location, see “–o (Output File Name)”.

Figure 8-1: MAP

X9574

NMC
Macro Definition

NGD
Generic Database

MRP
MAP Report

NCD
Circuit Description

(Mapped)

PCF
Physical Constraints

MFP
Floorplanner File

Guide File

NGMMAP
148 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

MAP Input Files
R

MAP Input Files
MAP uses the following files as inputs:

• NGD file—Native Generic Database file. This file contains a logical description of the
design expressed both in terms of the hierarchy used when the design was first
created and in terms of lower-level Xilinx primitives to which the hierarchy resolves.
The file also contains all of the constraints applied to the design during design entry
or entered in a UCF (User Constraints File). The NGD file is created by NGDBuild.

• NMC files—Macro library files. An NMC file contains the definition of a physical
macro. When there are macro instances in the NGD design file, NMC files are used to
define the macro instances. There is one NMC file for each type of macro in the design
file.

• Guide NCD file—An optional input file generated from a previous MAP run. An
NCD file contains a physical description of the design in terms of the components in
the target Xilinx device. A guide NCD file is an output NCD file from a previous MAP
run that is used as an input to guide a later MAP run.

• Guide NGM file—A binary design file containing all of the data in the input NGD file
as well as information on the physical design produced by the mapping. See “Guided
Mapping” for details.

• MFP—Map Floorplanner File, which is generated by the Floorplanner, specified as an
input file with the –fp option. The MFP file is used as a guide file for mapping. To
create a Map Floorplanner File, you must first have generated an NGD file and a
mapped NCD file. When you have run MAP to generate an NCD file, you can open
the mapped NCD file in the Floorplanner, modify the placement of components, and
then generate an MFP file. You can then use the MFP file as an input file with the –fp
map option.

MAP Output Files
Output from MAP consists of the following files:

• NCD file—Native Circuit Description. A physical description of the design in terms of
the components in the target Xilinx device. For a discussion of the output NCD file
name and its location, see “–o (Output File Name)”.

• PCF (Physical Constraints) file—an ASCII text file containing the constraints specified
during design entry expressed in terms of physical elements. The physical constraints
in the PCF file are expressed in Xilinx’s constraint language.

MAP either creates a PCF file if none exists or rewrites an existing file by overwriting
the schematic-generated section of the file (between the statements SCHEMATIC
START and SCHEMATIC END). For an existing physical constraints file, MAP also
checks the user-generated section for syntax errors, and signals errors by halting the
operation. If no errors are found in the user-generated section, the section is
unchanged.

• NGM file—a binary design file containing all of the data in the input NGD file as well
as information on the physical design produced by the mapping. The NGM file is
used to correlate the back-annotated design netlist to the structure and naming of the
source design.
Development System Reference Guide www.xilinx.com 149
 1-800-255-7778

http://www.xilinx.com

Chapter 8: MAP
R

• MRP (MAP report) file—a file containing information about the MAP command run.
The MRP file lists any errors and warnings found in the design, lists design attributes
specified, details on how the design was mapped (for example, the logic that was
removed or added and how signals and symbols in the logical design were mapped
into signals and components in the physical design). The file also supplies statistics
about component usage in the mapped design. See “MAP Report (MRP) File” for
more details.

The MRP, MDF and NGM files produced by a MAP run all have the same name as the
output file, with the appropriate extension. If the MRP, MDF or NGM files already exist,
they are overwritten by the new files.

MAP Options
The following table shows which architectures can be used with each option.

Table 8-1: Map Options and Architectures

Options Architectures

–bp Spartan-II, Spartan-IIE, Virtex, Virtex-II,
Virtex-II Pro, Virtex-E

–c All FPGA architectures

–cm All FPGA architectures

–detail All FPGA architectures

–f All FPGA architectures

–fp All FPGA architectures

–gf All FPGA architectures

–gm All FPGA architectures

–gm incremental VirtexX

–ignore_keep_hierarchy VirtexX

–ir All FPGA architectures

–k All FPGA architectures

–l All FPGA architectures

–o All FPGA architectures

–p All FPGA architectures

–pr All FPGA architectures

–quiet Spartan-II, Spartan-IIE, Virtex, Virtex-II,
Virtex-II Pro, Virtex-E

–r All FPGA architectures

–timing Spartan-II, Spartan-IIE, Virtex, Virtex-II,
Virtex-II Pro, Virtex-E
150 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

MAP Options
R

–bp (Map Slice Logic)
Note: This option only applies to Spartan-II, Spartan-IIE, Virtex, Virtex-II, Virtex-II Pro, Virtex-E.

The block RAM mapping option is enabled when the –bp option is specified. When block
RAM mapping is enabled, MAP attempts to place LUTs and FFs into single-output, single-
ported block RAMs.

You can create a file containing a list of register output nets that you want converted into
block RAM outputs. To instruct MAP to use this file, set the environment variable
XIL_MAP_BRAM_FILE to the file name. MAP looks for this environment variable when
the –bp option is specified. Only those output nets listed in the file are made into block
RAM outputs.

Note: Because block RAM outputs are synchronous and can only be reset, the registers packed
into a block RAM must also be synchronous reset.

–c (Pack CLBs)
–c [packfactor]

The –c option determines the degree to which CLBs are packed when the design is
mapped. The valid range of values for the packfactor is 0–100.

The packfactor values ranging from 1 to 100 roughly specify the percentage of CLBs
available in a target device for packing your design's logic.

A packfactor of 100 means that all CLBs in a target part are available for design logic. A
packfactor of 100 results in minimum packing density, while a packfactor of 1 represents
maximum packing density. Specifying a lower packfactor results in a denser design, but the
design may then be more difficult to place and route.

The –c 0 option specifies that only related logic (that is, logic having signals in common)
should be packed into a single CLB. Specifying –c 0 yields the least densely packed design.

For values of –c from 1 to 100, MAP merges unrelated logic into the same CLB only if the
design requires more resources than are available in the target device (an overmapped
design). If there are more resources available in the target device than are needed by your
design, the number of CLBs utilized when –c 100 is specified may equal the number
required when –c 0 is specified.

Note: The –c 1 setting should only be used to determine the maximum density (minimum area) to
which a design can be packed. Xilinx does not recommend using this option in the actual
implementation of your design. Designs packed to this maximum density generally have longer run
times, severe routing congestion problems in PAR, and poor design performance.

The default packfactor (the value if you do not specify a –c option, or enter a –c option
without a packfactor) is100% for allVirtex/-E/-II/-II PRO, and Spartan/XL/-II/-IIE.

Processing a design with the –c 0 option is a good way to get a first estimate of the number
of CLBs required by your design.

–tx Spartan-II, Spartan-IIE, Virtex, Virtex-II,
Virtex-II Pro, Virtex-E

–u All FPGA architectures

Table 8-1: Map Options and Architectures

Options Architectures
Development System Reference Guide www.xilinx.com 151
 1-800-255-7778

http://www.xilinx.com

Chapter 8: MAP
R

–cm (Cover Mode)
–cm {area | speed | balanced}

The –cm option specifies the criteria used during the cover phase of MAP. In the this phase,
MAP assigns the logic to CLB function generators (LUTs). Use the area, speed, and
balanced settings as follows:

• The area setting makes reducing the number of LUTs (and therefore the number of
CLBs) the highest priority.

• The speed setting makes reducing the number of levels of LUTS (the number of LUTs
a path passes through) the highest priority. This setting makes it easiest to achieve
your timing constraints after the design is placed and routed. For most designs there
is a small increase in the number of LUTs (compared to the area setting), but in some
cases the increase may be large.

• The balanced setting balances the two priorities—reducing the number of LUTs and
reducing the number of levels of LUTs. It produces results similar to the speed setting
but avoids the possibility of a large increase in the number of LUTs.

The default setting for the –cm option is area (cover for minimum number of LUTs). For
synthesis-based designs, changing the default does not result in improved performance.

–detail (Write Out Detailed MAP Report)
This option writes out a detailed MAP report. The option replaces the
MAP_REPORT_DETAIL environment variable.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file. For
more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.

–fp (Floorplanner)
–fp filename.mfp

The –fp option requires the specification of an existing MFP file created by the
Floorplanner. The MFP file is used as a guide file for mapping.

The MFP file is created in the Floorplanner from a previously mapped NCD file. If you use
the –fp option, you cannot use the guide file option (–gf).

For more information about the Floorplanner, see the Floorplanner online help accessible
from the Help menu within the Floorplanner.

–gf (Guide NCD File)
–gf guidefile

The –gf option specifies the name of an existing NCD file (from a previous MAP run) to be
used as a guide for the current MAP run. For all Virtex architectures, guided mapping also
uses the NGM file. For a description of guided mapping, see “Guided Mapping”.
152 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

MAP Options
R

–gm (Guide Mode)
–gm {exact | leverage}

The –gm option specifies the form of guided mapping to be used.

In the EXACT mode the mapping in the guide file is followed exactly. In the LEVERAGE
mode, the guide design is used as a starting point for mapping but, in cases where the
guided design tools cannot find matches between net and block names in the input and
guide designs, or your constraints rule out any matches, the logic is not guided.

For a description of guided mapping, see “Guided Mapping”.

–gm incremental (Guide Mode incremental)
par -gf previous_run_NCD -gm incremental design.ncd
new_design.ncd design.pcf

The incremental mode uses EXACT guiding.

The incremental mode also changes the Partial Reconfiguration DRC checks.

–ignore_keep_hierarchy
Map also supports the –ignore_keep_hierarchy option that ignores any
"KEEP_HIERARCHY" properties on blocks.

–ir (Do Not Use RLOCs to Generate RPMs)
If you enter the –ir option, MAP uses RLOC constraints to group logic within CLBs, but
does not use the constraints to generate RPMs (Relationally Placed Macros) controlling the
relative placement of CLBs. Stated another way, the RLOCs are not used to control the
relative placement of the CLBs with respect to each other.

For the Spartan architectures, the –ir option has an additional behavior; the RLOC
constraint that cannot be met is ignored and the mapper will continue processing the
design. A warning is generated for each RLOC that is ignored. The resulting mapped
design is a valid design.

–k (Map to Input Functions)
The syntax for Spartan-II, Spartan-IIE, Virtex, and Virtex-E architectures follows:

–k {4 |5 |6}

The syntax for the Virtex-II and Virtex-II Pro architecture follows:

–k {4 |5 |6| 7| 8}

You can specify the maximum size function that is covered. The default is 4. Covering to 5,
6, 7 or 8 input functions results in the use of F5MUX, F6MUX, and FXMUX.

By mapping input functions into single CLBs, the –k option may produce a mapping with
fewer levels of logic, thus eliminating a number of CLB-to-CLB delays. However, using the
–k option may prevent logic from being packed into CLBs in a way that minimizes CLB
utilization.

For synthesis-based designs, specifying –k 4 has little effect. This is because MAP combines
smaller input functions into large functions such as F5MUX, F6MUX, F7MUX and F8MUX.
Development System Reference Guide www.xilinx.com 153
 1-800-255-7778

http://www.xilinx.com

Chapter 8: MAP
R

–l (No logic replication)
By default (without the –l option), MAP performs logic replication. Logic replication is an
optimization method in which MAP operates on a single driver that is driving multiple
loads and maps it as multiple components, each driving a single load (refer to the
following figure). Logic replication results in a mapping that often makes it easier to meet
your timing requirements, since some delays can be eliminated on critical nets. To turn off
logic replication, you must specify the -l option.

–o (Output File Name)
–o outfile[.ncd]

Specifies the name of the output NCD file for the design. The .ncd extension is optional.
The output file name and its location are determined in the following ways:

• If you do not specify an output file name with the –o option, the output file has the
same name as the input file, with an .ncd extension. The file is placed in the input
file’s directory

• If you specify an output file name with no path specifier (for example, cpu_dec.ncd
instead of /home/designs/cpu_dec.ncd), the NCD file is placed in the current working
directory.

• If you specify an output file name with a full path specifier (for example,
/home/designs/cpu_dec.ncd), the output file is placed in the specified directory.

If the output file already exists, it is overwritten with the new NCD file. You do not receive
a warning when the file is overwritten.

Note: However, signals connected to pads or to the outputs of BUFTs, flip-flops, latches, and
RAMS are preserved for back-annotation.

Figure 8-2: Logic Replication (–l Option)

Without Logic Replication With Logic Replication

X6973

Function
Generator

Function
Generator

Function
Generator

Function
Generator

Function
Generator

A
B

C
D

E
F

E
F

C
D

A
B

Replicated
154 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

MAP Options
R

–p (Part Number)
–p part

Specifies the Xilinx part number for the device. The syntax for the –p option is described in
“–p (Part Number)” in Chapter 1. Examples of part entries are XC4003E-PC84, and
XC4028EX-HQ240-3.

If you do not specify a part number using the –p option, MAP selects the part specified in
the input NGD file. If the information in the input NGD file does not specify a complete
device and package, you must enter a device and package specification using the –p
option. MAP supplies a default speed value, if necessary.

The architecture you specify with the –p option must match the architecture specified
within the input NGD file. You may have chosen this architecture when you ran
NGDBuild or during an earlier step in the design entry process (for example, you may
have specified the architecture as an attribute within a schematic, or specified it as an
option to a netlist reader). If the architecture does not match, you have to run NGDBuild
again and specify the desired architecture.

You can only enter a part number or device name from a device library you have installed
on your system. For example, if you have not installed the 4006E device library, you cannot
create a design using the 4006E–PC84 part.

–pr (Pack Registers in I/O)
–pr {i | o | b}

By default (without the –pr option), MAP only places flip-flops or latches within an I/O
cell if your design entry method specifies that these components are to be placed within
I/O cells. For example, if you create a schematic using IFDX (Input D Flip-Flop) or OFDX
(Output D Flip-Flop) design elements, the physical components corresponding to these
design elements must be placed in I/O cells. The –pr option specifies that flip-flops or
latches may be packed into input registers (i selection), output registers (o selection), or
both (b selection) even if the components have not been specified in this way.

–quiet (Report Warnings and Errors Only)
Note: This option only applies to Spartan-II, Spartan-IIE, Virtex, Virtex-II, Virtex-II Pro, Virtex-E.

The –quiet option reduces MAP screen output to warnings and errors only. This option is
useful if you only want a summary of the MAP run.

–r (No Register Ordering)
By default (without the –r option), MAP looks at the register bit names for similarities and
tries to map register bits in an ordered manner (called register ordering). If you specify the
-r option, register bit names are ignored when registers are mapped, and the bits are not
mapped in any special order. For a description of register ordering, see “Register
Ordering”.
Development System Reference Guide www.xilinx.com 155
 1-800-255-7778

http://www.xilinx.com

Chapter 8: MAP
R

–timing (Timing-Driven Packing)
Note: This option only applies to Spartan-II, Spartan-IIE, Virtex, Virtex-II, Virtex-II Pro, Virtex-E.

The –timing option directs MAP to give priority to timing critical paths during packing.
User-generated timing constraints are used to drive the packing operation.

If you specify this option and one of the following conditions occurs, MAP issues a
warning and does not give priority to timing critical paths during packing.

• If the –u option is specified

• If I/O or any other special components are overmapped

• If the mapper runs in any of the guide modes

–tx (Transform Buses)
Note: This option only applies to Spartan-II, Spartan-IIE, Virtex, Virtex-II, Virtex-II Pro, Virtex-E.

–tx {on | off | aggressive | limit}

The –tx option specifies what type of bus transformation MAP performs. The four
permitted settings are on, off, aggressive, and limit. The following example shows how the
settings are used. In this example, the design has the following characteristics and is
mapped to a Virtex device:

• Bus A has 4 BUFTs

• Bus B has 20 BUFTs

• Bus C has 30 BUFTs

MAP processes the design in one of the following ways, based on the setting used for the –
tx option:

• The on setting performs partial transformation for a long chain that exceeds the
device limit.

♦ Bus A is transformed to LUTs (number of BUFTs is >1, ≤4)

♦ Bus B is transformed to CY chain (number of BUFTs is >4, ≤48)

♦ Bus C is partially transformed. (25 BUFTs + 1 dummy BUFT due to the maximum
width of the XCV50 device + CY chain implementing the other 5 BUFTs)

• The off setting turns bus transformation off. This is the default setting.

• The aggressive setting transforms the entire bus.

♦ Buses A, B have the same result as the on setting.

♦ Bus C is implemented entirely by CY chain. (30 ≤ the default upper limit for carry
chain transformation)

• The limit setting is the most conservative. It transforms only that portion of the
number of CLB(s) or BUFT(s) per row in a device.
156 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

MAP Process
R

–u (Do Not Remove Unused Logic)
By default (without the –u option), MAP eliminates unused components and nets from the
design before mapping. If –u is specified, MAP maps unused components and nets in the
input design and includes them as part of the output design.

The –u option is helpful if you want to run a preliminary mapping on an unfinished
design, possibly to see how many components the mapped design uses. By specifying –u,
you are assured that all of the design’s logic (even logic that is part of incomplete nets) is
mapped.

MAP Process
MAP performs the following steps when mapping a design.

1. Selects the target Xilinx device, package, and speed. MAP selects a part in one of the
following ways:

♦ Uses the part specified on the MAP command line.

♦ If a part is not specified on the command line, MAP selects the part specified in
the input NGD file. If the information in the input NGD file does not specify a
complete architecture, device, and package, MAP issues an error message and
stops. If necessary, MAP supplies a default speed.

2. Reads the information in the input design file.

3. Performs a Logical DRC (Design Rule Check) on the input design. If any DRC errors
are detected, the MAP run is aborted. If any DRC warnings are detected, the warnings
are reported, but MAP continues to run. The Logical DRC (also called the NGD DRC)
is described in Chapter 7, “Logical Design Rule Check”.

Note: Step 3 is skipped if the NGDBuild DRC was successful.

4. Removes unused logic. All unused components and nets are removed, unless the
following conditions exist:

♦ A Xilinx S (Save) constraint has been placed on a net during design entry. If an
unused net has an S constraint, the net and all used logic connected to the net (as
drivers or loads) is retained. All unused logic connected to the net is deleted.
For a more complete description of the S constraint, see the Constraints Guide.

♦ The –u option was specified on the MAP command line. If this option is specified,
all unused logic is kept in the design.

5. Maps pads and their associated logic into IOBs.

6. Maps the logic into Xilinx components (IOBs, CLBs, etc.). If any Xilinx mapping
control symbols appear in the design hierarchy of the input file (for example, FMAP or
HMAP symbols targeted to an XC4000EX device - no HMAPs in Virtex), MAP uses the
existing mapping of these components in preference to remapping them. The mapping
is influenced by various constraints; these constraints are described in the Constraints
Guide.

7. Update the information received from the input NGD file and write this updated
information into an NGM file. This NGM file contains both logical information about
the design and physical information about how the design was mapped. The NGM file
is used only for back-annotation On Virtex/-E/-II devices, guided mapping uses the
NGM file. For more information, see “Guided Mapping”.
Development System Reference Guide www.xilinx.com 157
 1-800-255-7778

http://www.xilinx.com

Chapter 8: MAP
R

8. Create a physical constraints (PCF) file. This is a text file containing any constraints
specified during design entry. If no constraints were specified during design entry, an
empty file is created so that you can enter constraints directly into the file using a text
editor or indirectly through the FPGA Editor.

MAP either creates a PCF file if none exists or rewrites an existing file by overwriting
the schematic-generated section of the file (between the statements SCHEMATIC
START and SCHEMATIC END). For an existing constraints file, MAP also checks the
user-generated section and may either comment out constraints with errors or halt the
program. If no errors are found in the user-generated section, the section remains the
same.

Note: For Virtex/-E/-II/-II PRO designs, you must use a MAP generated PCF file. The timing
tools perform skew checking only with a MAP-generated PCF file.

9. Run a physical Design Rule Check (DRC) on the mapped design. If DRC errors are
found, MAP does not write an NCD file.

10. Create an NCD file, which represents the physical design. The NCD file describes the
design in terms of Xilinx components—CLBs, IOBs, etc.

11. Write a MAP report (MRP) file, which lists any errors or warnings found in the design,
details how the design was mapped, and supplies statistics about component usage in
the mapped design.

Register Ordering
When you run MAP, the default setting performs register ordering. If you specify the –r
option, MAP does not perform register ordering and maps the register bits as if they were
unrelated.

When you map a design containing registers, the MAP software can optimize the way the
registers are grouped into CLBs (slices for Virtex/-E/-II/-II PRO or Spartan-II/-IIE —
there are two slices per CLB). This optimized mapping is called register ordering.

A CLB (Virtex/-E/-II/-II PRO or Spartan-II/IIE slice) has two flip-flops, so two register
bits can be mapped into one CLB. For PAR (Place And Route) to place a register in the most
effective way, you want as many pairs of contiguous bits as possible to be mapped
together into the same CLBs (for example, bit 0 and bit 1 together in one CLB, bit 2 and bit
3 in another).

MAP pairs register bits (performing register ordering) if it recognizes that a series of flip-
flops comprise a register. When you create your design, you can name register bits so they
are mapped using register ordering.

Note: MAP does not perform register ordering on any flip-flops which have BLKNM, LOC, or RLOC
properties attached to them. The BLKNM, LOC, and RLOC properties define how blocks are to be
mapped, and these properties override register ordering.

To be recognized as a candidate for register ordering, the flip-flops must have the
following characteristics:

• The flip-flops must share a common clock signal and common control signals (for
example, Reset and Clock Enable).

• The flip-flop output signals must all be named according to this convention.

• Output signal names must begin with a common root containing at least one
alphabetic character.

The names must end with numeric characters or with numeric characters surrounded
by parentheses “()”, angle brackets “< >”, or square brackets “[]”.
158 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Guided Mapping
R

For example, acceptable output signal names for register ordering are as follows:

If a series of flip-flops is recognized as a candidate for register ordering, they are paired in
CLBs in sequential numerical order. For example, in the first set of names shown above,
data1 and data2, are paired in one CLB, while data3 and data4 are paired in another.

In the example below, no register ordering is performed, since the root names for the
signals are not identical

When it finds a signal with this type of name, MAP ignores the underbar and the numeric
characters when it considers the signal for register ordering. For example, if signals are
named data00_1 and data01_2, MAP considers them as data00 and data01 for purposes of
register ordering. These two signals are mapped to the same CLB.

MAP does not change signal names when it checks for underbars—it only ignores the
underbar and the number when it checks to see if the signal is a candidate for register
ordering.

Because of the way signals are checked, make sure you don’t use an underbar as your bus
delimiter. If you name a bus signal data0_01 and a non-bus signal data1, MAP sees them as
data0 and data1 and register orders them even though you do not want them register
ordered.

Guided Mapping
In guided mapping, an existing NCD is used to guide the current MAP run. The guide file
may be from any stage of implementation: unplaced or placed, unrouted or routed. Xilinx
recommends that you generate your NCD file using the current release of the software.
However, MAP does support guided mapping using NCD files from the previous release.

The following figure shows the guided mapping flow:

data1 addr(04) bus<1>

data2 addr(08) bus<2>

data3 addr(12) bus<3>

data4 addr(16) bus<4>

bus<5>

data01

addr02

atod03

dtoa04
Development System Reference Guide www.xilinx.com 159
 1-800-255-7778

http://www.xilinx.com

Chapter 8: MAP
R

In the EXACT mode the mapping in the guide file is followed exactly. Any logic in the
input NGD file that matches logic mapped into the physical components of the NCD guide
file is implemented exactly as in the guide file. Mapping (including signal to pin
assignments), placement and routing are all identical. Logic that is not matched to any
guide component is mapped by a subsequent mapping step.

If there is a match in EXACT mode, but your constraints would conflict with the mapping
in the guide file component, an error is posted. If an error is posted, you can do one of the
following:

• Modify the constraints to eliminate conflicts

• Change to the LEVERAGE guide mode (which is less restrictive)

• Modify the logical design changes to avoid conflicts

• Stop using guided design

Figure 8-3: Guided Mapping

X8995

MAP

NGD
Input Design

NCD
Mapped Design

NGM
Mapped Design

PAR

NCD
Placed and Routed Design

NGD
Modified Input Design

NCD
Guide File

NGM
Guide File

MAP

NCD
New Mapped Design

MDF
Decomposition

Hints

First MAP Run Second MAP Run
160 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Simulating Map Results
R

In the LEVERAGE mode, the guide design is used as a starting point in order to speed up
the design process. However, in cases where the guided design tools cannot find matches
or your constraints rule out any matches, the logic is not guided. Whenever the guide
design conflicts with the your mapping, placement or routing constraints, the guide is
ignored and your constraints are followed.

Because the LEVERAGE mode only uses the guide design as a starting point for mapping,
MAP may alter the mapping to improve the speed or density of the implementation (for
example, MAP may collapse additional gates into a guided CLB).

For Spartan and Virtex/-E/-II/-II PRO devices, MAP uses the NGM and the NCD files as
guides. You do not need to specify the NGM file on the command line. MAP infers the
appropriate NGM file from the specified NCD file. If MAP does not find an NGM file in the
same directory as the NCD, it generates a warning. In this case, MAP uses only the NCD
file as the guide file.

Note: Guided mapping is not recommended for most HDL designs. Guided mapping depends on
signal and component names, and HDL designs often have a low match rate when guided. The
netlist produced after re-synthesizing HDL modules usually contains signal and instance names that
are significantly different from netlists created by earlier synthesis runs. This occurs even if the
source level HDL code contains only a few changes.

Simulating Map Results
When simulating with NGM files, you are not simulating a mapped result, you are
simulating the logical circuit description. When simulating with NCD files, you are
simulating the physical circuit description.

MAP may generate an error that is not detected in the back-annotated simulation netlist.
For example, after running MAP, you can run the following command to generate the
back-annotated simulation netlist:

ngdanno mapped.ncd mapped.ngm –o mapped.nga

This command creates a back-annotated simulation netlist using the logical-to-physical
cross-reference file named mapped.ngm. This cross-reference file contains information
about the logical design netlist, and the back-annotated simulation netlist (mapped.nga) is
actually a back-annotated version of the logical design. However, if MAP makes a physical
error, for example, implements an Active Low function for an Active High function, this
error will not be detected in the mapped.nga file and will not appear in the simulation
netlist. For example, consider the following logical circuit generated by NGDBuild from a
design file.

Figure 8-4: Logical Circuit Representation

D Q

CLK

A * B + C * D

A
B

C
D

X8549
Development System Reference Guide www.xilinx.com 161
 1-800-255-7778

http://www.xilinx.com

Chapter 8: MAP
R

Observe the Boolean output from the combinatorial logic. Suppose that after running MAP
for the preceding circuit, you obtain the following result.

Observe that MAP has generated an active low (C) instead of an active high (C).
Consequently, the Boolean output for the combinatorial logic is incorrect. When you run
NGDAnno using the mapped.ngm file (ngdanno mapped.ncd mapped.ngm –o
mapped.nga), you cannot detect the logical error because the delays are back-annotated to
the correct logical design, and not to the physical design.

One way to detect the error is by running the NGDAnno command without using the
mapped.ngm cross-reference file.

ngdanno mapped.ncd –o mapped.nga

As a result, physical simulations using the mapped.nga file should detect a physical error.
However, the type of error is not always easily recognizable. To pinpoint the error, use the
FPGA Editor or call Xilinx Customer Support. In some cases, a reported error may not
really exist, and the CLB configuration is actually correct. You can use the FPGA Editor to
determine if the CLB is correctly modelled.

Finally, if both the logical and physical simulations do not discover existing errors, you
may need to use more test vectors in the simulations.

MAP Report (MRP) File
The MAP report (MRP) file is an ASCII text file that contains information about the MAP
run. The report information varies based on the device and whether you use the –detail
option (see the “–detail (Write Out Detailed MAP Report)” section).

An abbreviated MRP file is shown below—most report files are considerably larger than
the one shown. The file is divided into a number of sections, and sections appear even if
they are empty. The sections of the MRP file are as follows:

• Design Information—Shows your MAP command line, the device to which the design
has been mapped, and when the mapping was performed.

Figure 8-5: CLB Configuration

D Q

CLK

LUT

CLB

A * B + C * D

A

B

C

D

X8550
162 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

MAP Report (MRP) File
R

• Design Summary—Summarizes the mapper run, showing the number of errors and
warnings, and how many of the resources in the target device are used by the mapped
design.

• Table of Contents—Lists the remaining sections of the MAP report.

• Errors—Shows any errors generated as a result of the following:

♦ Errors associated with the logical DRC tests performed at the beginning of the
mapper run. These errors do not depend on the device to which you are mapping.

♦ Errors the mapper discovers (for example, a pad is not connected to any logic, or a
bidirectional pad is placed in the design but signals only pass in one direction
through the pad). These errors may depend on the device to which you are
mapping.

♦ Errors associated with the physical DRC run on the mapped design.

• Warnings—Shows any warnings generated as a result of the following:

♦ Warnings associated with the logical DRC tests performed at the beginning of the
mapper run. These warnings do not depend on the device to which you are
mapping.

♦ Warnings the mapper discovers. These warnings may depend on the device to
which you are mapping.

♦ Warnings associated with the physical DRC run on the mapped design.

• Informational—Shows messages that usually do not require user intervention to
prevent a problem later in the flow. These messages contain information that may be
valuable later if problems do occur.

• Removed Logic Summary—Summarizes the number of blocks and signals removed
from the design. The section reports on these kinds of removed logic.

• Blocks trimmed—A trimmed block is removed because it is along a path that has no
driver or no load. Trimming is recursive. For example, if Block A becomes
unnecessary because logic to which it is connected has been trimmed, then Block A is
also trimmed.

♦ Blocks removed—A block is removed because it can be eliminated without
changing the operation of the design. Removal is recursive. For example, if Block
A becomes unnecessary because logic to which it is connected has been removed,
then Block A is also removed.

♦ Blocks optimized—An optimized block is removed because its output remains
constant regardless of the state of the inputs (for example, an AND gate with one
input tied to ground). Logic generating an input to this optimized block (and to
no other blocks) is also removed, and appears in this section.

♦ Signals removed—Signals are removed if they are attached only to removed
blocks.

♦ Signals merged—Signals are merged when a component separating them is
removed.

• Removed Logic—Describes in detail all logic (design components and nets) removed
from the input NGD file when the design was mapped. Generally, logic is removed
for the following reasons:

♦ The design uses only part of the logic in a library macro.

♦ The design has been mapped even though it is not yet complete.

♦ The mapper has optimized the design logic.

♦ Unused logic has been created in error during schematic entry.
Development System Reference Guide www.xilinx.com 163
 1-800-255-7778

http://www.xilinx.com

Chapter 8: MAP
R

This section also indicates which nets were merged (for example, two nets were
combined when a component separating them was removed).

In this section, if the removal of a signal or symbol results in the subsequent removal of
an additional signal or symbol, the line describing the subsequent removal is indented.
This indentation is repeated as a chain of related logic is removed. To quickly locate
the cause for the removal of a chain of logic, look above the entry in which you are
interested and locate the top-level line, which is not indented.

• IOB Properties—Lists each IOB to which the user has supplied constraints along with
the applicable constraints.

• RPMs—Indicates each RPM (Relationally Placed Macro) used in the design, and the
number of device components used to implement the RPM.

• Guide Report—If you have mapped using a guide file, shows the guide mode used
(EXACT or LEVERAGE) and the percentage of objects that were successfully guided.

• Area Group Summary—The mapper summarizes results for each area group. MAP
uses area groups to specify a group of logical blocks that are packed into separate
physical areas.

• Modular Design Summary—After the Modular Design Active Module
Implementation Phase, this section lists the logic that was added to the design to
successfully implement the active module. After the Final Assembly Phase, this
section states whether the logic was assembled successfully.

Note: The MAP Report is formatted for viewing in a monospace
(non-proportional) font. If the text editor you use for viewing the report uses a proportional font, the
columns in the report do not line up correctly.

Xilinx Mapping Report File for Design 'udcntr'

Design Information

Command Line : map udcntr.ngd -o udcntr_map.ncd
Target Device : xv300
Target Package : bg432
Target Speed : -5
Mapper Version : virtex -- $Revision: 1.58 $
Mapped Date : Wed May 23 10:32:53 2001

Design Summary

 Number of errors: 0
 Number of warnings: 1
 Number of Slices: 3 out of 3,072 1%
 Number of Slices containing
 unrelated logic: 0 out of 3 0%
 Number of Slice Flip Flops: 4 out of 6,144 1%
 Number of 4 input LUTs: 6 out of 6,144 1%
 Number of bonded IOBs: 18 out of 316 5%
 Number of Tbufs: 8 out of 3,200 1%
 Number of GCLKs: 1 out of 4 25%
 Number of GCLKIOBs: 1 out of 4 25%
 Number of hard macros: 1
Total equivalent gate count for design (not including hard macros): 68
Additional JTAG gate count for IOBs: 912

Table of Contents

Section 1 - Errors
164 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

MAP Report (MRP) File
R

Section 2 - Warnings
Section 3 - Informational
Section 4 - Removed Logic Summary
Section 5 - Removed Logic
Section 6 - IOB Properties
Section 7 - RPMs
Section 8 - Guide Report
Section 9 - Area Group Summary
Section 10 - Modular Design Summary

Section 1 - Errors

Section 2 - Warnings

WARNING:MapLib:328 - Block U2 is not a recognized logical block. The
mapper will continue to process the design but there may be design
problems if this block does not get trimmed.

Section 3 - Informational

INFO:MapLib:62 - All of the external outputs in this design are using
slew rate limited output drivers. The delay on speed critical outputs
can be dramatically reduced by designating them as fast outputs in the
schematic.

Section 4 - Removed Logic Summary

 3 block(s) removed
 1 block(s) optimized away
 3 signal(s) removed

Section 5 - Removed Logic

The trimmed logic report below shows the logic removed from your design
due to sourceless or loadless signals, and VCC or ground connections.
If the removal of a signal or symbol results in the subsequent removal
of an additional signal or symbol, the message explaining that second
removal will be indented. This indentation will be repeated as a chain
of related logic is removed.

To quickly locate the original cause for the removal of a chain of
logic, look above the place where that logic is listed in the trimming
report, then locate the lines that are least indented (begin at the
leftmost edge).

The signal "VCC" is loadless and has been removed.
 Loadless block "VCC" (ONE) removed.
The signal "U1/GND" is sourceless and has been removed.
The signal "U1/VCC" is sourceless and has been removed.
Unused block "U1/GND" (ZERO) removed.
Unused block "U1/VCC" (ONE) removed.

Optimized Block(s):
TYPE BLOCK
GND GND

Section 6 - IOB Properties
Development System Reference Guide www.xilinx.com 165
 1-800-255-7778

http://www.xilinx.com

Chapter 8: MAP
R

Section 7 - RPMs

Section 8 - Guide Report

Guide not run on this design.

Section 9 - Area Group Summary

 AREA_GROUP AG_U1
 RANGE: CLB_R1C1.*:CLB_R32C24.*
 No COMPRESSION specified for AREA_GROUP AG_U1
 Number of Slices: 3 out of 1,536 1%
 Number of Slice Flip Flops: 4 out of 3,072 1%
 Total Number 4 input LUTs: 6 out of 3,072 1%
 Number used as 4 input LUTs: 6

IOB
Name

Type Direction IO
Standard

Drive
Strength

Slew
Rate

Reg(s) Registor IOB
Delay

clock GCLKIOB Input LVTTL

IN[0] IOB Input LVTTL

IN[1] IOB Input LVTTL

IN[1] IOB Input LVTTL

IN[3] IOB Input LVTTL

Q1[0] IOB Output LVTTL 12 SLOW

Q1[1] IOB Output LVTTL 12 SLOW

Q1[2] IOB Output LVTTL 12 SLOW

Q1[3] IOB Output LVTTL 12 SLOW

Q2[0] IOB Output LVTTL 12 SLOW

Q2[1] IOB Output LVTTL 12 SLOW

Q2[2] IOB Output LVTTL 12 SLOW

Q2[3] IOB Output LVTTL 12 SLOW

clear1 IOB Input LVTTL

clear2 IOB Input LVTTL

load1 IOB Input LVTTL

load2 IOB Input LVTTL

triL IOB Input LVTTL

triR IOB Input LVTTL
166 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Halting MAP
R

Section 10 - Modular Design Summary

The following logic was added to the design to satisfy the
active module's interface. These interface components will
be removed during the Modular Design Final Assembly Phase.

 0 Flip Flops.
 0 LUTs
 0 TBUFs

To get a listing of the active module port nets, set the
"XIL_MAP_LISTPORTNETS" environment variable and rerun map.

Halting MAP
To halt MAP, enter Ctrl C (on a workstation) or Ctrl-break (on a PC). On a workstation,
make sure that when you enter Ctrl C the active window is the window from which you
invoked the mapper. The operation in progress is halted. Some files may be left when the
mapper is halted (for example, a MAP report file or a physical constraints file), but these
files may be discarded since they represent an incomplete operation.
Development System Reference Guide www.xilinx.com 167
 1-800-255-7778

http://www.xilinx.com

Chapter 8: MAP
R

168 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 9

Physical Design Rule Check

This program is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/3

The chapter contains the following sections:

• “DRC Overview”

• “DRC Syntax”

• “DRC Input File”

• “DRC Output File”

• “DRC Options”

• “DRC Checks”

• “DRC Errors and Warnings”

DRC Overview
The physical Design Rule Check, also known as DRC, comprises a series of tests to
discover physical errors and some logic errors in the design. The physical DRC is run as
follows:

• MAP automatically runs physical DRC after it has mapped the design.

• PAR (Place and Route) automatically runs physical DRC on nets when it routes the
design.

• BitGen, which creates a a BIT file for programming the device, automatically runs
physical DRC.

• You can run physical DRC from within the FPGA Editor. The DRC also runs
automatically after certain FPGA Editor operations (for example, when you edit a
logic cell or when you manually route a net). For a description of how the DRC works
within the FPGA Editor, see the online Help provided with this GUI.

• You can run physical DRC from the UNIX or DOS command line.
Development System Reference Guide www.xilinx.com 169
 1-800-255-7778

http://www.xilinx.com

Chapter 9: Physical Design Rule Check
R

DRC Syntax
The following command runs physical DRC:

drc [options] file_name

options can be any number of the DRC options listed in “DRC Options”. They do not need
to be listed in any particular order. Separate multiple options with spaces.

file_name is the name of the NCD file on which DRC is to be run.

DRC Input File
The input to DRC is an NCD file. The NCD file is a mapped, physical description of your
design.

DRC Output File
The output of DRC is a TDR file. The TDR file is an ASCII DRC report. The contents of this
file are determined by the options you select for the DRC command.

DRC Options
This section describes the DRC command line options.

–e (Error Report)
The –e option produces a report containing details about errors only. No details are given
about warnings.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file. For
more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.

–o (Output file)
–o outfile_name

The –o option overrides the default output report file file_name.tdr with outfile_name.tdr.

–s (Summary Report)
The –s option produces a summary report only. The report lists the number of errors and
warnings found but does not supply any details about them.

–v (Verbose Report)
The –v option reports all warnings and errors. This is the default option for DRC.
170 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

DRC Checks
R

–z (Report Incomplete Programming)
The –z option reports incomplete programming as errors. Certain DRC violations are
considered errors when the DRC runs as part of the BitGen command but are considered
warnings at all other times the DRC runs. These violations usually indicate the design is
incompletely programmed (for example, a logic cell has been only partially programmed
or a signal has no driver). The violations create errors if you try to program the device, so
they are reported as errors when BitGen creates a BIT file for device programming. If you
run DRC from the command line without the –z option, these violations are reported as
warnings only. With the –z option, these violations are reported as errors.

DRC Checks
Physical DRC performs the following types of checks:

• Net check

This check examines one or more routed or unrouted signals and reports any problems
with pin counts, 3-state buffer inconsistencies, floating segments, antennae, and partial
routes.

• Block check

This check examines one or more placed or unplaced components and reports any
problems with logic, physical pin connections, or programming.

• Chip check

This check examines a special class of checks for signals, components, or both at the
chip level, such as placement rules with respect to one side of the device.

• All checks

This check performs net, block, and chip checks.

When you run DRC from the command line, it automatically performs net, block, and chip
checks.

In the FPGA Editor, you can run the net check on selected objects or on all of the signals in
the design. Similarly, the block check can be performed on selected components or on all of
the design’s components. When you check all components in the design, the block check
performs extra tests on the design as a whole (for example, 3-state buffers sharing long
lines and oscillator circuitry configured correctly) in addition to checking the individual
components. In the FPGA Editor, you can run the net check and block check separately or
together.

DRC Errors and Warnings
A DRC error indicates a condition in which the routing or component logic does not
operate correctly (for example, a net without a driver or a logic block that is incorrectly
programmed). A DRC warning indicates a condition where the routing or logic is
incomplete (for example, a net is not fully routed or a logic block has been programmed to
process a signal but there is no signal on the appropriate logic block pin).

Certain messages may appear as either warnings or errors, depending on the application
and signal connections. For example, in a net check, a pull-up not used on a signal
connected to a decoder generates an error message. A pull-up not used on a signal
connected to a 3-state buffer only generates a warning.
Development System Reference Guide www.xilinx.com 171
 1-800-255-7778

http://www.xilinx.com

Chapter 9: Physical Design Rule Check
R

Incomplete programing (for example, a signal without a driver or a partially programmed
logic cell) is reported as an error when the DRC runs as part of the BitGen command, but
is reported as a warning when the DRC runs as part of any other program. The –z option
to the DRC command reports incomplete programming as an error instead of a warning.
For a description of the –z option, see “–z (Report Incomplete Programming)”.
172 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 10

PAR

The Place and Route (PAR) program is compatible with the following families:

• Virtex™/-II/-II Pro/-E

• Spartan™-II/-IIE/3

The chapter contains the following sections:

• “Place and Route Overview”

• “PAR Syntax”

• “PAR Input Files”

• “PAR Output Files”

• “PAR Options”

• “Detail Listing”

• “PAR Process”

• “Guided PAR”

• “PAR Reports”

• “Guide Reporting”

• “Turns Engine (PAR Multi-Tasking Option)”

• “Halting PAR”

Place and Route Overview
After you create a mapped NCD (native circuit description) file, you can place and route
the file using PAR. PAR accepts an NCD file as input, places and routes the design, and
outputs an NCD file to be used by the bitstream generator (BitGen). You can use the output
NCD file as a guide file for additional runs of PAR after making minor changes to your
design.

PAR places and routes a design based on the following considerations:

• Cost-based—Placement and routing are performed using various cost tables that
assign weighted values to relevant factors such as constraints, length of connection,
and available routing resources. Cost-based is used if no timing constraints are
present. Cost-based placement and cost-based routing are described in “PAR
Process”.

• Timing-Driven—The Xilinx timing analysis software enables PAR to place and route
a design based upon your timing constraints (see “Timing-driven PAR”).
Development System Reference Guide www.xilinx.com 173
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

The design flow through the PAR module is shown in the following figure. This figure
shows a PAR run that produces a single output design file.

PAR Syntax
The following syntax places and routes your design:

par [options] infile[.ncd] outfile [pcf_file[.pcf]]

options can be any number of the PAR options listed in “PAR Options.” They do not need
to be listed in any particular order. Separate multiple options with spaces.

infile is the design file you wish to place and route. The file must include an .ncd extension,
but you do not have to specify the .ncd extension on the command line.

outfile is the target design file that is written after PAR is finished. If the command options
you specify yield a single output design file, outfile has an extension of .ncd or .dir. An .ncd
extension generates an output file in NCD format, and the .dir extension directs PAR to
create a directory in which to place the output file (in NCD format). If the specified
command options yield more than one output design file, outfile must have an extension of
.dir. The multiple output files (in NCD format) are placed in the directory with the .dir
extension.

Figure 10-1: PAR Flow

PAR

NCD
Circuit Description

(Mapped)

Guide File

Input for Re-Entrant PAR

PAR
PAR Report

CSV, PAD, TXT
 Pin Information

NCD
Circuit Description
(Placed/Routed)

X10090

PCF
Physical Constraints

Intermediate
Failing Timespec

Summary

Guide File
Report
174 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PAR Input Files
R

If the file or directory you specify already exists, you get an error message and the
operation does not run. You can override this protection and automatically overwrite
existing files by using the –w option.

pcf_file is a physical constraints file. The file contains the constraints you entered during
design entry, constraints you added using the UCF (user constraints file), using PACE, and
constraints you added directly in the PCF file. If you do not enter the name of a physical
constraints file on the command line and the current directory contains an existing
physical constraints file with the infile name and a .pcf extension, PAR uses the PCF.

PAR Input Files
Input to PAR consists of the following files:

• NCD file—a mapped design.

• PCF —an ASCII file containing constraints based on timing, physical placements, and
other attributes placed in a UCF or NCF file. A list of constraints is located in the
Constraints Guide. PAR supports all of the timing constraints described in that manual.

• Guide NCD file—an optional placed and routed NCD file you can use as a guide for
placing and routing the design.

PAR Output Files
Output from PAR consists of the following files:

• NCD file—a placed and routed design file (may contain placement and routing
information in varying degrees of completion).

• PAR file—a PAR report including summary information of all placement and routing
iterations.

• PAD file—a file containing I/O pin assignments in a parsable database format.

• CSV file—a file containing I/O pin assignments in a format directly supported by
spreadsheet programs.

• TXT file—a file containing I/O pin assignments in a SCII text version for viewing in a
text editor.

• GRF (Guide Report File)— a file that is created when you use the –gf option.

PAR Options
You can customize the place and route operation by specifying options when you run PAR.
You can place a design without routing it, perform a single placement, perform a number
of placements using different cost tables, and specify an effort level (std, med, high) to
show whether the design is simple or complex.
Development System Reference Guide www.xilinx.com 175
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

The following table lists a summary of PAR options, a short description of their function,
default settings, and effort level ranges:

Table 10-1: Effort Level Options

Option Function Range Default

–ol effort_level Placement and routing effort
level

std, med,
high

std (Overall
effort level std)

–pl placer_effort_level Placement effort level
(overrides
–ol value for the placer)

std, med,
high

Determined by
the –ol setting

–rl router_effort_level Routing effort level (overrides
–ol value for the router)

std, med,
high

Determined by
the –ol setting

–xe extra_effort_level Set extra effort level normal,
continue

No extra effort
level is used

Table 10-2: General Options

Option Function Range Default

–f command_file Executes command line
arguments in a specified
command file

N/A No command
line file

–intstyle Suppresses portion of the PAR
report from being displayed on
the screen

N/A Display all
informaiton on
the screen

–k Run re-entrant router starting
with existing placement and
routing

N/A Run placement
and standard
router (Do not
run re-entrant
routing)

–nopad Suppresses the creation of the
PAD files in all formats

N/A Generate the
three PAD files

–p Do not run the Placer N/A Run Placement

–r Do not run the Router N/A Run Router

–ub Use unbonded IOB sites N/A Do not use
unbonded IOB
sites
176 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PAR Options
R

–w existing_file Overwrite existing output files
that have the same name and
path

N/A Do not
overwrite

–x Ignore any timing constraints
and do not use Automatic
Timespecing

N/A Use timing
constraints if
present or use
Automatic
Timespecing if
no timing
constraints are
given

Table 10-3: Guide Options

Option Function Range Default

–gf Specifies the name of a NCD file
to be used guide file for PAR

N/A No guide file is
used

–gm {exact | leverage |
incremental }

Selects the mode of guide to use
during Place and Route

N/A Exact

Table 10-4: Multi Pass Place and Route (MPPR) Options

Option Function Range Default

–n iteration Number of
Placement Cost
Tables to run in
Multi Pass Place
and Route

0-100 One place and route
run

–m nodefile_name Turns engine for
Multi Pass Place
and Route
(available on UNIX
only)

N/A Do not run the turns
engine

–s number_to_save Save number of
results from Multi
Pass Place and
Route (used with –n
option)

1-100 Saves all

–t placer_cost_table Starting Placement
Cost Table

1-100 One (Start placer at
Cost Table 1)

Table 10-2: General Options

Option Function Range Default
Development System Reference Guide www.xilinx.com 177
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

Detail Listing
This section describes PAR options in more detail. The listing is in alphabetical order.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file. For
more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.

–gf (Guide NCD File)
–gf guide_file

The –gf option specifies the name of an NCD file (from a previous PAR run) to be used as
a guide for this PAR run. The guide file is an NCD file which is used as a template for
placing and routing the input design. If the –gm option is not specified, the guide mode
will be exact. For more information on the guide file, see “Guided PAR”.

–gm (Guide Mode)
–gm {exact | leverage | incremental}

The –gm option specifies the type of guided placement and routing PAR uses—exact or
leveraged or incremental. The default is exact mode. For more information on the guide
modes, see “Guided PAR”.

You must specify the NCD to use as a guide file by entering a –gf option (see “–gf (Guide
NCD File)”) on the PAR command line.

par -gf previous_run.ncd -gm leverage design_ncd place_and_routed.ncd
design.pcf

–intstyle
–intstyle {ise | xflow | silent}

The –intstyle option suppresses the screen output.

–intstyle silent

Reduces the screen output to warnings and errors only. This option replaces the –quiet
option, which will not be available in future releases.

–k (Re-Entrant Routing)
–k previous_NCD.ncd reentrant.ncd

The –k option runs re-entrant routing. Routing begins with the existing placement and
routing left in place. Re-entrant routing is useful to manually route parts of a design and
then continue automatic routing, if you halted the route prematurely (for example, with
Ctrl+C) and want to resume, or if you want to run additional route passes.
178 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Detail Listing
R

–m (Multi-Tasking Mode)
–m nodefile_name

The –m option, for UNIX only, allows you to specify the nodes on which to run jobs when
using the PAR Turns Engine. You must use this option with the -n (Number of PAR
Iterations) option.

par -m nodefile_name -ol high -n 10 mydesign.ncd output.dir

–n (Number of PAR Iterations)
–n iterations

By default (without the –n option), one place and route iteration is run. The –n option
determines the number of place and route passes performed at the effort level specified by
the –ol option. Each iteration uses a different cost table when the design is placed and
produces a different NCD file. If you enter -n 0, the software continues to place and route,
stopping either after the design is fully routed and meets all timing constraints or after
completing the iteration at cost table 100. If you specify a –t option, the iterations begin at
the cost table specified by –t. The valid range of the cost table is 1–100, and the default is 1.

par -pl high -rl std -n 5 design.ncd output.dir design.pcf

Note: For the best MPPR results in a reasonable time, use –pl high –rl std to get the best
placement. While using the –n 0 option. Use the -ol high to get the best results.

–nopad (No Pad)
–nopad

The –nopad option turns off the generation of the three output formats for the PAD file
report. By default, all three report types are created when PAR is run.

–ol (Overall Effort Level)
–ol effort_level

The –ol option sets the overall PAR effort level. The effort level specifies the level of effort
PAR uses to place and route your design to completion and to achieve your timing
constraints.

Of the three effort_level values, use std on the least complex design, and high on the most
complex. The level is not an absolute; it shows instead relative effort.

If you place and route a simple design at a complex level, the design is placed and routed
properly, but the process takes more time than placing and routing at a simpler level. If you
place and route a complex design at a simple level, the design may not route to completion
or may route less completely (or with worse delay characteristics) than at a more complex
level.

Increasing your overall level will enable harder timing goals to be possibly met, however it
will increase your runtime.

The effort_level setting is std, med, or high with the default level std.
Development System Reference Guide www.xilinx.com 179
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

The –ol level sets an effort level for placement and another effort level for routing. These
levels are also std, med, high. The placement and routing levels set at a given –ol level
depend on the device family in the NCD file. You can determine the default placer and
router effort levels for a device family by reading the PAR Report file produced by your
PAR run.

You can override the placer level set by the –ol option by entering a –pl (Placer Effort Level)
option, and you can override the router level by entering a –rl (Router Effort Level) option.

par -ol high design.ncd output.ncd design.pcf

Note: For Spartan-II and Virtex/-E devices, automatic timespecing is performed if PAR does not
detect timing constraints and the effort level is set at med or high. See “Automatic Timespecing” in
this chapter for more information.

–p (No Placement)
The –p option bypasses the placer and proceeds to the routing phase. A design must be
fully placed when using this option or PAR will issue an error message and exit. When you
use this option, existing routes are ripped up before routing begins. You can, however,
leave the routing in place if you use the –k option instead of the –p option.

par -p design.ncd output.ncd design.pcf

Note: This is recommended when you have a fully place.ncd or fully LOC all your placement. This
occurs when you write an MFP or UCF from the Floorplanner or wish to maintain a previous NCD
placement but run the router again.

–pl (Placer Effort Level)
–pl placer_effort_level

The –pl option sets the placer effort level. The effort level specifies the level of effort used
when placing the design. This option overrides the setting specified for the –ol option. For
a description of effort level, see “–ol (Overall Effort Level)”.

The placer_effort_level setting is std, med, or high, and the default level set if you do not
enter a –pl option is determined by the setting of the –ol option.

par -pl high placed_design.ncd output.ncd design.pcf

–r (No Routing)
Use the –r option to prevent the routing of a design. The –r option causes the design to exit
before the routing stage.

par -r design.ncd no route.ncd design.pcf
180 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Detail Listing
R

–rl (Router Effort Level)
–rl router_effort_level

The –rl option sets the router effort level. The effort level specifies the level of effort used
when routing the design. This option overrides the setting for the –ol option. For a
description of effort level, see “–ol (Overall Effort Level)”.

The router_effort_level setting is std, med, or high, and the default level set if you do not
enter a –rl option is determined by the setting of the –ol option. In the example that follows,
the placement level is at std (default) and the router level is at the highest effort level.

par -rl high design.ncd output.ncd design.pcf

–s (Number of Results to Save)
–s number_to_save

By default (without the -s option), all results are saved. The –s option saves only the
number of results you specify. The –s option compares every result to every other result
and leaves you with the best number of NCD files. The best outputs are determined by a
score assigned to each output design. This score takes into account such factors as the
number of unrouted nets, the delays on nets and conformance to your timing constraints.
The lower the score, the better the design. This score is described in “PAR Reports”. The
valid range for number_to_save is 1–100, and the default –s setting (no –s option specified)
saves all results. See the “MPPR Reporting” section for more details.

par -s 2 -n 10 -pl high -rl std design.ncd output_directory design.pcf

–t (Starting Placer Cost Table)
–t placer_cost_table

By default (without the -t option), PAR starts at placer cost table 1.The –t option specifies
the cost table at which the placer starts (placer cost tables are described in “Placing”). If the
cost table 100 is reached, placement begins at 1 again, if you are running MPPR due to the
–n options. The placer_cost_table range is 1–100, and the default is 1.

par –t 10 –s 1 –n 5 –pl high –rl std design.ncd output_directory
design.pcf

The previous option is often used with MPPR to try out various cost tables. In this
example, cost table 10 is used and a MPPR run is performed for 5 iterations. The par run
starts with cost table 10 and runs through 14. The placer effort is at the highest and the
router effort at std. The number of NCD saved will be the best one.

–ub (Use Bonded I/Os)
par –ub design.ncd output.ncd design.pcf

By default (without the -ub option), I/O logic that MAP has identified as internal can only
be placed in unbonded I/O sites. If the –ub option is specified, PAR can place this internal
I/O logic into bonded I/O sites in which the I/O pad is not used. The option also allows
PAR to route through bonded I/O sites. If you use the –ub option, make sure this logic is
not placed in bonded sites connected to external signals, power, or ground. You can
prevent this condition by placing PROHIBIT constraints on the appropriate bonded I/O
sites. See the Constraints Guide for more information on constraints.
Development System Reference Guide www.xilinx.com 181
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

–w (Overwrite Existing Files)
par input.ncd –w existing_NCD.ncd input.pcf

Use the –w option to instruct PAR to overwrite existing output files, including the input
design file if it follows the –w option. The default is not to overwrite an NCD. Therefore if
the given NCD exists, then PAR gives an error and terminates before running place and
route.

–x (Ignore Timing Constraints)
par –x design.ncd output.ncd design.pcf

If you do not specify the –x option, the PAR software automatically runs a timing-driven
PAR run if any timing constraints are found in the physical constraints file. If you do
specify –x, timing-driven PAR is not invoked in any case.

The –x option might be used if you have timing constraints specified in your physical
constraints file, but you want to execute a quick PAR run without using the timing-driven
PAR feature, to give you a rough idea of how difficult the design is to place and route.

You should run the –x option when your runtimes are extremely long. Running the –x
option determines if your runtimes are due to aggressive timing constraints.

Par ignores all timing constraints in the design.pcf, and uses all physical constraints, such
as LOC and AREA_RANGE.

–xe (Extra Effort Level)
–xe effort_level

par –ol high –xe n design.ncd output.ncd design.pcf

Use the –xe option to set the extra effort level. The effort_level variable can be set to n
(normal) or c (continue) working even when timing cannot be met. Extra effort n uses
additional runtime intensive methods in an attempt to meet difficult timing constraints. If
PAR determines that the timing constraints can not be met, then a message is issued
explaining that the timing can not be met and PAR exits. Extra effort c allows you to direct
PAR to continue routing even if PAR determines the timing constraints can not be met.
PAR continues to attempt to route and improve timing until little or no timing
improvement can be made.

Note: Use of extra effort c can result in extremely long runtimes.
182 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PAR Process
R

PAR Process
This section provides information on how placing and routing are performed by PAR, as
well as information on timing-driven PAR and automatic timespecing.

Placing
The PAR placer executes multiple phases of the placer. PAR writes the NCD after all the
phases are completed.

During placement, PAR places components into sites based on factors such as constraints
specified in the PCF file (for example, timing information and certain components must be
in certain locations), the length of connections, and the available routing resources.

Timing-driven placement is automatically invoked if PAR finds timing constraints in the
physical constraints file.

Routing
The next stage is routing the placed design. PAR writes the NCD file when the design is
fully routed. Therefore, at this point the design can be analyzed against timing. A new
NCD is written as the routing improves.

The router performs a procedure to converge on a solution that routes the design to
completion and meets timing constraints.

Timing-driven routing is automatically invoked if PAR finds timing constraints in the
physical constraints file.

Timing-driven PAR
Timing-driven PAR is based on the Xilinx timing analysis software, an integrated static
timing analysis tool that does not depend on input stimulus to the circuit. Placement and
routing are executed according to timing constraints that you specify in the beginning of
the design process. The timing analysis software interacts with PAR to ensure that the
timing constraints imposed on your design are met.

To use timing-driven PAR, you can specify timing constraints using any of the following
ways:

• Enter the timing constraints as properties in a schematic capture or HDL design entry
program. In most cases, a NCF will be automatically generated by the synthesis tool.

• Write your timing constraints into a user constraints file (UCF). This file is processed
by NGDBuild when the logical design database is generated.

To avoid manually entering timing constraints in a UCF, use the Xilinx Constraints
Editor, a tool that greatly simplifies constraint creation. For a detailed description of
how to use the editor, see the Constraints Editor online help.

• Enter the timing constraints in the physical constraints file (PCF), a file that is
generated by MAP. The PCF file contains any timing constraints specified using the
two previously described methods and any additional constraints you enter in the
file.
Development System Reference Guide www.xilinx.com 183
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

Timing-driven placement and timing-driven routing are automatically invoked if PAR
finds timing constraints in the physical constraints file. The physical constraints file serves
as input to the timing analysis software. The timing constraints supported by the Xilinx
Development System are described in the Constraints Guide.

Note: Depending upon the types of timing constraints specified and the values assigned to the
constraints, PAR run time may be increased.

When PAR is complete, you can review the .PAR Report for the timing summary or verify
that the design’s timing characteristics (relative to the physical constraints file) have been
met by running TRACE (Timing Reporter and Circuit Evaluator) or Timing Analyzer,
Xilinx’s timing verification and reporting utility. TRACE, which is described in detail in
Chapter 13, “TRACE”, issues an report showing any timing warnings and errors and other
information relevant to the design.

Automatic Timespecing
PAR performs automatic timespecing if it does not detect any timing constraints. This
feature is only invoked if you set the –ol option to med or high.

When automatic timespecing is invoked, PAR analyzes your design for clock nets and
attempts to increase the frequency of clocks. The alternative to automatic timespecing is
manually increasing the clock frequency using a timing-driven flow, and running PAR
many times with progressively higher frequencies. Each run requires an increase in the
frequency specifications on clocks in your design. PAR attempts to meet these
specifications, not improve them. You can continue to increase the frequency specifications
until PAR can no longer meet them. At this point, your design achieves optimal clock
frequency. Automatic timespecing allows you to achieve good clock frequency results in
the shortest possible time.

Specifying timing constraints in your design file can still yield the best frequency.
However, automatic timespecing provides significantly improved runtime and clock
frequency compared with not using a timing-driven mode.

Note: You can suppress automatic timespecing with the –x option.

Command Line Examples
Following are a few examples of PAR command lines and a description of what each does.

Example 1:

The following command places and routes the design in the file input.ncd and writes the
placed and routed design to output.ncd.

par input.ncd output.ncd

Example 2:

The following command skips the placement phase and preserves all routing information
without locking it (re-entrant routing). Then it runs in conformance to timing constraints
found in the pref.pcf file. If the design is fully routed and your timing constraints are not
met, then the router attempts to reroute until timing goals are achieved or until it
determines it is not achievable.

par –k previous.ncd reentrant.ncd
184 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Guided PAR
R

Example 3:

The following command runs 20 placements and routings using different cost tables all at
overall effort level med. The mapping of the overall level (–ol) to placer effort level (–pl)
and router effort level (–rl) depends on the device to which the design was mapped, and
placer level and router level do not necessarily have the same value. The iterations begin at
cost table entry 5. Only the best 3 output design files are saved. The output design files (in
NCD format) are placed into a directory called results.dir.

par –n 20 –ol med –t 5 –s 3 input.ncd results.dir

Example 4:

The following UNIX-only command runs PAR (using the Turns Engine) on all nodes listed
in the allnodes file. It runs 10 place and route passes at placer effort level med and router
effort level std on the mydesign.ncd file.

par –m allnodes –pl med –rl std –n 10 –i 10 –c l mydesign.ncd output.dir

Guided PAR
You can use guide files to modify your design you can integrate your design with PCI Core
guide files.

Guided Designs
Optionally, PAR reads an NCD file as a guide file to help in placing and routing the input
design. This is useful if minor incremental changes have been made to create a new design.
To increase productivity, you can use your last design iteration as a guide design for the
next design iteration, as shown in the following figure:

Two command line options control guided PAR. The –gf option specifies the NCD guide
file, and the –gm option determines whether exact or leverage or incremental mode is used
to guide PAR.

Figure 10-2: Guided PAR for Design

NCD
Guide File

X7202

PAR

NCD
Input Design

NCD
Placed and Routed

 Design

First PAR Run

NCD
Modified Input Design

PAR

Second PAR Run

NCD
New Placed and Routed

 Design
Development System Reference Guide www.xilinx.com 185
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

The guide design is used as follows:

• If a component in the new design is constrained to the same location as a component
placed in the guide file, then this component is defined as matching.

• If a component in the new design has the same name as a component in the guide
design, that component matches the guide component.

• If a signal in the new design has the same name as a signal in the guide design, the
signal matches the guide signal.

• Any matching component in the new design is placed in the site corresponding to the
location of the matching guide component, if possible.

• Matching component pins are swapped to match those of the guide component with
regard to matching signals, if possible.

• All of the connections between matching driver and load pins of the matching signals
have the routing information preserved from the guide file with the exception to logic
0/1 and clock signal.

When PAR runs using a guide design as input, PAR first places and routes any components
and signals that fulfill the matching criteria described above. Then PAR places and routes
the remainder of the logic.

To place and route the remainder of the logic, PAR performs the following:

• If you have selected exact guided PAR (by entering the –gm exact option on the PAR
command line), the placement and routing of the matching logic are locked. Neither
placement nor routing can be changed to accommodate the additional logic.

• If you have selected leveraged guided PAR (by entering the –gm leverage option on
the PAR command line), PAR tries to maintain the placement and routing of the
matching logic, but changes placement or routing if it is necessary in order to place
and route to completion and achieve your timing constraints (if possible).

• If you have selected incremental guided PAR (by entering the -gm incremental option
on the PAR command line), your design must have area groups constraints to take
advantage of this option. If an area group has changed, for example, additional or
elimination of logic, this area group will not be guided. The other area groups will
maintain the placement but routing will change to route the design completely and to
achieve your timing constraints (if possible).

Some cases where the leveraged mode is necessary are as follows:

♦ You have added logic that makes it impossible to meet your timing constraints
without changing the placement and routing in the guide design.

♦ You have added logic that demands a certain site or certain routing resource, and
that site or routing resource is already being used in the guide design.

Note: For Verilog or VHDL netlist designs, re-synthesizing modules typically causes signal and
instance names in the resulting netlist to be significantly different from the netlist obtained in earlier
synthesis runs. This occurs even if the source level Verilog or VHDL code only contains a small
change. Because guided PAR depends on signal and component names, synthesis designs often
have a low match rate when guided. Therefore, guided PAR is not recommended for most synthesis-
based designs, although there may be cases where it could be a successful alternative technique.
186 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PAR Reports
R

PCI Cores
You can use a guide file to add a PCI Core, which is a standard I/O interface, to your
design. The PCI Core guide file must already be placed and routed. PAR only places and
routes the signals that run from the PCI Core to the input NCD design; it does not place or
route any portion of the PCI Core. You can also use the resulting design (PCI Core
integrated with your initial design) as a guide file. However, you must then use the exact
option for –gm, not leverage, when generating a modified design.

Guided PAR supports precise matching of placement and routing of PCI Cores that are
used as reference designs in a guide file:

• Components locked in the input design are guided by components in the reference
design of a guide file in the corresponding location.

• Signals that differ only by additional loads in the input design have the corresponding
pins routed according to the reference design in the guide file.

• Guide summary information in the PAR report describes the amount of logic from the
reference design that matches logic in the input design.

For detailed information about designing with PCI, refer to the Xilinx PCI web page
(http://www.xilinx.com/systemio/pciexpress/index.htm).

PAR Reports
The output of PAR is a placed and routed NCD file (the output design file). In addition to
the output design file, a PAR run generates a report file with a .par extension. Three pinout
files (.pad, pad.txt, and pad.csv) are also generated. The pinout .pad file is intended for
parsing by user scripts. The pad.txt file is intended for user viewing in a text editor. The
pad.csv file is intended for directed opening inside of a spreadsheet program. It is not
intended for viewing through a text editor. A Guide Report File (.grf) is created when you
use the –gf option.

Note: ReportGen is a new report generating utility that can be used to generate and customize pad
and delay report files. See the “ReportGen” section in this chapter for details.

The PAR file contains execution information about the place and route job as well as all
constraint messages.

If the options that you specify when running PAR are options that produce a single output
design file, your output is the output design file, a PAR file, a DLY file, and PAD files. The
PAR file and the DLY file have the same root name as the output design file. The PAD files
have the same root name as the output design file, but the .txt and .csc files have the tag
“pad” added to the output design name.

If you run multiple iterations of placement and routing, you produce an output design file,
a PAR file, a DLY file, and a PAD files for each iteration. Consequently, when you run
multiple iterations you have to specify a directory in which to place these files.

As the command is performed, PAR records a summary of all placement and routing
iterations in one PAR file at the same level as the directory you specified, then places the
output files (in NCD format) in the specified directory. Also, a Place and Route Report File
and a PAD file are created for each NCD file, describing in detail each individual iteration.

Note: Reports are formatted for viewing in a monospace (non-proportional) font. If the text editor
you use for viewing the report uses a proportional font, the columns in the report do not line up
correctly. The pad.csv report is formatted for importing into a spreadsheet program or for parsing via
a user script.
Development System Reference Guide www.xilinx.com 187
 1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/systemio/pciexpress/index.htm

Chapter 10: PAR
R

Place and Route Report File
The Place and Route report file contains execution information about the PAR command
run. The report file shows the steps taken as the program converges on a placement and
routing solution.

PAR reports different phases of the placers. The placer identifies which phase is being
executed, and gives a checksum number. The checksum number is only for debugging
purposes and does not reflect any indication of the quality of the placer run. The checksum
number should be ignored. Lastly, it gives a running tally of the time transpired since
starting PAR. A sample PAR report file follows:

Release 6.1i Par G.23
Copyright (c) 1995-2003 Xilinx, Inc. All rights reserved.

TIRPITZ:: Mon Jul 07 08:53:02 2003

par -w -ol high map.ncd par0.ncd map.pcf

Constraints file: map.pcf

Loading device database for application Par from file "map.ncd".
 "ohi_fpga_top" is an NCD, version 2.38, device xcv300e, package
fg456, speed
-8
Loading device for application Par from file 'v300e.nph' in environment
L:/G.23/rtf.
Device speed data version: PRODUCTION 1.68 2003-06-19.
Device utilization summary:

 Number of External GCLKIOBs 1 out of 4 25%
 Number of External IOBs 251 out of 312 80%
 Number of LOCed External IOBs 246 out of 251 98%

 Number of BLOCKRAMs 18 out of 32 56%
 Number of SLICEs 2474 out of 3072 80%

 Number of GCLKs 1 out of 4 25%

Overall effort level (-ol): High (set by user)
Placer effort level (-pl): High (set by user)
Placer cost table entry (-t): 1
Router effort level (-rl): High (set by user)

Starting initial Timing Analysis. REAL time: 7 secs
Finished initial Timing Analysis. REAL time: 18 secs

Phase 1.1
Phase 1.1 (Checksum:990923) REAL time: 21 secs

Phase 2.23
Phase 2.23 (Checksum:1312cfe) REAL time: 21 secs

Phase 3.3
Phase 3.3 (Checksum:1c9c37d) REAL time: 21 secs

Phase 4.5
Phase 4.5 (Checksum:26259fc) REAL time: 21 secs
188 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PAR Reports
R

Phase 5.8
..
Phase 5.8 (Checksum:f418ba) REAL time: 2 mins 22 secs

Phase 6.5
Phase 6.5 (Checksum:39386fa) REAL time: 2 mins 22 secs

Phase 7.18
Phase 7.18 (Checksum:42c1d79) REAL time: 3 mins 29 secs

Writing design to file par0.ncd.

Total REAL time to Placer completion: 3 mins 30 secs
Total CPU time to Placer completion: 3 mins 22 secs

This portion of the PAR report below states the router has been invoked. It displays each
phase of the router and reports the number of unrouted net. On the same line is an
approximate value in parenthesis. This is the timing score (number of picoseconds from
meeting all timing constraints multiplied by 100) at this phase of the router. The next line
provides the runtime since starting PAR.

Phase 1: 16180 unrouted; REAL time: 3 mins 31 secs

Phase 2: 14188 unrouted; REAL time: 3 mins 41 secs

Phase 3: 4263 unrouted; REAL time: 3 mins 48 secs

Phase 4: 4263 unrouted; (3106) REAL time: 3 mins 49 secs

Phase 5: 4279 unrouted; (3106) REAL time: 3 mins 51 secs

Phase 6: 4299 unrouted; (829) REAL time: 3 mins 55 secs

Phase 7: 0 unrouted; (1215) REAL time: 4 mins 13 secs

Writing design to file par0.ncd.

Phase 8: 0 unrouted; (1064) REAL time: 4 mins 47 secs

Phase 9: 0 unrouted; (682) REAL time: 5 mins 25 secs

Phase 10: 0 unrouted; (682) REAL time: 5 mins 55 secs

Writing design to file par0.ncd.

Phase 11: 0 unrouted; (682) REAL time: 6 mins 1 secs

Phase 12: 0 unrouted; (682) REAL time: 6 mins 24 secs

Total REAL time to Router completion: 6 mins 27 secs
Total CPU time to Router completion: 6 mins 19 secs
Development System Reference Guide www.xilinx.com 189
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

This next portion gives PAR statistics for the clocks and other statistics.

Generating "par" statistics.

Generating Clock Report

+----------------------------+----------+--------+------------+-------
------+
| Clock Net | Resource | Fanout |Net Skew(ns)|Max
Delay(ns)|
+----------------------------+----------+--------+------------+-------
------+
| c_clk_BUFGPed | Global | 622 | 0.277 | 0.544 |
+----------------------------+----------+--------+------------+-------
------+
| c_tclk_o | Local | 45 | 0.420 | 1.152 |
+----------------------------+----------+--------+------------+-------
------+

 The Delay Summary Report

 The SCORE FOR THIS DESIGN is: 3241

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design is: 0

 The AVERAGE CONNECTION DELAY for this design is: 1.169
 The MAXIMUM PIN DELAY IS: 6.389
 The AVERAGE CONNECTION DELAY on the 10 WORST NETS is: 5.520

 Listing Pin Delays by value: (nsec)

 d < 1.00 < d < 2.00 < d < 3.00 < d < 4.00 < d < 7.00 d >= 7.00
 --------- --------- --------- --------- --------- ---------
 8182 5635 1860 391 112 0

Timing Score: 682

WARNING:Par:62 - Timing constraints have not been met.

Asterisk (*) preceding a constraint indicates it was not met.
 This may be due to a setup or hold violation.

--

 Constraint | Requested | Actual | Logic
 | | | Levels
--

* NET "c_clk" MAXSKEW = 500 pS | 0.500ns | 0.801ns | N/A
--

 NET "fpga_core/userio/drop" MAXDELAY = 2 | 2.000ns | 1.030ns |
N/A
 nS | | |
190 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PAR Reports
R

--

 OFFSET = IN 9 nS BEFORE COMP "c_clk" | 9.000ns | 5.124ns | 1
--

1 constraints not met.
INFO:Timing:2761 - N/A entries in the Constraints list may indicate that
the
 constraint does not cover any paths or that it has no requested value.
Generating Pad Report.

All signals are completely routed.

Total REAL time to PAR completion: 6 mins 34 secs
Total CPU time to PAR completion: 6 mins 25 secs

Peak Memory Usage: 153 MB

Placement: Completed - No errors found.
Routing: Completed - No errors found.
Timing: Completed - 1 errors found.

Writing design to file par0.ncd.

PAR done.

The clock table lists all clocks in the design and provides information on the routing
resources, number of fanout, maximum net skew for each clock, and maximum delay.

Note: The clock skew and delay listed in this table differs from skew and delay reported in TRACE,
or Timing Analyzer. PAR only takes into account the net that drives the clock pins whereas TRACE
and Timing Analyzer include the entire clock path.

The Score for this design section is a rating of the routed design. The PAR file shows the total
score as well as the individual factors making up the score. The score takes the following
into account (weighted by their relative importance):

• Number of unrouted nets (unr)

• Number of timing constraints not met (ncst)

• Amount (expressed in ns) that the timing constraints were not met (acst)

• Maximum delay on a net with a weight greater than 3

• Net weights or priorities

• Average of all of the maximum delays on all nets (av)

• Average of the maximum delays for the ten highest delay nets (10w)

The lower the score, the better the result. The formula that produces the score is:

5000*unr+1000*ncst+20*acst+(delay*weight)*0.2+av*100+10w*20

Timing Score: 0
Asterisk (*) preceding a constraint indicates it was not met.

Constraint

Actual |Logic |Requested|
|Levels | |

NET “rclk_ibuf/IBUFG” PERIOED = 6.410 ns |6.410ns |
Development System Reference Guide www.xilinx.com 191
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

6.053ns
 HIGH 50.000000 % | |

|

NET “wclk_ibuf/IBUFG” PERIOD = 6.410 ns |6.410ns |

6.181ns | 2
HIGH 50.000000 % | |

|

All constraints were met.

All signals are completely routed.

Total REAL time to PAR completion: 2 mins 40 secs
Total CPU time to PAR completion: 1 mins 46 secs

Placement: Completed - No errors found.
Routing: Completed - No errors found.
Timing: Completed - No errors found.

The first line in this portion of the PAR report lists the timing score. In this example the
time score is zero, meaning all timing constraints were met. If any timing constraint is not
met, this score is greater than zero.

The table breaks down the timing constraints that were in your PCF file. Column one lists
the constraint. The second column gives the requested timing goal. The third and fourth
columns give you the achieved performance and levels of logic for the worst path in that
timing constraint respectively.

If no timing constraints were given in the PCF or the -x option is used, then this table will
not be generated.

The last portion of the PAR report lists how many timing constraints were met and
whether PAR was able to place and route the design successfully.

The total time used to complete PAR is broken down by real time and CPU time. And
lastly, the PAR report lists any errors.

MPPR Reporting
When running multiple iterations of the placement and router, PAR produces multiple
output design files (.ncd, .par, .csv, .txt, and .pad files) for each iteration. When you run
multiple iterations, you must specify a directory in which to place these files

As the command is performed, PAR records a summary of all placement and routing
iterations in one PAR file at the same level as the directory that you specified. Then PAR
places the output files, in NCD format, in the specified directory. For each NCD file, a PAR,
CSV, TXT, and PAD file are created, describing in detail each individual iteration.
192 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PAR Reports
R

The following example shows a directory named design with a design file named
address.ncd.

To run three iterations of place and route, using a different cost table entry each time (cost
tables are explained in “Placing” and specify that the resulting output be put into a
directory called output.dir, use the following command:

par –n 3 -pl high -rl std address.ncd output.dir

–n 3 is the number of iterations you want to run, –pl high sets the placement effort level, –
rl std sets the router effort level, address.ncd is your input design file, and output.dir is
the name of the directory in which you want to place the results of the PAR run. Cost table
1, the default, is used because no cost table was specified.

It is recommended that the placer effort be at high and router effort be at std. This ensures
a quality placement and a quick route. This strategy enables PAR to run the cost tables
effectively and reduces the total runtime of all place and route iterations, after PAR has
completed the MPPR run. The best NCD feedback to PAR as a re-entrant. The router level
should be at high. It is optional to use the -xe option.

Another strategy which is runtime extensive is to use -ol high -xe option, and -n 0. This is
only recommended when you are very close to reaching your timing goals and have a long
period to run PAR through all the lost tables.

The naming convention for the files, which may contain placement and routing
information in varying degrees of completion, is
placer_level_router_level_cost_table.file_extension.

The PAR, CSV, TXT, and PAD files are described in the following sections. When you run
multiple iterations, a summary Place and Route Report File is generated.

The top of the summary PAR file shows the command line used to run PAR, followed by
the name of any physical constraints file used.

X7231

design

address.ncd
Development System Reference Guide www.xilinx.com 193
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

The body of the report consists of the following columns.

♦ Level/Cost [ncd]—indicates the effort level (std|med|high) at which PAR is run.
In the sample above, med_med_4 indicates placer level med, router level med,
and the fourth cost table used.

♦ Design Score

♦ Timing Score

- Timing score is always 0 (zero) if all timing constraints have been met. If not,
the figure is other than 0.

♦ Number Unrouted—indicates the number of unrouted nets in the design.

♦ Run Time—the time required to complete the job in minutes and seconds.

♦ NCD Status—describes the state of the output NCD file generated by the PAR
run. Possible values for this column are:

- Complete—an NCD file has been generated by a full PAR run.

♦ In this example, all the NCD are saved.

- ^C Checkpoint—initiated by the user, the PAR run was stopped at one of the
PAR checkpoints. PAR produced an NCD file, but all iterations may not have
been completed.

- Checkpoint—the PAR run was stopped at one of the PAR checkpoints, not
because of user intervention but because of some unknown reason.

- No NCD—the PAR job was stopped prematurely and the NCD file was not
checkpointed.

Select I/O Utilization and Usage Summary

If more than one Select I/O standard is used, an additional section on Select I/O utilization
and usage summary is added to the PAR file. This section shows details for the different
I/O banks. It shows the I/O standard, the output reference voltage (VCCO) for the bank,
the input reference voltage (VREF) for the bank, the PAD and Pin names. In addition, the
section gives a summary for each bank with the number of pads being used, the voltages of
the VREFs, and the VCCOs.

For guided PAR, the PAR report displays summary information describing the total
amount and percentage of components and signals in the input design guided by the
reference design. The report also displays the total/percentage of components and signals
from the reference design (guide file) that were used to guide the input design. See “Guide
Reporting”.

Importing the PAD File Information
The PAD (pad and _pad.csv) reports are formatted for importing into a spreadsheet
program such as Microsoft® Excel, or for parsing via a user script. The _pad.csv file can be
directly opened by Microsoft Excel. The procedure for importing a .pad file into Microsoft
Excel is as follows:

1. In Excel, select the menu File → Open.

2. In the Open dialog box, change the Files of type field to All Files (*.*)” Browse to
the directory containing your .pad file. Select the file so it appears in the File name
field. Select the Open button to close the Open dialog box.

3. The Excel Text Import Wizard dialog appears. In the Original data type group box,
select Delimited. Select the Next button to proceed.
194 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Guide Reporting
R

4. In the Delimiters group box, uncheck the Tab checkbox. Place a check next to the
Other: , and enter a | character into the field after Other:. The | symbol is located on
the keyboard above the Enter key.

5. Select the Finish button to complete the process.

You can then format, sort, print, etc. the information from the PAD file using spreadsheet
capabilities as required to produce the necessary information.

Note: This file is designed to be imported into a spreadsheet program such as Microsoft Excel for
viewing, printing, and sorting.The ”|” character is used as the data field separator. This file is also
designed to support parsing.

Guide Reporting
The incremental guide report, which is included in the PAR report file, is generated with
the -gf option. The report describes the criteria used to select each component and signal
used to guide the design. It may also enumerate the criteria used to reject some subset of
the components and signals that were eliminated as candidates.

Turns Engine (PAR Multi-Tasking Option)
This Xilinx Development System option allows you to use multiple systems (nodes) that
are networked together for a multi-run PAR job, significantly reducing the total amount of
time to completion. You can specify multi-tasking from the UNIX command line.

Turns Engine Overview
Before the Turns Engine was developed for the Xilinx Development System, PAR could
only run multiple jobs in a linear way. The total time required to complete PAR was equal
to the sum of the times that it took for each of the PAR jobs to run. This is illustrated by the
following PAR command.

par –ol high –n 10 mydesign.ncd output.dir

The preceding command tells PAR to run 10 place and route passes
and (–n 10) at effort level high (–ol high). It runs each of the 10 jobs consecutively,
generating an output NCD file for each job, i.e., output.dir/high_high_1.ncd,
output.dir/high_high_2.ncd, etc. If each job takes approximately one hour, then the run
takes approximately 10 hours.

The Turns Engine allows you to use all five nodes at the same time, dramatically reducing
the time required for all ten jobs. To do this you must first generate a file containing a list
of the node names, one per line as in the following example.

Note: A pound sign (#) in the example indicates a comment.

NODE names

jupiter #Fred’s node
mars #Harry’s node
mercury #Betty’s node
neptune #Pam’s node
pluto #Mickey’s node
Development System Reference Guide www.xilinx.com 195
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

Now run the job from the command line as follows:

par –m nodefile_name –ol high –n 10 mydesign.ncd output.dir

nodefile_name is the name of the node file you created.

This runs the following jobs on the nodes specified.

As the jobs finish, the remaining jobs are started on the nodes until all 10 jobs are complete.
Since each job takes approximately one hour, all 10 jobs complete in approximately two
hours.

Note: You cannot determine the relative benefits of multiple placements by running the Turns
Engine with options that generate multiple placements, but do not route any of the placed designs
(the –r PAR option specifies no routing). The design score you receive is the same for each
placement. To get some indication of the quality of the placed designs, run the route with a minimum
router effort std (-rl std) in addition to the -ol high setting.

Turns Engine Syntax
The following is the PAR command line syntax to run the Turns Engine.

par –m nodelist_file –n #_of_iterations –s #_of_iterations_to_save mapped_desgin.ncd
output_directory.dir

–m nodelist_file specifies the nodelist file for the Turns Engine run.

–n #_of_iterations specifies the number of place and route passes.

–s #_of_iterations_to_save saves only the best –s results.

mapped design.ncd is the input NCD file.

output_directory.dir is the directory where the best results (–s option) are saved. Files
include placed and routed NCD, summary timing reports (DLY), pinout files (PAD), and
log files (PAR).

Table 10-5: Node Files

jupiter par –ol high –i 10 –c 1 mydesign.ncd
output.dir/high_high_1.ncd

mars par –ol high –i 10 –c 1 mydesign.ncd
output.dir/high_high_2.ncd

mercury par –ol high –i 10 –c 1 mydesign.ncd
output.dir/high_high_3.ncd

neptune par –ol high –i 10 –c 1 mydesign.ncd
output.dir/high_high_4.ncd

pluto par –ol high –i 10 –c 1 mydesign.ncd
output.dir/high_high_5.ncd
196 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Turns Engine (PAR Multi-Tasking Option)
R

Turns Engine Input Files
The following are the input files to the Turns Engine.

• NCD File—A mapped design.

• Nodelist file—A user-created ASCII file listing workstation names. The following is a
sample nodelist file:

This is a comment
Note: machines are accessed by Turns Engine
from top to bottom
Sparc 20 machines running Solaris
kirk
spock
mccoy
krusher
janeway
picard
Sparc 10 machines running SunOS
michael
jermaine
marlon
tito
jackie

Turns Engine Output Files
The naming convention for the NCD file, which may contain placement and routing
information in varying degrees of completion, is placer_level_router_level_cost_table.ncd.
If any of these elements are not used, they are represented by an x. For example, for the first
design file run with the options –n 5 –t 16 –rl std –pl high, the NCD output file name would
be high_std_16.ncd. The second file would be named high_std_17.ncd. For the first design
file being run with the options –n 5 –t 16 –r –pl high, the NCD output file name would be
high_x_16.ncd. The second file would be named high_x_17.ncd.

Limitations
The following limitations apply to the Turns Engine.

• The Turns Engine can operate only on Xilinx FPGA families. It cannot operate on
CPLDs.

• The Turns Engine can only operate on UNIX workstations.

• Each run targets the same part, and uses the same algorithms and options. Only the
starting point, or the cost table entry, is varied.
Development System Reference Guide www.xilinx.com 197
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

System Requirements
Use the following steps to set up the system:

1. Create a file with a fixed path that can be accessed by all the systems you are using:

/net/$ {nodename} /home/jim/parmsetup

2. Add the lines to set up the XILINX environment variable and the path, as shown in the
following examples:

Example for SUN Solaris systems:

export XILINX=/net/${nodename} /home/jim/xilinx

export PATH=$XILINX/bin/sol: /usr/bin: /usr/sbin

export LD_LIBRARY_PATH=$XILINX/bin/sol

For mixed sets of systems, you need a more sophisticated script that can set up the
proper environment.

3. After setting up this file, set the environment variable PAR_M_SETUPFILE to the
name of your file, as shown in the following examples:

Example for C shell:

setenv PAR_M_SETUPFILE /net/${nodename} /home/jim/parmsetup

Example for Bourne or Korn shells:

export PAR_M_SETUPFILE=/net/${nodename} /home/jim/parmsetup;

Turns Engine Environment Variables
The following environment variables are interpreted by the Turns Engine manager.

• PAR_AUTOMNTPT—Specifies the network automount point. The Turns Engine uses
network path names to access files. For example, a local path name to a file may be
designs/cpu.ncd, but the network path name may be
/home/machine_name/ivan/designs/cpu.ncd or
/net/machine_name/ivan/designs/cpu.ncd. The PAR_AUTOMNT environment
variable should be set to the value of the network automount point. The automount
points for the examples above are /home and /net. The default value for
PAR_AUTOMNT is /net.

The following command sets the automount point to /nfs. If the current working
directory is /usr/user_name/design_name on node mynode, the command cd
/nfs/mynode/usr/user_name/design_name is generated before PAR runs on the
machine.

setenv PAR_AUTOMNTPT /nfs

The following setting does not issue a cd command; you are required to enter full
paths for all of the input and output file names.

setenv PAR_AUTOMNTPT ""

The following command tells the system that paths on the local workstation are the
same as paths on remote workstations. This can be the case if your network does not
use an automounter and all of the mounts are standardized, or if you do use an
automounter and all mount points are handled generically.

setenv PAR_AUTOMNTPT "/"
198 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Turns Engine (PAR Multi-Tasking Option)
R

• PAR_AUTOMNTTMPPT—Most networks use the /tmp_mnt temporary mount
point. If your network uses a temporary mount point with a different name, like
/t_mnt, then you must set the PAR_AUTOMNTTMPPT variable to the temporary
mount point name. In the example above you would set PAR_AUTOMNTTMPPT to
/t_mnt. The default value for PAR_AUTOMNTTMPPT is /tmp_mnt.

• PAR_M_DEBUG—Causes the Turns Engine to run in debug mode. If the Turns
Engine is causing errors that are difficult to correct, you can run PAR in debug mode
as follows:

♦ Set the PAR_M_DEBUG variable:

setenv PAR_M_DEBUG 1

♦ Create a node list file containing only a single entry (one node). This single entry
is necessary because if the node list contains multiple entries, the debug
information from all of the nodes is intermixed, and troubleshooting is difficult.

♦ Run PAR with the –m (multi-tasking mode) option. In debug mode, all of the
output from all commands generated by the PAR run is echoed to the screen.
There are also additional checks performed in debug mode, and additional
information supplied to aid in solving the problem.

• PAR_M_SETUPFILE—See “System Requirements” for a discussion of this variable.

Debugging
With the Turns Engine you may receive messages from the login process. The problems are
usually related to the network or to environment variables.

• Network Problem—You may not be able to logon to the machines listed in the
nodelist file.

♦ Use the following command to contact the nodes:

ping machine_name

You should get a message that the machine is running. The ping command should
also be in your path (UNIX cmd: which ping).

♦ Try to logon to the nodes using the command rsh machine_ name. You should be
able to logon to the machine. If you cannot, make sure rsh is in your path (UNIX
cmd: which rsh). If rsh is in your path, but you still cannot logon, contact your
network administrator.

♦ Try to launch PAR on a node by entering the following command.

rsh machine_name /bin/sh –c par.

This is the same command that the Turns Engine uses to launch PAR. If this
command is successful, everything is set up correctly for the machine_name node.

• Environment Problem—logon to the node with the problem by entering the following
UNIX command:

rsh machine_name

Check the $XILINX, $LD_LIBRARY_PATH, and $PATH variables by entering the
UNIX command echo $ variable_name. If these variables are not set correctly, check to
make sure these variables are defined in your .cshrc file.

Note: Some, but not all, errors in reading the .cshrc may prevent the rest of the file from being
read. These errors may need to be corrected before the XILINX environment variables in the
.cshrc are read. The error message /bin/sh: par not found indicates that the environment in the
.cshrc file is not being correctly read by the node.
Development System Reference Guide www.xilinx.com 199
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

Screen Output
When PAR is running multiple jobs and is not in multi-tasking mode, output from PAR is
displayed on the screen as the jobs run. When PAR is running multiple jobs in multi-
tasking mode, you only see information regarding the current status of the Turns Engine.
For example, when the job described in “Turns Engine Overview” is executed, the
following screen output would be generated.

Starting job high_high_1 on node jupiter
Starting job high_high_2 on node mars
Starting job high_high_3 on node mercury
Starting job high_high_4 on node neptune
Starting job high_high_5 on node pluto

When one of the jobs finishes, a message similar to the following is displayed.

Finished job high_high_3 on node mercury

These messages continue until there are no jobs left to run, at which time Finished appears
on your screen.

Note: For HP workstations, you are not able to interrupt the job with Ctrl + C as described following
if you do not have Ctrl + C set as the escape character. To set the escape character, refer to your HP
manual.

You may interrupt the job at any time by pressing Ctrl + C. If you interrupt the program,
the following options are displayed:

1. Continue processing and ignore the interrupt—self-explanatory.

2. Normal program exit at next check point—allows the Turns Engine to wait for all jobs
to finish before terminating. PAR is allowed to generate the master PAR output file
(PAR), which describes the overall run results

When you select option 2, a secondary menu appears as follows:

a. Allow jobs to finish — current jobs finish but no other jobs start if there are any.
For example, if you are running 100 jobs (–n 100) and the current jobs running are
high_high_49 and high_high_50, when these jobs finish, job high_high_51 is not
started.

b. Halt jobs at next checkpoint — all current jobs stop at the next checkpoint; no new
jobs are started.

c. Halt jobs immediately — all current jobs stop immediately; no other jobs start

3. Exit program immediately — all running jobs stop immediately (without waiting for
running jobs to terminate) and PAR exits the Turns Engine.

4. Add a node for running jobs — allows you to dynamically add a node on which you
can run jobs. When you make this selection, you are prompted to input the name of the
node to be added to the list. After you enter the node name, a job starts immediately on
that node and a Starting job message is displayed.

5. Stop using a node — allows you to remove a node from the list so that no job runs on
that node.

If you select Stop using a node, you must also select from the following options.

Which node do you wish to stop using?
 1. jupiter
 2. mars
 3. mercury
Enter number identifying the node.(<CR> to ignore)
200 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Turns Engine (PAR Multi-Tasking Option)
R

Enter the number identifying the node. If you enter a legal number, you are asked to
make a selection from this menu.

Do you wish to
 1. Terminate the current job immediately and resubmit.
 2. Allow the job to finish.
Enter number identifying choice. (<CR> to ignore)

The options are described as follows:

a. Terminate the current job immediately and resubmit—halts the job immediately
and sets it up again to be run on the next available node. The halted node is not
used again unless it is enabled by the add function.

b. Allow the job to finish—finishes the node’s current job, then disables the node
from running additional jobs.

Note: The list of nodes described above is not necessarily numbered in a linear fashion.
Nodes that are disabled are not displayed. For example, if NODE2 is disabled, the next time
Stop using a node is opted, the following is displayed.

Which node do you wish to stop using?
 1. jupiter
 3. mercury
Enter number identifying the node. (<CR> to ignore)

6. Display current status — displays the current status of the Turns Engine. It shows the
state of nodes and the respective jobs. Here is a sample of what you would see if you
chose this option.

A few of the entries are described as follows:

♦ jupiter has been running job high_high_10 for approximately 2 1/2 hours.

♦ mars has been running job high_high_11 for approximately 2 1/2 hours.

♦ mercury has been deactivated by the user with the Stop using a node option or it
was not an existing node or it was not running. Nodes are pinged to see if they
exist and are running before attempting to start a job.

♦ neptune has been halted immediately with job resubmission. The Turns Engine is
waiting for the job to terminate. Once this happens the status is changed to not
available.

There is also a Job Finishing status. This appears if the Turns Engine has been instructed to
halt the job at the next checkpoint.

ID NODE STATUS JOB TIME

1. jupiter Job Running high_high_10 02:30:45

2. mars Job Running high_high_11 02:28:03

3. mercury Not Available

4. neptune Pending Term high_high_12 02:20:01
Development System Reference Guide www.xilinx.com 201
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

ReportGen
The ReportGen utility produces various pad reports and a log file that contains standard
copyright and usage information on any of the reports being generated.

ReportGen Syntax
The following syntax runs the reportgen utility:

reportgen [options][–pad [–padfmt pad|csv|txt] infile[.ncd]

options can be any number of the ReportGen options listed in “ReportGen Options.” They
do not need to be listed in any particular order. Separate multiple options with spaces.

pad is the pad report format you want to generate. By default ReportGen generates all
format types, or you can use the –padfmt option to specify a specific format.

infile is the design file you wish to place and route. The file must include a .ncd extension,
but you do not have to specify the .ncd extension on the command line.

ReportGen Input Files
Input to PAR consists of the following files:

• NCD file—a mapped design.

ReportGen Output Files
Output from ReportGen consists of the following report files:

• DLY file—a file containing delay information on each net of a design.

• PAD file—a file containing I/O pin assignments in a parsable database format.

• CSV file—a file containing I/O pin assignments in a format directly supported by
spreadsheet programs.

• TXT file—a file containing I/O pin assignments in a SCII text version for viewing in a
text editor.

ReportGen Options
You can customize reports produced by ReportGen by specifying options when you run
ReportGen from the command line.

The following table lists a summary of ReportGen options, an example use case, a usage
statement, and a short description of their function

Option Usage Function

–h reportgen –h Display reportgen usage
information and help
contents

–f reportgen –f cmdfile.cmd Read ReportGen
command line arguments
and switches specified in a
command file
202 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Halting PAR
R

Halting PAR
You need to set the interrupt character by entering stty intr ̂ V^C in the .login file or .cshrc
file.

Note: You cannot halt PAR with Ctrl+ C if you do not have Ctrl + C set as the interrupt character. To
halt a PAR operation, enter Ctrl + C. In a few seconds, the following message appears:

CNTRL-C interrupt detected.

Please choose one of the following options:
1. Ignore interrupt and continue processing.
2. Exit program normally at next checkpoint. This saves the best results

so far after concluding the current processing,
3. Exit program immediately.
4. Display Failing Timespec Summary.
5. Cancel the current job and move to the next one at the next check

point.
Enter choice -->

If you have no failing time specifications or are not using the –n option, Options 4 and 5
display as follows.

4. Display Failing Timespec Summary.
(Not applicable: Data not available)

5. Cancel the current job and move to the next one at
the next check point.
(Not applicable: Not a multi-run job.)

You then select one of the five options shown on the screen. The description of the options
are as follows:

• Option 1—this option causes PAR to continue operating as before the interruption.
PAR then runs to completion.

• Option 2—this option continues the current place/route iteration until one of the
following check points.

♦ After placement

♦ After the current routing phase

The system then exits the PAR run and saves an intermediate output file
containing the results up to the check point.

–pad reportgen design.ncd –pad Generate a pad report file

–padfmt {pad|csv|txt} reportgen design.ncd –pad –
padfmt csv

Generate a pad report in a
specified format

–padsortcol reportgen design.ncd –pad
–padfmt [pad|csv|txt]
–padsortcol 5,1:3

Generate a specified pad
report sorted on a specified
column with columns 1, 2,
and 3 listed.

–r reportgen design.ncd –r delay Generate a delay report file
in text format.

Option Usage Function
Development System Reference Guide www.xilinx.com 203
 1-800-255-7778

http://www.xilinx.com

Chapter 10: PAR
R

If you use this option, you may continue the PAR operation at a later time. To do
this, you must look in the PAR report file to find the point at which you
interrupted the PAR run. You can then run PAR on the output NCD file produced
by the interrupted run, setting command line options to continue the run from the
point at which it was interrupted.

Option 2 halt during routing may be helpful if you notice that the router is
performing multiple passes without improvement, and it is obvious that the
router is not going to achieve 100% completion. In this case, you may want to halt
the operation before it ends and use the results to that point instead of waiting for
PAR to end by itself.

• Option 3—this option stops the PAR run immediately. You do not get any output file
for the current place/route iteration. You do, however, still have output files for
previously completed place/route iterations.

• Option 4—this option is currently disabled.

• Option 5—Terminates current iteration if you have used the –n option and continues
the next iteration.

Note: If you started the PAR operation as a background process on a workstation, you must bring
the process to the foreground using the fg command before you can halt the PAR operation.

After you run PAR, you can use the FPGA Editor on the NCD file to examine and edit the
results. You can also perform a static timing analysis using TRACE or the Timing Analyzer.
When the design is routed to your satisfaction, you can input the resulting NCD file into
the Xilinx Development System’s BitGen program. BitGen creates files that are used for
downloading the design configuration to the target FPGA. For details on BitGen, see
Chapter 15, “BitGen”.
204 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 11

XPower

This program is compatible with the following device families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE

• CoolRunner™ XPLA3/-II

For a complete list of supported devices:

• Run -ls [-arch <arch>] as a batch command. See “-ls (List Supported Devices)”
below.

• Run Help > List Supported Devices in the XPower GUI.

The chapter contains the following sections:

• “XPower Overview”

• “Using XPower”

• “Files Used by XPower”

• “Command Line Options”

• “Command Line Examples”

• “Power Reports”

XPower Overview
XPower provides power and thermal estimates after PAR (FPGA designs) or CPLDFit
(CPLD designs). XPower allows you to:

• Estimate how much power the design will consume

• Identify how much power each net or logic element in the design is consuming

• Verify that the junction temperature limits are not exceeded

XPower Syntax
Use the following syntax to run XPower:

FPGA Flow

xpwr design[.ncd] [constraint[.pcf]] [options]
Development System Reference Guide www.xilinx.com 205
 1-800-255-7778

http://www.xilinx.com

Chapter 11: XPower
R

CPLD Flow

xpwr design[.cxt] [options]

Use the following arguments:

design is the name of the input physical design file. If you enter a file name with no
extension, XPower looks for an NCD file with the name you specified. If no NCD file is
found, XPower looks for a CXT file.

constraint specifies the name of a timing physical constraints file (PCF). This file is used to
define timing constraints for the design. If you do not specify a physical constraints file,
XPower looks for one with the same root name as the NCD file. If a CXT file is found,
XPower does not look for a PCF file.

options is one or more of the XPower options listed in “Command Line Options”. Separate
multiple options with spaces.

Using XPower
To obtain an accurate estimate of power, you must provide XPower with accurate
information. This section describes the settings necessary to obtain accurate power and
thermal estimates, and the different methods that XPower allows. This section refers
specifically to FPGA designs. For CPLD designs, please see Xilinx Application Note
XAPP360 on the Xilinx Support website.

VCD Data Entry
The recommended flow uses a VCD file generated from post PAR simulation. To generate
a VCD file, you must have a Xilinx supported simulator. See the Synthesis and Verification
Design Guide for more information.

XPower supports the following simulators:

• ModelSim

• Cadence's Verilog XL

• Cadence's NC-Verilog

• Cadence's NC-VHDL

• Cadence's NC-SIM

• Synopsys' VCS

• Synopsys' Scirocco

XPower uses the VCD file to set toggle rates and frequencies of all the signals in the design.
Manually set the following:

• voltage (if different from the recommended databook values)

• ambient temperature (default = 25 degrees C)

• output loading (capacitance and current due to resistive elements)

For the first XPower run, voltage and ambient temperature can be applied from the PCF,
provided temperature and voltage constraints have been set.

Xilinx recommends that you create a settings file. A settings file saves time if the design is
reloaded into XPower. All settings (voltage, temperature, frequencies, and output loading)
are stored in the settings file.
206 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Files Used by XPower
R

Other Methods of Data Entry
All asynchronous signals are set using an absolute frequency in MHz. All synchronous signals
are set using activity rates.

An activity rate is a percentage between 0 and 100. It refers to how often the output of a
registered element changes with respect to the active edges of the clock. For example, a
100MHz clock going to a flip flop with a 100% activity rate has an output frequency of
50MHz.

When using other methods of design entry, you must set:

• Voltage (if different from the recommended databook values)

• Ambient temperature (default = 25 degrees C)

• Output loading (capacitance and current due to resistive elements)

• Frequency of all input signals

• Activity rates for all synchronous signals

If you do not set activity rates, XPower assumes 0% for all synchronous nets. The
frequency of input signals is assumed to be 0MHz. The default ambient temperature is 25
degrees C. The default voltage is the recommended operating voltage for the device.

Note: The accuracy of the power and thermal estimate is compromised if you do not set all of these
signals. At a minimum, you should set high power consuming nets, such as clock nets, clock enables,
and other fast or heavily loaded signals and output nets.

Files Used by XPower
XPower uses the following files:

• NCD file - Xilinx recommends using a fully routed design to get the most accurate
power estimate. Using a MAP NCD file compromises accuracy.

• PCF file - an optional user-modifiable ASCII Physical Constraints File produced by
MAP. The PCF file contains timing constraints that XPower uses to identify clock nets
(by using the period constraint) and GSRs (by looking at TIGs). You can also get
temperature and voltage information if these constraints have been set in the UCF file.

Note: The Innoveda CAE tools create a file with a .pcf extension when generating a plot of an
Innoveda schematic. This PCF file is not related to a Xilinx PCF file. Because XPower
automatically reads a PCF file with the same root name as your design file make sure your
directory does not contain an Innoveda PCF file with the same root name as your NCD file.

• CXT file - File produced by CPLDFit that contains information on how a design is
mapped to a CPLD.

• VCD file - Output file from simulators. XPower uses this file to set frequencies and
activity rates of signals internal to the design. The VCD should be produced from the
post route simulation. Supported simulators are Modelsim, Cadence Verilog-XL,
Verilog-XL, NC-Verilog, NC-VHDL and NC-SIM. For information on creating VCD
files, see the simulator’s user guide.

• XML file - Settings file from XPower. Settings can be saved to an XML file.
Development System Reference Guide www.xilinx.com 207
 1-800-255-7778

http://www.xilinx.com

Chapter 11: XPower
R

Command Line Options
This section describes the XPower command line options. To see an updated list, run xpwr
-h from the command line.

–v (Verbose Report)
-v [-a]

Specifies a verbose (detailed) power report. -a specifies an advanced report. See “Power
Reports” below.

–l (Limit)
-l [limit]

Imposes a line limit on the verbose report. An integer value must be specified as an
argument. The integer represents the limit in line numbers.

–x (Specify XML Input File)
-x userdata.xml

Instructs XPower to use an existing XML settings file to set the frequencies of signals and
other values. If an XML file is not specified, XPower searches for
designfileName_xpwr.xml.

–wx (Write XML File)
-wx [userdata.xml]

Writes out an XML settings file containing all the settings information from the current
session. If no argument is selected, the default file name is designfileName_xpwr.xml

–s (Specify VCD file)
-s simdata.vcd

Sets activity rates and signal frequencies using data from the VCD file. XPower searches
for designfileName.vcd if no file is specified.

–tb (Turn On Time Based Reporting)
-tb [number][ps|ns|fs|us]

Turns on time based reporting. Must be used with the -s option. XPower generates a file
with a .txt extension. The number and unit control the time base of how often the total
power is reported. For example, if 10ps is selected, XPower reports the total instantaneous
power every 10 picoseconds of the simulation run. If the simulation runtime for the VCD is
100ps, XPower returns 10 results.

–o (Rename Power Report)
-o NewReportName.pwr

Changes the name of the report file. A filename argument is required. If you do not
specify a file name, XPower uses designfileName.pwr.
208 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Command Line Examples
R

-ls (List Supported Devices)
-ls [-arch <arch>]

List Supported Devices in current installation. -arch specifies the specific architecture.

-h (Help)
-h | help

Output a message listing all command line options.

Command Line Examples
The following command produces a standard report, mydesign.pwr, in which the VCD
file specifies the activity rates and frequencies of signals. The output loading has not been
changed; all outputs assume the default loading of 10pF.

xpwr mydesign.ncd mydesign.pcf -s timesim.vcd

The following command does all of the above and generates a settings file called
mysettings.xml. This file contains all of the information from the VCD file, but will load
faster than the VCD file the next time the batch program is run.

xpwr mydesign.ncd mydesign.pcf -s timesim.vcd -wx mysettings.xml

The following command does all of the above and generates a detailed (verbose) report
instead of a standard report. The verbose report is limited to 100 lines. The design is for
CPLDs.

xpwr mydesign.cxt -v -l 100 -s timesim.vcd -wx mysettings.xml

Power Reports
This section explains what you can expect to see in a power report. Power reports have the
extension PWR.

There are three types of power reports:

• “Standard Reports” (the default)

• “Detailed Reports” (the report generated when you run the “–v (Verbose Report)”
command.

• “Advanced Reports” (selectable when you use the Verbose Report option)

Standard Reports
A standard report contains the following:

• A report header specifying:

♦ The XPower version

♦ A copyright message

♦ Information about the design and associated files, including the design filename
and any PCF and simulation files loaded

♦ The data version of the information

• The Power Summary, which gives the power and current totals as well as other
summary information.
Development System Reference Guide www.xilinx.com 209
 1-800-255-7778

http://www.xilinx.com

Chapter 11: XPower
R

• The Thermal Summary, which consists of :

♦ Airflow

♦ Estimated junction temperature

♦ Ambient temperature

♦ Case temperature

♦ Theta J-A

• A Decoupling Network Summary

• A footer containing the analysis completion date and time.

Detailed Reports
A detailed power report includes all the information in a standard power report, plus
additional power details.

Advanced Reports
An advanced report includes all the information in a standard report, plus information
such as:

• the maximum power that can be dissipated under specified package, ambient
temperature, and cooling conditions

• heatsink and glue combination

• an upper limit on the junction temperature that the device can withstand without

• breaching recommended limits

• power details, including individual elements by type

• I/O bank details for the decoupling network

• element name, the number of loads, the capacitive loading, the capacitance of the
item, the frequency, the power, and the current.

Note: The number of loads is reported only for signals. The capacitive loading is reported only for
outputs. If the capacitance is zero, and there is a non-zero frequency on an item, the power is shown
to be "~0", which represents a negligible amount of power.
210 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 12

PIN2UCF

This program is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/

• CoolRunner™ XPLA3/-II/-IIS

• XC9500™/XL/XV

This chapter describes PIN2UCF. The chapter contains the following sections:

• “PIN2UCF Overview”

• “PIN2UCF Syntax”

• “PIN2UCF Input Files”

• “PIN2UCF Output Files”

• “PIN2UCF Options”

• “PIN2UCF Scenarios”

PIN2UCF Overview
PIN2UCF is a program that generates pin-locking constraints in a UCF file by reading a
placed NCD file for FPGAs or GYD file for CPLDs. PIN2UCF writes its output to an
existing UCF file. If there is no existing UCF file, PIN2UCF creates a new file.
Development System Reference Guide www.xilinx.com 211
 1-800-255-7778

http://www.xilinx.com

Chapter 12: PIN2UCF
R

The following figure shows the flow through PIN2UCF.

The PIN2UCF is used to back-annotate pin-locking constraints to the UCF file from a
successfully placed and routed design for an FPGA or a successfully fitted design for a
CPLD.

The program extracts pin locations and logical pad names from an existing NCD or GYD
file and writes this information to a UCF file. Pin-locking constraints are written to a
PINLOCK section in the UCF file. The PINLOCK section begins with the statement
#PINLOCK BEGIN and ends with the statement #PINLOCK END. By default, PIN2UCF
does not write conflicting constraints to a UCF file. Prior to creating a PINLOCK section, if
PIN2UCF discovers conflicting constraints, it writes information to a report file, named
pinlock.rpt.

The pinlock.rpt file has the following sections:

• Constraints Conflicts Information

This section has the following subsections. If there are no conflicting constraints, both
subsections contain a single line indicating that there are no conflicts.

♦ Net name conflicts on the pins

♦ Pin name conflicts on the nets

Note: This section does not appear if there are fatal input errors, for example, missing inputs or
invalid inputs.

• List of Errors and Warnings

This section appears only if there are errors or warnings.

User-specified pin-locking constraints are never overwritten in a UCF file. However, if the
user-specified constraints are exact matches of PIN2UCF generated constraints, a pound
sign (#) is added in front of all matching user-specified location constraint statements. The
pound sign indicates that a statement is a comment. To restore the original UCF file (the file
without the PINLOCK section), remove the PINLOCK section and delete the pound sign
from each of the user-specified statements.

Note: PIN2UCF does not check if existing constraints in the UCF file are valid pin-locking
constraints.

Figure 12-1: PIN2UCF Flow

PIN2UCF

NCD
(Placed and Routed -- For FPGAs)

or
GYD

(Pin Freeze File -- for CPLDs)

UCF FileReport File

X8629
212 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PIN2UCF Syntax
R

PIN2UCF writes to an existing UCF file under the following conditions:

• The contents in the PINLOCK section are all pin lock matches, and there are no
conflicts between the PINLOCK section and the rest of the UCF file.

• The PINLOCK section contents are all comments and there are no conflicts outside the
PINLOCK section.

• There is no PINLOCK section and no other conflicts in the UCF file.

Note: Comments inside an existing PINLOCK section are never preserved by a new run of
PIN2UCF. If PIN2UCF finds a CSTTRANS comment, it equates “INST name” to “NET name” and then
checks for comments.

PIN2UCF Syntax
The following command runs PIN2UCF:

pin2ucf {ncd_file.ncd | pin_freeze_file.gyd} [–r report_file_name -o output.ucf]

ncd_file or pin_freeze_file must be the name of an existing file.

PIN2UCF Input Files
PIN2UCF uses the following files as input:

• NCD file—The minimal requirement is a placed NCD file, but you would normally
use a placed and routed NCD file that meets (or is fairly close to meeting) timing
specifications.

• GYD file—The PIN2UCF pin-locking utility replaces the old GYD file mechanism that
was used by CPLDs to lock pins. The GYD file is still available as an input guide file to
control pin-locking. Running PIN2UCF is the recommended method of pin-locking to
be used instead of specifying the GYD file as a guide file.

PIN2UCF Output Files
PIN2UCF creates the following files as output:

• UCF file—If there is no existing UCF file, PIN2UCF creates one. If an output.ucf file is
not specified for PIN2UCF and a UCF file with the same root name as the design
exists in the same directory as the design file, the program writes to that file
automatically unless there are constraint conflicts.

• RPT file— A pinlock.rpt file is written to the current directory by default. Use the –r
option to write a report file to another directory. See “–r (Write to a Report File)” for
more information.

PIN2UCF Options
This section describes the PIN2UCF command line options.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file. For
more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.
Development System Reference Guide www.xilinx.com 213
 1-800-255-7778

http://www.xilinx.com

Chapter 12: PIN2UCF
R

–o (Output File Name)
–o outfile[.ucf]

By default (without the –o option), PIN2UCF writes an ncd_file.ucf file. The –o option
specifies the name of the output UCF file for the design. You can use the –o option if the
UCF file used for the design has a different root name than the design name. You can also
use this option to write the pin-locking constraints to a UCF file with a different root name
than the design name, or if you want to write the UCF file to a different directory.

–r (Write to a Report File)
–r report_file_name

By default (without the –r option), a pinlock.rpt file is automatically written to the current
directory. The –r option writes the PIN2UCF report into the specified report file.

PIN2UCF Scenarios
The following table lists the PIN2UCF scenarios.

Table 12-1: PIN2UCF Scenarios

Scenario PIN2UCF Behavior
Files Created or
Updated

No UCF file is present. PIN2UCF creates a UCF file and
writes the pin-locking constraints to
the UCF file.

pinlock.rpt

design_name.ucf

UCF file is present.

There are no pin-locking
constraints in the UCF file, or
this file contains some
user-specified pin-locking
constraints outside of the
PINLOCK section.

None of the user-specified
constraints conflict with the
PIN2UCF generated
constraints.

PIN2UCF appends the pin-locking
constraints in the PINLOCK section
to the end of the file.

pinlock.rpt

design_name.ucf
214 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PIN2UCF Scenarios
R

UCF file is present.

The UCF file contains some
user-specified pin-locking
constraints either inside or
outside of the PINLOCK
section.

Some of the user-specified
constraints conflict with the
PIN2UCF generated
constraints

PIN2UCF does not write the
PINLOCK section. Instead, it exits
after providing an error message. It
writes a list of conflicting
constraints.

pinlock.rpt

UCF file is present.

There are no pin-locking
constraints in the UCF file.

There is a PINLOCK section
in the UCF file generated
from a previous run of
PIN2UCF or manually
created by the user.

None of the constraints in the
PINLOCK section conflict
with PIN2UCF generated
constraints.

PIN2UCF writes a new PINLOCK
section in the UCF file after deleting
the existing PINLOCK section. The
contents of the existing PINLOCK
section are moved to the new
PINLOCK section.

pinlock.rpt

design_name.ucf

Table 12-1: PIN2UCF Scenarios

Scenario PIN2UCF Behavior
Files Created or
Updated
Development System Reference Guide www.xilinx.com 215
 1-800-255-7778

http://www.xilinx.com

Chapter 12: PIN2UCF
R

216 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 13

TRACE

The TRACE (timing reporter and circuit evaluator) program is compatible with the
following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/-3

This chapter contains the following sections:

• “TRACE Overview”

• “TRACE Syntax”

• “TRACE Input Files”

• “TRACE Output Files”

• “TRACE Options”

• “TRACE Command Line Examples”

• “TRACE Reports”

• “Halting TRACE”

• “OFFSET Constraints”

• “-PERIOD Constraints”

TRACE Overview
TRACE provides static timing analysis of a design based on input timing constraints.

Note: On the command line, the TRACE command is entered as trce (without an “A”).

TRACE performs two major functions.

• Timing verification—verifies that the design meets timing constraints.

• Reporting—generates a report file listing compliance of the design against the input
constraints. TRACE can be run on unplaced designs, only placed designs, partially
placed and routed designs, and completely placed and routed designs.
Development System Reference Guide www.xilinx.com 217
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

The following figure shows the primary inputs and outputs to TRACE. The NCD is the
physical design file, which has an extension of .ncd. The PCF is the physical constraints
file, which has an extension of .pcf. The TWR is the timing report file, which has an
extension of .twr.

TRACE Syntax
Use the following syntax to run TRACE:

trce [options] design[.ncd] [constraint[.pcf]]

options can be any number of the command line options listed in the “TRACE Options”
section of this chapter. Options need not be listed in any particular order unless you are
using the –stamp (Generates STAMP local timing model files) option. Separate multiple
options with spaces.

design specifies the name of the input physical design file. If you enter a file name with no
extension, TRACE looks for an NCD file with the specified name.

constraint specifies the name of a timing physical constraints file (PCF). This file is used to
define timing constraints for the design. If you do not specify a physical constraints file,
TRACE looks for one with the same root name as the NCD file.

TRACE Input Files
Input to TRACE is a mapped NCD design, or a placed only NCD design, or a partial, or
completely placed and routed NCD design and an optional physical constraints (PCF) file
based upon timing constraints that you specify. Constraints can show such things as clock
speed for input signals, the external timing relationship between two or more signals,
absolute maximum delay on a design path, or a general timing requirement for a class of
pins.

Input files to TRACE are as follows:

• NCD file—a mapped, a placed, or a placed and routed design. The type of timing
information you receive depends on whether the design is unplaced, placed only, or
placed and routed.

• PCF—an optional user-modifiable ASCII physical constraints file produced by MAP.
The PCF contains timing constraints used in the TRACE timing analysis.

Note: The Innoveda CAE tools create a file with a .pcf extension when they generate an
Innoveda schematic. This PCF is not related to a Xilinx PCF. Because TRACE automatically
reads a PCF with the same root name as your design file, make sure your directory does not
contain an Innoveda PCF with the same root name as your NCD file.

Figure 13-1: TRACE flow with primary input and ouput files

NCD

TRACE

PCF
(optional)

TWR

X7218
218 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Output Files
R

TRACE Output Files
Output from TRACE is a formatted timing report (TWR) file. Types of timing reports are
summary report, error report and verbose report. The type of report produced is
determined by the TRACE command line options you enter, as listed in the following
table:

Optionally, you can use the –xml option to generate an XML timing report (TWX) file. You
can view this report with the Timing Analyzer tool. The –e and –v options apply to the
TWX file as well as the TWR file. See the “–xml (XML Output File Name)” section for
details.

Note: In addition to the timing (TWR) report, you can specify –tsi on the command line to generate
a Constraints Interaction report. See “Constraints Interaction Report” in this chapter.

TRACE optionally generates a STAMP timing model. See the –stamp (Generates STAMP
local timing model files) section in this chapter for details.

TRACE Options
This section describes the TRACE command line options.

–a (Advanced Analysis)
The –a option is only used if you are not supplying any timing constraints (from a PCF) to
TRACE. The –a option writes out a timing report with the following information:

• An analysis that enumerates all clocks and the required OFFSETs for each clock.

• An analysis of paths having only combinatorial logic, ordered by delay.

This information is supplied in place of the default information for the output timing
report type (summary, error, or verbose).

Note: An analysis of the paths associated with a particular clock signal includes a hold violation
(race condition) check only for paths whose start and endpoints are registered on the same clock
edge.

–e (Generate an Error Report)
–e [limit]

The –e option causes the timing report to be an error report instead of the default summary
report. See “Error Report” for a sample error report.

The report has the same root name as the input design and has a .twr extension.

The optional limit is an integer limit on the number of items reported for each timing
constraint in the report file. The value of limit must be an integer from 0 to 32,000 inclusive.
The default is 3.

Table 13-1: TRACE Options and Reports

TRACE Option Timing Report Produced

No –e or –v Summary report

–e Error report

–v Verbose report
Development System Reference Guide www.xilinx.com 219
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file.

–fastpaths (Report Fastest Paths)
–fastpaths

The –fastpaths option is used to report the fastest paths of a design.

–intstyle
–intstyle {ise | xflow | silent}

The –intstyle option sets the integration style for NGDBuild to reduce screen output. This
option is useful if you only want a summary of the NGDBuild run.

–intstyle silent

Reduces the screen output to warnings and errors only. This option replaces the –quiet
option, which will not be available in future releases.

–l (Limit Timing Report)
–l limit

The –l option limits the number of items reported for each timing constraint in the report
file. The value of limit must be an integer from 0 to 2,000,000,000 (2 billion) inclusive. If a
limit is not specified, the default value is 3.

Note: The higher the limit value, the longer it takes to generate the timing report.

–nodatasheet (No Data Sheet)
–nodatasheet

The –nodatasheet option does not include the datasheet section of a generated report.

–o (Output Timing Report File Name)
–o report[.twr]

The –o option specifies the name of the output timing report. The .twr extension is
optional. If –o is not used, the output timing report has the same root name as the input
design (NCD) file.

–quiet (Quiet Switch)
-quiet

The –quiet option limits console output to warning and error messages only. This option is
being deprecated and will not be available in future software releases. Use the “–intstyle”
option instead.
220 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Options
R

–s (Change Speed)
–s [speed]

The –s option overrides the device speed contained in the input NCD file and instead
performs an analysis for the device speed you specify. The –s option applies to whichever
report type you produce in this TRACE run. The option allows you to see if faster or slower
speed grades meet your timing requirements.

The device speed can be entered with or without the leading dash. For example, both –s 3
and –s –3 are valid entries.

Some architectures support minimum timing analysis. The command line syntax for min
timing analysis is: trace –s min. Do not place a leading dash before min.

Note: The –s option only changes the speed grade for which the timing analysis is performed; it
does not save the new speed grade to the NCD file.

–skew (Analyze Clock Skew for All Clocks)
This option is being deprecated in this release and will not be availabe in future releases of
Xilinx software. By default, TRACE now analyzes clock skew and hold time violations for
all clocks, including those using general clock routing resources.

–stamp (Generates STAMP local timing model files)
–stamp stampfile design.ncd

When you specify the –stamp option, TRACE generates a pair of STAMP timing model
files, stampfile.mod and stampfile.data, that characterize the timing of a design.

Note: The stampfile entry must precede the NCD file entry on the command line.

The STAMP compiler can be used for any printed circuit board when performing static
timing analysis.

Methods of running TRACE with the STAMP option to obtain a complete STAMP model
report are as follows:

• Run with advanced analysis using the –a option.

• Run using default analysis (with no constraint file and without advanced analysis).

• Construct constraints to cover all paths in the design.

• Run using the unconstrained path report (–u option) for constraints which only
partially cover the design.

For either of the last two options, do not include TIGs in the PCF, as this can cause paths to
be excluded from the model.

–tsi (Generate a Timing Specification Interaction Report)
–tsi designfile.tsi designfile.ncd designfile.pcf

When you specify the –tsi option, TRACE generates a Timing Specification Interaction
report. You can specify any name for the .tsi file. The file name is independent of the NCD
and PCF names. You can also specify the NCD file and PCF from which the Timespec
Interaction Report analyzes constraints.

The Timing Specification Interaction report can be viewed in the Timing Analyzer using
the command Open Constraint Interaction Report.
Development System Reference Guide www.xilinx.com 221
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

–u (Report Uncovered Paths)
–u limit

The –u option reports delays for paths that are not covered by timing constraints. The
option adds an unconstrained path analysis constraint to your existing constraints. This
constraint performs a default path enumeration on any paths for which no other
constraints apply. The default path enumeration includes circuit paths to data and clock
pins on sequential components and data pins on primary outputs.

The optional limit argument limits the number of unconstrained paths reported for each
timing constraint in the report file. The value of limit must be an integer from 1 to 32,000
inclusive. If a limit is not specified, the default value is 3.

In the TRACE report, the following information is included for the unconstrained path
analysis constraint.

• The minimum period for all of the uncovered paths to sequential components.

• The maximum delay for all of the uncovered paths containing only combinatorial
logic.

• For a verbose report only, a listing of periods for sequential paths and delays for
combinatorial paths. The list is ordered by delay value in descending order, and the
number of entries in the list can be controlled by specifying a limit when you enter the
–v (Generate a Verbose Report) command line option.

Note: Register-to-register paths included in the unconstrained path report undergoes a hold
violation (race condition) check only for paths whose start and endpoints are registered on the same
clock edge.

–v (Generate a Verbose Report)
–v limit

The –v option generates a verbose report. The report has the same root name as the input
design and a .twr. You can assign a different root name for the report on the command line,
but the extension must be .twr.

The optional limit used to limit the number of items reported for each timing constraint in
the report file. The value of limit must be an integer from 1 to 32,000 inclusive. If a limit is
not specified, the default value is 3.

–xml (XML Output File Name)
The –xml option specifies the name of the XML output timing report (TWX) file. The .twx
extension is optional.

–xml outfile[.twx]

Note: The XML report is not formatted and can only be viewed with the Timing Analyzer.

TRACE Command Line Examples
The following command verifies the timing characteristics of the design named
design1.ncd, generating a summary timing report. Timing constraints contained in the file
group1.pcf are the timing constraints for the design. This generates the report file
design1.twr.

trce design1.ncd group1.pcf
222 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

The following command listing verifies the characteristics for the design named
design1.ncd, using the timing constraints contained in the file group1.pcf and generates a
verbose timing report. The verbose report file is called output.twr.

trce –v 10 design1.ncd group1.pcf –o output.twr

The following command verifies the timing characteristics for the design named
design1.ncd, using the timing constraints contained in the file group1.pcf, and generates a
verbose timing report (TWR report and XML report). The verbose report file is called
design1.twr, and the verbose XML report file is called output.twx.

trce –v 10 design1.ncd group1.pcf –xml output.twx

The following command verifies the timing characteristics for the design named
design1.ncd using the timing constraints contained in the timing file .pcf, and generates an
error report. The error report lists the three worst errors for each constraint in timing .pcf.
The error report file is called design1.twr.

trce –e 3 design1.ncd timing.pcf

The following command generates a Constraints Interaction report in addition to a
summary timing report. The Constraints Interaction report is called design1.tsi (specified
on the command line). The summary timing report is called design1.twr.

trce –tsi design1.tsi design1.ncd timing.pcf

TRACE Reports
TRACE output is a formatted ASCII timing report file that provides information on how
well the timing constraints for the design are met. The file is written into your working
directory and has a .twr extension. The default name for the file is the same root name as
the NCD file. You can designate a different root name for the file, but it must have a .twr
extension. The extension .twr is assumed if not specified.

The timing report lists statistics on the design, any detected timing errors, and a number of
warning conditions.

Timing errors show absolute or relative timing constraint violations, and include the
following:

• Path delay errors—where the path delay exceeds the maximum delay constraint for a
path.

• Net delay errors—where a net connection delay exceeds the maximum delay
constraint for the net.

• Offset errors—where either the delay offset between an external clock and its
associated data-in pin is insufficient to meet the timing requirements of the internal
logic or the delay offset between an external clock and its associated data-out pin
exceeds the timing requirements of the external logic.

• Net skew errors—where skew between net connections exceeds the maximum skew
constraint for the net.

To correct timing errors you may need to modify your design, modify the constraints, or
rerun PAR.

Warnings point out potential problems, such as circuit cycles or a constraint that does not
apply to any paths.
Development System Reference Guide www.xilinx.com 223
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

Three types of reports are available: summary, verbose, or error. You determine the report
type by entering the corresponding TRACE command line option, or by selecting the type
of report from the Timing Analyzer (see “TRACE Options”). Each type of report is
described in “Reporting with TRACE.”

In addition to the formatted ASCII timing report (TWR) file, you can generate an XML
timing report (TWX) file with the –xml option. The XML report is not formatted and can
only be viewed with the Timing Analyzer.

Timing Verification with TRACE
TRACE checks the delays in the NCD design file against your timing constraints. If delays
are exceeded, TRACE issues the appropriate timing error.

Net Delay Constraints

When a maxdelay constraint is used, the delay for a constrained net is checked to ensure
that the routedelay is less than or equal to the netdelayconstraint.

routedelay ≤ netdelayconstraint

routedelay is the signal delay between the driver pin and the load pins on a net. This is an
estimated delay if the design is placed but not routed.

Any nets with delays that do not meet this condition generate timing errors in the timing
report.

Net Skew Constraints

When using USELOWSKEWLINES or MAXSKEW constraints or “–skew (Analyze Clock
Skew for All Clocks)”, signal skew on a net with multiple load pins is the difference
between minimum and maximum load delays.

signalskew = (maxdelay - mindelay)

maxdelay is the maximum delay between the driver pin and a load pin.

mindelay is the minimum delay between the driver pin and a load pin.

Note: Register-to-register paths included in a MAXDELAY constraint report undergo a hold violation
(race condition) check only for paths whose start and endpoints are registered on the same clock
edge.

For constrained nets in the PCF, skew is checked to ensure that the signalskew is less than
or equal to the maxskewconstraint.

signalskew ≤ maxskewconstraint

If the skew exceeds the maximum skew constraint, the timing report shows a skew error.

Path Delay Constraints

When a period constraint is used, the pathdelay equals the sum of logic (component) delay,
route (wire) delay, and setup time (if any), minus clock skew (if any).

pathdelay = logicdelay + routedelay + setuptime - clockskew

The delay for constrained paths is checked to ensure that the pathdelay is less than or equal
to the maxpathdelayconstraint.

pathdelay ≤ maxpathdelayconstraint
224 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

The following table lists the terminology for path delay constraints:

Paths showing delays that do not meet this condition generate timing errors in the timing
report.

Clock Skew and Setup Checking

Clock skew must be accounted for in register-to-register setup checks. For register-to-
register paths, the data delay must reach the destination register within a single clock
period. The timing analysis software ensures that any clock skew between the source and
destination registers is accounted for in this check.

Note: Clock skew must be accounted for in register-to-register setup checks. For register-to-register
paths, the data delay must reach the destination register within a single clock period. The timing
analysis software ensures that any clock skew between the source and destination registers is
accounted for in this check. By default, the clock skew of all non-dedicated clocks, local clocks, and
dedicated clocks is analyzed.

A setup check performed on register-to-register paths checks the following condition:

Slack = constraint + Tsk - (Tpath + Tsu)

The following table lists the terminology for clock skew and setup checking:

Table 13-2: Path Delay Constraint Terminology

Term Definition

logicdelay Pin-to-pin delay through a component

routedelay Signal delay between component pins in a path. This is an estimated
delay if the design is placed but not routed.

setuptime For clocked paths only, the time that data must be present on an input pin
before the arrival of the triggering edge of a clock signal.

clockskew For register-to-register clocked paths only, the difference between the
amount of time the clock signal takes to reach the destination register and
the amount of time the clock signal takes to reach the source register.
Clock skew is discussed in the following section.

Table 13-3: Clock Skew and Setup Checking Terminology

Terms Definition

constraint The required time interval for the path, either specified explicitly by you
with a FROM TO constraint, or derived from a PERIOD constraint.

Tpath The summation of component and connection delays along the path.

Tsu (setup) The setup requirement for the destination register.

Tsk (skew) The difference between the arrival time for the destination register and
the source register.

Slack The negative slack shows that a setup error may occur, because the data
from the source register does not set up at the target register for a
subsequent clock edge.
Development System Reference Guide www.xilinx.com 225
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

In the following figure, the clock skew Tsk is the delay from the clock input (CLKIOB) to
register D (TclkD) less the delay from the clock input (CLKIOB) to register S (TclkS).
Negative skew relative to the destination reduces the amount of time available for the data
path, while positive skew relative to the destination register increases the amount of time
available for the data path .

Because the total clock path delay determines the clock arrival times at the source register
(TclkS) and the destination register (TclkD), this check still applies if the source and
destination clocks originate at the same chip input but travel through different clock
buffers and routing resources, as shown in the following figure.

When the source and destination clocks originate at different chip inputs, no obvious
relationship between the two clock inputs exists for TRACE (because the software cannot
determine the clock arrival time or phase information).

For FROM TO constraints, TRACE assumes you have taken into account the external
timing relationship between the chip inputs. TRACE assumes both clock inputs arrive
simultaneously. The difference between the destination clock arrival time (TclkD) and the
source clock arrival time (TclkS) does not account for any difference in the arrival times at
the two different clock inputs to the chip, as shown in the following figure.

Figure 13-2: Clock Skew Example

Figure 13-3: Clock Passing Through Multiple Buffers

Interconnect
and Logic

S D

CLKIOB
X8260

FIFO UP/DOWN COUNTER

RESET

CE

UP/DN

C

BUFCTR_CE

BUFCTR_UPDN

RESET

C

Q

X8261
226 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

The clock skew Tsk is not accounted for in setup checks covered by PERIOD constraints
where the clock paths to the source and destination registers originate at different clock
inputs.

Reporting with TRACE
The timing report produced by TRACE is a formatted ASCII (TWR) file prepared for a
particular design. It reports statistics on the design, a summary of timing warnings and
errors, and optional detailed net and path delay reports.

In addition to the TWR file, you can generate an XML timing report (TWX) file using the –
xml option. The contents of the XML timing report are identical to the ASCII timing report.
The XML report is not formatted and can only be viewed with the Timing Analyzer.

Note: The ASCII TRACE reports are formatted for viewing in a monospace (non-proportional) font.
If the text editor you use for viewing the reports uses a proportional font, the columns in the reports
do not line up correctly.

This section describes the following types of timing reports generated by TRACE.

• Summary Report—Lists summary information, design statistics, and statistics for
each constraint in the PCF.

• Error Report—Lists timing errors and associated net/path delay information.

• The Verbose Report—Lists delay information for all nets and paths.

In each type of report, the header specifies the command line used to generate the report,
the type of report, the input design name, the optional input physical constraints file name,
speed file version, and device and speed data for the input NCD file. At the end of each
report is a timing summary, which includes the following information:

• The number of timing errors found in the design. This information appears in all
reports.

Figure 13-4: Clocks Originating at Different Device Inputs

C

DIN

X8262

WE

RE

DOUT

FULL

EMPTY

X DO DI X X X X

X X DO DI X X X
Development System Reference Guide www.xilinx.com 227
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

• A timing score, showing the total amount of error (in picoseconds) for all timing
constraints in the design.

• The number of paths and nets covered by the constraints.

• The number of route delays and the percentage of connections covered by timing
constraints.

Note: The percentage of connections covered by timing constraints is given in a “% coverage”
statistic. The statistic does not show the percentage of paths covered; it shows the percentage of
connections covered. Even if you have entered constraints that cover all paths in the design, this
percentage may be less than 100%, because some connections are never included for static timing
analysis (for example, connections to the STARTUP component).

In the following sections, a description of each report is accompanied by a sample.

The following is a list of additional information on timing reports:

• For any of reports, if you specify a physical constraints file that contains invalid data,
a list of physical constraints file errors appears at the beginning of the report. These
include errors in constraint syntax.

• In a timing report, a tilde (~) preceding a delay value shows that the delay value is
approximate. Values with the tilde cannot be calculated exactly because of excessive
delays, resistance, or capacitance on the net, that is, the path is too complex to
calculate accurately.

The tilde (~) also means that the path may exceed the numerical value listed next to the
tilde by as much as 20%. You can use the PENALIZE TILDE constraint to penalize
these delays by a specified percentage (see the Constraints Guide for a description of the
PENALIZE TILDE constraint).

• In a timing report, an “e” preceding a delay value shows that the delay value is
estimated because the path is not routed.

• TRACE detects when a path cycles (that is, when the path passes through a driving
output more than once), and reports the total number of cycles detected in the design.
When TRACE detects a cycle, it disables the cycle from being analyzed. If the cycle
itself is made up of many possible routes, each route is disabled for all paths that
converge through the cycle in question and the total number is included in the
reported cycle tally.

A path is considered to cycle outside of the influence of other paths in the design. Thus
if a valid path follows a cycle from another path, but actually converges at an input
and not a driving output, the path is not disabled and contains the elements of the
cycle, which may be disabled on another path.

• Error counts reflect the number of path endpoints (register setup inputs, output pads)
that fail to meet timing constraints, not the number of paths that fail the specification,
as shown in the following figure.
228 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

If an error is generated at the endpoints of A and B, the timing report would lists two
errors—one for each endpoint.

• In Virtex-II designs, the MAP program places information that identifies dedicated
clocks in the PCF. You must use a PCF generated by the MAP program to ensure
accurate timing analysis on these designs.

Data Sheet Reports
The summary, error, and verbose reports contain a data sheet report. This report only
includes I/Os that are covered by the specified physical timing constraints, if any. A
warning is issued if the report does not cover any I/Os of the design, due to the specified
timing constraints. In the absence of a physical constraint file, all I/O timing is analyzed
and reported (less the effects of any default path tracing controls). Unconstrained path
analysis can be used with a constraint file to increase the coverage of the report to include
paths not explicitly specified in the constraints file. The report includes the source and
destination PAD names, and either the propagation delay between the source and
destination or the setup and hold requirements for the source relative to the destination.
This report summarizes the following delay characteristics for the design.

• External setup/hold requirements

The maximum setup and hold times of device data inputs are listed relative to each
clock input. When two or more paths from a data input exist relative to a device clock
input, the worst-case setup and hold times are reported. One worst-case setup and
hold time is reported for each data input and clock input combination in the design.

Following is an example of an external setup/hold requirement in the data sheet
report:

Setup/Hold to clock ck1_i
------------+-------- -+----------+

 | Setup to |Hold to |
Source Pad |clk (edge) |clk (edge)|
-------------+-----------+----------+
start_i |2.816(R) |0.000(R) |
-------------+-----------+----------+

• Clock-to-output propagation delays

Figure 13-5: Error reporting for failed timing constraints
Development System Reference Guide www.xilinx.com 229
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

• The maximum propagation delay from clock inputs to device data outputs are listed
for each clock input. When two or more paths from a clock input to a data output
exist, the worst-case propagation delay is reported. One worst-case propagation delay
is reported for each data output and clock input combination.

• The (R) means the rising edge

Following is an example of clock-to-output propagation delays in the data sheet
report:

Clock ck1_i to Pad
------------ ---+----------+

|clk (edge)|
Destination Pad |to PAD |
------------- --+----------+
out1_o | 16.691(R)|
------------- --+----------+
Clock to Setup on destination clock ck2_i
----- -----+-------+--------+--------+--------+
 |Src/Dest |Src/Dest | Src/Dest| Src/Dest|

Source Clock|Rise/Rise|Fall/Rise|Rise/Fall|Fall/Fall|
-----------+-------+--------+--------+--------+
ck2_i | 12.647 | | | |
ck1_i |10.241 | | | |
-- --------+-------+--------+--------+--------+

• Input-to-output propagation delays

The maximum propagation delay from each device input to each device output is
reported if a combinational path exists between the device input and output. When
two or more paths exist between a device input and output, the worst-case
propagation delay is reported. One worst-case propagation delay is reported for every
input and output combination in the design.

Following are examples of input-to-output propagation delays:

Pad to Pad

Source Pad |Destination Pad|Delay |
-------------+---------------+-------+
BSLOT0 |D0S |37.534 |
BSLOT1 |D09 |37.876 |
BSLOT2 |D10 |34.627 |
BSLOT3 |D11 |37.214 |
CRESETN |VCASN0 |51.846 |
CRESETN |VCASN1 |51.846 |
CRESETN |VCASN2 |49.776 |
CRESETN |VCASN3 |52.408 |
CRESETN |VCASN4 |52.314 |
CRESETN |VCASN5 |52.314 |
CRESETN |VCASN6 |51.357 |
CRESETN |VCASN7 |52.527 |
-------------+-------------+---------

There are four methods of running TRACE to obtain a complete data sheet report.

• Run with advanced analysis (–a)

• Run using default analysis (that is, with no constraint file and without advanced
analysis)

• Construct constraints to cover all paths in the design
230 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

• Run using the unconstrained path report for constraints which only partially cover
the design

For either of the last two options, you should not have any path controls or TIGs or be
aware that those paths will not be part of the report.

Data Sheet Tables

The Data Sheet report summarizes the external timing parameters for your design, and
may comprise a number of tables. Only inputs, outputs and clocks that have constraints
appear in the Data Sheet report for a verbose or error report. The tables shown depend
upon the type of timing paths present in the design, as well as the applied timing
constraints. Following are tables that appear in the Data Sheet report:

• Input Setup and Hold Times

This table shows the setup and hold time for input signals with respect to an input
clock at a source pad. It does not take into account any phase introduced by the
DCM/DLL. If an input signal goes to two different destinations, the setup and hold are
worst case for that signal. It might be the setup time for one destination and the hold
time for another destination.

• Output Clock to Out Times

This table shows the clock-to-out signals with respect to an input clock at a source pad.
It does not take into account any phase introduced by the DCM/DLL. If an output
signal is a combinatorial result of different sources that are clocked by the same clock,
the clock-to-out is the worst-case path.

• Clock Table

The clock table shows the relationship between different clocks. The Source Clock
column shows all of the input clocks. The second column shows the delay between the
rising edge of the source clock and the destination clock. The next column is the data
delay between the falling edge of the source and the rising edge of the destination.

If there is one destination flip-flop for each source flip-flop the design is successful. If
a source goes to different flip-flops of unrelated clocks, one flip-flop might get the data
and another flip-flop might miss it because of different data delays.

You can quickly navigate to the Data Sheet report by clicking the corresponding item
in the Hierarchical Report Browser.

• External Setup and Hold Requirements

Timing accounts for clock phase relationships and DCM phase shifting for all
derivatives of a primary clock input, and report separate data sheet setup and hold
requirements for each primary input. Relative to all derivatives of a primary clock
input covered by a timing constraint.

• User-Defined Phase Relationships

Timing reports separate setup and hold requirements for user-defined internal clocks
in the data sheet report. User-defined external clock relationships are not reported
separately.

• Clock-to-Clock Setup and Hold Requirements

Timing will not report separate setup and hold requirements for internal clocks.
Development System Reference Guide www.xilinx.com 231
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

• Guaranteed Setup and Hold

Guaranteed setup and hold requirements in the speed files will supersede any
calculated setup and hold requirements made from detailed timing analysis. Timing
will not include phase shifting, DCM duty cycle distortion, and jitter into guaranteed
setup and hold requirements.

• Synchronous Propagation Delays

Timing accounts for clock phase relationships and DCM phase shifting for all primary
outputs with a primary clock input source, and report separate clock-to-output and
maximum propagation delay ranges for each primary output covered by a timing
constraint.

• User-Defined Phase Relationships

Timing separates clock-to-output and maximum propagation delay ranges for user-
defined internal clocks in the data sheet report. User-defined external clock
relationships shall not be reported separately. They are broken out as separate external
clocks.

Report Legend

The following table lists descriptions of what X, R, and F mean in the data sheet report.

Note: Only applies to FPGA designs.

Guaranteed Setup and Hold Reporting
Guaranteed setup and hold values obtained from speed files are used in the data sheet
reports for IOB input registers when these registers are clocked by specific clock routing
resources and when the guaranteed setup and hold times are available for a specified
device and speed.

Specific clock routing resources are clock networks that originate at a clock IOB, use a clock
buffer to reach a clock routing resource and route directly to IOB registers.

Guaranteed setup and hold times are also used for reporting of input OFFSET constraints.

The following figure and text describes the external setup and hold time relationships.

X Indeterminate (Does "X"
still appear in our reports)

R Rising Edge

F Falling Edge
232 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

The pad CLKPAD of clock input component CLKIOB drives a global clock buffer CLKBUF,
which in turn drives an input flip-flop IFD. The input flip-flop IFD clocks a data input
driven from DATAPAD within the component IOB.

Setup Times

The external setup time is defined as the setup time of DATAPAD within IOB relative to
CLKPAD within CLKIOB. When a guaranteed external setup time exists in the speed files
for a particular DATAPAD and the CLKPAD pair and configuration, this number is used in
timing reports. When no guaranteed external setup time exists in the speed files for a
particular DATAPAD and CLKPAD pair, the external setup time is reported as the
maximum path delay from DATAPAD to the IFD plus the maximum IFD setup time, less
the minimum of maximum path delay(s) from the CLKPAD to the IFD.

Hold Times

The external hold time is defined as the hold time of DATAPAD within IOB relative to
CLKPAD within CLKIOB. When a guaranteed external hold time exists in the speed files
for a particular DATAPAD and the CLKPAD pair and configuration, this number is used in
timing reports.

When no guaranteed external hold time exists in the speed files for a particular DATAPAD
and CLKPAD pair, the external hold time is reported as the maximum path delay from
CLKPAD to the IFD plus the maximum IFD hold time, less the minimum of maximum
path delay(s) from the DATAPAD to the IFD.

Figure 13-6: Guaranteed Setup and Hold

IOB

IFD

DATAPAD

CLKIOB

CLKPAD CLKBUF

X8924
Development System Reference Guide www.xilinx.com 233
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

Summary Report
The summary report includes the name of the design file being analyzed, the device speed
and report level, followed by a statistical brief that includes the summary information and
design statistics. The report also list statistics for each constraint in the PCF, including the
number of timing errors for each constraint.

A summary report is produced when you do not enter an –e (error report) or –v (verbose
report) option on the TRACE command line.

Two sample summary reports are shown below. The first sample shows the results without
having a physical constraints file. The second sample shows the results when a physical
constraints file is specified.

If no physical constraints file exists or if there are no timing constraints in the PCF, TRACE
performs default path and net enumeration to provide timing analysis statistics. Default
path enumeration includes all circuit paths to data and clock pins on sequential
components and all data pins on primary outputs. Default net enumeration includes all
nets.

Summary Report (Without a Physical Constraints File Specified)

The following sample summary report represents the output of this TRACE command.

trce –o summary.twr ramb16_s1.ncd

The name of the report is summary.twr. No preference file is specified on the command
line, and the directory containing the file ram16_s1.ncd did not contain a PCF called
ramb16_s1.pcf.

--
Xilinx TRACE
Copyright (c) 1995-2002 Xilinx, Inc. All rights reserved.
Design file: ramb16_s1.ncd
Device,speed: xc2v250,-6
Report level: summary report
--

WARNING:Timing - No timing constraints found, doing default
enumeration.
Asterisk (*) preceding a constraint indicates it was not met.
--
 Constraint | Requested | Actual | Logic

| | | Levels
--
 Default period analysis | | 2.840ns | 2
--
 Default net enumeration | | 0.001ns |
--

All constraints were met.

Data Sheet report:

All values displayed in nanoseconds (ns)
234 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

Setup/Hold to clock clk
---------------+------------+------------+
 | Setup to | Hold to |
Source Pad | clk (edge) | clk (edge) |
---------------+------------+------------+
ad0 | 0.263(R)| 0.555(R)|
ad1 | 0.263(R)| 0.555(R)|
ad10 | 0.263(R)| 0.555(R)|
ad11 | 0.263(R)| 0.555(R)|
ad12 | 0.263(R)| 0.555(R)|
ad13 | 0.263(R)| 0.555(R)|
.
.
.
---------------+------------+------------+
Clock clk to Pad
---------------+------------+
 | clk (edge) |
Destination Pad| to PAD |
---------------+------------+
d0 | 7.496(R)|
---------------+------------+

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 20 paths, 21 nets, and 21 connections (100.0%
coverage)

Design statistics:
 Minimum period: 2.840ns (Maximum frequency: 352.113MHz)
 Maximum combinational path delay: 6.063ns
 Maximum net delay: 0.001ns
Analysis completed Wed Mar 8 14:52:30 2000
--
Summary Report (With a Physical Constraints File Specified)
The following sample summary report represents the output of this TRACE
command:
trce –o summary1.twr ramb16_s1.ncd clkperiod.pcf
The name of the report is summary1.twr. The timing analysis represented
in the file were performed by referring to the constraints in the file
clkperiod.pcf.
--
Xilinx TRACE
Copyright (c) 1995-2002 Xilinx, Inc. All rights reserved.

Design file: ramb16_s1.ncd
Physical constraint file: clkperiod.pcf
Device,speed: xc2v250,-6
Report level: summary report
--

Asterisk (*) preceding a constraint indicates it was not met.

--
Constraint | Requested | Actual | Logic

| | | Levels
--
Development System Reference Guide www.xilinx.com 235
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

TS01 = PERIOD TIMEGRP "clk" 10.0ns| | |
--
OFFSET = IN 3.0 ns AFTER COMP
"clk" TIMEG | 3.000ns | 8.593ns |2
RP "rams"
--
* TS02 = MAXDELAY FROM TIMEGRP
"rams" TO TI | 6.000ns | 6.063ns |2
 MEGRP "pads" 6.0 ns| | |
--

1 constraint not met.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock clk
---------------+------------+------------+
 | Setup to | Hold to |
Source Pad | clk (edge) | clk (edge) |
---------------+------------+------------+
ad0 | 0.263(R)| 0.555(R)|
ad1 | 0.263(R)| 0.555(R)|
ad10 | 0.263(R)| 0.555(R)|
ad11 | 0.263(R)| 0.555(R)|
ad12 | 0.263(R)| 0.555(R)|
ad13 | 0.263(R)| 0.555(R)|
.
.
.
---------------+------------+------------+
Clock clk to Pad
---------------+------------+
 | clk (edge) |
Destination Pad| to PAD |
---------------+------------+
d0 | 7.496(R)|
---------------+------------+

Timing summary:

Timing errors: 1 Score: 63

Constraints cover 19 paths, 0 nets, and 21 connections (100.0% coverage)

Design statistics:
 Maximum path delay from/to any node: 6.063ns
 Maximum input arrival time after clock: 8.593ns

Analysis completed Wed Mar 8 14:54:31 2002
--

When the physical constraints file includes timing constraints, the summary report lists the
percentage of all design connections covered by timing constraints. If there are no timing
constraints, the report shows 100 percent coverage. An asterisk (*) precedes constraints
that fail.
236 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

Error Report
The error report lists timing errors and associated net and path delay information. Errors
are ordered by constraint in the PCF and within constraints, by slack (the difference
between the constraint and the analyzed value, with a negative slack showing an error
condition). The maximum number of errors listed for each constraint is set by the limit you
enter on the command line. The error report also contains a list of all time groups defined
in the PCF and all of the members defined within each group.

The main body of the error report lists all timing constraints as they appear in the input
PCF. If the constraint is met, the report states the number of items scored by TRACE,
reports no timing errors detected, and issues a brief report line, showing important
information (for example, the maximum delay for the particular constraint). If the
constraint is not met, it gives the number of items scored by TRACE, the number of errors
encountered, and a detailed breakdown of the error.

For errors in which the path delays are broken down into individual net and component
delays, the report lists each physical resource and the logical resource from which the
physical resource was generated.

As in the other three types of reports, descriptive material appears at the top. A timing
summary always appears at the end of the reports.

The following sample error report (error.twr) represents the output generated with this
TRACE command:

trce –e 3 ramb16_s1.ncd clkperiod.pcf –o error_report.twr

--
Xilinx TRACE
Copyright (c) 1995-2002 Xilinx, Inc. All rights reserved.

trce -e 3 ramb16_s1.ncd clkperiod.pcf -o error_report.twr

Design file: ramb16_s1.ncd
Physical constraint file: clkperiod.pcf
Device,speed: xc2v250,-5 (ADVANCED 1.84 2001-05-09)
Report level: error report
--

==
Timing constraint: TS01 = PERIOD TIMEGRP "clk" 10.333ns ;

 0 items analyzed, 0 timing errors detected.
--

==
Timing constraint: OFFSET = IN 3.0 ns AFTER COMP "clk" TIMEGRP "rams" ;

 18 items analyzed, 0 timing errors detected.
 Maximum allowable offset is 9.224ns.
--

==
Timing constraint: TS02 = MAXDELAY FROM TIMEGRP "rams" TO TIMEGRP "pads"
8.0 nS ;

 1 item analyzed, 1 timing error detected.
Development System Reference Guide www.xilinx.com 237
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

 Maximum delay is 8.587ns.
--
Slack: -0.587ns (requirement - data path)
 Source: RAMB16.A
 Destination: d0
 Requirement: 8.000ns
 Data Path Delay: 8.587ns (Levels of Logic = 2)
 Source Clock: CLK rising at 0.000ns

Data Path: RAMB16.A to d0
Location Delay type Delay(ns) Physical Resource

Logical Resource(s)

RAMB16.DOA0 Tbcko 3.006 RAMB16

RAMB16.A
IOB.O1 net e 0.100 N$41

(fanout=1)
IOB.PAD Tioop 5.481 d0

I$22
d0

Total 8.587ns (8.487ns logic, 0.100ns

route)
(98.8% logic, 1.2%
route)

1 constraint not met.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock clk
---------------+------------+------------+
 | Setup to | Hold to |
Source Pad | clk (edge) | clk (edge) |
---------------+------------+------------+
ad0 | -0.013(R)| 0.325(R)|
ad1 | -0.013(R)| 0.325(R)|
ad10 | -0.013(R)| 0.325(R)|
ad11 | -0.013(R)| 0.325(R)|
ad12 | -0.013(R)| 0.325(R)|
ad13 | -0.013(R)| 0.325(R)|
.
.
.
---------------+------------+------------+

Clock clk to Pad
---------------+------------+
 | clk (edge) |
Destination Pad| to PAD |
---------------+------------+
d0 | 9.563(R)|
---------------+------------+
238 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

Timing summary:

Timing errors: 1 Score: 587

Constraints cover 19 paths, 0 nets, and 21 connections (100.0% coverage)

Design statistics:
 Maximum path delay from/to any node: 8.587ns
 Maximum input arrival time after clock: 9.224ns

Analysis completed Mon Jun 03 17:47:21 2002
--

Verbose Report
The verbose report is similar to the error report and provides details on delays for all
constrained paths and nets in the design. Entries are ordered by constraint in the PCF,
which may differ from the UCF or NCF and, within constraints, by slack, with a negative
slack showing an error condition. The maximum number of items listed for each constraint
is set by the limit you enter on the command line.

Note: The data sheet report and STAMP model display skew values on non-dedicated clock
resources that do not display in the default period analysis of the normal verbose report. The data
sheet report and STAMP model must include skew because skew affects the external timing model.
To display skew values in the verbose report, use the –skew option.

The verbose report also contains a list of all time groups defined in the PCF, and all of the
members defined within each group.

The body of the verbose report enumerates each constraint as it appears in the input
physical constraints file, the number of items scored by TRACE for that constraint, and the
number of errors detected for the constraint. Each item is described, ordered by
descending slack. A Report line for each item provides important information, such as the
amount of delay on a net, fanout on each net, location if the logic has been placed, and by
how much the constraint is met.

For path constraints, if there is an error, the report shows the amount by which the
constraint is exceeded. For errors in which the path delays are broken down into
individual net and component delays, the report lists each physical resource and the
logical resource from which the physical resource was generated.

If there are no errors, the report shows that the constraint passed and by how much. Each
logic and route delay is analyzed, totaled, and reported.

The following sample verbose report (verbose.twr) represents the output generated with
this TRACE command:

trce –v 1 ramb16_s1.ncd clkperiod.pcf –o verbose_report.twr

--
Xilinx TRACE
Copyright (c) 1995-2002 Xilinx, Inc. All rights reserved.

trce -v 1 ramb16_s1.ncd clkperiod.pcf -o verbose_report.twr

Design file: ramb16_s1.ncd
Physical constraint file: clkperiod.pcf
Development System Reference Guide www.xilinx.com 239
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

Device,speed: xc2v250,-5 (ADVANCED 1.84 2001-05-09)
Report level: verbose report, limited to 1 item per constraint
--

==
Timing constraint: TS01 = PERIOD TIMEGRP "clk" 10.333ns ;

 0 items analyzed, 0 timing errors detected.
--

==
Timing constraint: OFFSET = IN 3.0 ns AFTER COMP "clk" TIMEGRP "rams" ;

 18 items analyzed, 0 timing errors detected.
 Maximum allowable offset is 9.224ns.
--
Slack: 6.224ns (requirement - (data path - clock path
- clock arrival))
 Source: ssr
 Destination: RAMB16.A
 Destination Clock: CLK rising at 0.000ns
 Requirement: 7.333ns
 Data Path Delay: 2.085ns (Levels of Logic = 2)
 Clock Path Delay: 0.976ns (Levels of Logic = 2)

Data Path: ssr to RAMB16.A
Location Delay type Delay(ns)
Physical Resource

Logical Resource(s)

IOB.I Tiopi

0.551 ssr
ssr
I$36

RAM16.SSRA net e 0.100 N$9
(fanout=1)

RAM16.CLKA Tbrck 1.434 RAMB16
 RAMB16.A

Total 2.085ns (1.985ns logic, 0.100ns

route)
(95.2% logic, 4.8%
route)

Clock Path: clk to RAMB16.A
Location Delay type Delay(ns) Physical Resource

Logical Resource(s)

IOB.I Tiopi 0.551 clk

clk
clk/new_buffer

BUFGMUX.I0 net e 0.100 clk/new_buffer
(fanout=1)

BUFGMUX.O Tgi0o 0.225 I$9
I$9

RAM16.CLKA net e 0.100 CLK
(fanout=1)
240 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

Total 0.976ns (0.776ns logic, 0.200ns

route)
(79.5% logic, 20.5%
route)

--

==
Timing constraint: TS02 = MAXDELAY FROM TIMEGRP "rams" TO TIMEGRP "pads"
8.0 nS ;

 1 item analyzed, 1 timing error detected.
 Maximum delay is 8.587ns.
--
Slack: -0.587ns (requirement - data path)
 Source: RAMB16.A
 Destination: d0
 Requirement: 8.000ns
 Data Path Delay: 8.587ns (Levels of Logic = 2)
 Source Clock: CLK rising at 0.000ns

 Data Path: RAMB16.A to d0
 Location Delay type Delay(ns) Physical Resource
 Logical Resource(s)
 --- -----------
 RAMB16.DOA0 Tbcko 3.006 RAMB16
 RAMB16.A
 IOB.O1 net (fanout=1) e 0.100 N$41
 IOB.PAD Tioop 5.481 d0
 I$22
 d0
 --- -----------
 Total 8.587ns (8.487ns logic,
0.100ns route)
 (98.8% logic, 1.2% route)

--

1 constraint not met.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock clk
---------------+------------+------------+
 | Setup to | Hold to |
Source Pad | clk (edge) | clk (edge) |
---------------+------------+------------+
ad0 | -0.013(R)| 0.325(R)|
ad1 | -0.013(R)| 0.325(R)|
ad10 | -0.013(R)| 0.325(R)|
ad11 | -0.013(R)| 0.325(R)|
.
.
.
---------------+------------+------------+
Development System Reference Guide www.xilinx.com 241
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

Clock clk to Pad
---------------+------------+
 | clk (edge) |
Destination Pad| to PAD |
---------------+------------+
d0 | 9.563(R)|
---------------+------------+

Timing summary:

Timing errors: 1 Score: 587

Constraints cover 19 paths, 0 nets, and 21 connections (100.0% coverage)

Design statistics:
 Maximum path delay from/to any node: 8.587ns
 Maximum input arrival time after clock: 9.224ns

Analysis completed Mon Jun 03 17:57:24 2002

Constraints Interaction Report
The Constraints Interaction report describes interactions among timing constraints in your
design. The report lists categories of constraints: exclusive, duplicate, and extracted.

• Exclusive coverage occurs when a particular constraint is the only one that covers
some paths from, to, or between the start and end points listed in the report.

• Duplicate coverage occurs when a constraint covers some paths from, to, or between
the start and end points, but one or more other constraints cover the same paths as
well.

• Extracted coverage occurs when some paths from, to, or between the start and end
points that were supposed to be covered by a particular constraint are instead covered
by a higher priority constraint.

The Constraints Interaction report does not list the paths; it lists the start points as sources
and the end points as destinations. You might see sources listed without destinations. For
example a source can be listed in the exclusive constraint category without any
destination. This means paths from that source are covered in the exclusive constraints
category. However, the destination is covered by another category, duplicate or extracted.
Similarly, you might see destinations listed without sources. This means paths to that
destination are covered by one category of constraints, but the source is covered by
another. Also note that not every source has a corresponding destination. Paths do not
always exist between start and end points. The report lists start and end points between
which there may be paths.

Two design examples with sample Constraints Interaction reports follow. Design Example
1 shows how the timing tools determine extracted coverage. Design Example 2 shows how
the timing tools determine duplicate coverage.
242 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

Extracted Coverage Constraints Interaction Report Example

This design example shows extracted coverage. The following figure contains two source
registers, S1 and S2, two destination registers D1 and D2, and common intermediate logic.

In this design, the registers S1, S2, D1 and D2 are all clocked by the same clock signal. A
combinatorial function in the logic is the result of the two signals driven by registers S1 and
S2. The four circuit paths in this example are as follows:

A={S1->D1}

B={S1->D2}

C={S2->D1}

D={S2->D2}

The following excerpt from the PCF shows the related design constraints. A period
constraint is defined for the clock signal, and a maximum delay constraint for the paths
originating from the source register S1. (S1 has a clock enable signal.)

net “CLOCK” period=10
from BEL “S1” maxdelay=15

The period constraint defines the paths A, B, C and D in the design example. The
maximum delay constraint defines the paths A and B. Because the maximum delay
constraint takes priority over the period constraint, paths A and B are covered by the
maximum delay constraint only; they are extracted from period constraint coverage. The
paths C and D are covered by the period constraint.

The following Constraints Interaction report for this design represents the output
generated with this TRACE command:

trce –tsi example1.tsi tsinew.ncd example1.pcf –o example1.twr

--
Xilinx TRACE

Figure 13-7: Extracted Coverage Constraints Interaction Report Example

X8996

S1

S2

D1

D2

Logic

Clock
Enable
Development System Reference Guide www.xilinx.com 243
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

Copyright (c) 1995-2002 Xilinx, Inc. All rights reserved.

Design file: tsi.ncd
Physical constraint file: example1.pcf
Report level: timespec interaction report
--

==
Timing constraint: from BEL "S1" maxdelay = 15
==

Paths from, to, or between the following sources and destinations
are covered exclusively by this timing constraint:
 Sources:
 S1
 Destinations:

The following constraints duplicately cover some or all paths from, to,
or between the sources and destinations listed below each constraint:

 Constraint: net "CLOCK" period = 10
 Sources:
 Destinations:
 D1 D2

The following constraints extracted some or all paths from, to, or
between the sources and destinations listed below each constraint:

 None

==
Timing constraint: net "CLOCK" period = 10
==

Paths from, to, or between the following sources and destinations
are covered exclusively by this timing constraint:
 Sources:
 S2
 Destinations:

The following constraints duplicately cover some or all paths from, to,
or between the sources and destinations listed below each constraint:

 Constraint: from BEL "S1" maxdelay = 15
 Sources:
 Destinations:
 D1 D2

The following constraints extracted some or all paths from, to, or
between the sources and destinations listed below each constraint:

 Constraint: from BEL "S1" maxdelay = 15
 Sources:
 S1
 Destinations:

==
244 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

Pathtracing Controls: 12 entries (Default Settings)

Standard Name: reg_sr_q State: Disabled
 Trio Trlat Trri Trpo

Standard Name: reg_sr_clk State: Disabled
 Trck Tckr

Standard Name: lat_d_q State: Disabled
Tpli Tplic Tpmli Tpmlic Tpdli
Tpdlic Tpsli Tpslic Tpdsli Tpdslic
Tito Tihto Tsumc+TitoTsumc+TihtoTopc+Tito
Topc+TihtoTasc+TitoTasc+TihtoTinc+Tito Tinc+Tihto
Tdto Tdtot Thh0to Thh1to Thh2to
Tcto Twto Twtot Twtos Twtots
Twtods

.

.

.

.

Active Pathtracing Controls

Disabled Signals (global):
 None
Disabled Pins (global):
 None
Disabled Delays (global):

Trio Trlat Trri Trpo
Trck Tckr Tpli Tplic
Tpmli Tpmlic Tpdli Tpdlic
Tpsli Tpslic Tpdsli Tpdslic
Tito Tihto Tsumc+TitoTsumc+Tihto
Topc+Tito Topc+TihtoTasc+Tito Tasc+Tihto

.

.

.

Constraint Disables:
 None

Active Component Pathtracing Controls

Timespec interaction analysis completed Tue Jul 10 14:27:49 2001
--

Duplicate Coverage Constraints Interaction Report Example

The following example shows duplicate coverage. It uses a different PCF with the same
design as the previous example.
Development System Reference Guide www.xilinx.com 245
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

To summarize the design, the registers S1, S2, D1 and D2 are all clocked by the same clock
signal “CLOCK.” A combinatorial function in the logic is the result of the two signals
driven by registers S1 and S2. The four circuit paths in the example are as follows:

A={S1->D1}

B={S1->D2}

C={S2->D1}

D={S2->D2}

In this example, the PCF defines a maxdelay constraint for the paths from the source
register S1 to the destination register D1.

net “CLOCK” period=10
from BEL “S1” to BEL “D1” maxdelay=15

The period constraint defines the paths A, B, C and D. The maxdelay constraint defines the
set of paths A. The maxdelay constraint takes priority over the period constraint, but the
timing tools are not path based and therefore cannot give precedence to the maxdelay
constraint.

Note: If precedence were given to the maxdelay constraint, the source S1 and destination D1 would
have to be removed from coverage by the period constraint. This would also entail removing the paths
defined by B and C. Because this is not the purpose of the constraint, the timing tools do not extract
the paths affected by the period constraint.

In this situation, path A has duplicate coverage by both the period and the maxdelay
constraints. The paths B, C, and D are covered by the period constraint alone.

Duplicate coverage may show that you need to refine your constraints. The following
information may help you adjust your constraints:

• If the Clock Enable is used only on the S1 register, why doesn’t the maxdelay
constraint apply to all paths from S1 (as opposed to paths to D1)?

• If the S1 to D1 path is truly an exception to the period constraint, why isn’t the S2 to
D1 path also an exception?

Figure 13-8: Duplicate Coverage Constraints Interaction Report Example

X8996

S1

S2

D1

D2

Logic

Clock
Enable
246 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

TRACE Reports
R

• Define a clock period constraint using a timegrp (S1, D1). Include only S1, D1 and a
slow period in the timegrp period constraint.

• Define another timegrp (S2, D2) period constraint listing only S2, D2 and a fast period.

• Define a constraint with any cross-group timing requirement.

The following Constraints Interaction report for this design represents the output
generated with this TRACE command:

trce –tsi example2.tsi tsinew.ncd example2.pcf –o example2.twr

--

Xilinx TRACE
Copyright (c) 1995-2002 Xilinx, Inc. All rights reserved.

Design file: tsi.ncd
Physical constraint file: example2.pcf
Report level: timespec interaction report
--
==
Timing constraint: from BEL "S1" to BEL "D1" maxdelay = 15
==

Paths from, to, or between the following sources and destinations
are covered exclusively by this timing constraint:

 None

The following constraints duplicately cover some or all paths from, to,
or between the sources and destinations listed below each constraint:

 Constraint: net "CLOCK" period = 10
 Sources:
 S1
 Destinations:
 D1

The following constraints extracted some or all paths from, to, or
between the sources and destinations listed below each constraint:

 None

==
Timing constraint: net "CLOCK" period = 10
==

Paths from, to, or between the following sources and destinations
are covered exclusively by this timing constraint:
 Sources:
 S2
 Destinations:
 D2

The following constraints duplicately cover some or all paths from, to,
or between the sources and destinations listed below each constraint:

 Constraint: from BEL "S1" to BEL "D1" maxdelay = 15
 Sources:
 S1
Development System Reference Guide www.xilinx.com 247
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

 Destinations:
 D1

The following constraints extracted some or all paths from, to, or
between the sources and destinations listed below each constraint:

 None

==

Pathtracing Controls: 12 entries (Default Settings)

Standard Name: reg_sr_q State: Disabled
 Trio Trlat Trri Trpo

Standard Name: reg_sr_clk State: Disabled
 Trck Tckr

Standard Name: lat_d_q State: Disabled
Tpli Tplic Tpmli Tpmlic Tpdli
Tpdlic Tpsli Tpslic Tpdsli Tpdslic
Tito Tihto Tsumc+TitoTsumc+Tihto Topc+Tito
Topc+Tihto Tasc+Tito Tasc+TihtoTinc+Tito Tinc+Tihto

.

.

.

Active Pathtracing Controls

Disabled Signals (global):
 None
Disabled Pins (global):
 None
Disabled Delays (global):
 Trio Trlat Trri Trpo
 Trck Tckr Tpli Tplic
 Tpmli Tpmlic Tpdli Tpdlic
.
.
.
Constraint Disables:
 None

Active Component Pathtracing Controls

Timespec interaction analysis completed Tue Jul 10 14:22:56 2001
--
248 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Halting TRACE
R

Halting TRACE
To halt TRACE, enter Ctrl+C (on a workstation) or Ctrl-BREAK (on a PC). On a
workstation, make sure that when you enter Ctrl+C, the active window is the window
from which you invoked TRACE. The program prompts you to confirm the interrupt.
Some files may be left when TRACE is halted (for example, a TRACE report file or a
physical constraints file), but these files may be discarded because they represent an
incomplete operation.

OFFSET Constraints
OFFSET constraints define Input and Output timing constraints with respect to an initial
time of 0ns.

The associated PERIOD constraint defines the initial clock edge. If the PERIOD constraint
is defined with the attribute HIGH, the initial clock edge is the rising clock edge. If the
attribute is LOW, the initial clock edge is the falling clock edge. This can be changed by
using the HIGH/LOW keyword in the OFFSET constraint. The OFFSET constraint checks
the setup time and hold time. For additional information on timing constraints, please
refer to the Constraints Guide at http://support.xilinx.com under Documentation,
Software Manuals.

OFFSET IN Constraint Examples
This section describes in detail a specific example of an OFFSET IN constraint as shown in
the Timing Constraints section of a timing analysis report. For clarification, the OFFSET IN
constraint information is divided into the following parts:

• OFFSET IN Header

• OFFSET IN Path Details

• OFFSET IN Detailed Path Data

• OFFSET IN with Phase Clock

OFFSET IN Header

The header includes the constraint, the number of items analyzed, and number of timing
errors detected. Please see PERIOD Header for more information on items analyzed and
timing errors.

Example:
==

Timing constraint: OFFSET = IN 4 nS BEFORE COMP "wclk_in" ;

113 items analyzed, 30 timing errors detected.

Minimum allowable offset is 4.468ns.

--

The minimum allowable offset is 4.270 ns. Because this is an OFFSET IN BEFORE, it means
the data must be valid 4.270 ns before the initial edge of the clock. The PERIOD constraint
was defined with the keyword HIGH, therefore the initial edge of the clock is the rising
edge.
Development System Reference Guide www.xilinx.com 249
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

OFFSET IN Path Details

This path fails the constraint by .270 ns. The slack equation shows how the slack was
calculated. In respect to the slack equation data delay increases the setup time while clock
delay decreases the setup time. The clock arrival time is also taken into account. In this
example, the clock arrival time is 0.000 ns, therefore, it does not affect the slack.

Example:

==

Slack: -0.468ns (requirement - (data path - clock path
- clock arrival + uncertainty))

 Source: wr_enl (PAD)

Destination: wr_addr[2] (FF)

 Destination Clock: wclk rising at 0.000ns

 Requirement: 4.000ns

 Data Path Delay: 3.983ns (Levels of Logic = 2)

 Clock Path Delay: -0.485ns (Levels of Logic = 3)

 Clock Uncertainty: 0.000ns

 Data Path: wr_enl to wr_addr[2]

--

OFFSET IN Detailed Path Data

The first section is the data path. In the following case, the path starts at an IOB, goes
through a look-up table (LUT) and is the clock enable pin of the destination flip-flop.

Example:

--

 Data Path: wr_enl to wr_addr[2]

 Location Delay type Delay(ns) Logical Resource(s)

 --- ----------------

 C4.I Tiopi 0.825 wr_enl

 wr_enl_ibuf

 SLICE_X2Y9.G3 net (fanout=39) 1.887 wr_enl_c

 SLICE_X2Y9.Y Tilo 0.439 G_82

 SLICE_X3Y11.CE net (fanout=1) 0.592 G_82

 SLICE_X3Y11.CLK Tceck 0.240 wr_addr[2]
250 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

OFFSET Constraints
R

 --- ---------------

 Total 3.983ns (1.504ns logic,
2.479ns route)
 (37.8% logic, 62.2% route)

--

OFFSET IN Detail Path Clock Path

The second section is the clock path. In this example the clock starts at an IOB, goes to a
DCM, comes out CLK0 of the DCM through a global buffer (BUFGHUX). It ends at a clock
pin of a FF.

The Tdcmino is a calculated delay. This is the equation:

Clock Path: wclk_in to wr_addr[2]

 Location Delay type Delay(ns) Logical Resource(s)

 --- ----------------

 D7.I Tiopi 0.825 wclk_in

 write_dcm/IBUFG

 DCM_X0Y1.CLKIN net (fanout=1) 0.798 write_dcm/IBUFG

 DCM_X0Y1.CLK0 Tdcmino -4.297 write_dcm/CLKDLL

 BUFGMUX3P.I0 net (fanout=1) 0.852 write_dcm/CLK0

 BUFGMUX3P.O Tgi0o 0.589 write_dcm/BUFG

 SLICE_X3Y11.CLK net (fanout=41) 0.748 wclk

 --- ----------------

 Total -0.485ns (-2.883ns logic,
2.398ns route)

--

OFFSET In with Phase Shifted Clock

In the following example, the clock is the CLK90 output of the DCM. The clock arrival time
is 2.5 ns. The rclk_90 rising at 2.500 ns. This number is calculated from the PERIOD on
rclk_in which is 10ns in this example. The 2.5 ns affects the slack. Because the clock is
delayed by 2.5 ns, the data has 2.5 ns longer to get to the destination.

If this path used the falling edge of the clock, the destination clock would say, falling at 00
ns 7.500 ns (2.5 for the phase and 5.0 for the clock edge). The minimum allowable offset can
be negative because it is relative to the initial edge of the clock. A negative minimum
allowable offset means the data can arrive after the initial edge of the clock. This often
occurs when the destination clock is falling while the initial edge is defined as rising. This
can also occur on clocks with phase shifting.
Development System Reference Guide www.xilinx.com 251
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

Example:

==

Timing constraint: OFFSET = IN 4 nS BEFORE COMP "rclk_in" ;

2 items analyzed, 0 timing errors detected.

Minimum allowable offset is 1.316ns.

--
Slack: 2.684ns (requirement - (data path - clock path
- clock arrival + uncertainty))

Source: wclk_in (PAD)

Destination: ffl_reg (FF)

Destination Clock: rclk_90 rising at 2.500ns

Requirement: 4.000ns

Data Path Delay: 3.183ns (Levels of Logic = 5)

Clock Path Delay: -0.633ns (Levels of Logic = 3)

Clock Uncertainty: 0.000ns

Data Path: wclk_in to ffl_reg

Location Delay type Delay(ns) Logical Resource(s)

--- -------------------

D7.I Tiopi 0.825 wclk_in

 write_dcm/IBUFG

DCM_X0Y1.CLKIN net (fanout=1) 0.798 write_dcm/IBUFG

DCM_X0Y1.CLK0 Tdcmino -4.297 write_dcm/CLKDLL

BUFGMUX3P.I0 net (fanout=1) 0.852 write_dcm/CLK0

BUFGMUX3P.O Tgi0o 0.589 write_dcm/BUFG

SLICE_X2Y11.G3 net (fanout=41) 1.884 wclk

SLICE_X2Y11.Y Tilo 0.439 un1_full_st

SLICE_X2Y11.F3 net (fanout=1) 0.035 un1_full_st

SLICE_X2Y11.X Tilo 0.439 full_st_i_0.G_4.G_4.G_4

K4.O1 net (fanout=3) 1.230 G_4

K4.OTCLK1 Tioock 0.389 ffl_reg
252 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

OFFSET Constraints
R

--- -------------------
 Total 3.183ns (-1.616ns logic,
4.799ns route)

Clock Path: rclk_in to ffl_reg

Location Delay type Delay(ns) Logical Resource(s)

--- -------------------

A8.I Tiopi 0.825 rclk_in

read_ibufg

CM_X1Y1.CLKIN net (fanout=1) 0.798 rclk_ibufg

CM_X1Y1.CLK90 Tdcmino -4.290 read_dcm

UFGMUX5P.I0 net (fanout=1) 0.852 rclk_90_dcm

BUFGMUX5P.O Tgi0o 0.589 read90_bufg

4.OTCLK1 net (fanout=2) 0.593 rclk_90

-- --------------------

 Total -0.633ns (-2.876ns logic,
2.243ns route)

--

OFFSET OUT Constraint Examples
The following section describe specific examples of an OFFSET OUT constraint, as shown
in the Timing Constraints section of a timing report. For clarification, the OFFSET OUT
constraint information is divided into the following parts:

• OFFSET OUT Header

• OFFSET OUT Path Details

• OFFSET OUT Detail Clock Path

• OFFSET OUT Detail Path Data

OFFSET OUT Header

The header includes the constraint, the number of items analyzed, and number of timing
errors detected. See the PERIOD Header for more information on items analyzed and
timing errors.

Example:

==

Timing constraint: OFFSET = OUT 10 nS AFTER COMP "rclk_in" ;

 50 items analyzed, 0 timing errors detected.
Development System Reference Guide www.xilinx.com 253
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

 Minimum allowable offset is 9.835ns.

--

OFFSET OUT Path Details

The example path below passed the timing constraint by .533 ns. The slack equation shows
how the slack was calculated. Data delay increases the clock to out time and clock delay
also increases the clock to out time. The clock arrival time is also taken into account. In this
example the clock arrival time is 0.000 ns; therefore, it does not affect the slack.

If the clock edge occurs at a different time, this value is also added to the clock to out time.
If this example had the clock falling at 5.000 ns, 5.000 ns would be added to the slack
equation because the initial edge of the corresponding PERIOD constraint is HIGH.

Note: The clock falling at 5.000 ns is determined by how the PERIOD constraint isdefined, for
example PERIOD 10 HIGH 5.

Example:

==
Slack: 0.533ns (requirement - (clock arrival + clock
path + data path + uncertainty))

 Source: wr_addr[2] (FF)

 Destination: efl (PAD)

 Source Clock: wclk rising at 0.000ns

 Requirement: 10.000ns

 Data Path Delay: 9.952ns (Levels of Logic = 4)

 Clock Path Delay: -0.485ns (Levels of Logic = 3)

 Clock Uncertainty: 0.000ns

--

OFFSET OUT Detail Clock Path

In the following example, because the OFFSET OUT path starts with the clock, the clock
path is shown first. The clock starts at an IOB, goes to a DCM, comes out CLK0 of the DCM
through a global buffer. It ends at a clock pin of a FF.

The Tdcmino is a calculated delay. This is the equation:

Clock Path: rclk_in to rd_addr[2]

Location Delay type Delay(ns) Logical
Resource(s)

 A8.I Tiopi 0.825 rclk_in

 read_ibufg
254 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

OFFSET Constraints
R

 DCM_X1Y1.CLKIN net (fanout=1) 0.798 rclk_ibufg

 DCM_X1Y1.CLK0 Tdcmino -4.290 read_dcm

 BUFGMUX7P.I0 net (fanout=1) 0.852 rclk_dcm

 BUFGMUX7P.O Tgi0o 0.589 read_bufg

 SLICE_X4Y10.CLK net (fanout=4) 0.738 rclk

 Total -0.488ns (-2.876ns
logic, 2.388ns route)

OFFSET OUT Detail Path Data

The second section is the data path. In this case, the path starts at an FF, goes through three
look-up tables and ends at the IOB.

Example:

--

Data Path: rd_addr[2] to efl

 Location Delay type Delay(ns) Logical Resource(s)

 --- ---------------

 SLICE_X4Y10.YQ Tcko 0.568 rd_addr[2]

 SLICE_X2Y10.F4 net (fanout=40) 0.681 rd_addr[2]

 SLICE_X2Y10.X Tilo 0.439 G_59

 SLICE_X2Y10.G1 net (fanout=1) 0.286 G_59

 SLICE_X2Y10.Y Tilo 0.439 N_44_i

 SLICE_X0Y0.F2 net (fanout=3) 1.348 N_44_i

 SLICE_X0Y0.X Tilo 0.439 empty_st_i_0

 M4.O1 net (fanout=2) 0.474 empty_st_i_0

 M4.PAD Tioop 5.649 efl_obuf

 efl

 --- ---------------

 Total 10.323ns (7.534ns logic, 2.789ns route)

(73.0% logic, 27.0% route)
Development System Reference Guide www.xilinx.com 255
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

-PERIOD Constraints
A PERIOD constraint identifies all paths between all sequential elements controlled by the
given clock signal name. For additional information on timing constraints, please refer to
the Constraints Guide.

PERIOD Constraints Examples
The following section provides examples and details of the PERIOD constraints shown in
the Timing Constraints section of a timing analysis report. For clarification, PERIOD
constraint information is divided into the following parts:

• PERIOD Header

• PERIOD Path

• PERIOD Path Details

• PERIOD Constraint with PHASE

PERIOD Header

This example below is of a constraint was generated by the Translate (ngdbuild) Step. A
new timespec (constraint) name was created. In this example it is TS_write_dcm_CLK0.
Write_dcm is the instantiated name of the DCM. CLK0 is the output clock. The timegroup
created for the PERIOD constraint is write_dcm_CLK0. The constraint is related to
TS_wclk. In this example, the PERIOD constraint is the same as the original constraint
because the original constraint is multiplied by 1 and there is not a phase offset. Because
TS_wclk is defined to have a Period of 12 ns, this constraint has a Period of 12 ns.

In this constraint, 296 items are analyzed. An item is a path or a net. Because this
constraint deals with paths, an item refers to a unique path. If the design has unique paths
to the same endpoints, this is counted as two paths. If this constraint were a MAXDELAY
or a net-based constraint, items refer to nets. The number of timing errors refers to the
number of endpoints that do not meet the timing requirement, and the number of
endpoints with hold violations. If the number of hold violations is not shown, there are no
hold violations for this constraint. If there are two or more paths to the same endpoint, it is
considered one timing error. If this is the situation, the report shows two or more detailed
paths; one for each path to the same endpoint.

The next line reports the minimum Period for this constraint, which is how fast this clock
runs.

Example:

==

Timing constraint: TS_write_dcm_CLK0 = PERIOD TIMEGRP "write_dcm_CLK0"
TS_wclk *
1.000000 HIGH

50.000 % ;

296 items analyzed, 0 timing errors detected.

 Minimum period is 3.825ns.

--
256 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

-PERIOD Constraints
R

PERIOD Path

The detail path section shows all of the details for each path in the analyzed timing
constraint. The most important thing it does is identify if the path meets the timing
requirement. This information appears on the first line and is defined as the Slack. If the
slack number is positive, the path meets timing constraint by the slack amount. If the slack
number is negative, the path fails the timing constraint by the slack amount. Next to the
slack number is the equation used for calculating the slack. The requirement is the time
constraint number. In this case, it is 12 ns Because that is the time for the original timespec
TS_wclk. The data path delay is 3.811 ns and the clock skew is negative 0.014 ns. (12 -
(3.811 - 0.014) = 8.203). The detail paths are sorted by slack. The path with the least amount
of slack, is the first path shown in the Timing Constraints section.

The Source is the starting point of the path. Following the source name is the type of
component. In this case the component is a flip-flop (FF). The FF group also contains the
SRL16. Other components are RAM (Distributed RAM vs BlockRAM), PAD, LATCH,
HSIO (High Speed I/O such as the Gigabit Transceivers) MULT (Multipliers), CPU
(PowerPC), and others. In Timing Analyzer, for FPGA designs the Source is a hot-link for
cross probing. For more information on Cross Probing please see Cross Probing with
Floorplanner.

The Destination is the ending point of the path. See the above description of the Source for
more information about Destination component types and cross probing.

The Requirement is a calculated number based on the time constraint and the time of the
clock edges. The source and destination clock of this path are the same so the entire
requirement is used. If the source or destination clock was a related clock, the new
requirement would be the time difference between the clock edges. If the source and
destination clocks are the same clock but different edges, the new requirement would be
half the original period constraint.

The Data Path Delay is the delay of the data path from the source to the destination. The
levels of logic are the number of LUTS that carry logic between the source and destination.
It does not include the clock-to-out or the setup at the destination. If there was a LUT in the
same slice of the destination, that counts as a level of logic. For this path, there is no logic
between the source and destination therefore the level of logic is 0.

The Clock Skew is the difference between the time a clock signal arrives at the source flip-
flop in a path and the time it arrives at the destination flip-flop. If Clock Skew is not
checked it will not be reported.

The Source Clock or the Destination Clock report the clock name at the source or
destination point. It also includes if the clock edge is the rising or falling edge and the time
that the edge occurs. If clock phase is introduced by the DCM/DLL, it would show up in
the arrival time of the clock. This includes coarse phase (CLK90, CLK180, or CLK270) and
fine phase introduced by Fixed Phase Shift or the initial phase of Variable Phase Shift

The Clock Uncertainty for an OFFSET constraint might be different than the clock
uncertainty on a PERIOD constraint for the same clock. The OFFSET constraint only looks
at one clock edge in the equation but the PERIOD constraints takes into account the
uncertainty on the clock at the source registers and the uncertainty on the clock at the
destination register therefore there are two clock edges in the equation.

Example:

--
Development System Reference Guide www.xilinx.com 257
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

Slack: 8.175ns (requirement - (data path - clock skew
+ uncertainty))

 Source: wr_addr[0] (FF)

 Destination: fifo_ram/BU5/SP (RAM)

 Requirement: 12.000ns

 Data Path Delay: 3.811ns (Levels of Logic = 1)

 clock skew: -0.014ns

 Source Clock: wclk rising at 0.000ns

 Destination Clock: wclk rising at 12.000ns

 Clock Uncertainty: 0.000ns

--

PERIOD Path Details

The first line is a link to the Constraint Improvement Wizard (CIW). The CIW gives
suggestions for resolving timing constraint issues if it is a failing path. The data path
section shows all the delays for each component and net in the path. The first column is the
Location of the component in the FPGA. It is turned off by default in TWX reports. The
next column is the Delay Type. If it is a net, the fanout is shown. The Delay names
correspond with the datasheet. For an explanation of the delay names, click on a delay
name for a description page to appear. Descriptions for Virtex-E , Virtex-II , Virtex-II Pro
and Spartan-II architectures are available.

The next columns are the Physical Resource and Logical Resource names. The Physical
name is the name of the component after mapping. This name is generated by the Map
process. It is turned off by default in TWX reports. The logical name is the name in the
design file. This is typically created by the synthesis tool or schematic capture program.

At the end of the path is the total amount of the delay followed by a break down of logic vs
routing. This is useful information for debugging a timing failure. For more information
see Timing Improvement Wizard for suggestions on how to fix a timing issues.

Example:

--

Constraints Improvement Wizard
Data Path: wr_addr[0] to fifo_ram/BU5/SP

 Location Delay type Delay(ns) Logical Resource(s)

 --- ---------------

 SLICE_X2Y4.YQ Tcko 0.568 wr_addr[0]

 SLICE_X6Y8.WF1 net (fanout=112) 2.721 wr_addr[0]

 SLICE_X6Y8.CLK Tas 0.522 fifo_ram/BU5/SP
258 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

-PERIOD Constraints
R

 --- ---------------

 Total 3.811ns (1.090ns logic,
2.721ns route)

 (28.6% logic, 71.4% route)

--

PERIOD Constraint with PHASE

This is a PERIOD constraint for a clock with Phase. It is a constraint created by the
Translate (ngdbuild) step. It is related back to the TS_rclk constraint with a PHASE of 2.5
ns added. The clock is the CLK90 output of the DCM. Since the PERIOD constraint is 10 ns
the clock phase from the CLK90 output is 2.5 ns, one-fourth of the original constraint. This
is defined using the PHASE keyword.

Example:

Timing constraint: TS_rclk_90_dcm = PERIOD TIMEGRP "rclk_90_dcm"
TS_rclk * 1.000000 PHASE + 2.500

nS HIGH 50.000 % ;

 6 items analyzed, 1 timing error detected.

 Minimum period is 21.484ns.

--

PERIOD Path with Phase

This is similar to the PERIOD constraint (without PHASE). The difference for this path is
the source and destination clock. The destination clock defines which PERIOD constraint
the path uses. Because the destination clock is the rclk_90, this path is in the
TS_rclk90_dcm PERIOD and not the TS_rclk PERIOD constraint.

Notice the Requirement is now 2.5 ns and not 10 ns. This is the amount of time between the
source clock (rising at 0ns) and the destination clock (rising at 2.5 ns).

Because the slack is negative, this path fails the constraint. In the Hierarchical Report
Browser, this failing path is displayed in red.

Example:

--
Slack: -2.871ns (requirement - (data path - clock skew
+ uncertainty))

 Source: rd_addr[1] (FF)

 Destination: ffl_reg (FF)

 Requirement: 2.500ns

 Data Path Delay: 5.224ns (Levels of Logic = 2)
Development System Reference Guide www.xilinx.com 259
 1-800-255-7778

http://www.xilinx.com

Chapter 13: TRACE
R

Clock Skew: -0.147ns

 Source Clock: rclk rising at 0.000ns

 Destination Clock: rclk_90 rising at 2.500ns

 Clock Uncertainty: 0.000ns

 Data Path: rd_addr[1] to ffl_reg

Location Delay type Delay(ns) Logical Resource(s)

--- -------------------

 SLICE_X4Y19.XQ Tcko 0.568 rd_addr[1]

 SLICE_X2Y9.F3 net (fanout=40) 1.700 rd_addr[1]

 SLICE_X2Y9.X Tilo 0.439
full_st_i_0.G_4.G_4.G_3_10

 SLICE_X2Y11.F2 net (fanout=1) 0.459 G_3_10

 SLICE_X2Y11.X Tilo 0.439
full_st_i_0.G_4.G_4.G_4

 K4.O1 net (fanout=3) 1.230 G_4

 K4.OTCLK1 Tioock 0.389 ffl_reg

--- -------------------

 Total 5.224ns (1.835ns logic,
3.389ns route)

 (35.1% logic, 64.9% route)

--

Minimum Period Statistics

The Timing takes into account paths that are in a FROM:TO constraints but the minimum
period value does not account for the extra time allowed by multi-cycle constraints.

An example of how the Minimum Period Statistics are calculated. This number is
calculated assuming all paths are single cycle.

Example:
--
Design statistics:
Minimum period: 30.008ns (Maximum frequency: 33.324MHz)
Maximum combinational path delay: 42.187ns
Maximum path delay from/to any node: 31.026ns
Minimum input arrival time before clock: 12.680ns
Maximum output required time before clock: 43.970ns
--
260 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 14

Speedprint

Speedprint is compatible with the following families.

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/-3

This chapter contains the following sections.

• “Speedprint Overview”

• “Speedprint Syntax”

• “Speedprint Options”

• “Speedprint Example Commands”

• “Speedprint Example Reports”

Speedprint Overview
The Speedprint program lists block delays for a device’s speed grade. This program
supplements data sheets, but does not replace them.

Note: For additional information on block delays, see the The Programmable Logic Data Book or the
data sheets at the Xilinx Web site.

The following figure shows the Speedprint design flow:

Figure 14-1: Speedprint

X8849

SPEEDPRINT

Input Command
Options

Block Delay
Report
Development System Reference Guide www.xilinx.com 261
 1-800-255-7778

http://www.xilinx.com

Chapter 14: Speedprint
R

Speedprint Syntax
Use the following syntax to run speedprint:

speedprint [options] device_name

options can be any number of the Speedprint options listed in “Speedprint Options”. They
do not need to be listed in any particular order. Separate multiple options with spaces.

Speedprint Options
This section describes the options to the Speedprint command.

–intstyle
–intstyle {ise | xflow | silent}

The –intstyle command line option specifies program invocation context. By default, the
program is run as a standalone application.

–intstyle ise

Indicates that the program is being run as part of an integrated design environment.

–intstyle xflow

Indicates that the program is being run as part of a batch flow.

–intstyle silent

Indicates that only error messages and warnings will be displayed to the screen.

–min (Display Minimum Speed Data)
The –min option displays minimum speed data for a device. This option overrides the –s
option if both are used.

–s (Speed Grade)
–s [speed_grade]

The –s option with a speed_grade argument (for example, -4) displays data for the
specified speed grade. If the –s option is omitted, delay data for the default, which is the
fastest speed grade, is displayed.

–t (Specify Temperature)
–t temperature

The –t option specifies the operating die temperature in degrees Celsius. If this option is
omitted, the worst-case temperature is used.

–v (Specify Voltage)
–v voltage

The –v option specifies the operating voltage of the device in volts. If this option is omitted,
the worst-case voltage is used.
262 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Speedprint Example Commands
R

Speedprint Example Commands
The following table describes some example commands:

Speedprint Example Reports
Following is a portion of a speed grade report for a Virtex device. The following command
generates the displayed report:

speedprint v100e

Note the new section at the end of the report. This section provides adjustments for the I/O
values in the speed grade report according to the I/O standard you are using. These
adjustments model the delay reporting in the data sheet. To use these numbers, add the
adjustment for the standard you are using to the delays reported for the IOBs.

The default speed grade, temperature, and voltage settings are described at the beginning
of the file.

Block delay report for a: xv100e
 Speed grade is: -8
Version id for speed file is: PRELIMINARY 1.60 2001-06-06 xilinx

This speed file supports voltage adjustments over the range of 1.700000
to 1.900000 volts.
Temperature adjustments are supported over the junction temperature
range of -40.000000 to 85.000000 degrees Celsius
Derated delay values for operating conditions within these limits are
available using this speed file.

This report prepared for default temperature and voltage.

Note - this report is intended to present the effect of different
speedgrades and voltage/temperature adjustments on block delays, for
specific situations use the timing analyzer report instead.

Delays are reported in picoseconds, where a range of delays is given
they represent the fastest and slowest paths reported under that name.

When a block is placed in a site normally used for another type of
block, a IOB placed in a Clock IOB site for example, small variations
in delay may occur which are not included in this report

Command Description

speedprint Prints usage message

speedprint 2v80 Uses the default speed grade

speedprint –s -52v80

speedprint -s 5 2v80

Both displays block delays for
speed grade -5

speedprint –2v50e -v 1.9 -t 40 Uses default speed grade at 1.9
volts and 40 degrees C

speedprint v50e -min Displays data for the minimum
speed grade
Development System Reference Guide www.xilinx.com 263
 1-800-255-7778

http://www.xilinx.com

Chapter 14: Speedprint
R

External Setup and Hold requirements for global clocks
Tphf -400 Tphfd 0 Tpsf 1500
Tpsfd 1800

Delays for a BLOCKRAM
Tback 831 Tbcka 0 Tbckd 0
Tbcke -1097 Tbcko 2453 Tbckr -961
Tbckw -866 Tbdck 831 Tbeck 1928
Tbpwh 1164 Tbpwl 1164 Tbrck 1792
Tbwck 1697 Tgsrq 7531 Trpw 10100

Delays for a IOB
Tch 1116 Tcl 1116 Tgsrq 7531
Tgts 4050 Tiockice 1 Tiockiq 330 - 337
Tiockisr -482 Tiocko -573 Tiockoce 1
Tiockon2736 - 2743Tiockosr-525 Tiockp 2335 - 2342
Tiockt -238 Tiocktce -50 Tiocktsr -481
Tioiceck 546 Tioickp -985 Tioickpd -2501
Tiooceck 546 Tioock 845 Tioolp 2872
Tioop 2473 Tiopi 744 Tiopick 1258
Tiopickd 2772 Tiopid 944 Tiopli 1385
.
.
.
.

I/O numbers in this report should be adjusted according to the I/O
standard being used. The adjustments are as follows:
 Input Output
 Standard Name Slew Drive Adjustment Adjustment
 ============= ==== ===== ========== ==========
 LVTTL 2 FAST 0 13001
 LVTTL 4 FAST 0 5201
 LVTTL 6 FAST 0 3001
 LVTTL 8 FAST 0 902
 LVTTL 12 FAST 0 0
 LVTTL 16 FAST 0 -50
 LVTTL 24 FAST 0 -200
 LVTTL 2 SLOW 0 14601
 LVTTL 4 SLOW 0 7401
 LVTTL 6 SLOW 0 4701
 LVTTL 8 SLOW 0 2902
.
.
.
.

264 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 15

BitGen

BitGen is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/-3

This chapter contains the following sections:

• “BitGen Overview”

• “BitGen Syntax”

• “BitGen Input Files”

• “BitGen Output Files”

• “BitGen Options”

BitGen Overview
BitGen produces a bitstream for Xilinx device configuration. After the design is completely
routed, it is necessary to configure the device so that it can execute the desired function.
This is done using files generated by BitGen, the Xilinx bitstream generation program.
BitGen takes a fully routed NCD (native circuit description) file as input and produces a
configuration bitstream—a binary file with a .bit extension.

The BIT file contains all of the configuration information from the NCD file that defines the
internal logic and interconnections of the FPGA, plus device-specific information from
other files associated with the target device. The binary data in the BIT file is then
downloaded into the FPGAs memory cells, or it is used to create a PROM file (see Chapter
16, “PROMGen”).

The following figure shows the BitGen input and output files:
Development System Reference Guide www.xilinx.com 265
 1-800-255-7778

http://www.xilinx.com

Chapter 15: BitGen
R

BitGen Syntax
The following syntax creates a bitstream from your NCD file:

bitgen [options] infile[.ncd] [outfile] [pcf_file.pcf]

options is one or more of the options listed in “BitGen Options”.

infile is the name of the NCD design for which you want to create the bitstream. You may
specify only one design file, and it must be the first file specified on the command line.

Note: You do not have to use an extension. If you do not use an extension, then .ncd is assumed. If
you do use an extension, then the extension must be .ncd.

outfile is the name of the output file. If you do not specify an output file name, BitGen
creates a .bit file in your input file directory. If you specify any of the following options, the
corresponding file is created in addition to the .bit file. If you do not specify an extension,
BitGen appends the correct one for the specified option.

A report file containing all BitGen output is automatically created under the same
directory as the output file. The report file has the same root name as the output file and a
.bgn extension.

Figure 15-1: BitGen input and output files

X9557

PROMGen iMPACT

BIT RBT NKY

NCD
Circuit Description
(Placed/Routed)

LL
(Optional)

MSK
(Optional)

PCF
(Optional)

BitGen

NKY
(Optional)

BGN

DRC

Option Output File

–l outfile_name.ll

–m outfile_name.msk

–b outfile_name.rbt
266 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

BitGen Input Files
R

Pcf_file is the name of a physical constraints file. BitGen uses this file to interpret CONFIG
constraints, which control bitstream options. These CONFIG constraints override default
behavior and can be overridden by configuration options. See “–g (Set Configuration).”
BitGen automatically reads the .pcf file by default. If the PCF is the second file specified on
the command line, it must have a .pcf extension. If it is the third file specified, the extension
is optional; .pcf is assumed. If a .pcf file name is specified, it must exist; otherwise, the
input design name with a .pcf extension is assumed.

Type the following syntax to see a complete list of BitGen command line options and
supported devices:

bitgen —h

BitGen Input Files
Input to BitGen comprises the following files:

• NCD file—a physical description of the design mapped, placed and routed in the
target device. The NCD file must be fully routed.

• PCF—an optional user-modifiable ASCII Physical Constraints File.

• NKY—an optional encryption key file.

Note: For more information on encryption, see the following web site:
http://www.xilinx.com/products.

BitGen Output Files
Output from BitGen comprises the following files:

Table 15-1: BitGen Output Files

Output File Type Output File Description

.bgn Contains log information for the BitGen run, including
command line options, errors, and warnings. Always produced.

.bin A binary file that contains only configuration data. The .bin has
no header like the .bit file. Produced when –g Binary:Yes is
specified.

.bit A binary file that contains proprietary header information as
well as configuration data. Meant for input to other Xilinx tools,
such as PROMGen and iMPACT. Always produced unless the -
j option is specified.

.drc A design rule check (DRC) file for the design. Contains log
information or Design Rules Checker, including errors and
warnings. Always produced unless the -d option is specified.

.isc Contains the configuration data in IEEE1532 format. Produced
when -g IEEE:1532:Yes is specified.

.ll An ASCIII file that contains information on each of the nodes in
the design that can be captured for readback. The file contains
the absolute bit position in the readback stream, frame address,
frame offset, logic resource used, and name of the component in
the design. Produced when the -l option is specified.
Development System Reference Guide www.xilinx.com 267
 1-800-255-7778

http://www.xilinx.com/products/virtex/handbook/
http://www.xilinx.com

Chapter 15: BitGen
R

Note: For more information on encryption, see the Answers Database at the following web site:
http://www.support.xilinx.com/products.

BitGen Options
Following is a description of the command line options and how they affect the behavior of
BitGen.

Note: For a complete description of the Xilinx Development System command line syntax, see
“Command Line Syntax” in Chapter 1.

–a (Tie All Interconnect)
This options is no longer supported by BitGen for any device family.

.msd An ASCII file that contains only mask information for
verification, including pad words and frames. No commands
are included. Produced when -g Readback is specified.

.msk A binary file that contains the same configuration commands as
a .bit file, but has mask data where the configuration data is.
This data should NOT be used to configure the device. If a mask
bit is 0, that bit should be verified against the bit stream data. If
a mask bit is 1, that bit should not be verified. Produced when
the -m option is specified.

.nky An ASCII file that contains key information for Virtex-II devices
when encryption is desired. This file is used as an input to
iMPACT to program the keys. Produced when -g Encrypt:Yes is
specified.

<outname>_key.isc Contains the data for programming the encryption keys in IEEE
1532 format. Produced when -g IEEE 1532:Yes and -g
Encrypt:Yes are set.

.rba An ASCII file that contains readback commands, rather than
configuration commands, and expected readback data where
the configuration data would normally be.

To produce the .rba file, the –b option must be used when –g
Readback is specified.

.rbb The same as the .rba file, but it is a binary file.

Produced when –g Readback is specified.

.rbd An ASCII file that contains only expected readback data,
including pad words and frames. No commands are included.
Produced when -g Readback is specified.

.rbt An ASCII version of the bit file. Produced when the -b option is
specified.

Table 15-1: BitGen Output Files

Output File Type Output File Description
268 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.support.xilinx.com/products
http://www.xilinx.com/products
http://www.xilinx.com

BitGen Options
R

–b (Create Rawbits File)
Create a rawbits (file_name.rbt) file. If the –g Readback option is specified in combination
with the –b option, an ASCII readback command file (file_name.rba) is also generated.

The rawbits file consists of ASCII ones and zeros representing the data in the bitstream file.
If you are using a microprocessor to configure a single FPGA, you can include the rawbits
file in the source code as a text file to represent the configuration data. The sequence of
characters in the rawbits file is the same as the sequence of bits written into the FPGA.

–bd (Update Block Rams)
–bd file_name

The –bd option updates the bitstream with the block ram content from the specified ELF or
MEM file. See the “Data2MEM” chapter for more information.

–d (Do Not Run DRC)
Do not run DRC (design rule check). Without the –d option, BitGen runs a DRC and saves
the DRC results in two output files: the BitGen report file (file_name.bgn) and the DRC file
(file_name.drc). If you enter the –d option, no DRC information appears in the report file
and no DRC file is produced.

Running DRC before a bitstream is produced detects any errors that could cause the FPGA
to malfunction. If DRC does not detect any errors, BitGen produces a bitstream file (unless
you use the –j option described in “–j (No BIT File)”).

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file. For
more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.

–g (Set Configuration)
The –g option specifies the startup timing and other bitstream options for Xilinx FPGAs.
The debug bitstream can only be used for master and slave serial configurations. It is not
valid for Boundary Scan or Slave Parallel/Select MAP. The settings for the –g option
depend on the architecture of the design. These settings are described in the following
section:

–g (Set Configuration—Virtex/-E/-II/-II Pro and Spartan-II/-IIE/3 Devices)
The –g option has sub-options that represent settings you use to set the configuration for a
Virtex/-E/-II/-II Pro or Spartan-II/-IIE/3 design. These options have the following
syntax:

bitgen –g option:setting design.ncd design.bit design.pcf

For example, to enable Readback, use the following syntax:

bitgen –g Readback

The following sections describe the startup sequences for the –g option.
Development System Reference Guide www.xilinx.com 269
 1-800-255-7778

http://www.xilinx.com

Chapter 15: BitGen
R

ActivateGCLK

Allows any partial bitstream for a reconfigurable area to have its registered elements wired
to the correct clock domain. Clock domains must be minimally defined in the NCD to have
their clock combs turned on.

ActiveReconfig

Prevents the assertions of GHIGH and GSR during configuration. This is required for the
active partial reconfiguration enhancement features.

Binary

Creates a binary file with programming data only. Use this option to extract and view
programming data. Any changes to the header will not affect the extraction process.

CclkPin

Adds an internal pull-up to the Cclk pin. The Pullnone setting disables the pullup.

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Spartan-
II, Spartan-IIE, and Spartan-3

Settings: No, Yes

Default: No

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Spartan-
II, Spartan-IIE, and Spartan-3

Settings: No, Yes

Default: No

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Spartan-
II, Spartan-IIE, and Spartan-3

Settings: No, Yes

Default: No

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Spartan-
II, Spartan-IIE, and Spartan-3

Settings: Pullnone, Pullup

Default: Pullup
270 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

BitGen Options
R

Compress

This option uses the multiple frame write feature in the bitstream to reduce the size of the
bitstream, not just the .bit file. Using the Compress option does not guarantee that the size
of the bitstream will shrink. Compression is enabled by setting the BitGen option –g
compress; compression is disabled by not setting it.

Note that the partial bit files generated with the BitGen –r setting (detailed in Application
Note XAPP290) automatically make use of the multiple frame write feature, and are
compressed bitstreams.

ConfigRate

Virtex/-E/-II/-II Pro and Spartan-II/-IIE/-3 use an internal oscillator to generate the
configuration clock, CCLK, when configuring in a master mode. Use the configuration rate
option to select the rate for this clock.

Note: For a list of specific architecture settings, use the bitgen -h [architecture]
command.The default value may vary by architecture.

CRC

The CRC option controls the generation of a Cyclic Redundancy Check value in the
bitstream. When enabled, a unique CRC value is calculated based on bitstream contents. If
the calculated CRC value does not match the CRC value in the bitstream, the device will
fail to configure. When CRC is disabled a constant value is inserted in the bitstream in
place of the CRC and the device will not calculate a CRC.

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Spartan-
II, Spartan-IIE, Spartan-3

Settings: None

Default: Off

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Spartan-
II, Spartan-IIE, and Spartan 3

Settings 4, 5, 7, 8, 9, 10, 13, 15, 20, 26, 30, 34, 41, 45, 51, 55, 60

Default: 4

Settings for
Spartan-3

6, 3, 12, 25, 50, 100 (default is 6)

Default for
Spartan-3:

6

Architectures: Virtex-II, Virtex-II Pro, Spartan-3

Settings: Disable, Enable

Default: Enable
Development System Reference Guide www.xilinx.com 271
 1-800-255-7778

http://www.xilinx.com

Chapter 15: BitGen
R

DCIUpdateMode

This option controls how often the Digitally Controlled Impedance circuit attempts to
update the impedance match for DCI IOSTANDARDs. This option is preferable to the
FreezeDCI option because it has no effect on bitstream size and can be used with
Encrypted bitstreams. The setting DCIUpdateMode:Quiet supersedes the setting
FreezeDCI:Yes.

DCMShutdown

When DCMShutdown is enabled, the digital clock manager (DCM) resets if the
SHUTDOWN and AGHIGH commands are loaded into the configuration logic.

DebugBitstream

If the device does not configure correctly, you can debug the bitstream using the
DebugBitstream option. A debug bitstream is significantly larger than a standard
bitstream. The values allowed for the DebugBitstream option are No and Yes.

Note: Use this option only if your device is configured to use slave or master serial mode

.

In addition to a standard bitstream, a debug bitstream offers the following features:

• Writes 32 0s to the LOUT register after the synchronization word

• Loads each frame individually

• Performs a cyclical redundancy check (CRC) after each frame

• Writes the frame address to the LOUT register after each frame

DisableBandgap

Disables bandgap generator for DCMs to save power.

Architectures: Virtex-II Pro, Spartan-3

Settings: As required, continuous, quiet

Default: As required

Architectures: Virtex-II, Virtex-II Pro, Spartan-3

Settings: Disable, Enable

Default: Disable

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Values: No, Yes

Architectures: Virtex-II and Virtex-II Pro

Settings: No, Yes

Default: No
272 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

BitGen Options
R

DONE_cycle

Selects the Startup phase that activates the FPGA Done signal. Done is delayed when
DonePipe=Yes.

DonePin

Adds an internal pull-up to the DONE Pin pin. The Pullnone setting disables the pullup.

Use this option only if you are planning to connect an external pull-up resistor to this pin.
The internal pull-up resistor is automatically connected if you do not use this option.

DonePipe

This option is intended for use with FPGAs being set up in a high-speed daisy chain
configuration.When set to Yes, the FPGA waits on the CFG_DONE (DONE) pin to go High
and then waits for the first clock edge before moving to the Done state.

DriveDone

This option actively drives the DONE Pin high as opposed to using a pullup.

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: 1, 2, 3, 4, 5, 6

Default: 4

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: Pullup, Pullnone

Default: Pullup

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: No, Yes

Default: No

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: No, Yes

Default: No
Development System Reference Guide www.xilinx.com 273
 1-800-255-7778

http://www.xilinx.com

Chapter 15: BitGen
R

Encrypt

Encrypts the bitstream.

Note: For more information on encryption, see the following web site:
http://www.support.xilinx.com/products

Gclkdel0, Gclkdel1, Gclkdel2, Gclkdel3

Use these options to add delays to the global clocks. Do not use these options unless instructed
to do so by Xilinx.

GSR_cycle

Selects the Startup phase that releases the internal set-reset to the latches, flip-flops, and
BRAM output latches. The Done setting releases GSR when the DoneIn signal is High.
DoneIn is either the value of the Done pin or a delayed version if DonePipe=Yes.

Keep should only be used when partial reconfiguration is going to be implemented. Keep
prevents the configuration state machine from asserting control signals that could cause
the loss of data.

GWE_cycle

Selects the Startup phase that asserts the internal write enable to flip-flops, LUT RAMs,
and shift registers. It also enables the BRAMS. Before the Startup phase both BRAM
writing and reading are disabled.The Done setting asserts GWE when the DoneIn signal is
High. DoneIn is either the value of the Done pin or a delayed version if DonePipe=Yes. The
Keep setting is used to keep the current value of the GWE signal.

Architectures: Virtex-II, Virtex-II Pro

Settings: No, Yes

Default: No

Architectures: Virtex/-E/, Spartan-II/-IIE

Settings: 11111, binary string

Default: 11111

Architectures: Virtex/-E, Spartan-II/-IIE

Settings: Done, 1, 2, 3, 4, 5, 6, Keep

Default: 6

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: 1, 2, 3, 4, 5, 6, Done, Keep

Default: 6
274 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/products

BitGen Options
R

GTS_cycle

Selects the Startup phase that releases the internal 3-state control to the I/O buffers. The
Done setting releases GTS when the DoneIn signal is High. DoneIn is either the value of the
Done pin or a delayed version if DonePipe=Yes.

HswapenPin

Adds a pull-up, pull-down, or neither to the HSWAP_EN pin. The Pullnone option shows
there is no connection to either the pull-up or the pull-down.

Key0, Key1, Key2, Key3, Key4, Key5

Sets keyx for bitstream encryption. The pick option causes BitGen to select a random
number for the value.

Note: For more information on encryption, see the following web site:
http://www.xilinx.com/products.

KeyFile

Specifies the name of the input encryption file.

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, and Spartan-IIE

Settings: Done, 1, 2, 3, 4, 5, 6, Keep

Default: 5

Architectures: Virtex-II, Spartan-3

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Architectures: Virtex-II, Virtex-II Pro

Settings: Pick, hex_string

Default: Pick

Architectures: Virtex-II, Virtex-II Pro

Settings: string
Development System Reference Guide www.xilinx.com 275
 1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/products/virtex/handbook/

Chapter 15: BitGen
R

Keyseq0, Keyseq1, Keyseq2, Keyseq3, Keyseq4, Keyseq5

Sets the key sequence for keyx. The settings are equal to the following:

• S=single

• F=first

• M=middle

• L=last

LCK_cycle

Selects the Startup phase to wait until DLLs/DCMs lock. If NoWait is selected, the Startup
sequence does not wait for DLLs/DCMs.

M0Pin

The M0 pin is used to determine the configuration mode. Adds an internal pull-up, pull-
down or neither to the M0 pin. The following settings are available. The default is PullUp.
Select Pullnone to disable both the pull-up resistor and pull-down resistor on the M0 pin.

M1Pin

The M1 pin determines the configuration mode. Adds an internal pull-up, pull-down or
neither to the M1 pin. The following settings are available. The default is PullUp.

Select Pullnone to disable both the pull-up resistor and pull-down resistor on the M1 pin.

Architectures: Virtex-II, Virtex-II Pro

Settings: S, F, M, L

Default: S

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, and Spartan-IIE

Settings: 0,1, 2, 3, 4, 5, 6, NoWait

Default: NoWait

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: Pullup, Pulldown, Pullnone

Default: Pullup
276 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

BitGen Options
R

M2Pin

 The M2 pin determines the configuration mode. Adds an internal pull-up, pull-down or
neither to the M2 pin. The default is PullUp. Select Pullnone to disable both the pull-up
resistor and pull-down resistor on the M2 pin.

Match_cycle

Specifies a stall in the Startup cycle until digitally controlled impedance (DCI) match
signals are asserted.

Note: When the Auto setting is specified, BitGen searches the design for any DCI I/O standards. If
DCI standards exist, BitGen will use the Match_cycle:2 setting, otherwise it will use the
Match_cycle:NoWait setting.

PartialGCLK

Adds the center global clock column frames into the list of frames to write out in a partial
bitstream. This option is equivalent to the PartialMask0:1 option.

PartialMask0, PartialMask1, PartialMask2

Generates a bitstream comprised of only the major addresses of block type <0, 1, or 2> that
have enabled value in the mask. The block type is all non-block ram initialization data
frames in the applicable device and its derivatives. The mask is a hex value.

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Architectures: Virtex-II, Virtex-II Pro, Spartan-3

Settings: Auto, NoWait, 0, 1, 2, 3, 4, 5, 6

Default: NoWait

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Default: <Not Specified> - no partial masks in use

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: All columns enabled, major address mask

Default: <Not Specified> - no partial masks in use
Development System Reference Guide www.xilinx.com 277
 1-800-255-7778

http://www.xilinx.com

Chapter 15: BitGen
R

PartialLeft

Adds the left side frames of the device into the list of frames to write out in a partial
bitstream. This includes CLB, IOB, and BRAM columns. It does not include the center
global clock column.

PartialRight

Adds the right side frames of the device into the list of frames to write out in a partial
bitstream. This includes CLB, IOB, and BRAM columns. It does not include the center
global clock column.

Persist

This option is needed for Readback and Partial Reconfiguration using the SelectMAP
configuration pins. If Persist is set to Yes, the pins used for SelectMAP mode are prohibited
for use as user I/O. Refer to the datasheet for a description of SelectMAP mode and the
associated pins.

ProgPin

Adds an internal pull-up to the ProgPin pin. The Pullnone setting -disables the pullup. The
pull-up affects the pin after configuration.

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: No, Yes

Default: No

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: Pullup, Pullnone

Default: Pullnone
278 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

BitGen Options
R

ReadBack

This option allows you to perform the Readback function by creating the necessary
readback files.

When specifying the –g Readback option, the .rbb, .rbd, and .msd files are created.

If the –b option is used in conjunction with the –g Readback option, an ASCII readback
command file (file_name.rba) is also generated.

Security

Selecting Level1 disables Readback. Selecting Level2 disables Readback and Partial
Reconfiguration.

StartCBC

Sets the starting cipher block chaining (CBC) value. The pick option causes BitGen to select
a random number for the value.

StartKey

Sets the starting key number.

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: None, Level1, Level2

Default: None

Architectures: Virtex-II, Virtex-II Pro

Settings: Pick, hex_string

Default: Pick

Architectures: Virtex-II, Virtex-II Pro

Settings: 0, 3

Default: 0
Development System Reference Guide www.xilinx.com 279
 1-800-255-7778

http://www.xilinx.com

Chapter 15: BitGen
R

StartupClk

The startup sequence following the configuration of a device can be synchronized to either
Cclk, a User Clock, or the JTAG Clock. The default is Cclk.

• Cclk

Enter Cclk to synchronize to an internal clock provided in the FPGA device.

• JTAG Clock

Enter JtagClk to synchronize to the clock provided by JTAG. This clock sequences the
TAP controller which provides the control logic for JTAG.

• UserClk

Enter UserClk to synchronize to a user-defined signal connected to the CLK pin of the
STARTUP symbol.

Note: In modes where Cclk is an output, the pin is driven by an internal oscillator.

TckPin

Adds a pull-up, a pull-down or neither to the TCK pin, the JTAG test clock. Selecting one
setting enables it and disables the others. The Pullnone setting shows there is no
connection to either the pull-up or the pull-down.

TdiPin

Adds a pull-up, a pull-down, or neither to the TDI pin, the serial data input to all JTAG
instructions and JTAG registers. Selecting one setting enables it and disables the others.
The Pullnone setting shows there is no connection to either the pull-up or the pull-down.

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: Cclk (pin—see Note), UserClk (user-supplied),
JtagCLK

Default: Cclk

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: Pullup, Pulldown, Pullnone

Default: Pullup
280 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

BitGen Options
R

TdoPin

Adds a pull-up, a pull-down, or neither to the TdoPin pin, the serial data output for all
JTAG instruction and data registers. Selecting one setting enables it and disables the others.
The Pullnone setting shows there is no connection to either the pull-up or the pull-down.

TmsPin

Adds a pull-up, pull-down, or neither to the TMS pin, the mode input signal to the TAP
controller. The TAP controller provides the control logic for JTAG. Selecting one setting
enables it and disables the others. The Pullnone setting shows there is no connection to
either the pull-up or the pull-down

UnusedPin

Adds a pull-up, a pull-down, or neither to the unused device pins and the serial data
output (TDO) for all JTAG instruction and data registers. Selecting one setting enables it
and disables the others. The Pullnone setting shows there is no connection to either the
pull-up or the pull-down.

The following settings are available. The default is Pulldown.

UserID

You can enter up to an 8-digit hexadecimal code in the User ID register. You can use the
register to identify implementation revisions.

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Architectures: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan-II, Spartan-IIE, and Spartan-3

Settings: Pullup, Pulldown, Pullnone

Default: Pulldown

Architectures: Spartan-3

Settings: 0xFFFFFFFF, [hex string]

Default: 0xFFFFFFFF
Development System Reference Guide www.xilinx.com 281
 1-800-255-7778

http://www.xilinx.com

Chapter 15: BitGen
R

–intstyle
–intstyle {ise | xflow | silent}

The –intstyle command line option specifies program invocation context. By default, the
program is run as a standalone application.

–intstyle ise

Indicates that the program is being run as part of an integrated design environment.

–intstyle xflow

Indicates that the program is being run as part of a batch flow.

–intstyle silent

Indicates that only error messages and warnings will be displayed to the screen.

–j (No BIT File)
Do not create a bitstream file (.bit file). This option is used when you want to generate a
report without producing a bitstream. For example, if you wanted to run DRC without
producing a bitstream file, you would use the -j option.

Note: The .msk or .rbt files may still be created.

–l (Create a Logic Allocation File)
This option creates an ASCII logic allocation file (design.ll) for the selected design. The logic
allocation file shows the bitstream position of latches, flip-flops, IOB inputs and outputs,
and the bitstream position of LUT programming and Block RAMs.

In some applications, you may want to observe the contents of the FPGA internal registers
at different times. The file created by the –l option helps you identify which bits in the
current bitstream represent outputs of flip-flops and latches. Bits are referenced by frame
and bit number within the frame.

The iMPACT tool uses the design.ll file to locate signal values inside a readback bitstream.

–m (Generate a Mask File)
Creates a mask file. This file determines which bits in the bitstream should be compared to
readback data for verification purposes.

–n (Save a Tied Design)
This option is no longer supported by BitGen for any device family.

–r (Create a Partial Bit File)
–r bit_file

The –r option is used to create a partial bit file. It takes that bit file and compares it to the
.ncd file given to bitgen. Instead of writing out a full bit file, it only writes out the part of
the bit file that is different from the original bit file given.
282 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

BitGen Options
R

–t (Tie Unused Interconnect)
This option is no longer supported by BitGen for any device family.

–u (Use Critical Nets)
This option is no longer supported by BitGen for any device family.

–w (Overwrite Existing Output File)
Enables you to overwrite an existing BitGen output file. See “BitGen Output Files” for
additional information.
Development System Reference Guide www.xilinx.com 283
 1-800-255-7778

http://www.xilinx.com

Chapter 15: BitGen
R

284 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 16

PROMGen

PROMGen is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/-3

This chapter contains the following sections:

• “PROMGen Overview”

• “PROMGen Syntax”

• “PROMGen Input Files”

• “PROMGen Output Files”

• “PROMGen Options”

• “Bit Swapping in PROM Files”

• “PROMGen Examples”

PROMGen Overview
PROMGen formats a BitGen-generated configuration bitstream (BIT) file into a PROM
format file. The PROM file contains configuration data for the FPGA device. PROMGen
converts a BIT file into one of three PROM formats: MCS-86 (Intel), EXORMAX (Motorola),
or TEKHEX (Tektronix). It can also generate a binary or hexadecimal file format.

The following figure shows the inputs and the possible outputs of the PROMGen program:

Figure 16-1: PROMGen

X9560

BIT

MCS
PROM File

PROMGen

Device Configuration

TEK
PROM File

HEX BINEXO
PROM File

PRM
Memory Map
Development System Reference Guide www.xilinx.com 285
 1-800-255-7778

http://www.xilinx.com

Chapter 16: PROMGen
R

There are two functionally equivalent versions of PROMGen. There is a stand-alone
version that you can access from an operating system prompt. There is also an interactive
version, called the PROM formatting wizard that you can access from inside Project
Navigator (see the iMPACT online help). This chapter first describes the stand-alone
version; the interactive version is described in the PROM File Formatter online help.

You can also use PROMGen to concatenate bitstream files to daisy-chain FPGAs.

Note: If the destination PROM is one of the Xilinx Serial PROMs, you are using a Xilinx PROM
Programmer, and the FPGAs are not being daisy-chained, it is not necessary to make a PROM file.

PROMGen Syntax
To start PROMGen from the operating system prompt, use the following syntax:

promgen [options]

options can be any number of the options listed in “PROMGen Options”. Separate multiple
options with spaces.

PROMGen Input Files
The input to PROMGEN consists of one or more BIT and RBT files. BIT files contain
configuration data for an FPGA design.

PROMGen Output Files
Output from PROMGEN consists of the following files:

• PROM files—The file or files containing the PROM configuration information.
Depending on the PROM file format your PROM programmer uses, you can output a
TEK, MCS, BIN, or EXO file. If you are using a microprocessor to configure your
devices, you can output a HEX file, which contains a hexadecimal representation of
the bitstream.

• PRM file—The PRM file is a PROM image file. It contains a memory map of the
output PROM file. The file has a .prm extension.

PROMGen Options
This section describes the options that are available for the PROMGen command.

–b (Disable Bit Swapping—HEX Format Only)
This option only applies if the –p option specifies a HEX file for the output of PROMGen.
By default (no –b option), bits in the HEX file are swapped compared to bits in the input
BIT files. If you enter a –b option, the bits are not swapped. Bit swapping is described in
“Bit Swapping in PROM Files”.

–c (Checksum)
promgen –c
286 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PROMGen Options
R

The –c option generates a checksum value appearing in the .prm file. This value should
match the checksum in the prom programmer. Use this option to verify that correct data
was programmed into the prom.

–d (Load Downward)
promgen –d hexaddress0 filename filename...

This option loads one or more BIT files from the starting address in a downward direction.
Specifying several files after this option causes the files to be concatenated in a daisy chain.
You can specify multiple –d options to load files at different addresses. You must specify
this option immediately before the input bitstream file.

Here is the multiple file syntax.

promgen –d hexaddress0 filename filename...

Here is the multiple –d options syntax.

promgen –d hexaddress1 filename -d hexaddress2 filename...

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file. For
more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.

–i (Select Initial Version)
–i version

The –i option is used to specify the initial version for a Xilinx multi-bank PROM.

–l (Disable Length Count)
promgen –l

The –l option disables the length counter in the FPGA bitstream. It is valid only for
SpartanXL devices. Use this option when chaining together bitstreams exceeding the 24 bit
limit imposed by the length counter.

–n (Add BIT FIles)
–n file1[.bit] file2[.bit]...

This option loads one or more BIT files up or down from the next available address
following the previous load. The first –n option must follow a –u or –d option because -n
does not establish a direction. Files specified with this option are not daisy-chained to
previous files. Files are loaded in the direction established by the nearest prior –u, –d, or –
n option.

The following syntax shows how to specify multiple files. When you specify multiple files,
PROMGen daisy-chains the files.

promgen –d hexaddress file0 –n file1 file2...
Development System Reference Guide www.xilinx.com 287
 1-800-255-7778

http://www.xilinx.com

Chapter 16: PROMGen
R

The syntax for using multiple –n options follows. Using this method prevents the files
from being daisy-chained.

promgen –d hexaddress file0 –n file1 -n file2...

–o (Output File Name)
–o file1[.ext] file2[.ext]...

This option specifies the output file name of a PROM if it is different from the default. If
you do not specify an output file name, the PROM file has the same name as the first BIT
file loaded.

ext is the extension for the applicable PROM format.

Multiple file names may be specified to split the information into multiple files. If only one
name is supplied for split PROM files (by you or by default), the output PROM files are
named file_#.ext, where file is the base name, # is 0, 1, etc., and ext is the extension for the
applicable PROM format.

promgen –d hexaddress file0 –o filename

–p (PROM Format)
–p {mcs | exo | tek | hex| bin| ufp| ieee1532}

This option sets the PROM format to MCS (Intel MCS86), EXO (Motorola EXORMAX), or
TEK (Tektronix TEKHEX). The option may also produce a HEX file, which is a
hexadecimal representation of the configuration bitstream used for microprocessor
downloads. The default format is MCS.

The option may also produce a bin file, which is a binary representation of the
configuration bitstream used for microprocessor downloads.

–r (Load PROM File)
–r promfile

This option reads an existing PROM file as input instead of a BIT file. All of the PROMGen
output options may be used, so the –r option can be used for splitting an existing PROM
file into multiple PROM files or for converting an existing PROM file to another format.

–s (PROM Size)
–s promsize1 promsize2...

This option sets the PROM size in kilobytes. The PROM size must be a power of 2. The
default value is 64 kilobytes. The –s option must precede any –u, –d, or –n options.

Multiple promsize entries for the –s option indicates the PROM will be split into multiple
PROM files.

Note: PROMGen PROM sizes are specified in bytes. The Programmable Logic Data Book specifies
PROM sizes in bits for Xilinx serial PROMs See the –x option for more information.
288 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

PROMGen Options
R

–t (Template File)
–t templatefile.pft

The –t option specifies a template file for the user format PROM (UFP). If unspecified, the
default file $XILINX/data/default.pft is used. If the UFP format is selected, the –t option is
used to specify a control file.

–u (Load Upward)
–u hexaddress0 filename1 filename2...

This option loads one or more BIT files from the starting address in an upward direction.
When you specify several files after this option, PROMGen concatenates the files in a daisy
chain. You can load files at different addresses by specifying multiple –u options.

This option must be specified immediately before the input bitstream file.

–ver (Version)
–ver [version] hexaddress filename1.bit filename2.bit . . .

The –ver option loads .bit files from the specified hexaddress. Multiple .bit files daisychain
to form a single PROM load. The daisychain is assigned to the specified version within the
PROM.

Note: This option is only valid for Xilinx multi-bank PROMs.

–w (Overwrite Existing Output File)
promgen –w

The –w option overwrites an existing output file, and must be used if an output file exists.
If this option is not used, PROMGen issues an error.

–x (Specify Xilinx PROM)
–x xilinx_prom1 xilinx_prom2...

The –x option specifies one or more Xilinx serial PROMs for which the PROM files are
targeted. Use this option instead of the –s option if you know the Xilinx PROMs to use.

Multiple xilinx_prom entries for the –x option indicates the PROM will be split into
multiple PROM files.

–z (Enable Compression)
–z version

The –z option enables compression for a Xilinx multi-bank PROM. All version will be
compressed if one is not specified.
Development System Reference Guide www.xilinx.com 289
 1-800-255-7778

http://www.xilinx.com

Chapter 16: PROMGen
R

Bit Swapping in PROM Files
PROMGen produces a PROM file in which the bits within a byte are swapped compared to
the bits in the input BIT file. Bit swapping (also called “bit mirroring”) reverses the bits
within each byte, as shown in the following figure:

In a bitstream contained in a BIT file, the Least Significant Bit (LSB) is always on the left
side of a byte. But when a PROM programmer or a microprocessor reads a data byte, it
identifies the LSB on the right side of the byte. In order for the PROM programmer or
microprocessor to read the bitstream correctly, the bits in each byte must first be swapped
so they are read in the correct order.

In this release of the Xilinx Development System, the bits are swapped for all of the PROM
formats: MCS, EXO, BIN, and TEK. For a HEX file output, bit swapping is on by default,
but it can be turned off by entering a –b PROMGen option that is available only for HEX
file format.

PROMGen Examples
To load the file test.bit up from address 0x0000 in MCS format, enter the following
information at the command line:

promgen –u 0 test

To daisy-chain the files test1.bit and test2.bit up from address 0x0000 and the files test3.bit
and test4.bit from address 0x4000 while using a 32K PROM and the Motorola EXORmax
format, enter the following information at the command line:

promgen –s 32 –p exo –u 00 test1 test2 –u 4000 test3 test4

To load the file test.bit into the PROM programmer in a downward direction starting at
address 0x400, using a Xilinx XC1718D PROM, enter the following information at the
command line:

promgen –x xc1718d –u 0 test

To specify a PROM file name that is different from the default file name enter the following
information at the command line:

promgen options filename –o newfilename

Figure 16-2: Bit Swapping

X8074

Original Data 1000 1010

8 A

5 1

Data in PROM File or HEX File 0101 0001
290 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 17

BSDLAnno

BSDLAnno is compatible with the following families:

• Virtex-II Pro™/-II Pro X

• Virtex™/-II/-E

• Spartan™-II/-IIE/3

• CoolRunner™ XPLA3/-II/-IIS

• XC9500™/XL/XV

This chapter contains the following sections:

• “BSDLAnno Overview”

• “BSDLAnno Syntax”

• “BSDLAnno Input Files”

• “BSDLAnno Output Files”

• “BSDLAnno Options”

• “BSDLAnno File Composition”

• “Boundary Scan Behavior in Xilinx Devices”

BSDLAnno Overview
The BSDLAnno utility automatically modifies a BSDL file for post-configuration
interconnect testing. BSDLAnno obtains the necessary design information from the routed
.ncd file (FPGAs) or the design.pnx file (CPLDs), and generates a BSDL file that reflects the
post-configuration boundary scan architecture of the device. The boundary scan
architecture is changed when the device is configured because certain connections
between the boundary scan registers and pad may change. These changes must be
communicated to the boundary scan tester through a post-configuration BSDL file. If the
changes to the boundary scan architecture are not reflected in the BSDL file, boundary scan
tests may fail.

The Boundary Scan Description Language is defined by IEEE specification 1149.1 as “a
common way of defining device boundary scan architecture.” Xilinx provides both 1149.1
and 1532 BSDL files that describe pre-configuration boundary scan architecture. For most
Xilinx device families, the boundary scan architecture changes after the device is
configured because the boundary scan registers sit behind the output buffer and the input
sense amplifier:

BSCAN Register -> output buffer/input sense amp -> PAD
Development System Reference Guide www.xilinx.com 291
 1-800-255-7778

http://www.xilinx.com

Chapter 17: BSDLAnno
R

The hardware is arranged in this way so that the boundary scan logic operates at the I/O
standard specified by the design. This allows boundary scan testing across the entire range
of available I/O standards.

BSDLAnno Syntax
The following syntax creates a post-configuration BSDL file with BSDLAnno:

bsdlanno [options] infile outfile[.bsd]

options is one or more of the options listed in “BSDLAnno Options”.

infile is the design source file for the specified design. For FPGA designs, the infile is a
routed (post-PAR) NCD file (.ncd). For CPLD designs, the infile is the design.pnx file.

outfile is the destination for the design-specific BSDL file with an optional .bsd extension.
The length of the BSDL output filename, including the .bsd extension, cannot exceed 24
characters.

BSDLAnno Input Files
BSDLAnno requires two input files to generate a post-configuration BSDL file:

• Pre-configuration BSDL file that is automatically read from the Xilinx installation area

• The routed .ncd file (FPGAs) or the .pnx file (CPLDs), which is specified as the infile

BSDLAnno Output Files
The output from BSDLAnno is an ASCII (text) formatted BSDL file that has been modified
to reflect signal direction (input/output/bidirectional), unused I/Os, and other design-
specific boundary scan behavior.

BSDLAnno Options
This section provides information on the BSDLAnno command line options.

–s
–s [IEEE1149 | IEEE1532]

The –s option specifies the pre-configuration BSDL file to be annotated. IEEE1149 and
IEEE1532 versions of the pre-configuration BSDL file are currently available.

Note: Most users require the IEEE1149 version.

–intstyle
–intstyle {ise | xflow | silent}

The –intstyle option sets the integration style for BSDLAnno to reduce screen output.

–intstyle silent

Reduces the screen output to warnings and errors only. This option replaces the –quiet
option, which will not be available in future releases.
292 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

BSDLAnno File Composition
R

BSDLAnno File Composition
Manufacturers of JTAG-compliant devices must provide BSDL files for those devices.
BSDL files describe the boundary scan architecture of a JTAG-compliant device, and are
written in a subset language of VHDL. The main parts of an IEEE1149 BSDL file follow,
along with an explanation of how BSDLAnno modifies each section.

Entity Declaration

The entity declaration is a VHDL construct that is used to identify the name of the device
that is described by the BSDL file.

For example (from the xcv50e_pq240.bsd file): entity XCV50E_PQ240 is
design_name.[ncd/pnx]

BSDLAnno changes the entity declaration to avoid name collisions. The new entity
declaration matches the design name in the input .ncd or .pnx file.

Generic Parameter

The generic parameter specifies which package is described by the BSDL file.

For example (from the xcv50e_pq240.bsd file):

generic (PHYSICAL_PIN_MAP : string := "PQ240");

BSDLAnno does not modify the generic parameter.

Logical Port Description

The logical port description lists all I/Os on a device and states whether the pin is input,
output, bidirectional, or unavailable for boundary scan. Pins configured as outputs are
described as inout because the input boundary scan cell remains connected, even when the
pin is used only as an output. Describing the output as inout reflects the actual boundary
scan capability of the device and allows for greater test coverage.

Not all I/Os on the die are available (or bonded) in all packages. Unbonded I/Os are
defined in the pre-configuration BSDL file as linkage bits.

For example (from the xcv50e_pq240.bsd file):

port (

CCLK_P179: inout bit;

DONE_P120: inout bit;

GCK0_P92: in bit;

GCK1_P89: in bit;

GCK2_P210: in bit;

GCK3_P213: in bit;

GND: linkage bit_vector (1 to 32);

INIT_P123: inout bit; -- PAD96

IO_P3: inout bit; -- PAD191

IO_P4: inout bit; -- PAD190

IO_P5: inout bit; -- PAD189

IO_P6: inout bit; -- PAD188
Development System Reference Guide www.xilinx.com 293
 1-800-255-7778

http://www.xilinx.com

Chapter 17: BSDLAnno
R

BSDLAnno modifies the logical port description to match the capabilities of the boundary
scan circuitry after configuration. Modifications are made as follows:

• Dedicated pins (JTAG, mode, done, etc.) are not modified; they are left as inout bit.

• Pins defined as bidirectional are left as inout bit

• Pins defined as inputs are changed to in bit

• Pins defined as outputs are left as inout bit

• Unused pins are not modified

• The N-side of differential pairs is changed to linkage bit

Package Pin-Mapping

Package pin-mapping shows how the pads on the device die are wired to the pins on the
device package.

For example (from the xcv50e_pq240.bsd file):

"CCLK_P179:P179," &

"DONE_P120:P120," &

"GCK0_P92:P92," &

"GCK1_P89:P89," &

"GCK2_P210:P210," &

"GCK3_P213:P213," &

"GND:(P1,P8,P14,P22,P29,P37,P45,P51,P59,P69," &

"P75,P83,P91,P98,P106,P112,P119,P129,P135,P143," &

"P151,P158,P166,P172,P182,P190,P196,P204,P211,P219," &

"P227,P233)," &

"INIT_P123:P123," &

"IO_P3:P3," &

"IO_P4:P4," &

"IO_P5:P5," &

"IO_P6:P6," &

BSDLAnno does not modify the package pin-mapping.

USE Statement

The USE statement calls VHDL packages that contain attributes, types, and constants that
are referenced in the BSDL file.

For example (from the xcv50e_pq240.bsd file):

use STD_1149_1_1994.all;

BSDLAnno does not modify USE statements.
294 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

BSDLAnno File Composition
R

Scan Port Identification

The scan port identification identifies the following JTAG pins: TDI, TDO, TMS, TCK and
TRST.

Note: TRST is an optional JTAG pin that is not used by Xilinx devices.

For example (from the xcv50e_pq240.bsd file):

attribute TAP_SCAN_IN of TDI : signal is true;

attribute TAP_SCAN_MODE of TMS : signal is true;

attribute TAP_SCAN_OUT of TDO : signal is true;

attribute TAP_SCAN_CLOCK of TCK : signal is (33.0e6, BOTH);

BSDLAnno does not modify the Scan Port Identification.

TAP Description

The TAP description provides additional information on the JTAG logic of a device.
Included are the instruction register length, instruction opcodes, and device IDCODE.
These characteristics are device-specific and may vary widely from device to device.

For example (from the xcv50e_pq240.bsd file):

attribute COMPLIANCE_PATTERNS of XCV50E_PQ240 : entity is

attribute INSTRUCTION_LENGTH of XCV50E_PQ240 : entity is 5;

attribute INSTRUCTION_OPCODE of XCV50E_PQ240 : entity is

attribute INSTRUCTION_CAPTURE of XCV50E_PQ240 : entity is "XXX01";

attribute IDCODE_REGISTER of XCV50E_PQ240 : entity is

BSDLAnno does not modify the TAP Description.

Boundary Register Description

The boundary register description gives the structure of the boundary scan cells on the
device. Each pin on a device may have up to three boundary scan cells, with each cell
consisting of a register and a latch. Boundary scan test vectors are loaded into or scanned
from these registers.

For example (from the xcv50e_pq240.bsd file):

attribute BOUNDARY_REGISTER of XCV50E_PQ240 : entity is

-- cellnum (type, port, function, safe[, ccell, disval, disrslt])

" 0 (BC_1, *, controlr, 1)," &

" 1 (BC_1, IO_P184, output3, X, 0, 1, PULL0)," & -- PAD48

" 2 (BC_1, IO_P184, input, X)," & -- PAD48

Every IOB has three boundary scan registers associated with it: control, output, and input.
BSDLAnno modifies the boundary register description as described in the “BSDL File
Modifications for Single-Ended Pins” and “BSDL File Modifications for Differential Pins”
sections.

BSDL File Modifications for Single-Ended Pins

If pin 57 has been configured as a single-ended tristate output pin, no code
modifications are required:

-- TRISTATE OUTPUT PIN (three state output with an input component)

" 9 (BC_1, *, controlr, 1)," &
Development System Reference Guide www.xilinx.com 295
 1-800-255-7778

http://www.xilinx.com

Chapter 17: BSDLAnno
R

" 10 (BC_1, PAD57, output3, X, 9, 1, Z)," &

" 11 (BC_1, PAD57, input, X)," &

If pin 57 is configured as a single-ended input, modify as follows:

-- PIN CONFIGURED AS AN INPUT

" 9 (BC_1, *, internal, 1)," &

" 10 (BC_1, *, internal, X)," &

" 11 (BC_1, PAD57, input, X)," &

If pin 57 is configured as a single-ended output, it is treated as a single-ended
bidirectional pin:

-- PIN CONFIGURED AS AN OUTPUT

" 9 (BC_1, *, controlr, 1)," &

" 10 (BC_1, PAD57, output3, X, 9, 1, Z)," &

" 11 (BC_1, PAD57, input, X)," &

If pin 57 is unconfigured or not used in the design, do not modify:

-- PIN CONFIGURED AS "UNUSED"

" 9 (BC_1, *, controlr, 1)," &

" 10 (BC_1, PAD57, output3, X, 9, 1, PULL0)," &

" 11 (BC_1, PAD57, input, X)," &

Explanation:

The only modification that is made to single-ended pins is when the pin is configured
as an input. In this case, the boundary scan logic is disconnected from the output
driver and is unable to drive out on the pin. When a pin is configured as an output, the
boundary scan input register remains connected to that pin. As a result, the boundary
scan logic has the same capabilities as if the pin were configured as a bidirectional pin.

BSDL File Modifications for Differential Pins

If pin 57 is configured as a differential output, differential three-state output, or
differential bidirectional pin, modify as follows:

" 9 (BC_1, *, controlr, 1)," &

" 10 (BC_1, PAD57, output3, X, 9, 1, Z)," &

" 11 (BC_1, PAD57, input, X)," &

If pin 57 is configured as a p-side differential input pin, modify as follows:

" 9 (BC_1, *, internal, 1)," &

" 10 (BC_1, *, internal, X)," &

" 11 (BC_1, PAD57, input, X)," &

If pin 57 is configured as an n-side differential pin (all types: input, output, 3-state
output, and bidirectional), modify as follows:

" 9 (BC_1, *, internal, 1)," &

" 10 (BC_1, *, internal, X)," &

" 11 (BC_1, *, internal, X)," &
296 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Boundary Scan Behavior in Xilinx Devices
R

Explanation:

All interactions with differential pin pairs are handled by the boundary scan cells
connected to the P-side pin. To capture the value on a differential pair, scan the P-side
input register. To drive a value on a differential pair, shift the value into the P-side
output register. The values in the N-side scan registers have no effect on that pin.

Most boundary scan devices use only three boundary scan registers for each
differential pair. Most devices do not offer direct boundary scan control over each
individual pin, but rather over the two pin pair. This makes sense when you consider
that the two pins are transmitting only one bit of information - hence only one input,
output, and control register is needed. Confusion arises over how differential pins are
handled in Xilinx devices, because there are three boundary scan cells for each pin, or
six registers for the differential pair. The N-side registers remain in the boundary scan
register but are not connected to the pin in any way, which is why the N-side registers
are listed as internal registers in the post-configuration BSDL file. The behavior of the
N-side pin is controlled by the P-side boundary scan registers. For example, when a
value is placed in the P-side output scan register and the output is enabled, the inverse
value is driven onto the N-side pin by the output driver. This is independent from the
Boundary Scan logic.

Modifications to the DESIGN_WARNING Section

BSDLAnno adds the following DESIGN_WARNING to the BSDL file:

"This BSDL file has been modified to reflect post-configuration"&

behavior by BSDLAnno. BSDLAnno does not modify the USER1,"&

USER2, or USERCODE registers. For details on the features and" &

limitations of BSDLAnno, please consult the Xilinx Development" &

System Reference Guide.";

Header Comments

BSDLAnno adds the following comments to the BSDL file header:

♦ BSDLAnno Post-Configuration File for design [entity name]

♦ BSDLAnno [BSDLAnno version number]

Boundary Scan Behavior in Xilinx Devices
BSDL files provided by Xilinx reflect the boundary scan behavior of an unconfigured
device. After configuration, the boundary scan behavior of a device may change. I/O pins
that were bidirectional before configuration may now be input-only. Boundary Scan test
vectors are typically derived from BSDL files; therefore, if boundary scan tests are going to
be performed on a configured Xilinx device, the BSDL file should be modified to reflect the
configured boundary scan behavior of the device.

Whenever possible, boundary scan tests should be performed on an unconfigured Xilinx
device. Unconfigured devices allow for better test coverage, because all I/Os are available
for bidirectional scan vectors.
Development System Reference Guide www.xilinx.com 297
 1-800-255-7778

http://www.xilinx.com

Chapter 17: BSDLAnno
R

In most cases, boundary scan tests with Xilinx devices must be performed after FPGA
configuration only under the following circumstances:

• When configuration cannot be prevented

• When differential signaling standards are used, unless the differential signals are
located between Xilinx devices, in which case both devices can be tested before
configuration. Each side of the differential pair will behave as a single-ended signal.
298 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 18

IBISWriter

The IBISWriter program is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE

• CoolRunner™ XPLA3

• XC9500™/XL/XV

The chapter contains the following sections:

• “IBISWriter Overview”

• “IBISWriter Syntax”

• “IBISWriter Input Files”

• “IBISWriter Output Files”

• “IBISWriter Options”

IBISWriter Overview
The Input/Output Buffer Information Specification (IBIS) is a device modeling standard.
IBIS allows for the development of behavioral models used to describe the signal behavior
of device interconnects. These models preserve proprietary circuit information, unlike
structural models such as those generated from SPICE (Simulation Program with
Integrated Circuit Emphasis) simulations. IBIS buffer models are based on V/I curve data
produced either by measurement or by circuit simulation.

IBIS models are constructed for each IOB standard, and an IBIS file is a collection of IBIS
models for all I/O standards in the device. An IBIS file also contains a list of the used pins
on a device that are bonded to IOBs configured to support a particular I/O standard
(which associates the pins with a particular IBIS buffer model).

IBISWriter supports the use of digitally controlled impedance (DCI) for Virtex-II input
designs with reference resistance that is selected by the user. Although it is not feasible to
have IBIS models available for every possible user input, IBIS models are available for I/O
Standards LVCMOS15 through LVCMOS33 for impedances of 40 and 65 ohms, in addition
to the 50 ohms impedance assumed by XCITE standards. If not specified, the default
impedance value is 50 ohms.

The IBIS standard specifies the format of the output information file, which contains a file
header section and a component description section. The Golden Parser has been developed
by the IBIS Open Forum Group (http://www.eigroup.org/ibis) to validate the resulting
IBIS model file by verifying that the syntax conforms to the IBIS data format.
Development System Reference Guide www.xilinx.com 299
 1-800-255-7778

http://www.xilinx.com
http://www.eigroup.org/ibis

Chapter 18: IBISWriter
R

The IBISWriter tool requires a design source file as input. For FPGA designs, this is a
physical description of the design in the form of an NCD (native circuit description) file
with a .ncd file extension. For CPLD designs, the input is produced by the CPLD fitter tools
and has a .pnx file extension.

IBISWriter outputs a .ibs file. This file comprises a list of pins used by your design; the
signals internal to the device that connect to those pins; and the IBIS buffer models for the
IOBs connected to the pins.

Note: Virtex-II Pro architecture does not include the multi-gigabit transceiver (MGT). There are no
IBIS models available for these IOBs.

To see an example of an IBIS file, refer to Virtex Tech Topic VTT004 at the following web
location: http://www.xilinx.com/products/virtex/techtopic/vtt004.pdf

The following figure shows the IBISWriter flow:

IBISWriter Syntax
Use the following syntax to run IBISWriter from the command line:

ibiswriter [options] infile outfile[.ibs]

options is one or more of the options listed in “IBISWriter Options”.

infile is the design source file for the specified design. For FPGA designs, infile must have a
.ncd extension. For CPLD designs, infile is produced by the CPLD fitter tools and must
have a .pnx extension.

outfile[.ibs] is the destination for the design specific IBIS file. The .ibs extension is optional.
The length of the IBIS file name, including the .ibs extension, cannot exceed 24 characters.

IBISWriter Input Files
IBISWriter requires a design source file as input.

• FPGA Designs

Requires a physical description of the design in the form of an NCD file with a .ncd file
extension.

• CPLD Designs

The input is produced by the CPLD fitter tools and has a .pnx file extension.

Figure 18-1: IBISWriter Flow

X9553

IBISWriter

IBS

NCD PNX
300 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com/products/virtex/techtopic/vtt004.pdf
http://www.xilinx.com

IBISWriter Output Files
R

IBISWriter Output Files
IBISWriter outputs an .ibs ASCII file. This file comprises a list of pins used by your design,
the signals internal to the device that connect to those pins, and the IBIS buffer models for
the IOBs connected to the pins. The format of the IBIS output file is determined by the IBIS
standard. The output file must be able to be validated by the Golden Parser to ensure that
the file format conforms to the specification.

Note: IBISWriter gives an error message if a pin with an I/O Standard for which no buffer is
available is encountered, or if a DCI value property is found for which no buffer model is available.
After an error message appears, IBISWriter continues through the entire design, listing any other
errors if and when they occur, then exiting without creating the .ibs output file. This error reporting
helps users to identify problems and make corrections before running the program again.

IBISWriter Options
This section provides information on IBISWriter command line options.

–allmodels (Include all available buffer models for this architecture)
To reduce the size of the output .ibs file, IBISWriter produces an output file that contains
only design-specific buffer models, as determined from the active pin list. For users who
wish to access all available buffer models, the –allmodels command line option should be
used.

Use the following syntax when using the –allmodels option:

ibiswriter –allmodels infile outfile.ibs

–intstyle
–intstyle {ise | xflow | silent}

The –intstyle command line option specifies program invocation context. By default, the
program is run as a standalone application.

–intstyle ise

Indicates that the program is being run as part of an integrated design environment.

–intstyle xflow

Indicates that the program is being run as part of a batch flow.

–intstyle silent

Indicates that no output will be displayed to the screen.

–g (Set Reference Voltage)
The –g command line option varies by architecture as shown in Table 18-1.

Use the following syntax when using the –g option:

ibiswriter –g option_value_pair infile outfile.ibs

The following is an example using the VCCIO:LVTTL option value pair.

ibiswriter –g VCCIO:LVTTL design.ncd design.ibs

The –g option supports only the architectures listed in the following table:
Development System Reference Guide www.xilinx.com 301
 1-800-255-7778

http://www.xilinx.com

Chapter 18: IBISWriter
R

Table 18-1: –g Options

Architecture Option Value Description

Virtex-E OperatingConditions Typical_Slow_Fast, Mixed Use this option to set operating condition
parameters. Typical_Slow_Fast refers to
operating range defined by temperature,
VCCIO, and manufacturing process
ranges. If no –g option is given, the default
value Typical_Slow_Fast is used.

Spartan-IIE OperatingConditions Typical_Slow_Fast,Mixed Typical_ Slow_Fast refers to operating
range defined by temperature, VCCIO, and
manufacturing process ranges. If no –g
option is given, the default value
Typical_Slow_Fast is used.

XC9500 VCCIO LVTTL, TTL Use this option to configure I/Os for 3.3V
(LVTTL) or 5V (TTL) VCCIO reference
voltage. The –g option is required.

XC9500XL VCCIO LVCMOS2, LVTTL Use this option to configure outputs for
3.3V (LVTTL) or 2.5V (LVCMOS2) VCCIO
reference voltage. Each user pin is
compatible with 5V, 3.3V, and 2.5V inputs.
The –g option is required.
302 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 19

CPLDfit

CPLDfit is compatible with the following families:

• XC9500™/XL/XV

• CoolRunner™ XPLA3/-II/-IIS

This chapter describes the CPLDFit program. The CPLDfit program is a tool that reads in
the NGD file and fits the design into the selected CPLD architecture. The NGD file comes
from NGDBuild. This chapter includes the following sections:

• “CPLDfit Overview”

• “CPLDfit Syntax”

• “CPLDfit Input Files”

• “CPLDfit Output Files”

• “CPLDfit Options”

CPLDfit Overview
The CPLDfit program is a tool that reads in the NGD file and fits the design into the
selected CPLD architecture.

The following figure shows the inputs and the possible outputs of the CPLDfit program.

CPLDfit Syntax
Following is the syntax for CPLDfit:

Figure 19-1: CPLD Design Flow

X10038

CPLDFIT

VM6
GYD
RPT

NGD
Development System Reference Guide www.xilinx.com 303
 1-800-255-7778

http://www.xilinx.com

Chapter 19: CPLDfit
R

cpldfit [options] infile[.ngd]

Options can be any number of the CPLDFit options listed in the CPLDFit Options section.
They do not need to be listed in any particular order. Separate multiple options with
spaces.

CPLDfit Input Files
CPLDfit uses the following files as input:

• NGD file—This file is a database file containing the mapping of the user design into
the target CPLD architecture.

CPLDfit Output Files
CPLDfit outputs the following files:

• VM6 file—This file is the output file from CPLDFit which is the input file to the
HPREP6 process and the TAENGINE process.

• GYD file—This file is the guide file generated by CPLDFit, which contains pin freeze
information as well as the placement of internal equations from the last successful fit.

• RPT file—This file is the CPLD Fitter report file, which contains information such as
resource summary, implemented equations, device pin-out as well as the compiler
options used by CPLDFit.

• XML file—This file is used to generate the HTML reports.

• PNX file—This file is used by the IBISWriter to generate an IBIS model for the
implemented design

• CTX file—This file is used by XPower to calculate and display power consumption. It
is not available for XC9500/XL/XV devices.

• MFD file—This file is used by ChipViewer and HTML Reports to generate a graphical
representation of design implementation.

CPLDfit Options

–p <part>
<part> is in the form of device-speed grade-package (Example: XC2C512-10-FT256).

If only a product family is entered (for example, XPLA3), the fitter iterates through all
densities until a fit is found.

Architecture Support: All CPLD

–optimize density/speed
This option instructs CPLDFit to optimize the design for density or speed. Optimizing for
density results in a slower speed but uses resource-sharing to allow more logic to fit into a
device. Optimizing for speed uses less resource-sharing but flattens the logic, resulting in
fewer levels of logic (faster). Density is the default.

Architecture Support: All CPLD
304 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

CPLDfit Options
R

–nomlopt
This option disables multilevel logic optimization when fitting the design. This option is
off by default.

Architecture Support: All CPLD

–ignoretspec
CPLDfit optimizes paths to meet their timing constraints. This switch instructs the fitter to
not perform this prioritized optimization. This option is off by default.

Architecture Support: All CPLD

–exhaust
The values for inputs and pterms have an impact on design fitting. Occasionally different
values must be tried before a design is fit. This option automates that process by iterating
through all combinations of input and pterm limits until a fit is found. This process can
take several hours depending on the size of the design. This option is not off by default.

Architecture Support: All CPLD

–inputs <m>
This option specifies the maximum number of inputs for a single equation. The higher this
value, the more resources a single equation may use, possibly limiting the number of
equations allowed in a single function block. The maximum limit varies with each CPLD
architecture (default in parentheses). The limits are as follows:

XC9500 = 36 (36)
XC9500XL/XV = 54 (54)
CoolRunner XPLA3 = 40 (36)
CoolRunner-II = 40 (36)
CoolRunner-IIS = 32 (30)

Architecture Support: All CPLD

–pterms <m>
This option specifies the maximum number of product terms for a single equation. The
higher this value, the more product term resources a single equation may use, possibly
limiting the number of equations allowed in a single function block. The maximum limit
varies with each CPLD architecture (default in parentheses). These are as follows:

XC9500 = 90 (25)
XC9500XL/XV = 90 (25)
CoolRunner XPLA3 = 48 (36)
CoolRunner-II = 56 (36)
CoolRunner-IIS = 52 (36)

Architecture Support: All CPLD

–init < low|high|fpga >
This specifies the default power up state of all registers. This is overridden if an INIT
attribute is explicitly placed on a register. Low and high are self-explanatory. The FPGA
Development System Reference Guide www.xilinx.com 305
 1-800-255-7778

http://www.xilinx.com

Chapter 19: CPLDfit
R

setting causes all registers with an asynchronous reset to power up low, all registers with
an asynchronous preset to power up high, and remaining registers to power up low. The
default is low.

Architecture Support: All CPLD

–slew <fast | slow |auto >
This specifies the default slew rate for outputs. Fast and slow are self-explanatory. The
Auto setting allows CPLDFit to choose which slew rate to use based on the timing
constraints. The default is fast.

Architecture Support: All CPLD

–loc < on|off|try >
This option specifies how CPLDFit uses the design location constraints. The On setting
instructs CPLDFit that location constraints must be obeyed. The Off setting instructs
CPLDFit to ignore location constraints. The Try setting instructs the fitter to use location
constraints unless doing so would result in a fitting failure. The default is On.

Architecture Support: All CPLD

–log <logfile>
This option logs all error, warning, and informational messages into <logfile>.

Architecture Support: All CPLD

–wysiwyg
What-You-See-Is-What-You-Get mode instructs CPLDFit to not perform any optimization
on the netlist provided to it. This switch is off by default.

Architecture Support: All CPLD

–f <cmdfile>
This option reads command-line arguments from <cmdfile>. This switch is off by default.

Architecture Support: All CPLD

–h < xc9500 |xc9500xl |xc9500xv|xcr3|xc2c | xc2cs >
This option provides command-line help for a specific device architecture.

Architecture Support: All CPLD
306 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

CPLDfit Options
R

–unused < ground | pulldown | pullup | keeper | float >
This option specifies how unused pins are terminated. Not all options are available for all
architectures. The allowable options are listed as follows (default in parentheses):

XC9500 /XL/XV: Float, Ground (float)
CoolRunner XPLA3: Float, Pullup (float)
CoolRunner-II: Float, Ground, Pullup, Keeper (ground)
CoolRunner-IIS: Float, Ground, Pulldown (pulldown)

Architecture Support: All CPLD

–power < std|low|auto >
This option sets the default power mode of macrocells. It can be overridden if a macrocell
is explicitly assigned a power setting. The Std setting is for standard high speed mode. The
Low setting is for low power mode (at the expense of speed) The Auto setting allows the
fitter to choose based on the timing constraints. Default setting is Standard.

Architecture Support: XC9500/XL/XV

–nogclkopt
This option switches off automatic global clock inferring. This switch is off by default.

Architecture Support: XC9500/XL/XV/XC2C/XC2CS

–nogsropt
This option switches off automatic global set/reset inferring. This switch is off by default.

Architecture Support: XC9500/XL/XV/XC2C/XC2CS

–nogtsopt
This option switches off automatic global 3-state inferring. This switch is off by default.

Architecture Support: XC9500/XL/XV/XC2C/XC2CS

–nouim
The XC9500 interconnect matrix allows multiple signals to be joined together to form a
wired AND functionality. This option turns this functionality off. This switch is off by
default.

Architecture Support: XC9500

–localfbk
The XC9500 macrocell contains a local feedback path. This option turns this feedback path
on. This switch is on by default.

Architecture Support: XC9500
Development System Reference Guide www.xilinx.com 307
 1-800-255-7778

http://www.xilinx.com

Chapter 19: CPLDfit
R

–pinfbk
The XC9500 architecture allows feedback into the device through the I/O pin. This option
turns this feedback functionality on. This switch is on by default.

Architecture Support: XC9500

–blkfanin <x>
This option specifies the maximum number of function block inputs to use when fitting a
device. If this value is near the maximum, this option reduces the possibility that design
revisions will be able to fit without changing the pin-out. The maximum values vary with
each CPLD architecture (default in parentheses) and are as follows:

CoolRunner XPLA3 = 38 (40)
CoolRunner-II = 40 (36)
CoolRunner-IIS = 32 (30)

Architecture Support: XPLA3 / XC2C / XC2C

–nofbnand
This option disables the use of the Foldback Nand when fitting the design. This option is
off by default.

Architecture Support: XPLA3

–noisp
This option disables the JTAG pins, allowing them to be used as I/O pins. This option is off
by default.

Architecture Support: XPLA3

–ignoredatagate
This option tells the fitter to ignore the DATA_GATE attribute when fitting a CoolRunner-
II device. This switch is off by default.

Architecture Support: XC2C

–terminate < pullup|keeper|float >
This option globally sets all inputs and tristatable outputs to the specified form of
termination. Not all termination modes exist for each architecture. The available forms for
each architecture are as follows (default in parentheses):

XC9500 XL/ XV : Float, Keeper (keeper)
CoolRunner XPLA3: Float, Pullup (pullup)
CoolRunner-II: Float, Pullup, Keeper (float)
CoolRunner-IIS: Float, Pulldown (pulldown)

Architecture Support: XC9500XL/XV/ XPLA3/ XC2C/ XC2CS
308 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

CPLDfit Options
R

–iostd <LVTTL|LVCMOS18|LVCMOS25 |SSTL2_I|SSTL3_I|HSTL_I|
LVCMOS15 >

This switch sets the default voltage standard for all I/Os. The default will be overridden by
explicit assignments. Not all I/O Standards are available for each architecture. The
available I/O Standards are as follows (default in parentheses):

CoolRunner-II: LVTTL, LVCMOS18, LVCMOS25, SSTL2_I, SSTL3_I, HSTL_I, LVCMOS15
(LVCMOS18)
CoolRunner-IIS: LVTTL, LVCMOS15, LVCMOS18, LVCMOS25, LVCMOS33 (LVCMOS18)

Architecture Support: XC2C/XC2CS

–tckterminate < pullup | float >
This option sets the termination for the TCK pin. The default is float.

Architecture Support: XC2CS

–keepio
This option tells CPLDFit to not trim out unconnected I/O pins. This option is off by
default.

Architecture Support: XC9500/XL/XV /XPLA3 / XC2C / XC2CS

outfile.vm6
You may also optionally specify the name of the VM6 output file. By default the program
generates a VM6 file with the name design_name.VM6.
Development System Reference Guide www.xilinx.com 309
 1-800-255-7778

http://www.xilinx.com

Chapter 19: CPLDfit
R

310 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 20

TSIM

TSIM is compatible with the following families:

• XC9500™/XL /XV

• CoolRunner™/ XPLA3/-II/-IIS

This chapter describes the TSIM program. The TSIM program is a tool that formats the
implemented CPLD design (VM6) into a format usable by the NetGen timing simulation
flow, which then produces a back-annotated timing file (NGA) for simulation. This chapter
includes the following sections:

• “TSIM Overview”

• “TSIM Syntax”

• “TSIM Input Files”

• “TSIM Output Files”

• “TSIM Options”

TSIM Overview
The TSIM program is a tool that formats the implemented CPLD design (VM6) into a
format usable by the NetGen timing simulation flow, which then produces a back-
annotated timing file for simulation.

TSIM Syntax
Following is the syntax for TSIM:

tsim design_name.vm6 [-options] output_name.nga

design_name.vm6 is the name of the top-level design file that you wish to convert.

Output_name.nga is the name of the output file with the design and timing data. This file
has an NGA extension and is used as an input file to NetGen to create a back-annotated
timing file. Without this, the output defaults to design_name.nga.

Options can be any number of the TSIM options listed in the TSIM Options section. They do
not need to be listed in any particular order. Separate multiple options with spaces.

TSIM Input Files
TSIM uses the following file as input:

VM6 file—This file is a database file containing the mapping of the user design into the
target CPLD architecture.
Development System Reference Guide www.xilinx.com 311
 1-800-255-7778

http://www.xilinx.com

Chapter 20: TSIM
R

TSIM Output Files
TSIM outputs the following file:

NGA file—This back-annotated logical design file is used as an input file to NetGen.

TSIM Options

–intstyle [ise | xflow | silent]
The –intstyle option instructs TSIM where to direct output messaging.
312 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 21

TAEngine

TAEngine is compatible with the following families:

• XC9500™/XL/XV

• CoolRunner™/ XPLA3/-II/-IIS

This chapter describes the Timing Analysis Engine (TAEngine) program. The TAEngine
program is a tool that performs static timing analysis on a successfully implemented Xilinx
CPLD design (VM6). This chapter includes the following sections:

• “TAEngine Overview”

• “TAEngine Syntax”

• “TAEngine Input Files”

• “TAEngine Output Files”

• “TAEngine Options”

TAEngine Overview
TAEngine takes an implemented CPLD design (VM6) from CPLDFit and performs static
timing anlysis, writing the results to a report file (TIM). The report file is in one of two
formats: summary and detail. A summary format lists all timing paths and their delays. A
detail format displays all timing paths, as well as a summary of all individual timing
components that comprise the path. Both formats display performance to the timing
constraints.

The following figure shows the inputs and the possible outputs of the TAEngine program.

Figure 21-1: TAEngine Design Flow

X10039

TAEngine

VM6
Fit CPLD Design

TIM
Static Timing Report
Development System Reference Guide www.xilinx.com 313
 1-800-255-7778

http://www.xilinx.com

Chapter 21: TAEngine
R

TAEngine Syntax
Following is the syntax for TAEngine:

taengine –f design_name.vm6 [- options]

Design_name is the name of the top level design file.

Options can be any number of the TAEngine options listed in the TAEngine Options
section. They do not need to be listed in any particular order. Separate multiple options
with spaces.

TAEngine Input Files
TAEngine uses the following file as input:

• VM6—An implemented CPLD design.

TAEngine Output Files
TAEngine outputs the following file:

• TIM file—An ASCII (text) timing report file listing the timing paths and performance
to timing constraints.

TAEngine Options
This section describes the TAEngine command line options.

–detail
The –detail option is used if a detailed timing report is desired. This contains timing
analysis for all paths, as well as a detailed listing of each component delay present in each
path. By default this switch is not used.

–l <filename>
The –l option specifies the name of the output file. By default, the timing report is written
to <designname>.TIM.

–iopath
The –iopath option instructs the timing analysis tool to trace paths through bi-directional
pins.

–help
The –help option provides a brief explanation of switches and acceptable command line
arguments.
314 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 22

Hprep6

Hprep6 is compatible with the following families:

• XC9500™/ XL/XV

• CoolRunner™/ XPLA3/-II/-IIS

This chapter describes the Hprep6 program. This tool accepts a fit CPLD design (VM6) and
generates a programming file (Jedec) that is used to configure a Xilinx CPLD. This chapter
includes the following sections:

• “Hprep6 Overview”

• “Hprep6 Syntax”

• “Hprep6 Input Files”

• “Hprep6 Output Files”

• “Hprep6 Options”

Hprep6 Overview
Hprep6 takes an implemented CPLD design (VM6) from CPLDfit and generates a Jedec
programming file (JED).

The following figure shows the inputs and the possible outputs of the Hprep6 program.

Hprep6 Syntax
Following is the syntax for Hprep6:

hprep6 –i design_name.vm6 [- options]

Figure 22-1: Hprep6 Design Flow

X10037

Hprep6

VM6
Fit CPLD Design

JED
Jedec programming

ISC
IEEE1532 programming
Development System Reference Guide www.xilinx.com 315
 1-800-255-7778

http://www.xilinx.com

Chapter 22: Hprep6
R

Design_name is the name of the top-level design file.

Options can be any number of the Hprep6 options listed in the Hprep6 Options section.
They do not need to be listed in any particular order. Separate multiple options with
spaces.

Hprep6 Input Files
Hprep6 uses the following file as input:

• VM6—An implemented CPLD design

Hprep6 Output Files
Hprep6 outputs the following files:

• JED file—A Jedec file used for CPLD programming

• ISC file—A IEEE1532 file used for CPLD programming

Hprep6 Options
This section describes the Hprep6 command line options.

–intstyle <ise | xflow | silent>
The –intstyle option instructs TSIM where to direct output messaging. Selecting ISE directs
the tool to write all messages to the ISE Graphical User Interface. Selecting XFLOW directs
the tool to write messages to the XFLOW log file. Selecting SILENT suppresses all error
and warning messages.

–n <signature>
The –signature option is applicable to the XC9500/XL/XV family only. The value entered
in the signature field programs a set of bits in the CPLD that may be read-back via JTAG
after programming. This is often used as an identifier to identify the version of design
programmed into a device.

Note: The CoolRunner family also allows for a signature value, but it must be entered by the
programming tool (for instance, IMPACT or third party programmer).

–nopullup
The –nopullup option is applicable to the XC9500/XL/XV family only. This instructs the
Jedec writer to disable the pullups on empty function blocks. By default the pullups are
enabled in order to minimize leakage current and prevent floating I/Os.

–s <ieee1532 | ieee1149 >
The –s option is used to instruct the Hprep6 tool to write out an additional programming
file in the ieee1532 (ISC) or ieee1149 format (JED). Ieee1532 (ISC) output is not available for
the CoolRunner XPLA3 family.
316 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Hprep6 Options
R

–help
The –Help option provides a brief explanation of switches and acceptable command line
arguments.

–autosig
The -autosig option allows the iMPACT configuration software to automatically generate a
signature. If the -n <signature> option is supplied, -autosig is ignored. This option is
applicable only to the XC9500/XL/XV families.

–tmv <tmv_file>
The -tmv <tmv_file> option is used to specify a test vector file for use with the iMPACT
configuration software’s “Functional Test” operation. The <tmv_file> is in ABEL’s test
vector file format.
Development System Reference Guide www.xilinx.com 317
 1-800-255-7778

http://www.xilinx.com

Chapter 22: Hprep6
R

318 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 23

NetGen

The NetGen program is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/-3

• CoolRunner™ XPLA3/-II/-IIS

• XC9500™/XL/XV

This chapter describes the NetGen program and contains the following sections:

• “NetGen Overview”

• “NetGen Syntax”

• “NetGen Supported Flows”

• “NetGen Timing Simulation Flow”

• “NetGen Equivalence Checking Flow”

• “NetGen Static Timing Analysis Flow”

• “Preserving and Writing Hierarchy Files”

• “Hierarchical Modules with Secure Netlist Attributes”

• “Dedicated Global Signals in Back-Annotation Simulation”
Development System Reference Guide www.xilinx.com 319
 1-800-255-7778

http://www.xilinx.com

Chapter 23: NetGen
R

NetGen Overview
The Netgen application is a command line executable that reads in applicable Xilinx
implementation files, extracts design data, and generates netlists that are used with
supported third-party simulation, equivalence checking, and static timing analysis tools.

NetGen combines NGDAnno with NGD2VER and NGD2VHDL. Previous releases of
Xilinx software included netlist writer executables called ngd2ver and ngd2vhdl, which
generated Verilog and VHDL files for simulation purposes, and the ngdanno executable,
which annotated delays and correlate design information for placed and routed FPGA
designs. The functionality of these three executables (ngd2ver, ngd2vhdl, and ngdanno)
have been merged into one command line executable: netgen.

The following figure outlines the NetGen flow.

Figure 23-1: NetGen Flow

X9980

PAR

NetGen

MAP

NGD
Logical Design

NCD
Physical Design

(Mapped)

NCD
Physical Design

(Placed and Routed)

NGM

Simulation Netlist

Equivalence Checking
Netlist

Static Timing Analysis
Netlist

PCF

NCD
320 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NetGen Syntax
R

NetGen Syntax
NetGen syntax depends on the type of NetGen flow you are running. Valid netlist flows
are:

simulation (sim)— generates a simulation netlist. For this netlist type, you must specify
the output file type as Verilog or VHDL with the –ofmt option.

equivalence (ecn)— generates an equivalence checking netlist. For this netlist type, you
must specify a tool name. Possible tool names for this netlist type are conformal or
formality.

static (sta)—generates a static timing analysis netlist.

Use the following to view a list of available command line options:

netgen –h [netlist_flow]

Note: For details on NetGen flows and syntax, refer to the applicable sections in this chapter.

NetGen Supported Flows
NetGen generates netlists that are compatible with Xilinx supported simulation,
equivalence checking, and static timing analysis tools.

NetGen takes an input design file and writes out a single netlist for the entire design, or
multiple netlists for each module of a hierarchical design. Individual modules can be
simulated on their own, or together at the top-level. Modules identified with the
KEEP_HIERARCHY attribute are written as user-specified Verilog, VHDL, and SDF file
netlists with the “–mhf (Multiple Hierarchical Files)”option. See “Preserving and Writing
Hierarchy Files” for additional information.

NetGen supports the following flows:

• Timing Simulation for FPGA and CPLD designs

• Equivalence Checking for FPGA designs

• Static Timing Analysis for FPGA designs

The following sections detail the use and features of the NetGen supported flows,
including input files, output files, and available command line options.

NetGen Timing Simulation Flow
This section describes the NetGen Timing Simulation flow, which is used for timing
verification on FPGA and CPLD designs. In previous versions of Xilinx software, timing
verification was done as a two step process using NGDanno to annotate delays on a
design, then ngd2ver or ngd2vhdl to generate a timing simulation netlist. NetGen
combines these two steps into one in the NetGen Timing Simulation flow. Timing
simulation is done after PAR, but may also be done after MAP if only component delay and
no route delay information is needed.

When performing timing simulation, you must specify the type of netlist you want to
create: Verilog or VHDL. In addition to the specified netlist, NetGen also creates an SDF
file as output. The output Verilog and VHDL netlists contain the functionality of the
design and the SDF file contains the timing information for the design.
Development System Reference Guide www.xilinx.com 321
 1-800-255-7778

http://www.xilinx.com

Chapter 23: NetGen
R

Input file types depend on whether you are using an FPGA or CPLD design. Please refer to
the “FPGA Timing Simulation” and “CPLD Timing Simulation” sections for design-
specific information, including input file types.

A complete list of command line options for performing NetGen Timing Simulation
appears at the end of this section.

Note: For information on global signals and how they are treated in the simulation process, please
refer to “Dedicated Global Signals in Back-Annotation Simulation” section at the end of this chapter.

Syntax for NetGen Timing Simulation
The following command runs the NetGen Timing Simulation flow:

netgen -sim -ofmt [verilog or vhdl] [options] input_file[.ncd] [ngm_file[.ngm]]

verilog or vhdl is the output netlist format that you specify with the required –ofmt option.

options is one or more of the options listed in the “NetGen Options for Timing Simulation”
section. In addition to common options, this section also contains Verilog and VHDL
specific options.

input_file is the input file name and extension. If you specify an input file on the command
line without specifying an NGM file, NetGen performs a timing simulation without
hierarchy by generating a flat (non-hierarchical) netlist.

ngm_file is an optional NGM file, which is a design file, produced by MAP, that contains
information about the hierarchy of the design. If you specify an NGM file, NetGen detects
the levels of hierarchy in which the KEEP_HIERARCHY attributes are attached and
recreates the design hierarchy from the physical design database.

To get help on command line usage for NetGen Timing Simulation, type:

netgen -h sim

FPGA Timing Simulation
You can verify the timing of an FPGA design using the NetGen Timing Simulation flow to
generate a Verilog or VHDL netlist and an SDF file. The figure below illustrates the NetGen
Timing Simulation flow using an FPGA design.

Figure 23-2: FPGA Timing Simulation

X9981

NetGen

PCF

SDF

ELFNCD NGM

Simulation Tool

Simprim
Library

V/VHD
322 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NetGen Timing Simulation Flow
R

The FPGA Timing Simulation flow uses the following files as input:

• NCD file—This physical design file may be mapped only, partially or fully placed, or
partially or fully routed.

• NGM file (optional, but recommended)—This mapped file is generated by MAP and
contains hierarchical information on the design. For HDL synthesis-based designs, the
NGM file may contain references on the original design hierarchy. See “–ngm (Design
Correlation File)” for more information.

• PCF (optional)—This is a physical constraints file. If prorated voltage or temperature
is applied to the design, the PCF must be included to pass this information to NetGen.
See “–pcf (PCF File)” for more information.

• ELF (MEM) (optional)—This file populates the Block RAMs specified in the .bmm file.
See “–bd (Block RAM Data File)” for more information.

Output files for FPGA Timing Simulation
• SDF file—This SDF 3.0 compliant standard delay format file contains delays obtained

from the input design files.

• V file—This is a IEEE 1364-2001 compliant Verilog HDL file that contains the netlist
information obtained from the input design files. This file is a timing simulation
model and cannot be synthesized or used in any manner other than simulation. This
netlist file uses simulation primitives that may not represent the true implementation
of the device. The netlist represents a functional model of the implemented design.

• VHD file—This VHDL IEEE 1076.4 VITAL-2000 compliant VHDL file contains the
netlist information obtained from the input design files. This file is a simulation model
and cannot be synthesized or used in any other manner than simulation. This netlist
file uses simulation primitives that may not represent the true implementation of the
device; however, the netlist represents a functional model of the implemented design.

CPLD Timing Simulation
You can use the NetGen Timing Simulation flow to verify the timing of a CPLD design
after it is implemented using CPLD Fitter and the delays are annotated using the –tsim
option. The input file is the annotated NGA file from tsim.

The figure below illustrates the NetGen Timing Simulation flow using a CPLD design.

Figure 23-3: CPLD Timing Simulation

X9982

NetGen

NGA

SDF

Simulation Tool

Simprim
Library

V/VHD
Development System Reference Guide www.xilinx.com 323
 1-800-255-7778

http://www.xilinx.com

Chapter 23: NetGen
R

Input files for CPLD Timing Simulation
The CPLD Timing Simulation flow uses the following files as input:

• NGA file—This native generic annotated file is a logical design file from Tsim that
contains Xilinx primitives. See Chapter 20, “TSIM” for additional information.

Output files for CPLD Timing Simulation
The NetGen Simulation Flow uses the following files as output:

• SDF file—This standard delay format file contains delays obtained from the input
NGA file.

• V file—This is a IEEE 1364-2001 compliant Verilog HDL file that contains netlist
information obtained from the input NGA file. This file is a timing simulation model
and cannot be synthesized or used in any manner other than simulation. This netlist
uses simulation primitives that may not represent the true implementation of the
device. The netlist represents a functional model of the implemented design.

• VHD file—This VHDL IEEE 1076.4 VITAL-2000 compliant VHDL file contains netlist
information obtained from the input NGA file. This file is a simulation model and
cannot be synthesized or used in any other manner than simulation. This netlist uses
simulation primitives that may not represent the true implementation of the device.
The netlist represents a functional model of the implemented design.

NetGen Options for Timing Simulation
This section describes the supported NetGen command line options for timing simulation.

–aka (Write Also-Known-As Names as Comments)

The –aka option includes original user-defined identifiers as comments in the VHDL
netlist. This option is useful if user-defined identifiers are changed because of name
legalization processes in NetGen.

–bd (Block RAM Data File)

–bd [filename] [.elf|.mem]

The –bd switch specifies the path and file name of the .elf file used to populate the Block
RAM instances specified in the .bmm file. The address and data information contained in
the .elf or .mem file allows Data2MEM to determine which ADDRESS_BLOCK to place the
data.

–dir (Directory Name)

The –dir option specifies the directory in which the output files are written.

–fn (Control Flattening a Netlist)

The –fn option produces a flattened netlist.

–gp (Bring Out Global Reset Net as Port)

–gp port_name
324 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NetGen Timing Simulation Flow
R

The –gp option causes NetGen to bring out the global reset signal (which is connected to all
flip-flops and latches in the physical design) as a port on the top-level design module.
Specifying the port name allows you to match the port name you used in the frontend.

This option is used only if the global reset net is not driven. For example, if you include a
STARTUP_VIRTEX component in an Virtex-E design, you should not enter the –gp option,
because the STARTUP_VIRTEX component drives the global reset net.

Note: Do not use GR, GSR, PRLD, PRELOAD, or RESET as port names, because these are
reserved names in the Xilinx software.

–intstyle (Reduce Screen Output)

–intstyle silent

The –intstyle option, used with the silent argument, reduces the screen output to warnings
and errors only. This option replaces the –quiet option, which will not be available in
future releases.

–ofmt (Output Format)

The –ofmt option is a required switch that specifies output format of either Verilog or
VHDL netlists.

–mhf (Multiple Hierarchical Files)

The –mhf option is used to write multiple hierarchical files, one for every module that has
the KEEP_HIERARCHY attribute.

–module (Simulation of Active Module)

–module

The –module option creates a netlist file based on the active module, independent of the
top-level design. NetGen constructs the netlist based only on the active module’s interface
signals.

To use this option you must specify an NCD file that contains an expanded active module.
To create this NCD file, see “Implementing an Active Module” in Chapter 4.

For more information on simulating modules, see “Simulating an Active Module” in
Chapter 4.

Note: The –module option is for use with the Modular Design flow.

–ngm (Design Correlation File)

The -ngm option is used for design correlation.

–pcf (PCF File)

-pcf pcf_file.pcf

The –pcf option allows you to specify a PCF (physical constraints file) as input to NetGen.
You only need to specify a physical constraints file if prorating constraints (temperature
and/or voltage) are used.

Temperature and voltage constraints and prorated delays are described in the Constraints
Guide.
Development System Reference Guide www.xilinx.com 325
 1-800-255-7778

http://www.xilinx.com

Chapter 23: NetGen
R

–s (Change Speed)

-s [speed grade]

The –s option instructs NetGen to annotate the device speed grade you specify to the
netlist. The device speed can be entered with or without the leading dash. For example, both
–s 3 and –s –3 are allowable entries.

Some architectures support the –s min option. This option instructs NetGen to annotate a
process minimum delay, rather than a maximum worst-case to the netlist. The command
line syntax is the following.

-s min

Minimum delay values may not be available for all families. Use the Speedprint or
PARTGen utility programs in the software to determine whether process minimum delays
are available for your target architecture.

Note: Settings made with the –s min option override any prorated timing parameters in the PCF. If
–s min is used then all fields (MIN:TYP:MAX) in the resulting SDF file are set to the process minimum
value.

–sim (Generate Simulation Netlist)

The -sim option writes a simulation netlist. This is the default option for NetGen, and the
default option for NetGen for generating a simulation netlist.

–tb (Generate Testbench Template File)

The –tb option generates a testbench file with a .tb extension. It is a ready-to-use Verilog or
VHDL template file, based on the input NCD file. The type of template file (Verilog or
VHDL) is specified with the –ofmt option.

–ti (Top Instance Name)

–ti top_instance_name

The –ti option specifies a user instance name for the design under test in the testbench file
created with the –tb option.

–tm (Top Module Name)

–tm top_module_name

By default (without the –tm option), the output files inherit the top module name from the
input NCD file or NGM file. The –tm option changes the name of the top-level module
name appearing in the NetGen output files.

–tp (Bring Out Global 3-State Net as Port)

–tp port_name

The –tp option causes NetGen to bring out the global 3-state signal (which forces all FPGA
outputs to the high-impedance state) as a port on the top-level design module or output
file. Specifying the port name allows you to match the port name you used in the front-end.

This option is only used if the global 3-state net is not driven. For example, if you include
a STARTUP_VIRTEX component in an Virtex-E design, you should not have to enter a –tp
option, because the STARTUP_VIRTEX component drives the global 3-state net.
326 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NetGen Timing Simulation Flow
R

Note: Do not use the name of any wire or port that already exists in the design, because this causes
NetGen to issue an error.

–w (Overwrite Existing Files)

The –w option causes NetGen to overwrite the .vhd or .v file if it exists. By default, NetGen
does not overwrite the netlist file.

Note: All other output files are automatically overwritten.

Verilog-Specific Options for Timing Simulation
This section describes the Verilog-specific command line options for timing simulation.

–ism (Include SimPrim Modules in Verilog File)

The –ism switch includes SimPrim modules from the SimPrim library in the output Verilog
(.v) file. This option allows you to bypass specifying the library path during simulation.
However, using this switch increases the size of your netlist file and increases your
compile time.

When you run this option, NetGen checks that your library path is set up properly.
Following is an example of the appropriate path:

$XILINX/verilog/src/simprim

Note: If you are using compiled libraries, this switch offers no advantage. If you use this switch, do
not use the –ul switch.

–ne (No Name Escaping)

By default (without the –ne option), NetGen “escapes” illegal block or net names in your
design by placing a leading backslash (\) before the name and appending a space at the
end of the name. For example, the net name “p1$40/empty” becomes “\p1$40/empty ”
when name escaping is used. Illegal Verilog characters are reserved Verilog names, such as
“input” and “output,” and any characters that do not conform to Verilog naming
standards.

The –ne option replaces invalid characters with underscores so that name escaping does
not occur. For example, the net name “p1$40/empty” becomes “p1$40_empty” when
name escaping is not used. The leading backslash does not appear as part of the identifier.
The resulting Verilog file can be used if a vendor’s Verilog software cannot interpret
escaped identifiers correctly.

–pf (Generate PIN File)

The –pf option writes out a pin file—a Cadence signal-to-pin mapping file with a .pin
extension.

Note: NetGen only generates a PIN file if the input is an NGM file.

–sdf_anno (Include $sdf_annotate)

-sdf_anno [true|false]

The –sdf_anno option controls the inclusion of the $sdf_annotate construct in a Verilog
netlist. The default for this option is true. To disable this option, use false.
Development System Reference Guide www.xilinx.com 327
 1-800-255-7778

http://www.xilinx.com

Chapter 23: NetGen
R

–sdf_path (Full Path to SDF File)

-sdf_path [path_name]

The –sdf_path option outputs the SDF file to the specified full path. This option writes the
full path and the SDF file name to the $sdf_annotate statement. If a full path is not
specified, it writes the full path of the current work directory and the SDF file name to the
$sdf_annotate statement.

–shm (Write $shm Statements in Test Fixture File)

The -shm option places $shm statements in the structural Verilog file created by NetGen.
These $shm statements allow VerilogXL to display simulation data as waveforms. This
option is for use with Cadence Verilog files only.

–ul (Write ‘uselib Directive)

The –ul option causes NetGen to write a library path pointing to the SimPrim library into
the output Verilog (.v) file. The path is written as shown below:

`uselib dir=$XILINX/verilog/src/simprims libext=.v

$XILINX is the location of the Xilinx software.

If you do not enter a –ul option, the ‘uselib line is not written into the Verilog file.

Note: A blank ‘uselib statement is automatically appended to the end of the Verilog file to clear out
the ‘uselib data. If you use this option, do not use the –ism option.

–vcd

The –vcd option writes $dumpfile/$dumpvars statements in testfixture. This option is for
use with Cadence Verilog files only.

VHDL Specific Options for Timing Simulation
This section describes the VHDL-specific command line options for timing simulation.

–a (Architecture Only)

By default, NetGen generates both entities and architectures for the input design. If the –a
option is specified, no entities are generated and only architectures appear in the output.

–ar (Rename Architecture Name)

-ar architecture_name

The –ar option allows you to rename the architecture name generated by NetGen. The
default architecture name for each entity in the netlist is STRUCTURE.

–rpw (Specify the Pulse Width for ROC)

–rpw roc_pulse_width

The –rpw option specifies the pulse width, in nanoseconds, for the ROC component. You
must specify a positive integer to simulate the component. This option is not required. By
default, the ROC pulse width is set to 100 ns.
328 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NetGen Equivalence Checking Flow
R

–tpw (Specify the Pulse Width for TOC)

–tpw toc_pulse_width

The –tpw option specifies the pulse width, in nanoseconds, for the TOC component. You
must specify a positive integer to simulate the component. This option is required when
you instantiate the TOC component (for example, when the global set/reset and global 3-
State nets are sourceless in the design).

–xon (Select Output Behavior for Timing Violations)

–xon {true|false}

The –xon option specifies the output behavior when timing violations occur on memory
elements. If you set this option to true, any memory elements that violate a setup time
trigger X on the outputs. If you set this option to false, the signal’s previous value is
retained. If you do not set this option, –xon true is run.

NetGen Equivalence Checking Flow
This section describes the NetGen Equivalence Checking flow, which is used for formal
verification of FPGA designs. This flow creates a Verilog netlist and conformal or formality
assertion file for use with supported equivalence checking tools.

The figures below illustrate the NetGen Equivalence Checking flow.

Figure 23-4: Post-Synthesis Flow

X10035

NetGen

NGD

V

Formal Verification Tool

Formal
Library
Development System Reference Guide www.xilinx.com 329
 1-800-255-7778

http://www.xilinx.com

Chapter 23: NetGen
R

Syntax for NetGen Equivalence Checking.
The following command runs the NetGen Equivalence Checking flow:

netgen -ecn [tool_name] [options] input_file[.ncd] ngm_file.ngm

options is one or more of the options listed in the “NetGen Options for Equivalence
Checking” section.

tool_name is a required switch that generates a netlist compatible with equivalence
checking tools. Valid tool_name arguments are conformal or formality. For additional
information on equivalence checking and formal verification tools, please refer to the
Synthesis and Verification Design Guide.

input_file is the input NCD or NGD file. If an NGD file is used, the .ngd extension must be
specified.

ngm_file is an optional NGM file, which is a design file, produced by MAP, that contains
information about the hierarchy of the design. If you specify an NGM file, NetGen detects
the levels of hierarchy in which the KEEP_HIERARCHY attributes are attached and
recreates the design hierarchy from the physical design database.

To get help on command line usage for NetGen Timing Simulation, type:

netgen -h ecn

Input files for NetGen Equivalence Checking
The NetGen Equivalence Checking flow uses the following files as input:

• NGD file—This file is a logical description of an unmapped FPGA design.

• NCD file—This physical design file may be mapped only, partially or fully placed, or
partially or fully routed.

• NGM file (optional but recommended)—This mapped file is generated by MAP and
contains hierarchical information on the design. For HDL synthesis-based designs, the
NGM file can help recover the original design hierarchy. See “–ngm (Design
Correlation File)” for more information.

• ELF (MEM) (optional)—This file is used to populate the Block RAMs specified in the
.bmm file. See “–bd (Block RAM Data File)” for more information.

Figure 23-5: Post-PAR Flow

X10034

Formal Verification Tool

NGM

Formal
Library

V

NCDELF

SVF/VXC

NetGen
330 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com
http://toolbox.xilinx.com/docsan/xilinx4/pdf/docs/sim/sim.pdf

NetGen Equivalence Checking Flow
R

Output files for NetGen Equivalence Checking
The NetGen Equivalence Checking flow uses the following files as output:

• Verilog (.v) file—This is a IEEE 1364-2001 compliant Verilog HDL file that contains the
netlist information obtained from the input file. This file is a equivalence checking
model and cannot be synthesized or used in any other manner than equivalence
checking. This netlist uses primitives, which may not represent the true
implementation of the device. The netlist represents a functional model of the
implemented design.

• Formality (.svf) file—This is an assertion file written for the Formality equivalence
checking tool. This file provides information about some of the transformations that a
design went through, after it was processed by Xilinx implementation tools.

• Conformal-LEC (.vxc) file—This is an assertion file written for the Conformal-LEC
equivalence checking tool. This file provides information about some of the
transformations that a design went through, after it was processed by Xilinx
implementation tools.

Note: For specific information on Conformal-LEC and Formality tools, please refer to the
Synthesis and Verification Design Guide.

NetGen Options for Equivalence Checking
This section describes the supported NetGen command line options for equivalence
checking.

–aka (Write Also-Known-As Names as Comments)

The –aka option includes original user-defined identifiers as comments in the VHDL
netlist. This option is useful if user-defined identifiers are changed because of name
legalization processes in NetGen.

–bd (Block RAM Data File)

–bd [filename] [.elf|.mem]

The –bd switch specifies the path and file name of the .elf file used to populate the Block
RAM instances specified in the .bmm file. The address and data information contained in
the .elf file allows Data2MEM to determine which ADDRESS_BLOCK to place the data.

–dir (Directory Name)

–dir [directory_name]

The –dir option specifies the directory in which the output files are written.

–ecn (Equivalence Checking)

–ecn [tool_name] [conformal|formality]

The –ecn option generates an equivalence checking netlist. This option generates a file that
can be used for formal verification of an FPGA design.

For additional information on equivalence checking and formal verification tools, please
refer to the Synthesis and Verification Design Guide.
Development System Reference Guide www.xilinx.com 331
 1-800-255-7778

http://www.xilinx.com
http://toolbox.xilinx.com/docsan/xilinx4/pdf/docs/sim/sim.pdf

Chapter 23: NetGen
R

–fn (Control Flattening a Netlist)

The –fn option produces a flattened netlist.

–intstyle (Reduce Screen Output)

–intstyle silent

The –intstyle option, used with the silent argument, reduces the screen output to warnings
and errors only. This option replaces the –quiet option, which will not be available in
future releases.

–mhf (Multiple Hierarchical Files)

The –mhf option is used to write multiple hierarchical files, one for every module that has
the KEEP_HIERARCHY attribute.

–module (Verification of Active Module)

–module

The –module option creates a netlist file based on the active module, independent of the
top-level design. NetGen constructs the netlist based only on the active module’s interface
signals.

To use this option you must specify an NCD file that contains an expanded active module.
To create this NCD file, see “Implementing an Active Module” in Chapter 4.

Note: This option is for use with the Modular Design flow.

–ne (No Name Escaping)

By default (without the –ne option), NetGen “escapes” illegal block or net names in your
design by placing a leading backslash (\) before the name and appending a space at the
end of the name. For example, the net name “p1$40/empty” becomes “\p1$40/empty ”
when name escaping is used. Illegal Verilog characters are reserved Verilog names, such as
“input” and “output,” and any characters that do not conform to Verilog naming
standards.

The –ne option replaces invalid characters with underscores, so that name escaping does
not occur. For example, the net name “p1$40/empty” becomes “p1$40_empty” when
name escaping is not used. The leading backslash does not appear as part of the identifier.
The resulting Verilog file can be used if a vendor’s Verilog software cannot interpret
escaped identifiers correctly.

–ngm (Design Correlation File)

–ngm [ngm_file]

Use the -ngm option for design correlation. This option is applicable for use with an input
.ncd file.

–tm (Top Module Name)

–tm top_module_name

By default (without the –tm option), the output files inherit the top module name from the
input NCD or NGM file. The –tm option changes the name of the top-level module name
appearing within the NetGen output files.
332 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NetGen Static Timing Analysis Flow
R

–w (Overwrite Existing Files)

The –w option causes NetGen to overwrite the .v file if it exists. By default, NetGen does
not overwrite the netlist file.

Note: All other output files are automatically overwritten.

NetGen Static Timing Analysis Flow
This section describes the NetGen Static Timing Analysis flow, which is used for analyzing
the timing, including minimum of maximum delay values, of FPGA designs.

Minimum of maximum delays are used by static timing analysis tools to calculate skew,
setup and hold values. Minimum of maximum delays are the minimum delay values of a
device under a specified operating condition (speed grade, temperature and voltage). If the
operating temperature and voltage are not specified, then the worst case temperature and
voltage values are used. Note that the minimum of maximum delay value is different from
the process minimum generated by using the –s min option.

The following example shows DELAY properties containing relative minimum and
maximum delays.

Note: Both the TYP and MAX fields contain the maximum delay.

(DELAY)

(ABSOLUTE)

(PORT I (234:292:292) (234:292:292))

(IOPATH I O (392:489:489) (392:489:489))

Note: Timing simulation does not contain any relative delay information, instead the MIN, TYP, and
MAX fields are all equal.

NetGen uses the Static Timinng Analysis flow to generate Verilog and SDF netlists
compatible with supported static timing analysis tools.

The figure below illustrates the NetGen Static Timing Analysis flow.

Figure 23-6: FPGA Static Timing Analysis

X9984

NCD

V

Static Timing Analysis Tool

NetGen

STA
Library

NGM PCF

SDF
Development System Reference Guide www.xilinx.com 333
 1-800-255-7778

http://www.xilinx.com

Chapter 23: NetGen
R

Input files for Static Timing Analysis
The Static Timing Analysis flow uses the following files as input:

• NCD file—This physical design file may be mapped only, partially or fully placed, or
partially or fully routed.

• NGM file (optional but recommended)—This mapped file is generated by MAP and
contains hierarchical information on the design. For HDL synthesis-based designs, the
NGM file can help recover the original design hierarchy. See “–ngm (Design
Correlation File)” for more information.

• PCF (optional)—This is a physical constraints file. If prorated voltage and
temperature is applied to the design, the PCF file must be included to pass this
information to NetGen. See “–pcf (PCF File)” for more information.

Output files for Static Timing Analysis
The Static Timing Analysis flow uses the following files as output:

• SDF file—This SDF 3.0 compliant standard delay format file contains delays obtained
from the input file.

• Verilog (.v) file—This is a IEEE 1364-2001 compliant Verilog HDL file that contains the
netlist information obtained from the input file. This file is a timing simulation model
and cannot be synthesized or used in any manner other than for static timing analysis.
This netlist uses simulation primitives, which may not represent the true
implementation of the device. The netlist represents a functional model of the
implemented design.

Syntax for NetGen Static Timing Analysis
The following command runs the NetGen Static Timing Analysis flow:

netgen -sta input_file[.ncd] ngm_file[.ngm]]

The input_file is the input file name and extension.

The ngm_file is an optional NGM file, which is a design file, produced by MAP, that
contains information about the hierarchy of the design. If you specify an NGM file, NetGen
detects the levels of hierarchy in which the KEEP_HIERARCHY attributes are attached and
recreates the design hierarchy from the physical design database.

To get help on command line usage for equivalence checking, type:

netgen -h sta

NetGen Options for Static Timing Analysis
This next section describes the supported NetGen command line options for static timing
analysis.

–aka (Write Also-Known-As Names as Comments)

The –aka option includes original user-defined identifiers as comments in the VHDL
netlist. This option is useful if user-defined identifiers are changed because of name
legalization processes in NetGen.
334 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NetGen Static Timing Analysis Flow
R

–bd (Block RAM Data File)

–bd [filename] [.elf|.mem]

The –bd switch specifies the path and file name of the .elf file used to populate the Block
RAM instances specified in the .bmm file. The address and data information contained in
the .elf file allows Data2MEM to determine which ADDRESS_BLOCK to place the data.

–dir (Directory Name)

–dir [directory_name]

The -dir option specifies the directory in which the output files are written.

–fn (Control Flattening a Netlist)

The –fn option produces a flattened netlist.

–intstyle (Reduce Screen Output)

–intstyle silent

The –intstyle option, used with the silent argument, reduces the screen output to warnings
and errors only. This option replaces the –quiet option, which will not be available in future
releases.

–mhf (Multiple Hierarchical Files)

The –mhf option is used to write multiple hierarchical files, one for every module that has
the KEEP_HIERARCHY attribute.

–module (Simulation of Active Module)

–module

The –module option creates a netlist file based on the active module, independent of the
top-level design. NetGen constructs the netlist based only on the active module’s interface
signals.

To use this option you must specify an NCD file that contains an expanded active module.
To create this NCD file, see “Implementing an Active Module” in Chapter 4.

Note: The –module option is for use with the Modular Design flow.

–ne (No Name Escaping)

By default (without the –ne option), NetGen “escapes” illegal block or net names in your
design by placing a leading backslash (\) before the name and appending a space at the
end of the name. For example, the net name “p1$40/empty” becomes “\p1$40/empty ”
when name escaping is used. Illegal Verilog characters are reserved Verilog names, such as
“input” and “output,” and any characters that do not conform to Verilog naming
standards.

The –ne option replaces invalid characters with underscores, so that name escaping does
not occur. For example, the net name “p1$40/empty” becomes “p1$40_empty” when
name escaping is not used. The leading backslash does not appear as part of the identifier.
The resulting Verilog file can be used if a vendor’s Verilog software cannot interpret
escaped identifiers correctly.
Development System Reference Guide www.xilinx.com 335
 1-800-255-7778

http://www.xilinx.com

Chapter 23: NetGen
R

–ngm (Design Correlation File)

–ngm [ngm_file]

The -ngm option is used for design correlation.

–pcf (PCF File)

-pcf pcf_file.pcf

The –pcf option allows you to specify a PCF (physical constraints file) as input to NetGen.
You only need to specify a constraints file if it contains prorating constraints (temperature
or voltage).

Temperature and voltage constraints and prorated delays are described in the Constraints
Guide.

–s (Change Speed)

–s [speed grade]

The –s option instructs NetGen to annotate the device speed grade you specify to the
netlist. The device speed can be entered with or without the leading dash. For example, –s
3 is the only allowable entry.

Some architectures support the –s min option. This option instructs NetGen to annotate a
process minimum delay, rather than a maximum worst-case delay and relative minimum
delay, to the netlist. The command line syntax is the following:

-s min

Minimum delay values may not be available for all families. Use the Speedprint or
PARTGen utility program in the software to determine whether process minimum delays
are available for your target architecture.

Note: Settings made with the –s min option override any prorated timing parameters in the PCF. If
–s min is used then all fields (MIN:TYP:MAX) in the resulting SDF file are set to the process minimum
value.

–sta (Generate Static Timing Analysis Netlist)

The –sta option writes a static timing analysis netlist.

–tm (Top Module Name)

–tm top_module_name

By default (without the –tm option), the output files inherit the top module name from the
input NCD file or NGM file. The –tm option changes the name of the top-level module
name appearing within the NetGen output files.

–w (Overwrite Existing Files)

The –w option causes NetGen to overwrite the .v file if it exists. By default, NetGen does
not overwrite the netlist file.

All other output files are automatically overwritten.
336 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Preserving and Writing Hierarchy Files
R

Preserving and Writing Hierarchy Files
When hierarchy is preserved during synthesis and implementation using the
KEEP_HIERARCHY constraint, the netgen –mhf option writes separate netlists and SDF
files (if applicable) for each piece of hierarchy.

This section describes the output file types produced with the –mhf option. The type of
netlist output by NetGen, depends on whether you are running the NetGen timing
simulation, equivalence checking, or static timing analysis flow. For timing simulation,
Netgen outputs a Verilog or VHDL file. The –ofmt option must be used to specify the
output file type you wish to produce when you are running the NetGen timing simulation
flow.

Note: When Verilog is specified, the $sdf_annotate is included in the Verilog netlist for each module.

The following table lists the base naming convention for hierarchy output files:

The [module_name] is the name of the hierarchical module from the front-end that the user
is already familiar with. There are cases when the [module_name] could differ, they are:

• If multiple instances of a module are used in the design, then each instantiation of the
module is unique because the timing for the module is different. The names are made
unique by appending an underscore followed by a count value (e.g., numgen,
numgen_1, numgen_2)

• If a new filename clashes with an existing filename within the name scope, then the
new name will be [module_name]_[instance_name].

Testbench File

A testbench file is created for the top-level design when the -tb option is used. The base
name of the testbench file is the same as the base name of the design, with a .tv extension
for Verilog, and a .tvhd extension for VHDL.

Hierarchy Information File

In addition to writing separate netlists, NetGen also generates a separate text file
comprised of hierarchy information. The following information appears in the hierarchy
text file. NONE appears if one of the files does not have relative information.

// Module : The name of the hierarchical design module.

// Instance : The instance name used in the parent module.

// Design File : The name of the file that contains the module.

// SDF File : The SDF file associated with the module.

// SubModule : The sub module(s) contained within a given module.

Table 23-1: Hierarchy File Content

Hierarchy File Content Simulation Equivalence Checking Static Timing Analysis

File with Top-level
Module

[input_filename] (default),
or user specified output
filename

[input_filename]_ecn, or
user specified output
filename

[input_filename]_sta, or

user specified output
filename

File with Lower Level
Module

[module_name]_sim [module_name]_ecn [module_name]_sta
Development System Reference Guide www.xilinx.com 337
 1-800-255-7778

http://www.xilinx.com

Chapter 23: NetGen
R

// Module, Instance : The sub module and instance names.

Note: The hierarchy information file for a top-level design does not contain an Instance field.

The base name of the hierarchy information file is:

[design_base_name]_mhf_info.txt

The STARTUP block and SUH component are only supported on the top-level design
module. The global set reset (GSR) and global tristate signal (GTS) connectivity of the
design is maintained as described in the “Dedicated Global Signals in Back-Annotation
Simulation” section of this chapter.

Hierarchical Modules with Secure Netlist Attributes
Designs can contain instantiated components or modules which contain protected
intellectual property (IP). In such cases, there are security attributes in the design that
either prohibit the creation of the output netlist or encrypt the output netlist. When
NetGen creates a single output netlist, the security attribute is applied to the entire netlist.
Hierarchical designs containing modules with KEEP_HIERARCHY attributes can be
written out as separate netlists using the –mhf option. If a security attribute is attached to
one of the hierarchical modules, the security attribute is applied to the netlist that contains
the IP core when NetGen creates multiple netlists. A security attribute with an ENCRYPT
value produces an encrypted netlist for that module when the –mhf option is used. A
security attribute with a PROHIBIT value will not create a netlist for that module when the
–mhf option is used. Plain text netlist will be created for all other cases.

Dedicated Global Signals in Back-Annotation Simulation
The global set reset (GSR), PRLD for CPLDs, signal and global tristate signal (GTS) are
global routing nets present in the design that provide a means of setting, resetting, or
tristating applicable components in the device. The simulation behavior of these signals is
modeled in the library cells of the Xilinx Simprim library and the simulation netlist using
the glbl module in Verilog and the X_ROC / X_TOC components in VHDL.

The Verilog or VHDL netlists created by Netgen can be a single netlist without any
hierarchical module, a single netlist with hierarchical modules, or multiple netlists that
each contain a hierarchical component created with Netgen –mhf option.

For a non-hierarchical netlist, the GSR and GTS nets are controlled by a glbl module in
Verilog or the X_ROC / X_TOC components in VHDL. For netlists with hierarchical
modules, GSR and GTS nets of a hierarchical module are controlled in that module by a
glbl module in Verilog or the X_ROC /X_TOC components in VHDL.

The following sections explain the connectivity for Verilog and VHDL netlists.

Global Signals in Verilog Netlist
The glbl module from Xilinx Verilog libraries controls the behavior of the GSR and GTS
signals of the verilog netlist. A hierarchical netlist contains the glbl connectivity for each
hierarchical module whether the hierarchical modules are contained in a single file or
created in multiple files using the –mhf option. The GSR and GTS signals of each
hierarchical module are connected as shown below:

GSR = glbl.GSR;

GTS = glbl.GTS;
338 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Dedicated Global Signals in Back-Annotation Simulation
R

If the GSR and GTS signals are brought out to the top-level design as ports using the -gp
and -tp switches, then the top most module has the following connectivity:

glbl.GSR = GSR_PORT

glbl.GTS = GTS_PORT

The GSR_PORT and GTS_PORT are ports on the top-level design module created with the
-gp and -tp options. If a STARTUP block is used in the design, the STARTUP block will be
translated to buffers that preserve the intended connectivity of the user control signals to
the GSR and GTS logic.

For all hierarchical designs, the glbl module must be compiled and referenced along with
the design. For information on setting GSR and GTS for FPGAs, see the “Simulating
Verilog” section of the Synthesis and Verification Design Guide.

Global Signals in VHDL Netlist
The X_ROC and X_TOC components from the Xilinx Simprim library control the behavior
of the GSR and GTS signals of a VHDL netlist. The netlist uses the X_ROC and X_TOC
components to drive the GSR and GTS of each hierarchical module. A hierarchical netlist
contains this connectivity for each module, whether the hierarchical modules are
contained in one file or created in multiple files using the -mhf option. The GSR and GTS
signal of each hierarchical module are connected as shown below:

X_ROC (O => GSR);

X_TOC (O => GTS);.

For hierarchical designs, if the GSR and GTS signals are brought out to the top-level design
using the -gp and -tp options, then the top most module have the following connectivity:

X_GSR_GLOBAL_SIGNAL <= GSR_PORT

X_GTS_GLOBAL_SIGNAL <= GTS_PORT

The GSR_PORT and GTS_PORT are ports on the top-level design module created with the
-gp and -tp switches. The X_GSR_GLOBAL_SIGNAL and X_GTS_GLOBAL_SIGNAL are
defined as global signals within a package in the VHDL netlist. If multiple hierarchical
netlists are created, then the package is defined in each netlist thus facilitating compile and
simulation of a single hierarchical module, if needed. The package name is based on the
design name as described below:

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

PACKAGE [design_name]_ROCTOC IS

SIGNAL X_GSR_GLOBAL_SIGNAL : STD_LOGIC;

SIGNAL X_GTS_GLOBAL_SIGNAL : STD_LOGIC;

END [design_name]_ROCTOC;
Development System Reference Guide www.xilinx.com 339
 1-800-255-7778

http://www.xilinx.com

Chapter 23: NetGen
R

These global signals maintain the connectivity of the top-level GSR_PORT and GTS_PORT
to the GSR and GTS nets of every hierarchical module using the X_ROCBUF and
X_TOCBUF components from the Xilinx Simprims VHDL Library. Each hierarchical
module uses the X_ROCBUF and X_TOCBUF to drive GSR and GTS signals of that
module.

X_ROCBUF (I => X_GSR_GLOBAL_SIGNAL, GSR => O)

X_TOCBUF (I => X_GTS_GLOBAL_SIGNAL, GTS => O)

If a STARTUP block is used in the design, the STARTUP block is translated to buffers that
preserve the intended connectivity of the user control signals to the GSR and GTS logic.

For information on setting GSR and GTS for FPGAs, see the “Simulating VHDL” section of
the Synthesis and Verification Design Guide.
340 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 24

NGDAnno

Note: NGDAnno and the Netlist Writers (NGD2VER and NGD2VHDL) are combined into one new
executable: NetGen. It is recommended that you convert any scripts (flows) from NGDAnno,
NGD2VER, and NGD2VHDL as soon as possible. These applications are being deprecated and will
not be available in future releases of Xilinx software. Please see Chapter 23, “NetGen” for additional
information.

This program is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™/-II/-IIE

This chapter describes the NGDAnno program. The chapter contains the following
sections:

• “NGDAnno Overview”

• “NGDAnno Syntax”

• “NGDAnno Input Files”

• “NGDAnno Output Files”

• “NGDAnno Options”

• “Dedicated Global Signals in Back-Annotation Simulation”

• “External Setup and Hold Check”

NGDAnno Overview
The back-annotation process generates a generic timing simulation model. In the Xilinx
Development System, NGDAnno back-annotates timing information using an NCD file
and, optionally, an NGM file. The NCD file, the output of MAP or PAR, represents the
physical design. The NGM file, the output of MAP, contains hierarchical information of the
original design if KEEP_HIERARCHY attributes are applied to the design.

• If you do not supply an NGM file, NGDAnno performs a flattened back-annotation.

• If you supply an NGM file, NGDAnno detects the levels of hierarchy in which the
KEEP_HIERARCHY attributes are attached and recreates the design hierarchy from the
physical design database. For more information, refer to the “NGDAnno Syntax”
section.

• If the NGM file does not contain any KEEP_HIERARCHY blocks, NGDAnno
performs a flattened back-annotation.

NGDAnno outputs an annotated logical design file that has a Native Generic Annotated
(NGA) .nga extension. The NGA file is inputs to the appropriate netlist writer
Development System Reference Guide www.xilinx.com 341
 1-800-255-7778

http://www.xilinx.com

Chapter 24: NGDAnno
R

(NGD2EDIF, NGD2VHDL, or NGD2VER). The netlist writer converts the back-annotated
file in Xilinx format into netlist format for simulation.

In addition to back-annotating a fully routed design, if you run NGDAnno before PAR you
will get just block delays and no route delays. Then, run the appropriate netlist writer to
generate a simulative netlist.

Note: Block delays can be less than 50% of your path delay. Simulating with block delays is an
imprecise method of determining whether your timing will be met before you actually place and route.

The following figure shows the back-annotation flow.

NGDAnno Syntax
The following command runs NGDAnno:

ngdanno [options] ncd_file[.ncd] [ngm_file[.ngm]]

The ncd_file is the input NCD (physical design file) output from MAP (without route
delays) or PAR (with route delays). If you specify an NCD file on the command line
without specifying an NGM file, NGDAnno performs back-annotation without hierarchy.
The NGA file contains annotated information about the physical implementation only.

Figure 24-1: Back-Annotation Flow

X9864

PAR

NGDAnno

NGD2EDIF

MAP

NGD
Logical Design

NCD
Physical Design

(Mapped)

NCD
Physical Design

(Placed and Routed)

NGM

NGD2VER

NGD2VHDL

NGA

EDIF

SDF

V

PCF

ALF

SDF

VHD
342 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGDAnno Input Files
R

The ngm_file is an optional NGM file, which is a design file produced by MAP that contains
information about the hierarchy of the design. If you specify an NGM file, NGDAnno
detects the levels of hierarchy in which the KEEP_HIERARCHY attributes are attached and
recreates the design hierarchy from the physical design database.

If you do not specify an NGA file with the –o option (described in “–o (Output File
Name)”), an NGA file is generated in the same directory as the NCD. The NGA file has the
same root name as the NCD file. For example, the command generates an NGA file named
mydesign.nga:

ngdanno mydesign.ncd [mydesign_map.ngm]

NGDAnno Input Files
NGDAnno uses the following files as input:

• NCD file—This physical design file may be mapped only, partially or fully placed, or
partially or fully routed.

• NGM file (optional but recommended)—This mapped NGD file is created by the
MAP program. This file contains hierarchical information on the design.

For HDL synthesis-based designs, the NGM file can help recover the original design
hierarchy.

• PCF file (optional)—This is a physical constraints file. If prorated voltage or
temperature is applied to the design, the PCF file must be included to pass this
information to NGDAnno.

NGDAnno Output Files
NGDAnno creates the following files as output:

• NGA file—This is a back-annotated design file.

Note: NGA files generated in previous releases cannot be used with the netlist writers
(NGD2EDIF, NGD2VHDL, or NGDVER) in this release. You must rerun NGDAnno to generate an
NGA file for use with a netlist writer.

• ALF file—This annotation log file contains information about the NGDAnno run. The
ALF file has the same root name as the output NGA file and an .alf extension. The
ALF file is written into the same directory as the output NGA file.

Data Output
This section describes the SETUPHOLD properties and relative minimum delays.

SETUP and HOLD values have been combined into a single SETUPHOLD property to
properly convey to the simulator negative hold values.

Negative setup or hold values are no longer truncated to zero. Also the MIN field now
contains a new value called the relative minimum delay. Relative minimum delays are the
minimum delay value when operating at the specified operating conditions (temperature
and voltage). If the operating conditions are not specified, the worst case values for the
target architecture are used. This is different from the process minimum generated by
using the -s MIN switch for NGDAnno. A process minimum is the absolute minimum
delay for the device when operated within the operation parameters of the device. The
following example shows SETUP and properties combined into SETUPHOLD property
with negative hold times.
Development System Reference Guide www.xilinx.com 343
 1-800-255-7778

http://www.xilinx.com

Chapter 24: NGDAnno
R

(TIMINGCHECK
(SETUPHOLD (posedge I) (posedge CLK) (1673:1673:1673) (-379:-379:-379))
(SETUPHOLD (negedge I) (posedge CLK) (1673:1673:1673) (-379:379:-379))

The following example shows DELAY properties containing relative minimum and
maximum delays.

Note: Both the TYP and MAX fields contain the maximum delay.

(DELAY
(ABSOLUTE
(PORT I (234:292:292) (234:292:292))
(IOPATH I O (392:489:489) (392:489:489))

The following is a breakdown of the (MIN:TYP:MAX) fields in the SDF file as a result of the
various NGDAnno options and preferences:

Optimized (Trimmed) Ports, and Bus Information Preserved
Optimized or trimmed ports are preserved on the top-level block. However, any trimmed
logic associated with this port is lossed since that information is trimmed by the mapper. In
addition, bus order is also preserved. These features assure that your testbench will
continue to function.

NGDAnno Options
This next section describes the NGDAnno command line options.

–bd (BRAM Data File)
-bd <filename>[.elf | .mem]

The –bd switch specifies the path and file name of the .elf file used to populate the BRAMs
specified in the .bmm file. The address information contained in the .elf file allows
Data2BRAM to determine which ADDRESS_BLOCK to place the data.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file. For
more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.

Table 24-1: MIN:TYP:MAX Fields

NGDAnno
Options and
Preference

Old Behavior 4.1i and Earlier
(Logical and Physical Annotation)

New Behavior

Default behavior (MAX:MAX:MAX) (MIN:MAX:MAX)

-s min (Process MIN:Process MIN:Process MIN) No change

Prorated
voltage/temp in
PCF

(Prorated MAX:Prorated MAX
:Prorated MAX)

(Prorated MIN: Prorated MAX:Prorated MAX)
344 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGDAnno Options
R

–module (Simulation of Active Module)
–module

The –module option creates an NGA file based on the active module, independent of the
top-level design. NGDAnno constructs the NGA file based only on the active module’s
interface signals.

To use this option you must specify an NCD file that contains an expanded active module.
To create this NCD file, see “Implementing an Active Module” in Chapter 4.

For more information on simulating modules, see “Simulating an Active Module” in
Chapter 4.

–o (Output File Name)
–o out_file[.nga]

The –o option specifies the output design file in NGA format. The .nga extension is
optional. The output file name and its location are determined in the following ways:

• If you do not specify an output file name with the –o option, the output file has the
same name as the input NCD file, with an .nga extension. The file is placed in the
input NCD file’s directory.

• If you specify an output file name with no path specifier (for example, cpu_dec.nga
instead of /home/designs/cpu_dec.nga), the NGA file is placed in the current working
directory.

• If you specify an output file name with a full path specifier (for example,
/home/designs/cpu_dec.nga), the output file is placed in the specified directory.

If the output file already exists, it is overwritten with the new NGA file.

–p (PCF File)
-p pcf_file.pcf

The –p option allows you to specify a PCF (Physical Constraints) file as input to
NGDAnno. You only need to specify a constraints file if it contains prorating constraints
(temperature or voltage).

Temperature and voltage constraints and prorated delays are described in the Constraints
Guide.

–quiet (Report Warnings and Errors Only)
The –quiet option reduces NGDAnno screen output to warnings and errors only. This
option is useful if you only want a summary of the NGDAnno run.

–s (Change Speed)
-s [speed][grade]

The –s option instructs NGDAnno to annotate the device speed/grade you specify to the
NGA file. The device speed can be entered with or without the leading dash. For example,
both –s 3 and –s –3 are allowable entries.
Development System Reference Guide www.xilinx.com 345
 1-800-255-7778

http://www.xilinx.com

Chapter 24: NGDAnno
R

Some architectures support the –s min option. This option instructs NGDAnno to annotate
a process minimum delay, rather than a maximum worst-case and relative minimum delay,
to the NGA file. The command line syntax is the following.

-s min

Minimum delay values may not be available for all families. Use the Speedprint or
PARTGen utility in the software to determine whether process minimum delays are
available for your target architecture.

Note: Settings made with the –s min option override any prorated timing parameters in the PCF file.
If –s min is used then all three fields (MIN:TYP:MAX) in the resulting SDF file produced by NGD2VER
or NGD2VHDL will be set to the process minimum value.

Preserving Hierarchy Annotation

Hierarchical Design Annotation

Hierarchical annotation requires the following:

1. .ncd file

2. .ngm file

3. KEEP_HIERARCHY constraint is explicitely placed on hierarchy blocks prior to
mapping or synthesis

These three choices then guarantee that back-annotation preserves your hierarchy.

Hierarchical Annotation is a significant change in back-annotation methodology for the
following reasons:

• KEEP_HIERARCHY must be added to hierarchical blocks prior to synthesis or
mapping the design.

In the past users would decide at NGDAnno runtime whether or not to keep
hierarchy. But that did not guarantee that mapping or synthesizing would not cover
(lose) the hierarchical boundaries during processing.This guarantees hierarchy
preservation better than previously when NGDAnno was runat runtime.

Note: Some synthesis vendors are not yet supporting the KEEP_HIERARCHY constraint at
this time. You can add the KEEP_HIERARCHY constraint to the UCF file. For more information,
please see the Constraints Guide.

• The KEEP_HIERARCHY constraint guarantees hierarchy retention by forcing synthesis
and mapping to preserve the nodes at the hierarchical boundaries. You must consider
that the KEEP_HIERARCHY constraint limits global optimizations. Because of this,
there may be some degradation in performance (Fmax, component count) associated
when you force the mapper synthesis to preserve the nodes at the hierarchical
boundaries.

• Blocks that do not have KEEP_HIERARCHY constraints will be flattened.

Hierarchical annotation requires the use of both the .ngm file and the .ncd file. If the .ngm
file is omitted, the following message is generated:

INFO:Anno:2012 - KEEP_HIERARCHY constraint was used but no NGM file was
provided - design will be flattened.

Hierarchical annotation requires the placement of the KEEP_HIERARCHY constraint on
hierarchical blocks of importance prior to synthesis and mapping.
346 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Dedicated Global Signals in Back-Annotation Simulation
R

Dedicated Global Signals in Back-Annotation Simulation
This section presents information on how global signals are treated in back-annotation
simulation. There are two global signals: one for global set/reset (GSR), and one for Global
3-state setup logic (GTS).

Note: For a description of the STARTUP_VIRTEX, STARTUP_VIRTEX2, and
STARTUP_SPARTAN2 components, see the “Design Elements” chapter of the Libraries Guide.

Virtex/-II/II Pro/-E and Spartan-II/IIE
For Virtex, Virtex-II, Virtex-II Pro, Virtex-E, Spartan-II, and Spartan-IIE devices, a High
signal on the GSR net initializes each flip-flop and latch to the state (0 or 1) specified by its
INIT property (default is 0) and each Block RAM data output to 0. The INIT property must
match the flip-flop type. For example, if you use an FDR flip-flop, you must retain the
automatically assigned INIT=R property. The DCM DLL and the contents of the following
memory elements are unaffected by GSR: LUT RAM, Block RAM, SRL16, and SRLC16.

A High signal on GTS sets all outputs to a 3-state condition. If you did not use the
STARTUP_VIRTEX component in your original design, these signals are initialized to their
inactive states. Otherwise, you must stimulate the input GSR and GTS pins of the
STARTUP_VIRTEX component either directly or through logic from explicit pins on the
device.

Virtex-II devices differ slightly from Virtex devices. The STARTUP block for Virtex-II is
called STARTUP_VIRTEX2. In addition, GSR has two levels of control. By default when
GSR is asserted, a register sets or presets according to its type. For example, an FDR flip-
flop changes to 0 when GSR is asserted. With Virtex-II, you can also override this default
behavior by using the INIT property. For example, if you assign INIT=S for FDR, asserting
GSR changes the state of the register to 1 instead of the default value of 0.

Using a BUFGMUX element in your Virtex-II/Virtex-II Pro design may cause inaccurate
simulation if all the following conditions occur:

• Both clock inputs (I0 and I1) are used

• GSR is activated during simulation (after simulation time ‘0’)

• The secondary clock input (I1) is selected before or while GSR is active

In this case, the primary clock input (I0) is incorrectly selected. This occurs because there is
a cross-coupled register pair that ensures the BUFGMUX output does not inadvertently
generate a clock edge. When GSR is asserted, these registers initialize to the default state of
I0. To select the secondary clock, you must send a clock pulse to both the primary and
secondary clock inputs while GSR is inactive.
Development System Reference Guide www.xilinx.com 347
 1-800-255-7778

http://www.xilinx.com

Chapter 24: NGDAnno
R

External Setup and Hold Check
In addition to the setup and hold checks already performed during back-annotation,
NGDAnno creates an External Setup and Hold Check (ESUH) primitive for every input
data/clock pair that drives a register. ESUH primitives are created for all Virtex, Virtex II,
Virtex-E, Virtex-II Pro, Spartan-II, and Spartan-IIE devices.

ESUH primitives are generated for registers in the design that meet the following
requirements:

• The clock and data are extremely driven.

• The clock uses the global clock resources.

• Data is available in the speed files.

• Clock and data signals are routed to the top level of the design.

Note: If a ESUH primitive cannot be created because this requirement is not met, NGDAnno
issues a warning.

Following are details regarding the timing values generated for the ESUH primitives:

• For data/clock pairs that drive more than one register, the maximum setup and
maximum hold value of the group is used.

• NGDAnno does not use timing constraints specified in the PCF file. It only uses the
TEMPERATURE, VOLTAGE, and LOGIC constraints specified in the PCF file.

If guaranteed setup and hold values exist in the speed files, they will be used for the ESUH
primitives. If they do not exist, the external setup and hold values will be computed as
shown in the following example:

External Setup and Hold Checking and Negative Holds Example

The following figure displays the flow for setup and hold checking:

The previous figure assumes the following minimum and maximum reported delays:

Intrinsic setup on the flop (Tsu) = 100 ps
Intrinsic hold on the flop (Th) = 0 ps
Min, Max delay on the data path (D) = (350, 500) ps
Min, Max delay on the clock path (C) = (70, 100) ps

Figure 24-2: Setup and Hold Checking Flow

BUF

ESUH

X9865

BUF BUFG

FF
348 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

External Setup and Hold Check
R

Running a max simulation, the setup and hold seen at the pad level
without the ESUH check is as follows:

Setup = D - C + Tsu = 500 -100 + 100 = 500 ps
Hold = C - D + Th = 100 -500 + 0 = -400 ps

The external setup and hold is computed by using the min and max values as follows:

Setup = maxD - minC + Tsu = 500 - 70 + 100 = 530 ps
Hold = maxC - minD + Th = 100 -350 + 0 = -250 ps

Note: Negative setup or hold times are no longer truncated to zero. As you can see, the external
setup and hold check gives the most pessimistic data valid window.
Development System Reference Guide www.xilinx.com 349
 1-800-255-7778

http://www.xilinx.com

Chapter 24: NGDAnno
R

350 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 25

NGD2VER

Note: NGDAnno and the Netlist Writers (NGD2VER and NGD2VHDL) are combined into one new
executable: NetGen. It is recommended that you convert any scripts (flows) from NGDAnno,
NGD2VER, and NGD2VHDL as soon as possible. These applications are being deprecated and will
not be available in future releases of Xilinx software. Please see Chapter 23, “NetGen” for additional
information.

This program is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE

• CoolRunner™ XPLA3/-II

• XC9500™/XL/XV

This chapter describes the NGD2VER program. The chapter contains the following
sections:

• “NGD2VER Overview”

• “NGD2VER Syntax”

• “NGD2VER Input Files”

• “NGD2VER Output Files”

• “NGD2VER Options”

• “Setting Global Set/Reset, 3-State, and PRLD”

• “Test Fixture File”

• “Bus Order in Verilog Files”

• “Verilog Identifier Naming Conventions”

• “Compile Scripts for Verilog Libraries”

NGD2VER Overview
NGD2VER translates your design into a Verilog HDL file containing a netlist description
of your design in terms of Xilinx simulation primitives. You can use the Verilog file to
perform a back-end simulation with a Verilog simulator.

Simulation is based on SimPrims, which create simulation models using basic simulation
primitives. For example, because a primitive for the Virtex-E dual-port RAM does not exist
in the Verilog SimPrim library files, NGD2VER builds a simulation model for the dual-port
RAM out of two 16x1 RAM SimPrim primitives.

NGD2VER can produce a Verilog file representing a design at any of the following stages:
Development System Reference Guide www.xilinx.com 351
 1-800-255-7778

http://www.xilinx.com

Chapter 25: NGD2VER
R

• An unmapped design—To translate an unmapped design, the input to NGD2VER is
an NGD file—a logical description of your design. The output from NGD2VER is a
Verilog file containing a functional description of the design without timing
information.

• A mapped, unrouted design—To translate a mapped design which has not been
placed and routed, the input to NGD2VER is an NGA file— an annotated logical
description of your design—generated from a mapped physical design. The output
from NGD2VER is a Verilog file containing a functional description of the design, and
an additional SDF (Standard Delay Format) file containing timing information. The
SDF file contains component delays without routing delays.

• A routed design—To translate a design that has been placed and routed, the input to
NGD2VER is an NGA file generated from a routed physical design. The output from
NGD2VER is a Verilog file containing a functional description of the design and an
SDF file containing both component and routing delays.

The following figure shows the design flow for NGD2VER.

Note: If you use a prohibited core in your design, NGD2VER issues an error message and does not
export your design. If you use an encrypted core, NGD2VER generates an encrypted file.

NGD2VER Syntax
The following command translates your design to a Verilog file:

ngd2ver [options] infile[.ngd|.nga] [outfile[.v]]

options can be any number of the NGD2VER options listed in “NGD2VER Options”. They
do not need to be listed in any particular order. Separate multiple options with spaces.

Figure 25-1: NGD2VER Design Flow

NGD2VER

V
Verilog Netlist

(for Simulation)

X7228

NGA
(Annotated Design)

or
NGD

(Logical Design)

SDF
Standard Delay Format

PIN
Signal-to-Pin Mapping

(Optional)

TV
Test Fixture
(Optional)

ngd2ver.log
Log File
352 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGD2VER Input Files
R

The infile [.ngd|.nga] is the input NGD or NGA file. If you enter a file name with no
extension, NGD2VER looks for a file with an .nga extension, and the name you specified.
If you want to translate an NGD file, you must enter the .ngd extension. Without the .ngd
extension, NGD2VER does not use the NGD file as input, even if a NGA file is not present.

The outfile[.v] indicates the file to which the Verilog output of NGD2VER is written. The
default is infile.v (infile is the same root name as the input file). The SDF file has the same
root name as the Verilog file.

NGD2VER Input Files
The primary output of NGD2VER is a Verilog netlist. It may also produce an SDF file if the
design contains timing information, a PIN file if the -pf option is specified, a testfixture file
if the -tf option is specified, and a log file.

NGD2VER uses the following files as input:

• NGA—This back-annotated logical design file is produced by NGDAnno and
contains Xilinx primitives.

• NGD—This logical design file is produced by NGDBuild and contains Xilinx
primitives.

NGD2VER Output Files
NGD2VER creates the following files as output:

• V file—This is a IEEE 1364-2001 compliant Verilog HDL file that contains the netlist
information obtained from the input NGD or NGA file. This file is a simulation model
and cannot be synthesized or used in any other manner than simulation. This netlist
uses simulation primitives which may not represent the true implementation of the
device; however, the netlist represents a functional model of the implemented design.
Do not modify this file.

• SDF file—This Standard Delay Format file contains delays obtained from the input
file. NGD2VER only generates an SDF file if the input is an NGA file, which contains
timing information. The SDF file generated by NGD2VER is based on SDF version 3.0.

Note: The SDF file should only be used with the Verilog file. Do not use the SDF file with the
original design or with the product of another netlist writer.

• LOG file—This log file contains all the messages generated during the execution of
NGD2VER.

• TV file—This optional test fixture file is created if you use the NGD2VER –tf option.

• PIN file—This is an optional Cadence signal-to-pin mapping file. NGD2VER
generates a PIN file if the input file contains routed external pins and you use the
NGD2VER –pf option.

Table 25-1: Input Files

File Type Syntax Location Access Mode File Format

NGA File *.nga Current working directory, or path as given on
command line

Reader XDM

NGD File *.ngd Current working directory, or path as given on
command line

Reader XDM
Development System Reference Guide www.xilinx.com 353
 1-800-255-7778

http://www.xilinx.com

Chapter 25: NGD2VER
R

NGD2VER only generates an PIN file if the input is an NGA file. The files have the
same root name as the NGA file.

NGD2VER Options
This section describes the NGD2VER command line options.

–10ps (Set Time Precision to be 10ps)
The –10ps option changes the default timescale statement from 1 ns/1 ps to 1 ns/10 ps.
This allows you to choose the appropriate simulation resolution based on your simulation
run-time requirements.

–aka (Write Also-Known-As Names as Comments)
The –aka option includes original user-defined identifiers as comments in the Verilog
netlist. This option is useful if user-defined identifiers are changed because of name
legalization processes in NGD2VER.

–cd (Include `celldefine\`endcelldefine in Verilog File)
The –cd option applies to a Verilog file that will be used with the Cadence Synergy
synthesis tool. The –cd option encloses every module definition in `celldefine and
`endcelldefine constructs, as in the following example:

`celldefine
module <module_name>

.

.

.
endmodule

`endcelldefine

The `celldefine and `endcelldefine constructs instruct the Cadence Synergy software to
treat an enclosed module as a black box (that is, do not try to synthesize the enclosed
module).

Table 25-2: Output Files

File Type Syntax Location Access Mode File Format

Verilog *.v Current working directory or path as given on
command line

Writer Verilog
Text

SDF *.sdf Same location as output Verilog netlist Writer SDF Text

Testfixture *.tv Same location as output Verilog netlist Writer Verilog
Text

Pin File *pin Same location as output Verilog netlist Writer Text

Log File *.log Same location as output Verilog netlist Writer Text
354 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGD2VER Options
R

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file. For
more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.

-fn (Control flattening a netlist)
The –fn option produces a flattened netlist for designs with KEEP_HIERARCHY
constraint.

–gp (Bring Out Global Reset Net as Port)
-gp port_name

The –gp option causes NGD2VER to bring out the Global Reset signal (which is connected
to all flip-flops and latches in the physical design) as a port on the top-level module in the
output Verilog file. Specifying the port name allows you to match the port name you used
in the front-end. The Global Reset signal is discussed in “Dedicated Global Signals in Back-
Annotation Simulation” in Chapter 24.

This option is only used if the Global Reset net is not driven. For example, if you include a
STARTUP_VIRTEX component in an Virtex-E design, you do not have to enter a –gp
option, because the STARTUP_VIRTEX component drives the Global Reset net.

Note: Do not use GR, GSR, PRELOAD, or RESET as port names, because these are reserved
names in the Xilinx software. Also, do not use the name of any wire or port that already exists in the
design, because this causes NGD2VER to issue a fatal error.

–ism (Include SimPrim Modules in Verilog File)
The –ism switch includes SimPrim modules from the SimPrim library in the output Verilog
(.v) file. This option allows you to bypass specifying the library path during simulation.
However, using this switch increases the size of your netlist file and increases your
compile time.

When you run this option, NGD2VER checks that your library path is set up properly.
Following is an example of the appropriate path:

$XILINX/verilog/src/simprim

Note: If you are using compiled libraries, this switch offers no advantage. If you use this switch, do
not use the –ul switch.

–log (Rename the Log File)
-log log_file

By default, the name of the NGD2VER log file is ngd2ver.log. The
–log option allows you to rename the log file. The log file contains all of the messages
displayed during the execution of NGD2VER.
Development System Reference Guide www.xilinx.com 355
 1-800-255-7778

http://www.xilinx.com

Chapter 25: NGD2VER
R

–ne (No Name Escaping)
By default (without the –ne option), NGD2VER “escapes” illegal block or net names in
your design by placing a leading backslash (\) before the name and appending a space at
the end of the name. For example, the net name “p1$40/empty” becomes “\p1$40/empty
” when name escaping is used. Illegal Verilog characters are reserved Verilog names, such
as “input” and “output,” and any characters that do not conform to the standards
described in “Verilog Identifier Naming Conventions”.

The –ne option replaces invalid characters with underscores so that name escaping does
not occur. For example, the net name “p1$40/empty” becomes “p1$40_empty” when
name escaping is not used. The leading backslash does not appear as part of the identifier.
The resulting Verilog file can be used if a vendor’s Verilog software cannot interpret
escaped identifiers correctly.

–pf (Generate Pin File)
The –pf option writes out a pin file—a Cadence signal-to-pin mapping file with a .pin
extension.

Note: NGD2VER only generates an PIN file if the input is an NGA file.

-quiet (Reduce Screen Output)
The –quiet option is used to suppress the screen display of the copyright messages to help
Project Navigator. The -quiet switch reduces screen output.

–r (Retain Hierarchy)
By default (without the –r option), NGD2VER produces a flattened Verilog HDL file unless
a KEEP_HIERARCHY attribute is applied to the individual modules whose hierarchy is to
be preserved. (Refer to the Synthesis and Verification Design Guide). The –r option writes out
a Verilog HDL file that retains the hierarchy in the original design as much as possible. This
option groups logic based on the original design hierarchy. To retain the logical hierarchy
in your design when using the –r option, you must supply an NGM file as input when you
run NGDAnno (see “Dedicated Global Signals in Back-Annotation Simulation” in Chapter
24). If you do not supply an NGM file, the NGA file produced is based on the physical
hierarchy in the NCD file, rather than the original design hierarchy.

–sdf_path (Full Path to SDF File)
-sdf_path [path_name]

The –sdf_path option outputs the SDF file to the specified full path. This option writes the
full path and the SDF file name to the $sdf_annotate statement. If a full path is not
specified, it writes the full path of the current work directory and the SDF file name to the
$sdf_annotate file.

Note: NGD2VER only generates an SDF file if the input is an NGA file, which contains timing
information. This option is allowed for an NGA file but not for an NGD file.
356 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGD2VER Options
R

–shm (Write $shm Statements in Test Fixture File)
The -shm option places $shm statements in the structural Verilog file created by
NGD2VER. These $shm statements allow VerilogXL to display simulation data as
waveforms.

–tf (Generate Test Fixture File)
The –tf option generates a test fixture file. The file has a .tv extension, and it is a ready-to-
use template test fixture Verilog file based on the input NGD or NGA file.

–ti (Top Instance Name)
-ti top_instance_name

The –ti option specifies a user instance name for the design under test in the test fixture file
created with the -tf option.

–tm (Top Module Name)
–tm top_module_name

By default (without the –tm option), the output files inherit the top module name from the
input NGD or NGA file. The –tm option changes the name of the top-level module name
appearing within the NGD2VER output files.

–tp (Bring Out Global 3-State Net as Port)
–tp port_name

The –tp option causes NGD2VER to bring out the global 3-state signal (which forces all
FPGA outputs to the high-impedance state) as a port on the top-level entity in the output
Verilog file. Specifying the port name allows you to match the port name you used in the
front-end.

This option is only used if the global 3-state net is not driven. For example, if you include
a STARTUP_VIRTEX component in an Virtex-E design, you do not have to enter a –tp
option, because the STARTUP_VIRTEX component drives the global 3-state net.

Note: Do not use the name of any wire or port that already exists in the design, because this causes
NGD2VER to issue a fatal error.

–ul (Write ‘uselib Directive)
The –ul option causes NGD2VER to write a library path pointing to the SimPrim library
into the output Verilog (.v) file. The path is written as shown following.

`uselib dir=$XILINX/verilog/src/simprims libext=.v

$XILINX is the location of the Xilinx software.

If you do not enter a –ul option, the ‘uselib line is not written into the Verilog file.

Note: A blank ‘uselib statement is automatically appended to the end of the Verilog file to clear out
the ‘uselib data. If you use this option, do not use the –ism option.
Development System Reference Guide www.xilinx.com 357
 1-800-255-7778

http://www.xilinx.com

Chapter 25: NGD2VER
R

–verbose (Report All Messages)
The –verbose option displays detailed Verilog processing messages during the execution
of NGD2VER.

–w (Overwrite Existing Files)
The –w option causes NGD2VER to overwrite the .v file if it already exists. By default,
NGD2VER does not overwrite the .v file.

Note: All other output files are automatically overwritten.

Setting Global Set/Reset, 3-State, and PRLD
For information on setting GSR and GTS for FPGAs, see the “Simulating Verilog” section
of the Synthesis and Verification Design Guide.

For information on setting Global PRLD for CPLDs, refer to the CPLD Design Techniques
online Help.

Test Fixture File
The end of the test fixture (TV) file produced by NGD2VER contains the following
commands:

#1000 $stop

// #1000 $finish

The $stop command terminates simulation from the test fixture and places the simulator
in “interactive mode.” This mode allows you to view the waveforms produced or allows
interaction with other programs that need the simulator open.

To exit automatically instead of entering interactive mode, edit the test fixture file to
remove or comment out the $stop line and uncomment the $finish line.

Bus Order in Verilog Files
When you compile your unit-under-test design from NGD2VER along with your test
fixture, in most cases bused ports will be matched since port arrays are used in the EDIF
netlist (or NGC files from XST).. In some cases the EDIF netlist does not use port arrays,
and there may be mismatches on bused ports.

This problem occurs when your unit under test has top-level ports that are defined as LSB-
to-MSB, as shown in the following example:

input [0:7] A;

As a result of the way your input design was converted to a netlist before it was read into
the Xilinx implementation software, the Xilinx design database does not include
information on how bus direction was defined in the original design. When NGD2VER
writes out a structural timing Verilog description, all buses are written as MSB-to-LSB, as
shown in the following example:

input [7:0] A;
358 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Verilog Identifier Naming Conventions
R

If your ports are defined as LSB-to-MSB in your original input design and test fixture, there
is a port mismatch when the test fixture is compiled for timing simulation. Use one of the
following methods to solve this problem:

• In the test fixture, modify the instantiation of the unit under test so that all ports are
defined as MSB-to-LSB for timing simulation.

• Define all ports as MSB-to-LSB in your original design and test fixture. For example,
enter [7:0] instead of [0:7].

Verilog Identifier Naming Conventions
An identifier in a Verilog file must adhere to the following conventions. For more
information see the IEEE Standard Description Language Based on the Verilog™ Hardware
Description Language manual, Std-1364-2001.

• Must begin with an alphabetic or underscore character (a-z, A-Z, or _)

• Can contain alphanumeric (a-z, A-Z, 0-9), underscore (_), or dollar sign ($) characters

• May use any character by escaping with a backslash(\) at the beginning of the
identifier and terminating with a white space (a blank, tab, newline, or formfeed). For
example, the identifier “reset*” is not acceptable but the identifier “\reset* ” is
acceptable.

• Can be up to 1024 characters long

• Cannot contain white space

Note: Identifiers are case sensitive.

During the name legalization process, NGD2VER writes identifiers that contain invalid
characters with a leading backslash and a following white space. If you want to change this
default behavior, use the –ne option described in “–ne (No Name Escaping)”.

Compile Scripts for Verilog Libraries
You must compile libraries for your simulation tools to recognize Xilinx components. To
perform timing or post-synthesis functional HDL simulation, you must compile the
SimPrim libraries. If the HDL code contains instantiated components, you must compile
the UniSim libraries. If the HDL code contains instantiated components from the CORE
Generator System, you must compile the CORE Generator behavioral models before you
can perform a behavioral simulation. Refer to the CORE Generator Guide for more
information.

To compile libraries, refer to the “Compiling HDL Libraries” section of the Synthesis and
Verification Design Guide.

Note: You do not need to compile libraries for Verilog-XL.
Development System Reference Guide www.xilinx.com 359
 1-800-255-7778

http://www.xilinx.com

Chapter 25: NGD2VER
R

Secure Netlist Attribute
NGD2VER writes a Verilog file if the Secure_Netlist attribute is set to "ENCRYPT" or
"OFF". If set to "ENCRYPT" then the attribute writes an encrypted netlist.

For Verilog, a Secure_Config attribute can be found in the netlist for modules or
architectures that need to be protected.

Example: Verilog Syntax:

`secure_config
 module enco_10_9 (
 load, cntrl, clr, c, GSR, VCC, GND, phase_inc, amp
);
 input load;
 input cntrl;
 input clr;
 input c;
 input GSR;
 input VCC;
 input GND;
 input [3:0] phase_inc;
 output [5:0] amp;

 ...

 endmodule
 `unsecure_config
360 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 26

NGD2VHDL

Note: NGDAnno and the Netlist Writers (NGD2VER and NGD2VHDL) are combined into one new
executable: NetGen. It is recommended that you convert any scripts (flows) from NGDAnno,
NGD2VER, and NGD2VHDL as soon as possible. These applications are being deprecated and will
not be available in future releases of Xilinx software. Please see Chapter 23, “NetGen” for additional
information.

This program is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE

• CoolRunner™ XPLA3/-II/-IIS

• XC9500™/XL/XV

This chapter describes the NGD2VHDL program. The chapter contains the following
sections:

• “NGD2VHDL Overview”

• “NGD2VHDL Syntax”

• “NGD2VHDL Input Files”

• “NGD2VHDL Output Files”

• “NGD2VHDL Options”

• “VHDL Global Set/Reset Emulation”

• “Bus Order in VHDL Files”

• “VHDL Identifier Naming Conventions”

• “Compile Scripts for VHDL Libraries”

NGD2VHDL Overview
The NGD2VHDL program translates your design into a VHDL file containing a netlist
description of the design in terms of Xilinx simulation primitives. You can use the VHDL
file to perform a
back-end simulation by a VHDL simulator.

Simulation is based on SimPrims, which create simulation models using basic simulation
primitives. For example, because a primitive for the Virtex-E dual-port RAM does not exist
in the VITAL SimPrim library files, NGD2VHDL builds a simulation model for the dual
port RAM out of two 16x1 RAM SimPrim primitives.

NGD2VHDL produces a VHDL file representing a design in any of the following stages:
Development System Reference Guide www.xilinx.com 361
 1-800-255-7778

http://www.xilinx.com

Chapter 26: NGD2VHDL
R

• An unmapped design—To translate an unmapped design, the input to NGD2VHDL
is an NGD file—a logical description of your design. The output from NGD2VHDL is
a VHDL file containing a functional description of the design without timing
information.

• A mapped, unrouted design—To translate a mapped design which has not been
placed and routed, the input to NGD2VHDL is an NGA file— an annotated logical
description of your design—generated from a mapped physical design. The output
from NGD2VHDL is a VHDL file containing a functional description of the design,
and an additional SDF (Standard Delay Format) file containing timing information.
The SDF file contains component delays without routing delays.

• A routed design—To translate a design which has been placed and routed, the input
to NGD2VHDL is an NGA file generated from a routed physical design. The output
from NGD2VHDL is a VHDL file containing a functional description of the design
and an SDF file containing both component and routing delays.

• PIN file—This optional file contains a list of all the input and output pins in the
design.

The following figures shows the design flow for NGD2VHDL.

Note: If you use a prohibited core in your design, NGD2VHDL issues an error message and does
not export your design. If you use an encrypted core, NGD2VHDL generates an encrypted file.

NGD2VHDL Syntax
The following command translates your design to a VHDL file:

ngd2vhdl [options] infile [.ngd|.nga] [outfile[.vhd]]

options can be any number of the NGD2VHDL options listed in “NGD2VHDL Options”.
They do not need to be listed in any particular order. Separate multiple options with
spaces.

Figure 26-1: NGD2VHDL Design Flow

NGD2VHDL

VHD
VHDL Netlist

(for Simulation)

X9830

NGA
(Annotated Design)

or
NGD

(Logical Design)

SDF
Standard Delay Format

TVHD
Testbench
(Optional)

ngd2vhdl.log
Log File
362 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGD2VHDL Input Files
R

infile [.ngd|.nga] is the input NGD or NGA file. If you enter a file name without an
extension, NGD2VHDL looks for a file with an .nga extension and the name you specified.
If you want to translate an NGD file, you must enter the .ngd extension. Without the .ngd
extension NGD2VHDL does not use the NGD file as input, even if an NGA file is not
present.

The outfile[.vhd] indicates the file to which the VHDL output of NGD2VHDL is written.
The default is infile.vhd (infile is the same root name as the input file). The SDF file has the
same root name as the VHDL file.

NGD2VHDL Input Files
The input to NGD2VHDL is either a NGD design database - a logical design file containing
Xilinx primitive components, or an NGA design database - a back-annotated logical design
file containing Xilinx primitive components. The NGD is used for functional simulation of
NGDBUILD output. The NGA is used for timing simulation of an FPGA design that has
been placed, routed and annotated. The CPLD implementation tools also produce an NGA
file for this purpose.

NGD2VHDL Output Files
The primary output of NGD2VHDL is an VHDL netlist. It also produces an SDF file if the
design contains timing information, a testbench file if the –tb option is specified, and a log
file.

NGD2VHDL creates the following files as output:

• VHD file—This VHDL IEEE std. 1076.4 VITAL-2000 compliant VHDL file contains the
netlist information obtained from the input NGD or NGA file. This file is a simulation
model and cannot be synthesized or used in any other manner than simulation. This
netlist uses simulation primitives which may not represent the true implementation of
the device; however, the netlist represents a functional model of the implemented
design. Do not modify this file.

Table 26-1: Input Files

File Type Syntax Location Access Mode File Format

NGA File *.nga Current working directory, or path as given on
command line

Reader XDM

NGD File *.ngd Current working directory, or path as given on
command line

Reader XDM

Table 26-2: Output Files

File Type Syntax Location Access Mode File Format

VHDL *.vhd Current working directory or path as given on
command line

Writer VHDL Text

SDF *.sdf Same location as output VHDL netlist Writer SDF Text

Testbench *.tvhd Same location as output VHDL netlist Writer VHDL Text

Log File *.log Same location as output VHDL netlist Writer Text
Development System Reference Guide www.xilinx.com 363
 1-800-255-7778

http://www.xilinx.com

Chapter 26: NGD2VHDL
R

• SDF file—This Standard Delay Format file contains delays obtained from the input
file. NGD2VHDL only generates an SDF file if the input is an NGA file, which
contains timing information. The SDF file generated by NGD2VHDL is based on SDF
version 3.0 specification.

• LOG file—This log file contains all the messages generated during the execution of
NGD2VHDL.

• Testbench file—This optional testbench file is created if you enter the –tb option on
the NGD2VHDL command line. The file has a .tvhd extension.

NGD2VHDL Options
This section describes the NGD2VHDL command line options.

–a (Architecture Only)
By default, NGD2VHDL generates both entities and architectures for the input design. If
the –a option is specified, no entities are generated and only architectures appear in the
output.

–aka (Write Also-Known-As Names as Comments)
The –aka option includes original user-defined identifiers as comments in the VHDL
netlist. This option is useful if user-defined identifiers are changed because of name
legalization processes in NGD2VHDL.

–ar (Rename Architecture Name)
-ar architecture_name

The –ar option allows you to rename the architecture name generated by NGD2VHDL.
The default architecture name for each entity in the netlist is STRUCTURE.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file. For
more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.

–fn (Control flattening a netlist)
The –fn option produces a flattened netlist for designs with KEEP_HIERARCHY
constraint.

–gp (Bring Out Global Reset Net as Port)
–gp port_name

The –gp option causes NGD2VHDL to bring out the Global Reset signal (which is
connected to all flip-flops and latches in the physical design) as a port on the top-level
entity in the output VHDL file. Specifying the port name allows you to match the port
name you used in the front-end. The Global Reset signal is discussed in “VHDL Global
Set/Reset Emulation”.
364 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGD2VHDL Options
R

This option is only used if the Global Reset net is not driven. For example, if you include a
STARTUP_VIRTEX component in an Virtex-E design, you do not have to enter a –gp
option, because the STARTUP_VIRTEX component drives the Global Reset net.

Note: Do not use GR, GSR, PRELOAD, or RESET as port names, because these are reserved
names in the Xilinx software.

–log (Specify the Log File)
–log log_file

By default, the name of the NGD2VHDL log file is ngd2vhdl.log. The –log option allows
you to rename the log file. The log file contains all of the messages displayed during the
execution of NGD2VHD.

–quiet (Reduce Screen Output)
The -quiet option is used to suppress the screen display of the copyright messages to help
Project Navigator. The -quiet switch reduces screen output.

–r (Retain Hierarchy)
By default (without the –r option), NGD2VHDL produces a flattened VHDL file unless a
KEEP_HIERARCHY attribute is applied to the individual modules whose hierarchy is to
be preserved. (Refer to the Synthesis and Verification Design Guide). The –r option writes out
a VHDL file that retains the hierarchy in the original design as much as possible. This
option groups logic based on the original design hierarchy. To retain the logical hierarchy
in your design when using the –r option, you must supply an NGM file as input when you
run NGDAnno (see “NGDAnno Input Files” in Chapter 24). If you do not supply an NGM
file, the NGA file produced is based on the physical hierarchy in the NCD file, rather than
the original design hierarchy.

–rpw (Specify the Pulse Width for ROC)
–rpw roc_pulse_width

The –rpw option specifies the pulse width, in nanoseconds, for the ROC component. You
must specify a positive integer to stimulate the component properly. This option is not
required. By default, the ROC pulse width is set to 100 ns.

–tb (Generate Testbench File)
The –tb option writes out a testbench file with a .tvhd extension. The default top-level
instance name within the testbench file is UUT. If you enter a –ti (Top Instance Name)
option, the top-level instance name is the name specified by the –ti option.

–te (Top Entity Name)
–te top_entity_name

By default (without the –te option), the output files inherit the top entity name from the
input NGD or NGA file. The –te option specifies the name of the top-level entity in the
structural VHDL file produced by NGD2VHDL for timing simulation.
Development System Reference Guide www.xilinx.com 365
 1-800-255-7778

http://www.xilinx.com

Chapter 26: NGD2VHDL
R

–ti (Top Instance Name)
–ti top_instance_name

The –ti option specifies the name of the top-level instance name appearing within the
output SDF file and testbench file (if produced).

The option allows you to match the top-level instance name to the name specified in your
test driver VHDL file. Without this option, the SDF file generated by NGD2VHDL cannot
be processed properly by VHDL simulators (for example, Model Technology vsim) for
timing simulation.

If you do not enter a –ti option, the output files contain a top-level instance name of UUT.

–tp (Bring Out Global 3-State Net as Port)
–tp port_name

The –tp option causes NGD2VHDL to bring out the global 3-state signal (which forces all
FPGA outputs to the high-impedance state) as a port on the top-level entity in the output
VHDL file. Specifying the port name allows you to match the port name you used in the
front-end.

This option is only used if the global 3-state net is not driven. For example, if you include
a STARTUP_VIRTEX component in an Virtex-E design, you do not have to enter a –tp
option, because the STARTUP_VIRTEX component drives the global 3-state net.

–tpw (Specify the Pulse Width for TOC)
–tpw toc_pulse_width

The –tpw option specifies the pulse width, in nanoseconds, for the TOC component. You
must specify a positive integer to stimulate the component properly. This option is
required when you instantiate the TOC component (for example, when the Global
Set/Reset and Global 3-State nets are sourceless in the design).

–verbose (Report All Messages)
The –verbose option displays detailed VHDL processing messages when NGD2VHDL is
run.

–w (Overwrite Existing Files)
The –w option causes NGD2VHDL to overwrite the .vhd file if it exists. By default,
NGD2VHDL does not overwrite the .vhd file.

Note: All other output files are automatically overwritten.

–xon (Select Output Behavior for Timing Violations)
–xon {true|false}

The –xon option specifies the output behavior when timing violations occur on memory
elements. If you set this option to true, any memory elements that violate a setup time
trigger X on the outputs. If you set this option to false, the signal’s previous value is
retained. If you do not set this option, –xon true is run.
366 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

VHDL Global Set/Reset Emulation
R

VHDL Global Set/Reset Emulation
VHDL requires ports for all signals to be controlled by a testbench. There are VHDL
specific components that can be instantiated in the RTL and post-synthesis VHDL
description in order to enable the simulation of the global signals for Global Set/Reset
(GSR) and Global 3-State (GTS). NGD2VHDL creates a port on the
back-annotated design entity for stimulating the GSR or GTS enable signal. This port does
not actually exist on the configured part.

You do not need to use the –gp switch to create an external port if you instantiated a
STARTUP_VIRTEX block in the implemented design. In this case, the port is already
identified and connected to the GSR or GTS enable signal. If you do not use the –gp option
or a STARTUP_VIRTEX block, you will need to use a special cell. Detailed directions for
specific emulation cells and their uses follow.

Note: The term “STARTUP” refers to the STARTUP block for all device families, including the Virtex
STARTUP block, STARTUP_VIRTEX, and the Virtex-II STARTUP block, STARTUP_VIRTEX2. The
term “STARTBUF” refers to the STARTBUF cell for all device families, including the Virtex
STARTBUF cell, STARTBUF_VIRTEX, and the Virtex-II STARTBUF cell, STARTBUF_VIRTEX2.

VHDL Only STARTUP_VIRTEX Block
The STARTUP_VIRTEX block is traditionally instantiated to identify the GR, PRLD, or
GSR signals for implementation. However, the only time simulation is enabled in the
traditional method is when the net attached to the GSR or GTS also goes off chip, because
the STARTUP_VIRTEX block does not have simulation models.

VHDL Only STARTBUF_VIRTEX Cell
The STARTBUF_VIRTEX cell passes a Reset or 3-State signal in the same way that a buffer
allows simulation to proceed, and it also instantiates the STARTUP_VIRTEX block for
implementation. STARTBUF_VIRTEX is a more simulation friendly version of a typical
STARTUP_VIRTEX block. Implementation with the correct STARTUP_VIRTEX block is
handled automatically. Following is an instantiation example for the STARTBUF_VIRTEX
cell:

U1: STARTBUF_VIRTEX port map (GSRIN => DEV_GSR_PORT, GTSIN
=>DEV_GTS_PORT, CLKIN => ‘0’, GSROUT => GSR_NET, GTSOUT => GTS_NET:

Figure 26-2: STARTUP_VIRTEX Block

X9828

STARTUP_VIRTEX

GTS

GSR

CLK
Development System Reference Guide www.xilinx.com 367
 1-800-255-7778

http://www.xilinx.com

Chapter 26: NGD2VHDL
R

One or both of the input ports GSRIN and GTSIN of the STARTBUF component and the
associated output ports GSROUT and GTSOUT can be used. The pins that are left “open”
can be used to pass configuration instructions down to implementation, just as on a
traditional STARTUP block. You can do this by connecting the appropriate signal to the
port instead of leaving it in an “open” condition.

VHDL Only STARTUP_VIRTEX Block and STARTBUF_VIRTEX Cell
Global Set/Reset and Global 3-State for the Virtex STARTUP block, STARTUP_VIRTEX,
and STARTBUF cell, STARTBUF_VIRTEX, operate as described in the preceding sections
with the following qualifications:

• Pre-NGDBuild UniSim VHDL simulation of the GSR signal is not supported.

The simulation libraries will start up in the correct state; however, you cannot reset the
design after simulation time ‘0.’

• During Pre-NGDBuild UniSim VHDL simulation, designs are properly initialized at
simulation time ‘0.’

• Post-NGDBuild SimPrim VHDL simulation of GSR is supported.

To correctly back-annotate a GSR signal, instantiate a STARTUP_VIRTEX or
STARTBUF_VIRTEX symbol and correctly connect the GSR input signal of that
component. When back-annotated, your GSR signal is correctly connected to the
associated registers and RAM blocks.

• Pre-NGDBuild UniSim VHDL simulation of the GTS signal is supported.

Instantiate either a STARTBUF_VIRTEX, TOC, or TOCBUF for this functionality.

Note: This information also applies to STARTUP_VIRTEX2 and STARTBUF_VIRTEX2.

VHDL Only RESET-ON-CONFIGURATION (ROC) Cell
This cell is created during back-annotation if you do not use the –gp option or STARTUP
block options. It can be instantiated in the front end to match functionality with GSR, GR,
or PRLD. (This is done in both functional and timing simulation.) During back-annotation,
the entity and architecture for the ROC cell is placed in the design’s output VHDL file. In
the front end, the entity and architecture are in the UniSim Library, and require only a
component instantiation.

The ROC cell generates a one-time initial pulse to drive the GR, GSR, or PRLD net starting
at time ‘0’ for a user-defined pulse width. You can set the pulse width with a generic in a
configuration statement. The default value of “width” is 0 ns, which disables the ROC cell
and results in the Global Set/Reset being held Low. (Active-Low resets are handled within
the netlist itself and require you to invert this signal before using it.)

The ROC cell allows you to simulate with the same testbench as in the RTL simulation, and
also allows you to control the width of the global set/reset signal in the implemented
design.

The ROC components require a value for the generic WIDTH, usually specified with a
configuration statement. Otherwise, a generic map is required as part of the component
instantiation.

You can set the generic with any generic mapping method you choose. Set the “width”
generic after consulting The Programmable Logic Data Book for the particular part and mode
you have implemented.
368 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

VHDL Global Set/Reset Emulation
R

One of the easiest methods for mapping the generic is a configuration for the user’s
testbench. Following is an example testbench configuration for setting the generic:

CONFIGURATION cfg_my_timing_testbench OF my_testbench IS
FOR my_testbench_architecture
FOR ALL:my_design USE ENTITY work.my_design(structure);
FOR structure
FOR ALL:roc ENTITY USE work.roc (roc_v)
Generic MAP (width => 100 ms);

END FOR;
END FOR;

END FOR;
END FOR;

END cfg_my_timing_testbench;

The following is an instantiation example for the ROC cell.

U1: ROC port map (0 =>GSR_NET);

VHDL Only ROCBUF Cell
The ROCBUF allows you to provide stimulus for the Reset on Configuration signal
through a testbench but the port connected to it is not implemented as a chip pin. The port
can be brought back in the timing simulation with the –gp switch on NGD2VHDL.
Following is an example of instantiation of the ROCBUF cell:

U1: ROCBUF port map (I => SIM_GSR_PORT, O => GSR_NET);

VHDL Only 3-State-On-Configuration (TOC) Cell
This cell is created if you do not use the –tp or STARTUP block options. The entity and
architecture for the TOC cell is placed in the design’s output VHDL file. The TOC cell
generates a one-time initial pulse to drive the GR, GSR, or PRLD net starting at time ‘0’ for
a user-defined pulse width. The pulse width can be set with a generic. The default value of
“width” is 0 ns, which disables the TOC cell and results in the 3-State enable being held
Low. (Active-Low 3-State enables are handled within the netlist itself and require you to
invert this signal before using it.)

The TOC cell allows you to simulate with the same testbench as in the RTL simulation, and
also allows you to control the width of the 3-State enable signal in the implemented design.

The TOC components require a value for the generic WIDTH, usually specified with a
configuration statement. Otherwise, a generic map is required as part of the component
instantiation.

You may set the generic with any generic mapping method you choose. Set the “width”
generic after consulting The Programmable Logic Data Book for the particular part and mode
you have implemented.

One of the easiest methods for mapping the generic is a configuration for the user’s
testbench. Following is an example testbench configuration for setting the generic:

CONFIGURATION cfg_my_timing_testbench OF my_testbench IS

FOR my_testbench_architecture
FOR ALL:my_design USE ENTITY work.my_design(structure);
FOR structure
FOR ALL:toc ENTITY USE work.toc (toc_v)
Generic MAP (width => 100 ms);

END FOR;
Development System Reference Guide www.xilinx.com 369
 1-800-255-7778

http://www.xilinx.com

Chapter 26: NGD2VHDL
R

END FOR;
END FOR;

END FOR;
END cfg_my_timing_testbench;

VHDL Only TOCBUF
The TOCBUF allows you to provide stimulus for the Global 3-State signal through a
testbench but the port connected to it is not implemented as a chip pin. The port can be
brought back in the timing simulation with the –tp switch on NGD2VHDL. Following is an
example of the instantiation of the TOCBUF cell:

U2: TOCBUF port map (I =>SIM_GTS_PORT, O =>GTS_NET);

Bus Order in VHDL Files
When you compile your unit-under-test design from NGD2VHDL with your testbench, in
most cases bused ports will be matched since port arrays are used in the EDIF netlist (NGC
files XST). In some cases the netlist does not use port arrays and there may be mismatches
on bused ports.

This problem occurs when your unit under test has top-level ports that are defined as LSB-
to-MSB, as shown in the following example:

A: in STD_LOGIC_VECTOR (0 to 7);

As a result of the way your input design was converted to a netlist before it was read into
the Xilinx implementation software, the Xilinx design database does not include
information on how bus direction was defined in the original design. When NGD2VHDL
writes out a structural timing VHDL description, all buses are written as MSB-to-LSB, as
shown in the following example:

A: in STD_LOGIC_VECTOR (7 downto 0);

If your ports were defined as LSB-to-MSB in your original input design and testbench,
there is a port mismatch when the testbench is compiled for timing simulation. Use one of
the following methods to solve this problem:

• In the testbench, modify the instantiation of the unit under test so that all ports are
defined as MSB-to-LSB for timing simulation.

• Define all ports as MSB-to-LSB in the original design and testbench, by using the
downto clause instead of the to clause to specify a bus range.

VHDL Identifier Naming Conventions
An identifier in a VHDL file must adhere to the following conventions. For more
information see the IEEE Standard VHDL Language Reference Manual or the IEEE Standard
VITAL Application-Specific Integrated Circuit (ASIC) Modeling Specification.

• Must begin with alphabetic characters (a–z or A–Z)

• Can contain alphanumeric (a–z, A–Z, 0-9) or underscore (_) characters

• Can be up to 1024 characters long

• Cannot contain white space

Note: Identifiers are not case sensitive.
370 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Compile Scripts for VHDL Libraries
R

During the name legalization process, NGD2VHDL substitutes any illegal characters with
the underscore (_) character.

Compile Scripts for VHDL Libraries
You must compile libraries for your simulation tools to recognize Xilinx components. To
perform timing or post-synthesis functional HDL simulation, you must compile the
SimPrim libraries. If the HDL code contains instantiated components, you must compile
the UniSim libraries. If the HDL code contains instantiated components from the CORE
Generator System, you must compile the CORE Generator behavioral models before you
can perform a behavioral simulation. Refer to the CORE Generator Guide for more
information.

To compile libraries, refer to the “Compiling HDL Libraries” section of the Synthesis and
Verification Design Guide.

Secure Netlist Attribute
NGD2VHDL writes a VHDL file if the Secure_Netlist attribute is set to "ENCRYPT" or
"OFF". If set to "ENCRYPT" then the attribute writes an encrypted netlist.

For VHDL, a Secure_Config attribute can be found in the netlist for modules or
architectures that need to be protected.

Example: VHDL Syntax

architecture STRUCTURE of ENCO_10_9 is
attribute SECURE_CONFIG : boolean;
attribute SECURE_CONFIG of STRUCTURE : architecture is TRUE;
....

end STRUCTURE;
Development System Reference Guide www.xilinx.com 371
 1-800-255-7778

http://www.xilinx.com

Chapter 26: NGD2VHDL
R

372 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 27

XFLOW

XFLOW is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/-3

This chapter describes the XFLOW program, a scripting tool which allows you to automate
implementation, simulation, and synthesis flows using Xilinx programs. It contains the
following sections:

• “XFLOW Overview”

• “XFLOW Input Files”

• “XFLOW Output Files”

• “XFLOW Flow Types”

• “XFLOW Option Files”

• “XFLOW Options”

• “Running XFLOW”

• “Halting XFLOW”

XFLOW Overview
XFLOW is a command line tool that allows you to automate the Xilinx implementation,
simulation, and synthesis flows. XFLOW reads a design file as input as well as a flow file
and option files. When you specify a flow type (described in “XFLOW Flow Types”),
XFLOW calls a particular flow file. Xilinx provides a default set of flow files that specify
which Xilinx programs to run to achieve a certain flow. For example, a flow file could
specify that NGDBuild, MAP, PAR, and TRACE should be run to achieve an
implementation flow for an FPGA. You can use the default set of flow files as is, or you can
modify them. See “Flow Files” for more information. Option files specify which command
line options should be run for each of the programs listed in the flow file. You can use the
default set of option files provided by Xilinx, or you can create your own option files. See
“XFLOW Options” for more information.

The following figure shows the inputs and the possible outputs of the XFLOW program.
The output files depend on the flow you run.
Development System Reference Guide www.xilinx.com 373
 1-800-255-7778

http://www.xilinx.com

Chapter 27: XFLOW
R

XFLOW Syntax
Following is the syntax for XFLOW:

xflow [–p partname][flow type] [option file[.opt]] [xflow option] design_name

flow type can be any of the flow types listed in “XFLOW Flow Types”. Specifying a flow
type prompts XFLOW to read a certain flow file. You can combine multiple flow types on
one command line, but each flow type must have its own option file.

option file can be any of the option files that are valid for the specified flow type. See
“XFLOW Option Files” for more information. In addition, option files are described in the
applicable flow type section.

xflow options can be any of the options described in “XFLOW Options”. They can be listed
in any order. Separate multiple options with spaces.

design_name is the name of the top-level design file you want to process. See “XFLOW
Input Files” for a description of input design file formats.

Note: If you specify a design name only and do not specify a flow type or option file, XFLOW
defaults to the –implement flow type and fast_runtime.opt option file for FPGAs and the –fit flow type
and balanced.opt option file for CPLDs.

Figure 27-1: XFLOW Design FLow

X9859

XFLOW

FLW File

LOG File

Design File

HIS File

Trigger Files

Flow Dependent Output Files

OPT File

SCR or BAT
or TCL File

Application Data
Files

Annotated
Netlist Files

Timing Data
Files

 Programming
Files

Testbench
Files

Report Files

Guide Files
374 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

XFLOW Input Files
R

You do not need to specify the complete path for option files. By default, XFLOW uses the
option files in your working directory. If the option files are not in your working directory,
XFLOW searches for them in the following locations and copies them to your working
directory. If XFLOW cannot find the option file in any of these locations, it issues an error
message.

• Directories specified using XIL_XFLOW_PATH

• Installed area specified with the XILINX environment variable

Note: By default, the directory from which you invoked XFLOW is your working directory. If you want
to specify a different directory, use the –wd option described in “–wd (Specify a Working Directory)”.

XFLOW Input Files
XFLOW uses the following files as input:

• Design File (for non-synthesis flows)—For all flow types except
–synth, the input design can be an EDIF 2 0 0, or NGC (XST output) netlist file. You
can also specify an NGD, NGO, or NCD file if you want to start at an intermediate
point in the flow. XFLOW recognizes and processes files with the extensions shown in
the following table.

• Design File (for synthesis flows)—For the –synth flow type, the input design can be a
Verilog or VHDL file. If you have multiple VHDL or Verilog files, you can use a PRJ or
V file that references these files as input to XFLOW. For information on creating a PRJ
or V file, see “Example 1: How to Synthesize VHDL Designs Using Command Line
Mode” or “Example 2: How to Synthesize Verilog Designs Using Command Line
Mode” of the Xilinx Synthesis Technology (XST) User Guide. You can also use existing
PRJ files generated while using Project Navigator. XFLOW recognizes and processes
files with the extensions shown in the following table.

Note: You must use the –g option for multiple file synthesis with Synplicity or Exemplar. See “–
synth” for details.

• FLW File—The flow file is an ASCII file that contains the information necessary for
XFLOW to run an implementation or simulation flow. When you specify a flow type

File Type Recognized Extensions

EDIF .sedif, .edn, .edf, .edif

NCD .ncd

NGC .ngc

NGD .ngd

NGO .ngo

File Type Recognized Extensions

EDIF .sedif, .edn, .edf, .edif

PRJ .prj

Verilog .v

VHDL .vhd
Development System Reference Guide www.xilinx.com 375
 1-800-255-7778

http://www.xilinx.com

Chapter 27: XFLOW
R

(described in “XFLOW Flow Types”), XFLOW calls a particular flow file. The flow file
contains a program block for each program invoked in the flow. It also specifies the
directories in which to copy the output files. You can use the default set of flow files as
is, or you can modify them. See “Flow Files” for more information.

• OPT Files—Option files are ASCII files that contain options for each program
included in a flow file. You can create your own option files or use the ones provided
by Xilinx. See “XFLOW Option Files” for more information.

• Trigger Files—Trigger files are any additional files that a command line program
reads as input, for example, UCF, NCF, PCF, and MFP files. Instead of specifying these
files on the command line, these files must be listed in the Triggers line of the flow file.
See “Flow File Format” for more information.

XFLOW Output Files
XFLOW always outputs the following files and writes them to your working directory.

• HIS file—The xflow.his file is an ASCII file that contains the XFLOW command you
entered to execute the flow, the flow and option files used, the command line
commands of programs that were run, and a list of input files for each program in the
flow.

• LOG file—The xflow.log file is an ASCII file that contains all the messages generated
during the execution of XFLOW.

• SCR, BAT, or TCL file—This script file contains the command line commands of all
the programs run in a flow. This file is created for your convenience, in case you want
to review all the commands run, or if you want to execute the script file at a later time.
The file extension varies depending on your platform. The default outputs are SCR for
UNIX and BAT for PC, although you can specify which script file to output by using
the $scripts_to_generate variable.

In addition, XFLOW outputs one or more of the files shown in the following tables. The
output files generated depend on the programs included in the flow files and the
commands included in the option files.

Note: Report files are written to the working directory by default. You can specify a different
directory by using the XFLOW –rd option, described in “–rd (Copy Report Files)”, or by using the
Report Directory option in the flow file, described in “Flow Files”. All report files are in ASCII format.
376 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

XFLOW Output Files
R

The following table lists files that can be generated for both FPGA and CPLD designs.

Table 27-1: XFLOW Output Files (FPGAs and CPLDs)

File Name Description To Generate this File...

design_name.bld This report file contains information about the
NGDBuild run, in which the input netlist is
translated to an NGD file.

Flow file must include “ngdbuild” (Use
the –implement or –fit flow type)

time_sim.sdf

func_sim.sdf

This Standard Delay Format file contains the
timing data for a design.

Flow file must include “netgen” (Use the
–tsim or –fsim flow type)

Input must be an NGA file, which
includes timing information

time_sim.tv

func_sim.tv

This is an optional Verilog test fixture file. Flow file must include “netgen” (Use the
–tsim or –fsim flow type)

time_sim.tvhd

func_sim.tvhd

This is an optional VHDL testbench file. Flow file must include “netgen” (Use the
–tsim or –fsim flow type)

time_sim.v

func_sim.v

This Verilog netlist is a
simulation netlist expressed in terms of Xilinx
simulation primitives. It differs from the Verilog
input netlist and should only be used for
simulation, not implementation.

Flow file must include “netgen” (Use the
–tsim or –fsim flow type)

time_sim.vhd

func_sim.vhd

This VHDL netlist is a simulation netlist
expressed in terms of Xilinx simulation
primitives. It differs from the VHDL input netlist
and should only be used for simulation, not
implementation.

Flow file must include “netgen” (Use the
–tsim or –fsim flow type)
Development System Reference Guide www.xilinx.com 377
 1-800-255-7778

http://www.xilinx.com

Chapter 27: XFLOW
R

The following table lists the output files that can be generated for FPGAs.

Table 27-2: XFLOW Output Files (FPGAs)

File Name Description To Generate this File...

design_name.bgn This report file contains information about the
BitGen run, in which a bitstream is generated for
Xilinx device configuration.

Flow file must include “bitgen” (Use the
–config flow type)

design_name.bit This bitstream file contains configuration data
that can be downloaded to an FPGA using the
Prom File Formatter, PromGen, or iMPACT.

Flow file must include “bitgen”

(Use the –config flow type)

design_name.dly This report file lists delay
information for each net in a design.

Flow file must include “par”

(Use the –implement flow type)

design_name.ll This optional ASCII file describes the position of
latches, flip-flops, and IOB inputs and outputs in
the BIT file.

Flow file must include “bitgen”

(Use the –config flow type)

Option file must include BitGen –l
option

design_name.mrp This report file contains information about the
MAP run, in which a logical design is mapped to
a Xilinx FPGA.

Flow file must include “map”

(Use the –implement flow type)

design_name.ncd
(by PAR phase)

design_name_map.
ncd
(by MAP phase)

This Native Circuit Description file can be used
as a guide file. It is a physical description of the
design in terms of the components in the target
Xilinx device. This file can be a mapped NCD file
or a placed and routed NCD file.

Flow file must include “map” or “par”

(Use the –implement flow type)

design_name.par This report file contains summary information of
all placement and routing iterations.

Flow file must include “par”

(Use the –implement flow type)

design_name.pad This report file lists all I/O components used in
the design and their associated primary pins.

Flow file must include “par”

(Use the –implement flow type)

design_name.rbt This optional ASCII “rawbits” file contains ones
and zeros representing the data in the bitstream
file.

Flow file must include “bitgen”

(Use the –config flow type)

Option file must include BitGen –b
option

design_name.twr This report file contains timing data calculated
from the NCD file.

Flow file must include “trce”

(Use the –implement flow type)

design_name.xpi This report file contains
information on whether the design routed and
timing specifications were met.

Flow file must include “par”

(Use the –implement flow type)
378 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

XFLOW Flow Types
R

The following table lists the output files that can be generated for CPLDs.

XFLOW Flow Types
A “flow” is a sequence of programs invoked to implement, configure, simulate, and/or
synthesize a design. For example, to implement an FPGA design, the design is run through
the NGDBuild, MAP, and PAR program flow.

“Flow types” are XFLOW command line commands that instruct XFLOW to execute a
particular flow as specified in a flow file. (For more information on flow files, including
how you can create your own, see “Flow Files”.) You can enter multiple flow types on the
command line to achieve a desired flow. This section describes the flow types you can use.

Note: All flow types require that an option file be specified. If you do not specify an option file,
XFLOW issues an error.

–assemble (Module Assembly)
–assemble option_file –pd pim_directory_path

Note: This flow type is supported for Virtex/-II/-II Pro/-E and Spartan-II/-IIE device families only.

This flow type runs the final phase of the Modular Design flow. In this “Final Assembly”
phase, the team leader assembles the top-level design and modules into one NGD file and
then implements this file.

This flow type invokes the fpga.flw flow file and runs NGDBuild to create a fully
expanded NGD file that contains logic from the top-level design and each of the Physically
Implemented Modules (PIMs). XFLOW then implements this NGD file, running MAP and
PAR to create a fully expanded NCD file.

The working directory for this flow type should be the top-level design directory. You can
either run the –assemble flow type from the top-level directory or use the –wd option to
specify this directory. Specify the path to the PIMs directory after the –pd option. The input
design file should be the NGO file for the top-level design. See Chapter 4, “Modular
Design” for more information.

Note: If you do not use the –pd option, XFLOW searches the working directory for the PIM files.

Table 27-3: XFLOW Output Files (CPLDs)

File Name Description To Generate this File...

design_name.gyd This ASCII file is a CPLD guide file. Flow file must include “cpldfit”

(Use the –fit flow type)

design_name.jed This ASCII file contains configuration data
that can be downloaded to a CPLD using
iMPACT.

Flow file must include “hprep6”

(Use the –fit flow type)

design_name.rpt This report file contains information about
the CPLD Fitter run, in which a logical design
is fit to a CPLD.

Flow file must include “cpldfit”

(Use the –fit flow type)

design_name.tim This report file contains timing data. Flow file must include “taengine” (

Use the –fit flow type)
Development System Reference Guide www.xilinx.com 379
 1-800-255-7778

http://www.xilinx.com

Chapter 27: XFLOW
R

Xilinx provides the following option files for use with this flow type. These files allow you
to optimize your design based on different parameters.

The following example shows how to assemble a Modular Design with a top-level design
named “top”:

xflow –p xc2v250fg256-5 –assemble balanced.opt –pd ../pims top.ngo

–config (Create a BIT File for FPGAs)
–config option_file

This flow type creates a bitstream for FPGA device configuration using a routed design. It
invokes the fpga.flw flow file and runs BitGen.

Xilinx provides the bitgen.opt option file for use with this flow type.

To use a netlist file as input, you must use the –implement flow type with the –config flow
type. The following example shows how to use multiple flow types to implement and
configure an FPGA:

xflow –p xc2v250fg256-5 –implement balanced.opt –config bitgen.opt testclk.edf

To use this flow type without the –implement flow type, you must use a placed and routed
NCD file as input.

–ecn (Create a File for Equivalence Checking)
–ecn option_file

This flow type generates a file that can be used for formal verification of an FPGA design.
It invokes the fpga.flw flow file and runs NGDBuild and NetGen to create a netgen.ecn file.
This file contains a Verilog netlist description of your design for equivalence checking.

Table 27-4: Option Files for –assemble Flow Type

Option Files Description

fast_runtime.opt Optimized for fastest runtimes at the
expense of design performance

Recommended for medium to slow
speed designs

balanced.opt Optimized for a balance between
speed and high effort

high_effort.opt Optimized for high effort at the
expense of longer runtimes

Recommended for creating designs
that operate at high speeds
380 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

XFLOW Flow Types
R

Xilinx provides the following option files for use with this flow type.

–fit (Fit a CPLD)
–fit option_file

This flow type incorporates logic from your design into physical macrocell locations in a
CPLD. It invokes the cpld.flw flow file and runs NGDBuild and the CPLDFitter to create a
JED file.

Xilinx provides the following option files for use with this flow type. These files allow you
to optimize your design based on different parameters.

The following example shows how to use a combination of flow types to fit a design and
generate a VHDL timing simulation netlist for a CPLD.

xflow -p xc2c64-4-cp56 -fit balanced.opt -tsim generic_vhdl.opt main_pcb.edn

–fsim (Create a File for Functional Simulation)
–fsim option_file

Note: The –fsim flow type can be used alone or with the –synth flow type. It cannot be combined
with the –implement, –tsim, –fit, or –config flow types.

This flow type generates a file that can be used for functional simulation of an FPGA or
CPLD design. It invokes the fsim.flw flow file and runs NGDBuild and NetGen to create a
func_sim.edn, func_sim.v, or func_sim.vhdl file. This file contains a netlist description of
your design in terms of Xilinx simulation primitives. You can use the functional simulation
file to perform a back-end simulation with a simulator.

Table 27-5: Option Files for –ecn Flow Type

Option Files Description

conformal_verilog.opt Option file for equivalence checking
for conformal

formality_verilog.opt Option file for equivalence checking
for formality

Table 27-6: Option Files for –fit Flow Type

Option Files Description

balanced.opt Optimized for a balance between
speed and density

speed.opt Optimized for speed

density.opt Optimized for density
Development System Reference Guide www.xilinx.com 381
 1-800-255-7778

http://www.xilinx.com

Chapter 27: XFLOW
R

Xilinx provides the following option files, which are targeted to specific vendors, for use
with this flow type.

The following example shows how to generate a Verilog functional simulation netlist for
an FPGA design.

xflow -p xc2v250fg256-5 -fsim generic_verilog.opt testclk.v

–implement (Implement an FPGA)
–implement option_file

This flow type implements your design. It invokes the fpga.flw flow file and runs
NGDBuild, MAP, PAR, and then TRACE. It outputs a placed and routed NCD file.

Xilinx provides the following option files for use with this flow type. These files allow you
to optimize your design based on different parameters.

Table 27-7: Option Files for –fsim Flow Type

Option File Description

generic_vhdl.opt Generic VHDL

modelsim_vhdl.opt Modelsim VHDL

generic_verilog.opt Generic Verilog

modelsim_verilog.opt Modelsim Verilog

nc_verilog.opt NC Verilog

verilog_xl.opt Verilog-XL

vcs_verilog.opt VCS Verilog

nc_vhdl.opt NC VHDL

scirocco_vhdl.opt Scirocco VHDL

Table 27-8: Option Files for –implement Flow Type

Option Files Description

fast_runtime.opt Optimized for fastest runtimes at the
expense of design performance

Recommended for medium to slow
speed designs

balanced.opt Optimized for a balance between
speed and high effort

high_effort.opt Optimized for high effort at the
expense of longer runtimes

Recommended for creating designs
that operate at high speeds

budget.opt Option file for Modular Design initial
budgeting phase
382 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

XFLOW Flow Types
R

The following example shows how to use the –implement flow type:

xflow -p xc2v250fg256-5 -implement balanced.opt testclk.edf

–initial (Initial Budgeting of Modular Design)
–initial budget.opt

This flow type is supported for Virtex/-II/-II Pro/-E and Spartan-II/-IIE device families
only.

This flow type runs the first phase of the Modular Design flow. In this “Initial Budgeting”
phase, the team leader generates an NGO and NGD file for the top-level design. The team
leader then sets up initial budgeting for the design. This includes assigning top-level
timing constraints as well as location constraints for various resources, including each
module.

This flow type invokes the fpga.flw flow file and runs NGDBuild to create an NGO and
NGD file for the top-level design with all of the instantiated modules represented as
unexpanded blocks. After running this flow type, assign constraints for your design using
the Floorplanner and Constraints Editor tools.

Note: You cannot use the NGD file produced by this flow for mapping.

The working directory for this flow type should be the top-level design directory. You can
either run the –initial flow type from the top-level design directory or use the –wd option
to specify this directory. The input design file should be an EDIF netlist or an NGC netlist
from XST. If you use an NGC file as your top-level design, be sure to specify the .ngc
extension as part of your design name. See Chapter 4, “Modular Design” for more
information.

Xilinx provides the budget.opt option file for use with this flow type.

The following example shows how to run initial budgeting for a modular design with a
top-level design named “top”:

xflow –p xc2v250fg256-5 –initial budget.opt top.edf

overnight.opt Multi-pass place and route (MPPR)
overnight mode

weekend.opt Multi-pass place and route (MPPR)
weekend mode

exhaustive.opt Multi-pass place and route (MPPR)
exhaustive mode

Table 27-8: Option Files for –implement Flow Type

Option Files Description
Development System Reference Guide www.xilinx.com 383
 1-800-255-7778

http://www.xilinx.com

Chapter 27: XFLOW
R

–module (Active Module Implementation)
–module option_file –active module_name

Note: This flow type is supported for Virtex/-II/-II PRO/-E and Spartan-II/-IIE device families only.
You cannot use NCD files from previous software releases with Modular Design in the current
release. You must generate new NCD files with the current release of the software.

This flow type runs the second phase of the Modular Design flow. In this “Active Module
Implementation” phase, each team member creates an NGD file for his or her module,
implements the NGD file to create a Physically Implemented Module (PIM), and publishes
the PIM using the PIMCreate command line tool.

This flow type invokes the fpga.flw flow file and runs NGDBuild to create an NGD file
with just the specified “active” module expanded. This output NGD file is named after the
top-level design. XFLOW then runs MAP and PAR to create a PIM.

Then, you must run PIMCreate to publish the PIM to the PIMs directory. PIMCreate copies
the local, implemented module file, including the NGO, NGM and NCD files, to the
appropriate module directory inside the PIMs directory and renames the files to
module_name.extension. To run PIMCreate, type the following on the command line or add
it to your flow file:

pimcreate pim_directory -ncd design_name_routed.ncd

The working directory for this flow type should be the active module directory. You can
either run the –module flow type from the active module directory or use the –wd option
to specify this directory. This directory should include the active module netlist file and the
top-level UCF file generated during the Initial Budgeting phase. You must specify the
name of the active module after the –active option, and use the top-level NGO file as the
input design file. See Chapter 4, “Modular Design” for more information.

Xilinx provides the following option files for use with this flow type. These files allow you
to optimize your design based on different parameters.

The following example shows how to implement a module.

xflow –p xc2v250fg256-5 –module balanced.opt –active controller
~teamleader/mod_des/implemented/top/top.ngo

Table 27-9: Option Files for –module Flow Type

Option Files Description

fast_runtime.opt Optimized for fastest runtimes at the
expense of design performance

Recommended for medium to slow
speed designs

balanced.opt Optimized for a balance between
speed and high effort

high_effort.opt Optimized for high effort at the
expense of longer runtimes

Recommended for designs that operate
at high speeds
384 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

XFLOW Flow Types
R

–mppr (Multi-Pass Place and Route for FPGAs)
–mppr option_file

This flow type runs multiple place and route passes on your FPGA design. It invokes the
fpga.flw flow file and runs NGDBuild, MAP, multiple PAR passes, and TRACE. After
running the multiple PAR passes, XFLOW saves the “best” NCD file in the subdirectory
called mppr.dir. (Do not change the name of this default directory.) This NCD file uses the
naming convention placer_level_router_level_cost_table.ncd.

XFLOW then copies this “best” result to the working directory and renames it
design_name.ncd. It also copies the relevant DLY, PAD, PAR, and XPI files to the working
directory.

Note: By default, XFLOW does not support the multiple-node feature of the PAR Turns Engine. If
you want to take advantage of this UNIX-specific feature, you can modify the appropriate option file to
include the PAR –m option. See “–m (Multi-Tasking Mode)” in Chapter 10 for more information.

Xilinx provides the following option files for use with this flow type. These files allow you
to set how exhaustively PAR attempts to place and route your design.

Note: Each place and route iteration uses a different “cost table” to create a different NCD file.
There are 100 cost tables numbered 1 through 100. Each cost table assigns weighted values to
relevant factors such as constraints, length of connection, and available routing resources.

The following example shows how to use the -mppr flow type:

xflow –p xc2v250fg256-5 –mppr overnight.opt testclk.edf

–sta (Create a File for Static Timing Analysis)
–sta option_file

This flow type generates a file that can be used to perform static timing analysis of an
FPGA design. It invokes the fpga.flw flow file and runs NGDBuild and NetGen to generate
aVerilog netlist compatible with supported static timing analysis tools.

Xilinx provides the following option file for use with this flow type.

–synth
–synth option_file

Table 27-10: Option Files for –mppr Flow Type

Option Files Description

overnight.opt Runs 10 place and route iterations

weekend.opt Runs place and route iterations until
the design is fully routed or until 100
iterations are complete

exhaustive.opt Runs 100 place and route iterations

Table 27-11: Option Files for –sta Flow Type

Option File Description

primetime_verilog.opt Option file for static timing analysis of
Primetime.
Development System Reference Guide www.xilinx.com 385
 1-800-255-7778

http://www.xilinx.com

Chapter 27: XFLOW
R

Note: When using the –synth flow type, you must specify the –p option.

This flow type allows you to synthesize your design for implementation in an FPGA, for
fitting in a CPLD, or for compiling for functional simulation. The input design file can be a
Verilog or VHDL file.

You can use the -synth flow type alone or combine it with the -implement, -fit, or -fsim flow
type. If you use the -synth flow type alone, XFLOW invokes either the fpga.flw or cpld.flw
file and runs XST to synthesize your design. If you combine the -synth flow type with the
-implement, -fit, or -fsim flow type, XFLOW invokes the appropriate flow file, runs XST to
synthesize your design, and processes your design as described in one of the following
sections:

• “–implement (Implement an FPGA)”

• “–fit (Fit a CPLD)”

• “–fsim (Create a File for Functional Simulation)”

Synthesis Types

There are three different synthesis types that are described in the following sections.

XST

Use the following example to enter the XST command:

xflow -p xc2v250fg256-5 -synth xst_vhdl.opt design_name.vhd

If you have multiple VHDL or Verilog files, you can use a PRJ file that references these files
as input. Use the following example to enter the PRJ file:

xflow -p xc2v250fg256-5 -synth xst_vhdl.opt design_name.prj

Exemplar

Use the following example to enter the Exemplar command:

xflow -p xc2v250fg256-5 -synth exemplar_vhdl.opt design_name.vhd

If you have multiple VHDL files, you must list all of the source files in a text file, one per
line and pass that information to XFLOW using the –g (Specify a Global Variable) option.
Assume that the file that lists all source files is filelist.txt and design_name.vhd
is the top level design. Use the following example:

xflow -p xc2v250fg256-5 -g srclist:filelist.txt -synth
exemplar_vhdl.opt design_name.vhd

The same rule applies for Verilog too.

Synplicity

Use the following example to enter the Synplicity command:

xflow -p xc2v250fg256-5 -synth synplicity_vhdl.opt design_name.vhd

If you have multiple VHDL files, you must list all the source files in a text file, one per line
and pass that information to XFLOW using the –g (Specify a Global Variable) option.
Assume that the file that lists all source files is filelist.txt and design_name.vhd
is the top level design. Use the following example:

xflow -p xc2v250fg256-5 -g srclist:filelist.txt -synth
synplicity_vhdl.opt design_name.vhd

The same rule applies for Verilog too.
386 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

XFLOW Flow Types
R

The following example shows how to use a combination of flow types to synthesize and
implement a design:

xflow -p xc2v250fg256-5 -synth xst_vhdl.opt -implement balanced.opt
testclk.prj

Option Files for -synth Flow Types

Xilinx provides the following option files for use with the –synth flow type. These files
allow you to optimize your design based on different parameters.

The following example shows how to use a combination of flow types to synthesize and
implement a design:

xflow –p xc2v250fg256-5 –synth xst_vhdl.opt -implement balanced.opt
testclk.prj

–tsim (Create a File for Timing Simulation)
–tsim option_file

This flow type generates a file that can be used for timing simulation of an FPGA or CPLD
design. It invokes the fpga.flw or cpld.flw flow file, depending on your target device. For
FPGAs, it runs NetGen. For CPLDs, it runs TSim and NetGen. This creates a time_sim.v or
time_sim.vhdl file that contains a netlist description of your design in terms of Xilinx
simulation primitives. You can use the output timing simulation file to perform a back-end
simulation with a simulator.

Xilinx provides the following option files, which are targeted to specific vendors, for use
with this flow type.

Table 27-12: Option Files for –synth Flow Type

Option File Description

xst_vhdl.opt

exemplar_vhdl.opt

synplicity_vhdl.opt

Optimizes a VHDL source file for
speed, which reduces the number of
logic levels and increases the speed of
the design

xst_verilog.opt

exemplar_verilog.opt

synplicity_verilog.opt

Optimizes a Verilog source file for
speed, which reduces the number of
logic levels and increases the speed of
the design

Table 27-13: Option Files for –tsim Flow Type

Option File Description

generic_vhdl.opt Generic VHDL

modelsim_vhdl.opt Modelsim VHDL

generic_verilog.opt Generic Verilog

modelsim_verilog.opt Modelsim Verilog

scirocco_vhdl.opt Scirocco VHDL

nc_verilog.opt NC Verilog
Development System Reference Guide www.xilinx.com 387
 1-800-255-7778

http://www.xilinx.com

Chapter 27: XFLOW
R

The following example shows how to use a combination of flow types to fit and perform a
VHDL timing simulation on a CPLD:

xflow -p xc2c64-4-cp56 -fit balanced.opt -tsim generic_vhdl.opt
main_pcb.vhd

Flow Files
When you specify a flow type on the command line, XFLOW invokes the appropriate flow
file and executes some or all of the programs listed in the flow file. Programs are run in the
order specified in the flow file. These files have a .flw extension.

Xilinx provides three flow files. You can edit these flow files, to add a new program,
modify the default settings, or add your own commands between Xilinx programs.
However, you cannot create new flow files of your own.

The following table lists the flow files invoked for each flow type.

verilog_xl.opt Verilog-XL

vcs_verilog.opt VCS Verilog

nc_vhdl.opt NC VHDL

Table 27-13: Option Files for –tsim Flow Type

Option File Description

Table 27-14: Xilinx Flow Files

Flow Type Flow File Devices Flow Phase Programs Run

–synth fpga.flw FPGA Synthesis XST, Synplicity, Exemplar

–initial Modular Design Initial Budgeting Phase NGDBuild

–module Modular Design Active Module
Implementation Phase

NGDBuild, MAP, PAR

–assemble Modular Design Final Assembly Phase NGDBuild, MAP, PAR

–implement Implementation NGDBuild, MAP, PAR,
TRACE

–mppr Implementation (with Multi-Pass Place
and Route)

NGDBuild, MAP, PAR
(multiple passes), TRACE

–tsim Timing

Simulation

NGDBuild, NetGen

–ecn Equivalence Checking NGDBuild, NetGen

–sta Static Timing Analysis NGDBuild, NetGen

–config Configuration BitGen
388 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

XFLOW Flow Types
R

Flow File Format

The flow file is an ASCII file that contains the following information:

Note: You can use variables for the file names listed on the Input, Triggers, Export, and Report lines.
For example, if you specify Input: <design>.vhd on the Input line, XFLOW automatically reads the
VHDL file in your working directory as the input file.

• ExportDir

This section specifies the directory in which to copy the output files of the programs in
the flow. The default directory is your working directory.

Note: You can also specify the export directory using the –ed command line option. The
command line option overrides the ExportDir specified in the flow file.

• ReportDir

This section specifies the directory in which to copy the report files generated by the
programs in the flow. The default directory is your working directory.

Note: You can also specify the report directory using the –rd command line option. The
command line option overrides the ReportDir specified in the flow file.

• Global user-defined variables

This section allows you to specify a value for a global variable, as shown in the
following example:

Variables

$simulation_output = time_sim;

End variables

The flow file contains a program block for each program in the flow. Each program block
includes the following information:

• Program program_name

This line identifies the name of the program block. It also identifies the command line
executable if you use an executable name as the program_name, for example, ngdbuild.
This is the first line of the program block.

• Flag: ENABLED | DISABLED

♦ ENABLED: This option instructs XFLOW to run the program if there are options
in the options file.

♦ DISABLED: This option instructs XFLOW to not run the program even if there are
corresponding options in the options file.

–synth cpld.flw CPLD Synthesis XST, Synplicity, Exemplar

–fit Fit NGDBuild, CPLDFit,
TAEngine, HPREP6

–tsim Timing
Simulation

TSim, NetGen

–synth fsim.flw FPGA/

CPLD

Synthesis XST, Synplicity, Exemplar

–fsim Functional
Simulation

NGDBuild, NetGen

Table 27-14: Xilinx Flow Files

Flow Type Flow File Devices Flow Phase Programs Run
Development System Reference Guide www.xilinx.com 389
 1-800-255-7778

http://www.xilinx.com

Chapter 27: XFLOW
R

• Input: filename

This line lists the name of the input file for the program. For example, the NGDBuild
program block might list design.edn.

• Triggers:

This line lists any additional files that should be read by the program. For example, the
NGDBuild program block might list design.ucf.

• Exports:

This line lists the name of the file to export. For example, the NGDBuild program block
might list design.ngd.

• Reports:

This line lists the report files generated. For example, the NGDBuild program block
might list design.bld.

• Executable: executable_name

This line is optional. It allows you to create multiple program blocks for the same
program. When creating multiple program blocks for the same program, you must
enter a name other than the program name in the Program line (for example, enter
post_map_trace, not trce). In the Executable line, you enter the name of the program as
you would enter it on the command line (for example, trce).

For example, if you want to run TRACE after MAP and again after PAR, the program
blocks for post-MAP TRACE and
post-PAR TRACE appear as follows:

Program post_map_trce

Flag: ENABLED;

Executable: trce;

Input: <design>_map.ncd;

Exports: <design>.twr, <design>.tsi;

End Program post_map_trce

Program post_par_trce

Flag: ENABLED;

Executable: trce;

Input: <design>.ncd;

Reports: <design>.twr, <design>.tsi;

End Program post_par_trce

Note: If your option file includes a corresponding program block, its Program line must match the
Program line in the flow file (for example, post_map_trace).

• End Program program_name

This line identifies the end of a program block. The program_name should be consistent
with the program_name specified on the line that started the program block.
390 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

XFLOW Option Files
R

User Command Blocks

To run your own programs in the flow, you can add a “user command block” to the Flow
File. The syntax for a user command block is the following:

UserCommand
Cmdline: <user_cmdline>;

End UserCommand

Following is an example:

UserCommand

Cmdline: “myscript.csh”;
End UserCommand

Note: You cannot use the asterisk (*) dollar sign ($) and parentheses () characters as part of your
command line command.

XFLOW Option Files
Option files contain the options for all programs run in a flow. These files have an .opt
extension. Xilinx provides option files for each flow type, as described in the different
sections of “XFLOW Flow Types”. You can also create your own option files.

Note: If you want to create your own option files, Xilinx recommends that you make a copy of an
existing file, rename it, and then modify it.

Option File Format
Option files are in ASCII format. They contain program blocks that correspond to the
programs listed in the flow files. Option file program blocks list the options to run for each
program. Program options can be command line options or parameter files.

• Command Line Options

For information on the different command line options for each command line
program, see the various chapters of this guide, or type the program name followed by
–h on the command line. Some options require that you specify a particular file or
value.

• Parameter files

Parameter files specify parameters for a program. Parameters are written into the
specified file. For example, Xilinx Synthesis Technology (XST) uses a script file to
execute its command line options:

Program xst
-ifn <design>_xst.scr;
-ofn <design>_xst.log;
ParamFile: <design>_xst.scr

"run";
"-ifn <synthdesign>";
"-ifmt Verilog";
"-ofn <design>.ngc";

.

.

.
End ParamFile

End Program xst
Development System Reference Guide www.xilinx.com 391
 1-800-255-7778

http://www.xilinx.com

Chapter 27: XFLOW
R

Note: You can use variables for the file names listed in the Option Files. For example, if you specify
<design>.vhd as an input file, XFLOW automatically reads the VHDLfile in your working directory
as the input file.

XFLOW Options
This section describes the XFLOW command line options. These options can be used with
any of the flow types described in the preceding section.

–active (Active Module)
–active active_module

The –active option specifies the active module for Modular Design; “active” refers to the
module on which you are currently working.

–ed (Copy Files to Export Directory)
–ed export_directory

The –ed option copies files listed in the Export line of the flow file to the directory you
specify. If you do not use the –ed option, the files are copied to the working directory. See
“Flow Files” for a description of the Export line of the flow file.

If you use the –ed option with the –wd option and do not specify an absolute path name for
the export directory, the export directory is placed underneath the working directory.

In the following example, the export3 directory is created underneath the sub3 directory:

xflow -implement balanced.opt -wd sub3 -ed export3 testclk.vhd

If you do not want the export directory to be a subdirectory of the working directory, enter
an absolute path name as in the following example:

xflow -implement balanced.opt -wd sub3 -ed /usr/export3 testclk.vhd

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file. For
more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.

–g (Specify a Global Variable)
–g variable:value

The –g option allows you to assign a value to a variable in a flow or option file. This value
is applied globally. The following example shows how to specify a global variable at the
command line:

xflow -implement balanced -g $simulation_output:time_sim calc

Note: If a global variable is specified both on the command line and in a flow file, the command line
takes precedence over the flow file.
392 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

XFLOW Options
R

–log (Specify Log File)
The –log option allows you to specify a log filename at the command line. XFLOW writes
the log file to the working directory after each run. By default, the log filename is xflow.log.

–norun (Creates a Script File Only)
By default, XFLOW runs the programs enabled in the flow file. Use the –norun option if
you do not want to run the programs but instead want to create a script file (SCR, BAT, or
TCL). XFLOW copies the appropriate flow and option files to your working directory and
creates a script file based on these files. This is useful if you want to check the programs
and options listed in the script file before executing them.

Following is an example:

xflow -implement balanced.opt -norun testclk.edf

In this example, XFLOW copies the balanced.opt and fpga.flw files to the current directory
and creates the following script file:

###
Script file to run the flow

###
#
Command line for ngdbuild
#
ngdbuild -p xc2v250fg256-5 -nt timestamp /home/
xflow_test/testclk.edf testclk.ngd
#
Command line for map
#
map -o testclk_map.ncd testclk.ngd testclk.pcf
#
Command line for par
#
par -w -ol 2 -d 0 testclk_map.ncd testclk.ncd
testclk.pcf
#
Command line for post_par_trce
#
trce -e 3 -o testclk.twr testclk.ncd testclk.pcf

–o (Change Output File Name)
–o output_filename

This option allows you to change the output file base name. If you do not specify this
option, the output file name has the base name as the input file in most cases.

The following example shows how to use the –o option to change the base name of output
files from “testclk”to “newname”:

xflow -implement balanced.opt -o newname testclk.edf
Development System Reference Guide www.xilinx.com 393
 1-800-255-7778

http://www.xilinx.com

Chapter 27: XFLOW
R

–p (Part Number)
–p part

By default (without the –p option), XFLOW searches for the part name in the input design
file. If XFLOW finds a part number, it uses that number as the target device for the design.
If XFLOW does not find a part number in the design input file, it prints an error message
indicating that a part number is missing.

The –p option allows you to specify a device. For a list of valid ways to specify a part, see
“–p (Part Number)” in Chapter 1.

For FPGA part types, you must designate a part name with a package name. If you do not,
XFLOW halts at MAP and reports that a package needs to be specified. You can use the
PARTGen –i option to obtain package names for installed devices. See “–i (Print a List of
Devices, Packages, and Speeds)” in Chapter 5 for information.

For CPLD part types, either the part number or the family name can be specified.

The following example show how to use the –p option for a Virtex design:

xflow -p xc2vp4fg256-6 -implement high_effort.opt testclk.edf

Note: If you are running the Modular Design flow and are targeting a part different from the one
specified in your source design, you must specify the part type using the –p option every time you run
the –initial, –module, or –assemble flow type.

–pd (PIMS Directory)
–pd pim_directory

The –pd option is used to specify the PIMS directory. The PIMs directory stores
implemented module files when using Modular Design.

–rd (Copy Report Files)
–rd report_directory

The –rd option copies the report files output during the XFLOW run from the working
directory to the specified directory. The original report files are kept intact in the working
directory.

You can create the report directory prior to using this option, or specify the name of the
report directory and let XFLOW create it for you. If you do not specify an absolute path
name for the report directory, XFLOW creates the specified report directory in your
working directory. Following is an example in which the report directory (reportdir) is
created in the working directory (workdir):

xflow -implement balanced.opt -wd workdir -rd reportdir testclk.edf

If you do not want the report directory to be a subdirectory of the working directory, enter
an absolute path name, as shown in the following example:

xflow -implement balanced.opt -wd workdir -rd /usr/reportdir
testclk.edf
394 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Running XFLOW
R

–wd (Specify a Working Directory)
–wd working_directory

The default behavior of XFLOW (without the –wd option) is to use the directory from
which you invoked XFLOW as the working directory. The –wd option allows you to
specify a different directory as the working directory. XFLOW searches for all flow files,
option files, and input files in the working directory. It also runs all subprograms and
outputs files in this directory.

Note: If you use the –wd option and want to use a UCF file as one of your input files, you must copy
the UCF file into the working directory.

Unless you specify a directory path, the working directory is created in the current
directory. For example, if you enter the following command, the directory sub1 is created
in the current directory:

xflow -fsim generic_verilog.opt -wd sub1 testclk.v

You can also enter an absolute path for a working directory as in the following example.
You can specify an existing directory or specify a path for XFLOW to create.

xflow -fsim generic_verilog.opt -wd /usr/project1 testclk.v

Running XFLOW
The following sections describe common ways to use XFLOW.

Using XFLOW Flow Types in Combination
You can combine flow types on the XFLOW command line to run different flows.

The following example shows how to use a combination of flow types to implement a
design, create a bitstream for FPGA device configuration, and generate an EDIF timing
simulation netlist for an FPGA design named testclk:

xflow -p xc2v250fg256-5 -implement balanced -tsim generic_verilog -config bitgen
testclk

The following example shows how to use a combination of flow types to fit a CPLD design
and generate a VHDL timing simulation netlist for a CPLD design named main_pcb:

xflow -p xc2c64-4-cp56 -fit balanced -tsim generic_vhdl main_pcb

Running “Smart Flow”
“Smart Flow” automatically detects changes to your input files and runs the flow from the
appropriate point. XFLOW detects changes made to design files, flow files, option files,
and trigger files. It also detects and reruns aborted flows. To run “Smart Flow,” type the
XFLOW syntax without specifying an extension for your input design. XFLOW
automatically detects which input file to read and starts the flow at the appropriate point.

For example, if you enter the following command and XFLOW detects changes to the
calc.edf file, XFLOW runs all the programs in the flow and option files. However, if you
enter the same command and XFLOW detects changes only to the calc.mfp file generated
by the Floorplanner GUI, XFLOW starts the flow with the MAP program.

xflow -implement balanced.opt calc
Development System Reference Guide www.xilinx.com 395
 1-800-255-7778

http://www.xilinx.com

Chapter 27: XFLOW
R

Using the SCR, BAT, or TCL File
Every time you run XFLOW, it creates a script file that includes the command line
commands of all the programs run. You can use this file for the following:

• Review this file to check which commands were run

• Execute this file instead of running XFLOW

By default, this file is named xflow.bat (PC) or xflow.scr (UNIX), although you can specify
the output script file type by using the $scripts_to_generate option. To execute the
script file, type xflow.bat, xflow.scr, or tcl.bat at the command line.

If you choose to execute the script file instead of using XFLOW, the features of “Smart
XFLOW” are not enabled. For example, XFLOW starts the flow at an appropriate point
based on which files have changed, while the script file simply runs every command listed
in the file. In addition, the script file does not provide error detection. For example, if an
error is encountered during NGDBuild, XFLOW detects the error and terminates the flow,
while the script file continues and runs MAP.

Using the XIL_XFLOW_PATH Environment Variable
This environment variable is useful for team-based design. By default, XFLOW looks for
all flow and option files in your working directory. However, this variable allows you to
store flow and option files in a central location and copy them to your team members’ local
directories, ensuring consistency. To use this variable, do the following:

1. Modify the flow and option files as necessary.

2. Copy the flow and option files to the central directory, and provide your team
members with the directory location.

3. Instruct your team members to type the following from their working directory:

set XIL_XFLOW_PATH=name_of_central_directory

When the team member runs XFLOW, XFLOW copies all flow and option files from
the central directory to his or her local directory.

Note: If you alter the files in the central directory and want to repopulate the users’ local
directories, they must delete their local copies of the flow and option files, set the
XIL_FLOW_PATH environment variable, and rerun XFLOW to copy in the updated files.

Halting XFLOW
You can manually interrupt the flow while XFLOW is in session by typing Ctrl C on your
keyboard. If you halt XFLOW while PAR is in progress, you can choose one of several
options. See “Halting PAR” in Chapter 10 for a detailed description.
396 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 28

Data2MEM

Data2MEM is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/-3

This document describes how the Data2MEM software tool automates and simplifies
setting the contents of BRAM cells on Virtex™ devices. It also shows how this is used with
the 32-bit CPU on the single-chip Virtex-II Pro devices.

The chapter contains the following sections:

• “Introduction”

• “Input and Output Files”

• “Use Overview”

• “Process Overview”

• “Command Line Option Reference”

Introduction
Data2MEM is fundamentally a data translation tool. It translates contiguous fragments of
data into the proper initialization records for Virtex series Block RAMs. It automates
distributing that data across multiple physical Block RAMs that constitute a contiguous
logical data space and, it handles CPU bus byte lane interleaving strategies. Xilinx has now
created the combination of Virtex series devices and a 32-bit CPU on the single-chip
Virtex-II Pro device. Data2MEM was created to conveniently incorporate CPU software
images into FPGA bitstreams, and to execute that software from Block RAM-built address
space. This presents a powerful and flexible means of merging parts of CPU software, and
FPGA design tool flows into creative and innovative ways. Data2MEM is also a simplified
means for initializing Block RAMs for non-CPU designs.

The Data2MEM has automated a complicated process, into significantly simplified
technique. The Data2MEM software tool accomplishes the following goals:

• Affects existing tool flows as little as possible, for both FPGA and CPU software
designers.

• Limits the time delay one tool flow imposes on the other for testing changes or fixing
verification problems.

• Isolates the process to a single step or as few steps as possible.

• Reduces or eliminates the requirement for one tool flow user (for example, CPU
software or FPGA designer) to learn the other tool flow steps and details.
Development System Reference Guide www.xilinx.com 397
 1-800-255-7778

http://www.xilinx.com

Chapter 28: Data2MEM
R

Data2MEM is supported on the following platforms:

• Solaris 2.7, and Solaris 2.8

• Windows NT 4.0, with SP5 or higher

• Windows 2000, ME, and Windows 98

Input and Output Files
Data2MEM utilizes a number of input and output files. The following figure portrays the
range of files, and their input/output relationship to Data2MEM. Below is a description of
each file type, and how they are consumed or produced by Data2MEM.

Block RAM Memory Map (.bmm) files
A .bmm file (Block RAM Memory Map) is a simple text file that has syntactic description of
how individual Block RAMs constitute a contiguous logical data space. This is a
fundamental input file that Data2MEM uses .bmm files to direct the translation of data into
the proper initialization form. A .bmm file is created primarily by hand. However,
Data2MEM has facilities to generate .bmm file templates that can be customize to a specific
design. A .bmm file can also be created by automated scripting means. Since a .bmm file is
a simple text file, it is directly editable. Data2MEM allows the free-form use of both “//”
and “/*...*/” commenting styles.

Executable and Linkable Format (.elf) files
An .elf file (pronounced “elf”) is a binary data file that contains an executable CPU code
image, ready for running on a CPU. These files are produced by software compiler/linker
tools. Please refer to the proper software tools documentation for the details on creating .elf
files. Data2MEM uses .elf files as it’s basic data input form. Since .elf files are binary data,
they are not directly editable. Data2MEM also provides some facilities for examining the
content of .elf files.

Figure 28-1: Data2MEM Input and Output Files

Data2BRAM

updated_file.bit file.v file.memfile.vhd

file.bmmfile.bitfile.elf file.drf file.mem

x604_05_090501
398 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Input and Output Files
R

Debugging Information Format DWARF (.drf) files
A .drf file (pronounced “dwarf”) is a binary data file that also contains the executable CPU
code image, plus debug information required by symbolic source-level debuggers. These
files are produced by the same software compiler/linker tools as .elf files. Data2MEM will
input .drf files wherever .elf files can be used. Since .drf files are binary data, they are not
directly editable. Data2MEM provides some facilities for examing the content of .drf files.

Memory (.mem) files
A .mem file (memory) is a simple text file that describes contiguous blocks of data. Since a
.mem file is a simple text file, it is directly editable. Data2MEM allows the free-form use of
both “//” and “/*...*/” commenting styles. Data2MEM uses .mem files for both data input
and output.

The format of .mem files is an industry standard, and consists of two basic elements; hex
address specifier and hex data values. An address specifier is indicated by a “@” character
followed the hex address value. There are no spaces between the “@” character and the
first hex character. Hex data values follow the hex address value, separated by spaces, tabs,
or carriage-return characters. Data values can consist of as many hex characters as desired.
However, when a value has an odd number of hex characters, the first hex character is
assumed to be a “0”. Therefore, hex values:

A, C74, and 84F21

Would be interpreted as the values:

0A, 0C74, and 084F21

Note: The common “0x” hex prefix is not allowed. Using this prefix on .mem file hex values will be
flaged as a syntx error.

There must be at least data value following an address, to as many data values the belong
to the previous address value. The following is an example of the most common .mem file
format:

@0000 3A @0001 7B @0002 C4 @0003 56 @0004 02
@0005 6F @0006 89...

Data2MEM requires a less redundant format in that an address specifier is only specified
once, at the beginning of a contiguous block of data. The previous example would be
rewritten as:

@0000 3A 7B C4 56 02 6F 89...

The address for each successive data value is derived from its distance from the previous
address specifier. However, the derived addresses depends whether the file is being used
as an input or output. See the description of the differances between input and output
memory files below.

A .mem file may have as many of these contiguous data blocks as required. There can be
any size gap of address range between data blocks; however, no two data blocks can
overlap an address range.

Memory Files as Output

Output files are used primarily for Verilog simulations with third-party memory models.
Therefore, the format follow industry standard usage on three key points.

Firstly, all data values must be the same number of bits wide, and must be the same width
as expected by the memory model.
Development System Reference Guide www.xilinx.com 399
 1-800-255-7778

http://www.xilinx.com

Chapter 28: Data2MEM
R

Second, the data values actually resides within a larger array of values, starting at zero. An
address specifier isn’t a true address, but rather, its an index offset from the beginning of the
larger array of where the data should begin. For example, the following .mem file contents:

@654 24B7 6DF2 D897 1FE3 922A 5CAE 67F4...

indicates that data starts at the 656th hex location, within an array of 16 bit data values.

Lastly, if an address gap exist between two contiguous blocks of data, the data between the
gaps still logically exists, but is just undefined.

Memory Files as Input

Input files take some format license for the industry standard. There are four key
differences to understand.

Firstly, White space between adjacent data values is ignored. Rather, all of the values in a
contiguous blocks of data are treated as a continuous stream of bits. Data2MEM breaks up
the bit stream into data values according to the width the target Block RAMs configured.
White space between adjacent data values is used only for readability.

Second, an address specifier must reside within an address space defined in a .bmm file.
Note that the specifier is not specifically a CPU memory address. Rather, its any number
that matches a .bmm address space.

Third, Despite the fact that address specifiers aren’t specifically CPU memory address,
derived addresses for successive data values depends on a value’s byte length. A eight bit
value will increment the next derived address by one, a sixteen value by two, thirty two bit
value by four, and so forth.

Note: As was stated above, odd length data values will be rounded up to an even eight bit size, with
the upper four bits assumed to be zero.

Lastly, if an address gap exist between two contiguous blocks of data, the address gaps is
assumed to be non-existent memory.

Bit (.bit) files
A .bit file (Bit Stream) is a binary data file that contains a bit image to be downloaded to a
FPGA device. Data2MEM can direct replace the Block RAM data in .bit files, without the
intervention of any Xilinx implementation tools. Hence, Data2MEM both inputs and
outputs .bit files. A .bit is generated by the Xilinx implementation tools. Please refer to
Xilinx implementation tools documentation for the details on creating .bit files. Since .bit
files are binary data, they are not directly editable. Data2MEM also provides some facilities
for examining the content of .bit files.

Verilog (.v) files
A .v file (Verilog) is a simple text file Data2MEM outputs, that contains “defparm” records
to initialize Block RAMs. This file is used primarily for pre- and post-synthesis simulation.
Since a .v file is a simple text file, it is directly editable. However, since this file is a
generated file, editing is not advised. Data2MEM allows the free-form use of both “//”
and “/*...*/” commenting styles.
400 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Use Overview
R

VHDL (.vhd) files
A .vhd file (VHDL) is a simple text file Data2MEM outputs, that contains “bit_vector”
constants to initialize Block RAMs. These constants can then be used in “generic maps” to
instance an initialized Block RAM. This file is used primarily for pre- and post-synthesis
simulation. Since a .v file is a simple text file, it is directly editable. However, since this file
is a generated file, editing is not advised. Data2MEM allows the free-form use of both “//”
and “/*...*/” commenting styles.

UCF (.ucf) files
A .ucf file (User Constraints File) is a simple text file Data2MEM outputs, that contains
“INST” records to initialize Block RAMs. Since a .ucf file is a simple text file, it is directly
editable. However, since this file is a generated file, editing is not advised. Data2MEM
allows the free-form use of both “//” and “/*...*/” commenting styles. This file type is
supported for legacy workflows. Its use for new designs or workflows is discouraged.

Use Overview
The following figure portrays simplified tool flow views for CPU software and FPGA
design. Some minor steps are left out of the diagrams for clarity.

On the left-hand side of the diagram, CPU software source code is used in the form of high-
level .c files and assembly-level .s files. These files are compiled into .o link files. The .o
files, with prebuilt .o libraries, are linked together into a single executable code image. A
.map file is also used in the link process to specify absolute address space locations,
enabling the placement of executable code at specific address locations within system
memory.

The output of the link process is either an .elf or a .drf file. The .elf contents can either be
downloaded to a target directly through its JTAG debug port, or it can be programmed into
the target's boot flash. Alternatively, the executable portion of a .drf file can be
downloaded to a target via a symbolic debugger, and the debug portion can be used to
symbolically debug the executable code image.
Development System Reference Guide www.xilinx.com 401
 1-800-255-7778

http://www.xilinx.com

Chapter 28: Data2MEM
R

FPGA source code is used in the form of .v, and .edn files. These files are either used in
various styles of hardware simulation or are synthesized into .edn intermediate files. A
.ucf (user constraints file) and the intermediate .edn file are then run through MAP and
PAR to produce an .ncd file. The .ncd file is then turned into an FPGA .bit file that can be
used to configure the FPGA. The .bit file can be either downloaded to the FPGA directly, or
programmed into the FPGA's boot configure flash.

Although simplified, these diagrams give an accurate representation of how these tool
flows operate within discrete-chip CPU/FPGA designs: two separate source bases, two
separate bit images, and two separate boot flash devices.

When integrating a discrete-chip CPU/FPGA design into a single FPGA chip, the source
bases can remain separated, which means the portion of the tool flows that operate on
sources can also remain separated. However, a single FPGA chip implies a single boot
flash device, which must contain the merged two bit images. Also, the tight integration of
CPU and FPGA requires a much closer coupling of the FPGA simulation process. To
produce combined bit images, Data2MEM connects the two flows while leaving the two
flows themselves unchanged.

There are three distinct Data2MEM tool flows.

Figure 28-2: Simplified SW and HW Tool Flows
402 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Process Overview
R

1. Flows for software designers that utilizes Data2MEM as a command line tool to
generate updated a .bit files.

2. Flows for hardware designers that integrates Data2MEM with the Xilinx
implementation tools.

3. Flows that utilizes Data2MEM as a command line tool to generate behavioral
simulation files.

Process Overview
This section provides an overview of the data flow through Data2MEM, and summarizes
the design factors considerations necessary when mapping CPU software code to a BRAM
implemented address spaces.

This overview represents only a logical layout and grouping. FPGA logic must be
constructed to translate CPU address requests into physical BRAM selection. The design of
that FPGA logic is beyond the scope of this document.

Following are the design considerations for BRAM-implemented address spaces:

• BRAMs come in fixed-size widths and depths, and CPU address spaces might need to
be much larger in width and depth than a single BRAM. Hence, multiple BRAMs
need to be logically grouped together to form a single CPU address space.

• A single CPU bus access is often multiple bytes of data wide, for example, 32 or 64 bits
(4 or 8 bytes) at a time.

• CPU bus accesses of multiple bytes of data might also access multiple BRAM to obtain
that data. Hence, byte-linear CPU data must be interleaved by the bit width of each
BRAM and by the number of BRAMs in a single bus access. However, the relationship
of CPU addresses to BRAM locations must be regular and easily calculable.

• CPU data must be located in a BRAM-constructed memory space relative to the CPU
linear addressing scheme, not to the logical grouping of multiple BRAMs.

• Address space must be contiguous and whole multiples of the CPU bus width. Bus bit
(byte) lane interleaving is only allowed in the sizes supported by Virtex BRAM port
sizes. 1, 2, 4, 8, and 16 bits for Virtex and Virtex-E devices and 1, 2, 4, 8, 16, and 32 bits
for Virtex-II and Virtex-II Pro devices. Refer to Table 1 and Table 2.

• Addressing must account for the differences in instruction and data memory space.
Since instruction space is not writable, there are no address width restrictions.
However, data space is writable and usually requires the ability to write individual
bytes. For this reason, each bus bit (byte) lane must be addressable.

• The size of the memory map and the location of the individual BRAMs affect the
access time. Evaluate the access time after implementation to verify that it meets the
design specifications.

Given these considerations, refer to the diagram in the following figure. The diagram
graphically represents a 16 Kbyte address space from CPU address 0xFFFFC000 to
0xFFFFFFFF, constructed from the logical grouping of thirty-two 4 Kbit BRAMs. Each
BRAM is configured to be 8 bits wide, and 512 bytes deep. CPU bus accesses are 8 BRAMs
(64 bits) wide, with each column of BRAMs occupying an 8 bit wide slice of a CPU bus
access called a “Bit Lane.” Each row of 8 BRAMs in a bus access are grouped together in a
“Bus Block.” Hence, each Bus Block is 64 bits wide and 4096 bytes in size. The entire
collection of BRAMs is grouped together into a contiguous address space called an
“Address Block.”
Development System Reference Guide www.xilinx.com 403
 1-800-255-7778

http://www.xilinx.com

Chapter 28: Data2MEM
R

Note: Virtex, Virtex-E, Spartan-II, and Spartan-IIE use 4 Kbit BRAMs. Virtex-II and Virtex-II Pro use
16 Kbit BRAM.

The address space, or Address Block, shown in the following figure consists of four Bus
Blocks. The upper right corner address is 0xFFFFC000 and the lower left-hand corner
address is 0xFFFFFFFF. Because a bus access obtains 8 data bytes across eight BRAMs,
byte-linear CPU data must be “interleaved” by 8 bytes in the BRAMs. In this example, byte
0 goes into the first byte location of Bit Lane BRAM7; byte 1 goes into the first byte location
of Bit Lane BRAM6; and so forth, to byte 7. However, CPU data byte 8 goes into the second
byte location of Bit Lane BRAM7; byte 9 goes into the second byte location of Bit Lane
BRAM6 and so forth, repeating until CPU data byte 15. This interleave pattern repeats
until every BRAM in the first Bus Block is filled. This process then repeats for each
successive Bus Block until the entire memory space is filled, or the input data is exhausted.

Note: At first this filling order may seem counter intuitive. However, the order in which Bit Lanes and
Bus Blocks are defined controls the filling order. For the sake of this example, assume that Bit Lanes
are defined from left to right, and Bus Blocks are defined from top to bottom.

This process is referred to as byte lane mapping or more accurately, bit lane mapping,
because these formulas are not restricted to byte-wide data. This is similar to the process
embedded software programmers used when programmed CPU code is placed into the
banks of fixed-size EPROM devices.

As mentioned previously, byte lane mapping is similar to a process already used by
embedded CPU software programmers. However, byte lane mapping BRAMs differs in
some important ways as the following describes:

Figure 28-3: Example BRAM Address Space Layout

B
R

A
M

0

B
R

A
M

1

B
R

A
M

2

B
R

A
M

3

B
R

A
M

4

B
R

A
M

5

B
R

A
M

6

B
R

A
M

7

B
R

A
M

8

B
R

A
M

9

B
R

A
M

10

B
R

A
M

11

B
R

A
M

12

B
R

A
M

13

B
R

A
M

14

B
R

A
M

15

B
R

A
M

16

B
R

A
M

17

B
R

A
M

18

B
R

A
M

19

B
R

A
M

20

B
R

A
M

21

B
R

A
M

22

B
R

A
M

23

B
R

A
M

24

B
R

A
M

25

B
R

A
M

26

B
R

A
M

27

B
R

A
M

28

B
R

A
M

29

B
R

A
M

30

B
R

A
M

31

Increasing C
P

U
 m

em
ory address

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

64 bit bus accesses

0xFFFFC000

0xFFFFFFFF

B
us

B
lock 0

B
us

B
lock 1

B
us

B
lock 2

B
us

B
lock 3

x604_01_080801
404 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Process Overview
R

• Embedded system developers generally use a custom (for example, in-house)
software tool for byte lane mapping for a fixed number and organization of byte-wide
storage devices. Because the number and organization of the devices cannot change,
these tools assume a specific device arrangement. Hence, little or no configuration
options are provided. By contrast, the number and organization of FPGA BRAMs are
completely “soft” (within FPGA limits), and any tool for byte lane mapping for
BRAMs must support a vast set of device arrangements.

• Existing byte lane mapping tools assume some kind of ascending order of the physical
addressing of byte-wide devices, because board-level hardware is built that way. By
contrast, FPGA BRAMs have no fixed usage constraints and can be grouped together
with BRAMS anywhere within the FPGA fabric. Even though Figure 3 displays
BRAMs in ascending order for clarity since BRAMs can be configured in any order.

• Discreet storage devices are almost always only one or two bytes (8 or 16 bits) wide, or
rarely, 4 bits wide. Existing tools usually assume that all storage devices have a single
width. Virtex BRAM, however, can be configured in several widths, depending on the
needs of the hardware designer, the following tables specify the Virtex and Virtex-II
BRAM widths.

• Existing tools have limited configuration needs so that a simple command line
interface will suffice. BRAM usage adds more complexity and warrants a human-
readable syntax to describe the mapping between address spaces and BRAM
utilization.

Note: Officially, Virtex-II and Virtex-II Pro parts contain 18 kbit BRAMs; 16 Kbit of data, and 2 Kbits
of parity. Data2MEM currently does not support the use of the parity bits and, therefore, these BRAMs
are referred to as 16 Kbit BRAMs.

Table 28-1: Virtex, Virtex-E, and Spartan-IIE BRAM configurations

Component Data Depth Data Width

RAMB4_S1 4096 1

RAMB4_S2 2048 2

RAMB4_S4 1024 4

RAMB4_S8 512 8

RAMB4_S16 256 16

Table 28-2: Virtex-II and Virtex-II Pro BRAM configurations

Component
Data Cells

Parity Cells
Currently Unused

Data Depth Data Width Depth Width

RAMB16_S1 16384 1 - -

RAMB16_S2 8192 2 - -

RAMB16_S4 4096 4 - -

RAMB16_S9 2048 8 - -

RAMB16_S18 1024 16 - -

RAMB16_S36 512 32 - -
Development System Reference Guide www.xilinx.com 405
 1-800-255-7778

http://www.xilinx.com

Chapter 28: Data2MEM
R

Command Line Option Reference
Data2MEM has fairly simple command line options. The overall syntax is as follows:

Data2MEM
 <-bm filename [.bmm]> |
 <<[-bm filename [.bmm]]>
 <-bd filename [<.elf>|<.mem>] [<tag TagName <TagName>...>]>...
 <-o <u|v|h|m> filename [.ucf|.v|.vhd|.mem]>
 <-p partname>
 -i>> |
 <<-bd filename [.elf]> -d [e|r]> [<-o m filename [.mem]>]>> |
 <<-bm filename [.bmm]>
 <-bd filename [<.elf>|<.mem>] [<tag TagName <TagName>...>]>...
 <-bt filename [.bit]> <-o b filename [.bit]>> |
 <<-bm filename [.bmm]> <-bt filename [.bit]> -d>> |
 <<-bf filename [.bmm]> <sanme mtype astart aend bwidth s iroot
dwidth>...>> |
 <-f filename [.opt]> |
 <-q [e|w|i]> |
 -u |
 -h

Table 28-3: Command Line Options

Option Description

 –bd filename Name of the an input ELF or MEM files. If the file extension
is missing, .elf is assumed. The .mem extension MUST be
supplied to indicate a MEM file. If TagNames are given, only
the address space of the same names within the BMM file will
be used for translation. All other input file data outside of the
TagName address spaces will be ignored. If no further
options are specified, "-o u filename" functionality is assumed.
One or more –bd options can be used.

 –bm filename Name of the input BMM file. If the file extension is missing, a
.bmm file extension is assumed. If this is option not
unspecified, the ELF or MEM root file name with a .bmm
extension is assumed. If only this option is given, then the
BMM file is merely syntax checked and any errors are
reported. Only one -bm option can be used.

 –bt filename Name of the input BIT file. If the file extension is missing, .bit
is assumed. If the –o option is not specified, the output BIT file
name will have the same root file name as the input BIT file,
with a "_rp" appended to the end. A .bit file extension is
assumed. Otherwise, the output BIT file name will be as
specified in the -o option. Also, the device type is
automatically set from the BIT file header, and the -p option
will have no effect.
406 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Command Line Option Reference
R

 –d e|r Dump the contents of the input ELF or BIT file as formatted
text records. BIT file dumps display the BIT file commands,
and the contents of each BRAM. When dumping ELF files,
two optional modifier characters may follow the -d option.
No spaces can separate the modifier characters, but can
appear in any order. As many, or as few modifier characters
can be used at once. These modifiers mean:

'e' - EXTENDED mode. Display additional information for
each ELF section.

'r' - RAW mode. This includes some redundant ELF
information.

 –f filename Name of an option file. If the file extension is missing, an .opt
file extension is assumed. These options are identical to the
command line options, just in a text file instead. A option, and
its items, must appear on the same text line. However, as
many switchs can appear on the same text line as desired.
This option can be used only once, and a .opt file can't contain
a -f option.

 –h Print help text, plus supported part name list.

 –i Ignore ELF or MEM data that is outside the address space
defined in the BMM file. Otherwise, an error will be
generated.

Table 28-3: Command Line Options

Option Description
Development System Reference Guide www.xilinx.com 407
 1-800-255-7778

http://www.xilinx.com

Chapter 28: Data2MEM
R

 –mf filename SNAME MTYPE ASTART AEND s IROOT BWIDTH

Create a BMM file. If the file extension is missing, a .bmm file
extension is assumed. The eight following items define a
single Address Space within the BMM file. All eight items
must be given, and must appear in the order indicated. As
many groups of the eight items can be given, to define all
Address Spaces within the BMM file. The eight items mean:

SNAME - Alpha-numeric name of the Address Space.

MTYPE - Type name of memory type the Address Space is
construct of. Legal memory types consists of
'RAMB4', 'RAMB16', and 'MEMORY'.

ASTART - Hex address the Address Space starts from. I.e.,
0xFFF00000

AEND - Hex address the Address Space ends at. I.e.,
0xFFFFFFFF.

BWIDTH - Numeric bit width of the bus access for the
Address Space.

's' - The following two items are a Simple definition of all
Address Spaces within a BMM file.

IROOT - Root alpha-numeric hierarchy/part instance name
assigned to each bitLane device. To make the
instance names unique, each instance name will have
an increasing two digit value appended to the right
end of the root instance name.

DWIDTH - Numeric bit width of each bitLane within a bus
access.

Table 28-3: Command Line Options

Option Description
408 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Command Line Option Reference
R

 –o u|v|h|m|b
filename

The name of the output file(s). The string preceding the file
name indicates which file formats are to be output. No spaces
can separate the file type characters, but can appear in any
order. As many, or as few file type characters can be used at
once. The file type characters mean:

'u' - UCF file format, a .ucf file extension.

'v' - Verilog file format, a .v file extension.

'h' - VHDL file format, a .vhd file extension.

'm' - MEM file format, a .mem file extension.

'b' - BIT file format, a .bit file extension.

The filename applies to all specified output file types. If the file
extension is missing, the appropriate file extension will be
added to specified output file types. If the file extension is
specified, the appropriate file extension will be added to the
remaining file formats. An output file contains data from all
translated input data files.

 –p partname Name of the target Virtex part. If this is unspecified, a 'xcv50'
part is assumed. Use the –h option to obtain the full
supported part name list.

 –q e|w|i Disable the output of Data2MEM messages. The string
following the option indicates which messages types will be
disabled. No spaces can separate the message type characters,
but can appear in any order. As many, or as few message type
characters can be used at once. The message type string is
optional. Leaving the message type blank is equivalent to
using "-q wi". The message type characters mean:

'e' - Disable ERROR messages.

'w' - Disable WARNING messages.

'i' - Disable INFO messages.

 –u Update -o text output files for all Address Spaces, even if no
data was transformed into an Address Space. Depending on
file type, an output file will be either empty, or will contain
initializations of all zero. If this option is not used, only
Address Spaces that receive transformed data will be output.

Table 28-3: Command Line Options

Option Description
Development System Reference Guide www.xilinx.com 409
 1-800-255-7778

http://www.xilinx.com

Chapter 28: Data2MEM
R

Listing 1- Example Block RAM Memory Map File

/***
*
* FILE : example.bmm
*
* Define a BRAM map for the RAM controller memory space. The
* address space 0xFFFFC000 - 0xFFFFFFFF, 16k deep by 64 bits wide.
*
** /

ADDRESS_BLOCK ram_cntlr RAMB4 [0xFFFFC000:0xFFFFFFFF]

// Bus access map for the lower 4k, CPU address 0xFFFFC000 -
0xFFFFCFFF

BUS_BLOCK
top/ram_cntlr/ram7 [63:56] LOC = R3C5;
top/ram_cntlr/ram6 [55:48] LOC = R3C6;
top/ram_cntlr/ram5 [47:40] LOC = R3C7;
top/ram_cntlr/ram4 [39:32] LOC = R3C8;
top/ram_cntlr/ram3 [31:24] LOC = R4C5;
top/ram_cntlr/ram2 [23:16] LOC = R4C6;
top/ram_cntlr/ram1 [15:8] LOC = R4C7;
top/ram_cntlr/ram0 [7:0] LOC = R4C8;

END_BUS_BLOCK;

// Bus access map for next higher 4k, CPU address 0xFFFFD000 -
0xFFFFDFFF

BUS_BLOCK
top/ram_cntlr/ram15 [63:56] OUTPUT = ram15.mem;
top/ram_cntlr/ram14 [55:48] OUTPUT = ram14.mem;
top/ram_cntlr/ram13 [47:40] OUTPUT = ram13.mem;
top/ram_cntlr/ram12 [39:32] OUTPUT = ram12.mem;
top/ram_cntlr/ram11 [31:24] OUTPUT = ram11.mem;
top/ram_cntlr/ram10 [23:16] OUTPUT = ram10.mem;
top/ram_cntlr/ram9 [15:8] OUTPUT = ram9.mem;
top/ram_cntlr/ram8 [7:0] OUTPUT = ram8.mem;

END_BUS_BLOCK;

// Bus access map for next higher 4k, CPU address 0xFFFFE000 -
0xFFFFEFFF

BUS_BLOCK
top/ram_cntlr/ram23 [63:56];
top/ram_cntlr/ram22 [55:48];
top/ram_cntlr/ram21 [47:40];
top/ram_cntlr/ram20 [39:32];
top/ram_cntlr/ram19 [31:24];
top/ram_cntlr/ram18 [23:16];
top/ram_cntlr/ram17 [15:8];
top/ram_cntlr/ram16 [7:0];

END_BUS_BLOCK;
410 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Command Line Option Reference
R

// Bus access map for next higher 4k, CPU address 0xFFFFF000 -
0xFFFFFFFF

BUS_BLOCK
top/ram_cntlr/ram31 [63:56];
top/ram_cntlr/ram30 [55:48];
top/ram_cntlr/ram29 [47:40];
top/ram_cntlr/ram28 [39:32];
top/ram_cntlr/ram27 [31:24];
top/ram_cntlr/ram26 [23:16];
top/ram_cntlr/ram25 [15:8];
top/ram_cntlr/ram24 [7:0];

END_BUS_BLOCK;

END_ADDRESS_BLOCK;
Development System Reference Guide www.xilinx.com 411
 1-800-255-7778

http://www.xilinx.com

Chapter 28: Data2MEM
R

412 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Appendix A

Xilinx Development System Files

This appendix gives an alphabetic listing of the files used by the Xilinx Development
System.

Name Type Produced By Description

ALF ASCII NGDAnno Log file containing information
about an NGDAnno run

BIT Data BitGen Download bitstream file for devices
containing all of the configuration
information from the NCD file

BGN ASCII BitGen Report file containing information
about a BitGen run

BLD ASCII NGDBuild Report file containing information
about an NGDBuild run, including
the subprocesses run by NGDBuild

DATA C File TRCE File created with the –stamp option
to TRCE that contains timing model
information

DC ASCII Synopsys FPGA
Compiler

Synopsys setup file containing
constraints read into the Xilinx
Development System

DLY ASCII PAR File containing delay information
for each net in a design

DRC ASCII BitGen Design Rule Check file produced
by BitGen

EDIF (various
file extensions)

ASCII CAE vendor’s EDIF 2
0 0 netlist writer.

EDIF netlist. The Xilinx
Development System accepts an
EDIF 2 0 0 Level 0 netlist file

EDN ASCII NGD2EDIF Default extension for an EDIF
2 0 0 netlist file

EPL ASCII FPGA Editor FPGA Editor command log file. The
EPL file keeps a record of all FPGA
Editor commands executed and
output generated. It is used to
recover an aborted FPGA Editor
session
Development System Reference Guide www.xilinx.com 413
 1-800-255-7778

http://www.xilinx.com

Appendix A: Xilinx Development System Files
R

EXO Data PROMGen PROM file in Motorola’s
EXORMAT format

FLW ASCII Provided with
software

File containing command
sequences for XFLOW programs

fpga_editor.ini ASCII Xilinx software Script that determines what FPGA
Editor commands are performed
when the FPGA Editor starts up

fpga_editor_
user.ini

ASCII Xilinx software Supplement to the fpga_editor.ini
file used for modifying or adding to
the fpga_editor.ini file

GYD ASCII CPLD fitter CPLD guide file

HEX Hex PROMGen
Command

Output file from PROMGEN that
contains a hexadecimal
representation of a bitstream

IBS ASCII IBISWriter
Command

Output file from IBISWriter that
consists of a list of pins used by the
design, the signals internal to the
device that connect to those pins,
and the IBIS buffer models for the
IOBs connected to the pins

ITR ASCII PAR Intermediate failing timespec
summary from routing

JED JEDEC CPLD fitter Programming file to be
downloaded to a device

LOG ASCII NGD2VER

NGD2VHDL

XFLOW

Log file containing all the messages
generated during the execution of
NGD2VER (ngd2ver.log),
NGD2VHDL (ngd2vhdl.log), or
XFLOW (xflow.log)

LL ASCII BitGen Optional ASCII logic allocation file
with an .ll extension. The logic
allocation file indicates the
bitstream position of latches, flip-
flops, and IOB inputs and outputs.

MEM ASCII User (with text
editor)

LogiBLOX

User-edited memory file that
defines the contents of a ROM

MCS Data PROMGen PROM-formatted file in Intel’s
MCS-86 format

MDF ASCII MAP A file describing how logic was
decomposed when the design was
mapped. The MDF file is used for
guided mapping.

Name Type Produced By Description
414 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

MFP ASCII Floorplanner Map Floorplanner File, which is
generated by the Floorplanner,
specified as an input file with the
–fp option. The MFP file is
essentially used as a guide file for
mapping.

MOD ASCII TRCE File created with the –stamp option
in TRCE that contains timing model
information

MRP ASCII MAP MAP report file containing
information about a technology
mapper command run

MSK Data BitGen File used to compare relevant bit
locations when reading back
configuration data contained in an
operating Xilinx device

NAV XML NGDBuild Report file containing information
about an NGDBuild run, including
the subprocesses run by
NGDBuild. From this file, the user
can click any linked net or instance
names to navigate back to the net or
instance in the source design.

NCD Data Mappers, PAR,
FPGA Editor

Flat physical design database
correlated to the physical side of
the NGD in order to provide
coupling back to the user’s original
design

NCF ASCII CAE Vendor toolset Vendor-specified logical
constraints files

NGA Data NGDAnno Back-annotated mapped NCD file

NGC Binary LogiBLOX File containing the implementation
of a module in the design

XST Netlist file with constraint
information

NGD Data NGDBuild Generic Database file. This file
contains a logical description of the
design expressed both in terms of
the hierarchy used when the design
was first created and in terms of
lower-level Xilinx primitives to
which the hierarchy resolves.

Name Type Produced By Description
Development System Reference Guide www.xilinx.com 415
 1-800-255-7778

http://www.xilinx.com

Appendix A: Xilinx Development System Files
R

NGM Data MAP File containing all of the data in the
input NGD file as well as
information on the physical design
produced by the mapping. The
NGM file is used for
back-annotation.

NGO Data Netlist Readers File containing a logical description
of the design in terms of its original
components and hierarchy

NKY Data BitGen Encryption key file

NMC Binary FPGA Editor Xilinx physical macro library file
containing a physical macro
definition that can be instantiated
into a design

OPT Text Input file option Option file used by XFLOW

PAD ASCII PAR File containing a listing of all
I/O components used in the design
and their associated primary pins

PAR ASCII PAR PAR report file containing
execution information about the
PAR command run. The file shows
the steps taken as the program
converges on a placement and
routing solution

partlist.xct ASCII PARTGen File containing detailed
information about architectures
and devices

PCF ASCII MAP, FPGA Editor File containing physical constraints
specified during design entry (that
is, schematics) and constraints
added by the user

PIN ASCII NGD2VER Cadence signal-to-pin mapping file

PRM ASCII PROMGen File containing a memory map of a
PROM file showing the starting
and ending PROM address for each
BIT file loaded

RBT ASCII BitGen “Rawbits" file consisting of ASCII
ones and zeros representing the
data in the bitstream file

RPT ASCII PIN2UCF Report file generated by PIN2UCF
when conflicting constraints are
discovered. The name is
pinlock.rpt.

RCV ASCII FPGA Editor FPGA Editor recovery file

Name Type Produced By Description
416 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

SCR ASCII FPGA Editor or
XFLOW

FPGA Editor or XFLOW command
script file

SDF ASCII NGD2VER,
NGD2VHDL

File containing the timing data for a
design. Standard Delay Format File

TDR ASCII DRC Physical DRC report file

TEK Data PROMGen PROM-formatted file in Tektronix’s
TEKHEX format

TV ASCII NGD2VER Verilog test fixture file

TVHD ASCII NGD2VHDL VHDL testbench file

TWR ASCII TRACE Timing report file produced by
TRACE

TWX XML TRACE Timing report file produced by
TRACE. From this file, the user can
click any linked net or instance
names to navigate back to the net or
instance in the source design.

UCF ASCII User (with text
editor)

User-specified logical constraints
files

URF ASCII User (with text
editor)

User-specified rules file containing
information about the acceptable
netlist input files, netlist readers,
and netlist reader options

V ASCII NGD2VER Verilog netlist

VHD ASCII NGD2VHDL VHDL netlist

VM6 Design CPLD Fitter Output file from fitter

XMM ASCII NGD2EDIF File defining the initial contents of
the RAMs in the design for a
simulator

XNF ASCII Previous releases of
Xilinx Development
System, CAE vendor
toolsets

Xilinx netlist format file

XTF ASCII Previous releases of
Xilinx Development
System

Xilinx netlist format file

XPI ASCII PAR File containing PAR run summary

Name Type Produced By Description
Development System Reference Guide www.xilinx.com 417
 1-800-255-7778

http://www.xilinx.com

Appendix A: Xilinx Development System Files
R

418 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Appendix B

EDIF2NGD, and NGDBuild

This appendix describes the netlist reader program, EDIF2NGD, and how this programs
interact with NGDBuild. The appendix contains the following sections:

• “EDIF2NGD”

• “NGDBuild”

• “Netlist Launcher (Netlister)”

• “NGDBuild File Names and Locations”

EDIF2NGD
This program is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/3

• CoolRunner™ XPLA3/-II/-IIs

• XC9500™/XL/XV

The EDIF2NGD program allows you to read an EDIF (Electronic Design Interchange
Format) 2 0 0 file into the Xilinx Development System toolset. EDIF2NGD converts an
industry-standard EDIF netlist to an NGO file—a Xilinx-specific format. The EDIF file
includes the hierarchy of the input schematic. The output NGO file is a binary database
describing the design in terms of the components and hierarchy specified in the input
design file. After you convert the EDIF file to an NGO file, you run NGDBuild to create an
NGD file, which expands the design to include a description reduced to Xilinx primitives.
Development System Reference Guide www.xilinx.com 419
 1-800-255-7778

http://www.xilinx.com

Appendix B: EDIF2NGD, and NGDBuild
R

The following figure shows the flow through EDIF2NGD.

You can run EDIF2NGD in the following ways:

• Automatically from NGDBuild

• From the UNIX or DOS command line, as described in the following sections

Note: When creating nets or symbols names, do not use reserved names. Reserved names are the
names of symbols for primitives and macros in the Libraries Guide and net names GSR, RESET,
GR, and PRELOAD. If you used these names, EDIF2NGD issues an error.

Figure B-1: EDIF2NGD Design Flow

Synthesis
Vendor Tools

NCF
Netlist Constraints File

EDIF2NGD

Schematic
Drawing

EDIF 2 0 0
Writer

NGO

EDIF 2 0 0 Netlist

CAE VENDOR
TOOLS

XILINX
DEVELOPMENT
SYSTEM

X6994
420 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

EDIF2NGD
R

EDIF2NGD Syntax
The following command reads your EDIF netlist and converts it to an NGO file:

edif2ngd [options] edif_file ngo_file

options can be any number of the EDIF2NGD options listed in “EDIF2NGD Options”. They
do not need to be listed in any particular order. Separate multiple options with spaces.

edif_file is the EDIF 2 0 0 input file to be converted. If you enter a file name with no
extension, EDIF2NGD looks for a file with the name you specified and an .edn extension.
If the file has an extension other than .edn, you must enter the extension as part of edif_file.

Note: For EDIF2NGD to read a Mentor Graphics EDIF file, you must have installed the Mentor
Graphics software component on your system. Similarly, to read a Cadence EDIF file, you must have
installed the Cadence software component.

ngo_file is the output file in NGO format. The output file name, its extension, and its
location are determined in the following ways:

• If you do not specify an output file name, the output file has the same name as the
input file, with an .ngo extension.

• If you specify an output file name with no extension, EDIF2NGD appends the .ngo
extension to the file name.

• If you specify a file name with an extension other than .ngo, you get an error message
and EDIF2NGD does not run.

• If you do not specify a full path name, the output file is placed in the directory from
which you ran EDIF2NGD.

If the output file exists, it is overwritten with the new file.

EDIF2NGD Input Files
EDIF2NGD uses the following files as input:

• EDIF file—This is an EDIF 2 0 0 netlist file. The file must be a Level 0 EDIF netlist, as
defined in the EDIF 2 0 0 specification. The Xilinx Development System toolset can
understand EDIF files developed using components from any of these libraries:

♦ Xilinx Unified Libraries (described in the Libraries Guide)

♦ XSI (Xilinx Synopsys Interface) Libraries

♦ Any Xilinx physical macros you create

Note: Xilinx tools do not recognize Xilinx Unified Libraries components defined as macros; they
only recognize the primitives from this library. The third-party EDIF writer must include definitions
for all macros.

• NCF file—This Netlist Constraints File is produced by a vendor toolset and contains
constraints specified within the toolset. EDIF2NGD reads the constraints in this file
and adds the constraints to the output NGO file.

EDIF2NGD reads the constraints in the NCF file if the NCF file has the same base name
as the input EDIF file and an .ncf extension. The name of the NCF file does not have to
be entered on the EDIF2NGD command line.
Development System Reference Guide www.xilinx.com 421
 1-800-255-7778

http://www.xilinx.com

Appendix B: EDIF2NGD, and NGDBuild
R

EDIF2NGD Output Files
The output of EDIF2NGD is an NGO file—a binary file containing a logical description of
the design in terms of its original components and hierarchy.

EDIF2NGD Options
This section describes the EDIF2NGD command line options.

–a (Add PADs to Top-Level Port Signals)

The –a option adds PAD properties to all top-level port signals. This option is necessary if
the EDIF2NGD input is an EDIF file in which PAD symbols were translated into ports. If
you do not specify a –a option for one of these EDIF files, the absence of PAD instances in
the EDIF file causes EDIF2NGD to read the design incorrectly. Subsequently, MAP
interprets the logic as unused and removes it.

In all Mentor Graphics and Cadence EDIF files PAD symbols are translated into ports. For
EDIF files from either of these vendors, the –a option is set automatically; you do not have
to enter the –a option on the EDIF2NGD command line.

–aul (Allow Unmatched LOCs)

By default (without the –aul option), EDIF2NGD generates an error if the constraints
specified for pin, net, or instance names in the NCF file cannot be found in the design. If
this error occurs, an NGO file is not written. If you enter the –aul option, EDIF2NGD
generates a warning instead of an error for LOC constraints and writes an NGO file.

You may want to run EDIF2NGD with the –aul option if your constraints file includes
location constraints for pin, net, or instance names that have not yet been defined in the
HDL or schematic. This allows you to maintain one version of your constraints files for
both partially complete and final designs.

Note: When using this option, make sure you do not have misspelled net or instance names in your
design. Misspelled names may cause inaccurate placing and routing.

–f (Execute Commands File)

–f command_file

The –f option executes the command line arguments in the specified command_file. For
more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.

–instyle

–instyle {ise | xflow | silent}

The –instyle option reduces screen output. This option is useful if you only want a
summary of the EDIF2NGD run.

–instyle silent

Reduces the screen output to warnings and errors only. This option replaces the –quiet
option, which will not be available in future releases.
422 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

EDIF2NGD
R

–l (Libraries to Search)

–l libname

The –l option specifies a library to search when determining what library components
were used to build the design. This information is necessary for NGDBuild, which must
determine the source of the design’s components before it can resolve the components to
Xilinx primitives.

You may specify multiple –l options on the command line. Each must be preceded with –l;
you cannot combine multiple libname specifiers after one –l. For example, –l xilinxun
synopsys is not acceptable, while –l xilinxun –l synopsys is acceptable.

The allowable entries for libname are the following.

• xilinxun (For Xilinx Unified library)

• synopsys

Note: You do not have to enter xilinxun with a –l option. The Xilinx Development System tools
automatically access these libraries. You do not have to enter synopsys with a –l option if the EDIF
netlist contains an author construct with the string “Synopsys.” In this case, EDIF2NGD automatically
detects that the design is from Synopsys.

–p (Part Number)

–p part

The –p option specifies the part into which your design is implemented. The –p option can
specify an architecture only, a complete part specification (device, package, and speed), or
a partial specification (for example, device and package only).

The syntax for the –p option is described in “–p (Part Number)” in Chapter 1. Examples of
part entries are XCV50-TQ144 and XCV50-TQ144-5.

If you do not specify a part when you run EDIF2NGD, you must specify one when you run
NGDBuild.

You can also use the –p option to override a part name in the input EDIF netlist or a part
name in an NCF file.

–quiet (Report Warnings and Errors Only)

The –quiet option reduces EDIF2NGD screen output to warnings and errors only.

The –quiet option is being deprecated in 6.1i and will not be available in future releases.
Use the –instyle option instead.

–r (Ignore LOC Constraints)

The –r option filters out all location constraints (LOC=) from the design. This option can be
used when you are migrating to a different If the output file already exists, it is overwritten
with the new file.
Development System Reference Guide www.xilinx.com 423
 1-800-255-7778

http://www.xilinx.com

Appendix B: EDIF2NGD, and NGDBuild
R

NGDBuild
This program is compatible with the following families:

• Virtex-II Pro™

• Virtex™/-II/-E

• Spartan™-II/-IIE/3

• CoolRunner™ XPLA3/-II/-IIs

• XC9500™/XL/XV

NGDBuild performs all the steps necessary to read a netlist file in EDIF format and create
an NGD file describing the logical design. The NGD file resulting from an NGDBuild run
contains both a logical description of the design reduced to NGD primitives and a
description in terms of the original hierarchy expressed in the input netlist. The output
NGD file can be mapped to the desired device family.

Converting a Netlist to an NGD File
The following figure shows the NGDBuild conversion process.

Figure B-2: NGDBuild and the Netlist Readers

X10091

NCF
Netlist Constraints File

NGO
Top-Level

Netlist
(EDIF or XNF)

NMC
Physical Macros

Referenced in Netlist

NGDBuild

Files
Referenced in Netlist

NGO
For Files

Referenced in Netlist

NGC
LogiBLOX or Core Modules

Referenced in Netlist

Netlister
Launcher

Netlist Reader
(EDIF2NGD or XNF2NGD)

UCF
User Constraints File

URF
User Rules File

NGD
Generic Database

NAV
Build Report

BLD
Build Report

NGC Netlist
(XST File)

PLD
Netlist
424 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGDBuild
R

NGDBuild performs the following steps to convert a netlist to an NGD file:

1. Reads the source netlist

To perform this step, NGDBuild invokes the Netlist Launcher (Netlister), a part of the
NGDBuild software which determines the type of the input netlist and starts the
appropriate netlist reader program. If the input netlist is in EDIF format, the Netlist
Launcher invokes EDIF2NGD. If the input netlist is in another format that the Netlist
Launcher recognizes, the Netlist Launcher invokes the program necessary to convert
the netlist to EDIF format, then invokes EDIF2NGD. The netlist reader produces an
NGO file for the top-level netlist file.

If any subfiles are referenced in the top-level netlist (for example, a PAL description
file, or another schematic file), the Netlist Launcher invokes the appropriate netlist
reader for each of these files to convert each referenced file to an NGO file.

The Netlist Launcher is described in “Netlist Launcher (Netlister)”. The netlist reader
programs are described in “EDIF2NGD”.

2. Reduces all components in the design to NGD primitives

To perform this step, NGDBuild merges components that reference other files by
finding the referenced NGO files. NGDBuild also finds the appropriate system library
components, physical macros (NMC files) and behavioral models.

3. Checks the design by running a Logical DRC (Design Rule Check) on the converted
design

The Logical DRC is a series of tests on the logical design. It is described in Chapter 7,
“Logical Design Rule Check”.

4. Writes an NGD file as output

When NGDBuild reads the source netlist, it detects any files or parts of the design that
have changed since the last run of NGDBuild. It updates files as follows:

• If you modified your input design, NGDBuild updates all of the files affected by the
change and uses the updated files to produce a new NGD file.

The Netlist Launcher checks timestamps (date and time information) for netlist files
and intermediate NGDBuild files (NGOs). If an NGO file has a timestamp earlier than
the netlist file that produced it, the NGO file is updated and a new NGD file is
produced.

• NGDBuild completes the NGD production if all or some of the intermediate files
already exist. These files may exist if you ran a netlist reader before you ran
NGDBuild. NGDBuild uses the existing files and creates the remaining files necessary
to produce the output NGD file.

Note: If the NGO for an netlist file is up to date, NGDBuild looks for an NCF file with the same base
name as the netlist in the netlist directory and compares the timestamp of the NCF file against that of
the NGO file. If the NCF file is newer, EDIF2NGD is run again. However, if an NCF file existed on a
previous run of NGDBuild and the NCF file was deleted, NGDBuild does not detect that EDIF2NGD
must be run again. In this case, you must use the –nt on option to force a rebuild. The –nt on option
must also be used to force a rebuild if you change any of the EDIF2NGD options.

Syntax, files, and options for NGDBuild are described in Chapter 6, “NGDBuild”.
Development System Reference Guide www.xilinx.com 425
 1-800-255-7778

http://www.xilinx.com

Appendix B: EDIF2NGD, and NGDBuild
R

Bus Matching
When NGDBuild encounters an instance of one netlist within another netlist, it requires
that each pin specified on the upper-level instance match to a pin (or port) on the lower-
level netlist. Two pins must have exactly the same name in order to be matched. This
requirement applies to all FPGAs and CPLDs supported for NGDBuild.

If the interface between the two netlists uses bused pins, these pins are expanded into
scalar pins before any pin matching occurs. For example, the pin A[7:0] might be expanded
into 8 pins namedA[7] through A[0]. If both netlists use the same nomenclature (that is, the
same index delimiter characters) when expanding the bused pin, the scalar pin names will
match exactly. However, if the two netlists were created by different vendors and different
delimiters are used, the resulting scalar pin names do not match exactly.

In cases where the scalar pin names do not match exactly, NGDBuild analyzes the pin
names in both netlists and attempts to identify names that resulted from the expansion of
bused pins. When it identifies a bus-expanded pin name, it tries several other bus-naming
conventions to find a match in the other netlist so it can merge the two netlists. For
example, if it finds a pin named A(3) in one netlist, it looks for pins named A(3), A[3], A<3>
or A3 in the other netlist.

The following table lists the bus naming conventions understood by NGDBuild.

If your third-party netlist writer allows you to specify the bus-naming convention, use one
of the conventions shown in the preceding table to avoid “pin mismatch” errors during
NGDBuild. If your third-party EDIF writer preserves bus pins using the EDIF “array”
construct, the bus pins are expanded by EDIF2NGD using parentheses, which is one of the
supported naming conventions.

Note: NGDBuild support for bused pins is limited to this understanding of different naming
conventions. It is not able to merge together two netlists if a bused pin has different indices between
the two files. For example, it cannot match A[7:0] in one netlist to A[15:8] in another.

In the Xilinx UnifiedPro library for Virtex, some of the pins on the block RAM primitives
are bused. If your third-party netlist writer uses one of the bus naming conventions listed
in the preceding table or uses the EDIF array construct, these primitives are recognized
properly by NGDBuild. The use of any other naming convention may result in an
“unexpanded block” error during NGDBuild.

Netlist Launcher (Netlister)
The Netlist Launcher, which is part of NGDBuild, translates an EDIF netlist to an NGO file.
NGDBuild uses this NGO file to create an NGD file.

Note: The NGC netlist file does not require Netlist Launcher processing. It is equivalent to an NGO
file. Also, it contains its own constraints information and cannot be processed with an NCF file.

Table B-1: Bus Naming Conventions

Naming Convention Example

busname(index) DI(3)

busname<index> DI<3>

busname[index] DI[3]

busnameindex DI3
426 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Netlist Launcher (Netlister)
R

When NGDBuild is invoked, the Netlist launcher goes through the following steps:

1. The Netlist Launcher initializes itself with a set of rules for determining what netlist
reader to use with each type of netlist, and the options with which each reader is
invoked.

The rules are contained in the system rules file (described in “System Rules File”) and
in the user rules file (described in “User Rules File”).

2. NGDBuild makes the directory of the top-level netlist the first entry in the Netlist
Launcher’s list of search paths.

3. For the top-level design and for each file referenced in the top-level design, NGDBuild
queries the Netlist Launcher for the presence of the corresponding NGO file.

4. For each NGO file requested, the Netlist Launcher performs the following actions:

♦ Determines what netlist is the source for the requested NGO file

The Netlist Launcher determines the source netlist by looking in its rules database
for the list of legal netlist extensions. Then, it looks in the search path (which
includes the current directory) for a netlist file possessing a legal extension and the
same name as the requested NGO file.

♦ Finds the requested NGO file

The Netlist Launcher looks first in the directory specified with the –dd option (or
current directory if a directory is not specified). If the NGO file is not found there
and the source netlist was not found in the search path, the Netlist Launcher looks
for the NGO file in the search path.

♦ Determines whether the NGO file must be created or updated

If neither the netlist source file nor the NGO file is found, NGDBuild exits with an
error.

If the netlist source file is found but the corresponding NGO file is not found, the
Netlist Launcher invokes the proper netlist reader to create the NGO file.

If the netlist source file is not found but the corresponding NGO file is found, the
Netlist Launcher indicates to NGDBuild that the file exists and NGDBuild uses
this NGO file.

If both the netlist source file and the corresponding NGO file are found, the netlist
file’s time stamp is checked against the NGO file’s timestamp. If the timestamp of
the NGO file is later than the source netlist, the Netlist Launcher returns a “found”
status to NGDBuild. If the timestamp of the NGO file is earlier than the netlist
source, or the NGO file is not present in the expected location, then the Launcher
creates the NGO file from the netlist source by invoking the netlist reader specified
by its rules.

Note: The timestamp check can be overridden by options on the NGDBuild command line. The
–nt on option updates all existing NGO files, regardless of their timestamps. The –nt off option
does not update any existing NGO files, regardless of their timestamps.

5. The Netlist launcher indicates to NGDBuild that the requested NGO files have been
found, and NGDBuild can process all of these NGO files.
Development System Reference Guide www.xilinx.com 427
 1-800-255-7778

http://www.xilinx.com

Appendix B: EDIF2NGD, and NGDBuild
R

Netlist Launcher Rules Files
The behavior of the Netlist Launcher is determined by rules defined in the system rules file
and the user rule file. These rules determine the following:

• What netlist source files are acceptable

• Which netlist reader reads each of these netlist files

• What the default options are for each netlist reader

The system rules file contains the default rules supplied with the Xilinx Development
System software. The user rules file can add to or override the system rules.

User Rules File
The user rules file can add to or override the rules in the system rules file. You can specify
the location of the user rules file with the NGDBuild –ur option. The user rules file must
have a .urf extension. See “–ur (Read User Rules File)” in Chapter 6 for more information.

User Rules and System Rules

User rules are treated as follows:

• A user rule can override a system rule if it specifies the same source and target files as
the system rule.

• A user rule can supplement a system rule if its target file is identical to a system rule’s
source file, or if its source file is the same as a system rule’s target file.

• A user rule that has a source file identical to a system rule’s target file and a target file
that is identical to the same system rule’s source file is illegal, because it defines a
loop.

User Rules Format

Each rule in the user rules file has the following format:

RuleName = <rulename1>;

<key1> = <value1>;

<key2> = <value2>;

 .

 .

 .

<keyn> = <valuen>;
428 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Netlist Launcher (Netlister)
R

Following are the keys allowed and the values expected:

Note: The value types for the keys are described in “Value Types in Key Statements”.

• RuleName—This key identifies the beginning of a rule. It is also used in error
messages relating to the rule. It expects a RULENAME value. A value is required.

• NetlistFile—This key specifies a netlist or class of netlists that the netlist reader takes
as input. The extension of NetlistFile is used together with the TargetExtension to
identify the rule. It expects either a FILENAME or an EXTENSION value. If a file
name is specified, it should be just a file name (that is, no path). Any leading path is
ignored. A value is required.

• TargetExtension—This key specifies the class of files generated by the netlist reader. It
is used together with the extension from NetlistFile to identify the rule. It expects an
EXTENSION value. A value is required.

• Netlister—This key specifies the netlist reader to use when translating a specific
netlist or class of netlists to a target file. The specific netlist or class of netlists is
specified by NetlistFile, and the class of target files is specified by TargetExtension. It
expects an EXECUTABLE value. A value is required.

• NetlisterTopOptions—This key specifies options for the netlist reader when
compiling the top-level design. It expects an OPTIONS value or the keyword NONE.
Included in this string should be the keywords $INFILE and $OUTFILE, in which the
input and output files is substituted. In addition, the following keywords may appear.

♦ $PART—The part passed to NGDBuild by the –p option is substituted. It may
include architecture, device, package and speed information. The syntax for a
$PART specification is the same as described in “–p (Part Number)” in Chapter 1.

♦ $FAMILY—The family passed to NGDBuild by the –p option is substituted. A
value is optional.

♦ $DEVICE—The device passed to NGDBuild by the –p option is substituted. A
value is optional.

♦ $PKG—The package passed to NGDBuild by the –p option is substituted. A value
is optional.

♦ $SPEED—The speed passed to NGDBuild by the –p option is substituted. A value
is optional.

♦ $LIBRARIES—The libraries passed to NGDBuild. A value is optional.

♦ $IGNORE_LOCS—Substitute the –r option to EDIF2NGD if the NGDBuild
command line contained a –r option.

♦ $ADD_PADS—Substitute the –a option to EDIF2NGD if the NGDBuild command
line contained a –a option.

The options in the NetlisterTopOptions line must be enclosed in quotation marks.

• NetlisterOptions—This key specifies options for the netlist reader when compiling
sub-designs. It expects an OPTIONS value or the keyword NONE. Included in this
string should be the keywords $INFILE and $OUTFILE, in which the input and
output files is substituted. In addition, any of the keywords that may be entered for
the NetlisterTopOptions key may also be used for the NetlisterOptions key.

The options in the NetlisterOptions line must be enclosed in quotation marks.
Development System Reference Guide www.xilinx.com 429
 1-800-255-7778

http://www.xilinx.com

Appendix B: EDIF2NGD, and NGDBuild
R

• NetlisterDirectory—This key specifies the directory in which to run the netlist reader.
The launcher changes to this directory before running the netlist reader. It expects a
DIR value or the keywords $SOURCE, $OUTPUT, or NONE, where the path to the
source netlist is substituted for $SOURCE, the directory specified with the -dd option
is substituted for $OUTPUT, and the current working directory is substituted for
NONE. A value is optional.

• NetlisterSuccessStatus—This key specifies the return code that the netlist reader
returns if it ran successfully. It expects a NUMBER value or the keyword NONE. The
number may be preceded with one of the following: =, <, >, or !. A value is optional.

Value Types in Key Statements

The value types used in the preceding key statements are the following:

• RULENAME—Any series of characters except for a semicolon “;” and white space
(for example, space, tab, newline).

• EXTENSION—A “.” followed by an extension that conforms to the requirements of
the platform.

• FILENAME—A file name that conforms to the requirements of the platform.

• EXECUTABLE—An executable name that conforms to the requirements of the
platform. It may be a full path to an executable or just an executable name. If it is just
a name, then the $PATH environment variable is used to locate the executable.

• DIR—A directory name that conforms to the requirements of the platform.

• OPTIONS—Any valid string of options for the executable.

• NUMBER—Any series of digits.

• STRING—Any series of characters in double quotes.

System Rules File
The system rules are shown following. The system rules file is not an ASCII file, but for the
purpose of describing the rules, the rules are described using the same syntax as in the user
rules file. This syntax is described in “User Rules File”.

Note: If a rule attribute is not specified, it is assumed to have the value NONE.

###
edif2ngd rules
###

RuleName = EDN_RULE;
NetlistFile = .edn;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] [$QUIET] [$AUL] {-l
$LIBRARIES} $INFILE $OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = EDF_RULE;
430 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Netlist Launcher (Netlister)
R

NetlistFile = .edf;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] [$QUIET] [$AUL] {-l
$LIBRARIES} $INFILE $OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = EDIF_RULE;
NetlistFile = .edif;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] [$QUIET] [$AUL] {-l
$LIBRARIES} $INFILE $OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = SYN_EDIF_RULE;
NetlistFile = .sedif;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = NONE;
NetlisterOptions = "-l synopsys [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;
Development System Reference Guide www.xilinx.com 431
 1-800-255-7778

http://www.xilinx.com

Appendix B: EDIF2NGD, and NGDBuild
R

Rules File Examples
The following sections provide examples of system and user rules. The first example is the
basis for understanding the ensuing user rules examples.

Example 1: EDF_RULE System Rule

As shown in the “System Rules File”, the EDF_RULE system rule is defined as follows.

RuleName = EDF_RULE;
NetlistFile = .edf;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] [$QUIET] [$AUL] {-l
$LIBRARIES} $INFILE $OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

The EDF_RULE instructs the Netlist Launcher to use EDIF2NGD to translate an EDIF file
to an NGO file. If the top-level netlist is being translated, the options defined in
NetlisterTopOptions are used; if a lower-level netlist is being processed, the options
defined by NetlisterOptions are used. Because NetlisterDirectory is NONE, the Netlist
Launcher runs EDIF2NGD in the current working directory (the one from which
NGDBuild was launched). The launcher expects EDIF2NGD to issue a return code of 0 if it
was successful; any other value is interpreted as failure.

Example 2: User Rule

Following is a another example of a User Rule:

// URF Example 2
RuleName = OTHER_RULE; // end-of-line comments are also allowed
NetlistFile = .oth;
TargetExtension = .edf;
Netlister = other2edf;
NetlisterOptions = "$INFILE $OUTFILE";
NetlisterSuccessStatus = 1;

The user rule OTHER_RULE defines a completely new translation, from a hypothetical
OTH file to an EDIF file. To do this translation, the other2edf program is used. The options
defined by NetlisterOptions are used for translating all OTH files, regardless of whether
they are top-level or lower-level netlists (because no explicit NetlisterTopOptions is given).
The launcher expects other2edf to issue a return code of 1 if it was successful; any other
value be interpreted as failure.

After the Netlist Launcher uses OTHER_RULE to run other2edf and create an EDIF file, it
uses the EDF_RULE system rule (shown in the preceding section) to translate the EDIF file
to an NGO file.
432 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

NGDBuild File Names and Locations
R

Example 3: User Rule

Following is a another example of a User Rule:

// URF Example 3
RuleName = EDF_LIB_RULE;
NetlistFile = .edf;
TargetExtension = .ngo;
NetlisterOptions = "-l xilinxun $INFILE $OUTFILE";

Because both the NetlistFile and TargetExtension of this user rule match those of the
system rule EDF_RULE (shown in “Example 1: EDF_RULE System Rule”), the
EDF_LIB_RULE overrides the EDF_RULE system rule. Any settings that are not defined
by the EDF_LIB_RULE are inherited from EDF_RULE. So EDF_LIB_RULE uses the same
netlister (EDIF2NGD), the same top-level options, the same directory, and expects the
same success status as EDF_RULE. However, when translating lower-level netlists, the
options used are only “–l xilinxun $INFILE $OUTFILE.” (There is no reason to use “–l
xilinxun” on EDIF2NGD; this is for illustrative purposes only.)

Example 4: User Rule

Following is a another example of a User Rule:

// URF Example 4
RuleName = STATE_EDF_RULE;
NetlistFile = state.edf;
TargetExtension = .ngo;
Netlister = state2ngd;

Although the NetlistFile is a complete file name, this user rule also matches the system rule
EDF_RULE (shown in “Example 1: EDF_RULE System Rule”), because the extensions of
NetlistFile and TargetExtension match. When the Netlist Launcher tries to make a file
called state.ngo, it uses this rule instead of the system rule EDF_RULE (assuming that
state.edf exists). As with the previous example, the unspecified settings are inherited from
the matching system rule. The only change is that the fictitious program state2ngd is used
in place of EDIF2NGD.

Note that if EDF_LIB_RULE (from the example in “Example 3: User Rule”) and this rule
were both in the user rules file, STATE_EDF_RULE includes the modifications made by
EDF_LIB_RULE. So a lower-level state.edf is translated by running state2ngd with the “-l
xilinxun” option.

NGDBuild File Names and Locations
Following are some notes about file names in NGDBuild:

• An intermediate file has the same root name as the design that produced it. An
intermediate file is generated when more than one netlist reader is needed to translate
a netlist to a NGO file.

• Netlist root file names in the search path must be unique. For example, if you have the
design state.edn, you cannot have another design named state in any of the directories
specified in the search path.

• NGDBuild and the Netlist Launcher support quoted file names. Quoted file names
may have special characters (for example, a space) that are not normally allowed.

• If the output directory specified in the call to NGDBuild is not writable, an error is
displayed and NGDBuild fails.
Development System Reference Guide www.xilinx.com 433
 1-800-255-7778

http://www.xilinx.com

Appendix B: EDIF2NGD, and NGDBuild
R

434 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Glossary

Click on a letter, or scroll down to view the entire glossary.

A B C D E F G H I J L M N O P R S T U V W X

A

ABEL
Advanced Boolean Expression Lanaguage (ABEL) is a high-level
language (HDL) and compilation system produced by Data I/O
Corporation.

adder
An adder is a combinatorial circuit that computes the sum of two or
more numbers.

address
An address is the identification of a storage location, such as a register
or a memory cell.

checked for syntax errors.

architecture
Architecture is the common logic structure of a family of
programmable integrated circuits. The same architecture can be
realized in different manufacturing processes. Examples of Xilinx
architectures are the XC9500 devices.

Anno
The subsystem that produces the libraries and executables necessary
for the NGDAnno application. Anno is also used to refer to the general
back-annotation process.

area constraints
Area constraints are created by the user or a process such as synthesis
to direct the optimization process that takes place during design
implementation.
Development System Reference Guide www.xilinx.com 435
 1-800-255-7778

http://www.xilinx.com

Glossary
R

ASIC
Application-specific integrated circuit (ASIC), is a full-custom circuit.
In which every mask is defined by the customer or a semi-custom
circuit (gate array) where only a few masks are defined.

attributes
Attributes are instructions placed on symbols or nets in an FPGA or
CPLD schematic to indicate their placement, implementation,
naming, directionality, or other properties.

In LogiBLOX, attributes are placed on the symbols, which generate the
module instances. For example, the BOUNDS attribute determines the
width of a bus and its indexes.

B

back-annotation
Back-annotation is the translation of a routed or fitted design to a
timing simulation netlist.

behavioral design
Behavioral design is a technology-independent, text-based design that
incorporates high-level functionality and high-level information flow.

behavioral design method
A behavioral design method defines a circuit in terms of a textual
language rather than a schematic of interconnected symbols.

behavioral simulation
Also known as functional simulation. Behavioral simulation is usually
performed on designs that are entered using a hardware definition
language (HDL).

This type of simulation takes place during the pre-synthesis stage of
HDL design. Functional simulation checks that the HDL code
describes the desired design behavior.

Behavioral simulation is a simulation process that is performed by
interpreting the equations that define the design. The equations do not
need to be converted to the logic that represents them.

binary
Binary is a numbering system based on base 2 with only two digits, 0
and 1.

Unsigned binary refers to non-negative binary representation.

bit
A bit is a a binary digit representing 0 or 1.
436 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

BIT file
A BIT file is the same as a bitstream file. See bitstream.

BitGen
Is a program that produces a bitstream for Xilinx device configuration.
BitGen takes a fully routed NCD (Circuit Description) file as its input
and produces a configuration bitstream, a binary file with a.bit
extension.

bitstream
A bitstream is a stream of data that contains location information for
logic on a device, that is, the placement of Configurable Logic Blocks
(CLBs), Input/Output Blocks (IOBs), (TBUFs), pins, and routing
elements. The bitstream also includes empty placeholders that are
filled with the logical states sent by the device during a readback. Only
the memory elements, such as flip-flops, RAMs, and CLB outputs, are
mapped to these placeholders, because their contents are likely to
change from one state to another. When downloaded to a device, a
bitstream configures the logic of a device and programs the device so
that the states of that device can be read back.

A bitstream file has a .bit extension.

block
A block is a group of one or more logic functions.

A block is a schematic or symbol sheet. There are four types of blocks.

-- A Composite block indicates that the design is hierarchical.

-- A Module block is a symbol with no underlying schematic.

-- A Pin block represents a schematic pin.

-- An Annotate block is a symbol without electrical connectivity that is
used only for documentation and graphics.

bonded
Bonded means connected by a wire.

boundary scan
Boundary scan is the method used for board-level testing of electronic
assemblies. The primary objectives are the testing of chip
I/O signals and the interconnections between ICs.

It is the method for observing and controlling all new chip I/O signals
through a standard interface called a Test Access Port (TAP). The
boundary scan architecture includes four dedicated I/O pins for
control and is described in IEEE spec 1149.1.
Development System Reference Guide www.xilinx.com 437
 1-800-255-7778

http://www.xilinx.com

Glossary
R

buffer
A buffer is an element used to increase the current or drive of a weak
signal and, consequently, increase the fanout of the signal. A storage
element.

BUFT
A BUFT is a 3-state buffer.

bus
A group of two or more signals that carry closely-associated signals in
an electronic design.

byte
A binary word consisting of eight bits. When used to store a number
value, a byte can represent a number from 0 to 255.

C

CAE
Computer Aided Engineering. The original term for electronic design
automation (EDA). Now, often refers to the sofware tools used to
develop the manufacturing tooling for the production of electronic
system such as for the panelization of circuit boards.

CAE tool
A Computer-Aided Engineering tool (CAE). Usually refers to
programs such as Innoveda, Cadence, or Mentor Graphics that are
used to perform design entry and design verification.

capacitance
Capacitance is the property that measures the storage of electrically
separated charges.

It is also the load on a net.

carry path
The carry path is the computation of the carries in addition or
subtraction from one CLB to another.

cell
A cell is a hierarchical description of an FPGA device.

checksum
A checksum is a summation of bits or digits generated according to an
arbitrary formula used for checking data integrity. To verify that the
data represented by a checksum number has been entered correctly,
438 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

verify that the checksum number generated after processing is the
same as the initial number.

CLB
The Configurable Logic Block (CLB). Constitutes the basic FPGA cell.
It includes two 16-bit function generators (F or G), one 8-bit function
generator (H), two registers (flip-flops or latches), and
reprogrammable routing controls (multiplexers).

CLBs are used to implement macros and other designed functions.
They provide the physical support for an implemented and
downloaded design. CLBs have inputs on each side, and this
versatility makes them flexible for the mapping and partitioning of
logic.

CCLK pin
The CCLK pin is the XChecker pin that provides the configuration
clock for the device or devices during a download.

clock
A clock is a signal that represents the time that a wave stays at a High
or Low state. The rising and falling edges of a clock square wave
trigger the activity of the circuits.

clock buffer
A clock buffer is an element used to increase the current or drive of a
weak clock signal and consequently increase its fanout.

clock enable
A clock enable is a binary signal that allows or disallows synchronous
logic to change with a clock signal. When enabled, this control signal
permits a device to be clocked and to become active. There are four
different states. The two active High states are CE 0 disabled and CE 1
enabled. The two active Low states are CE 0 enabled and CE 1
disabled.

clock skew
Clock skew is the time differential between 2 or more destination pins
in a path.

CMOS
Complementary Metal Oxide Semiconductor (CMOS). Is an advanced
IC manufacturing process technology characterized by high
integration, low cost, low power, and high performance.

combinatorial logic
Combinatorial logic refers to any primitives with the exception of
storage elements such as flip-flops.
Development System Reference Guide www.xilinx.com 439
 1-800-255-7778

http://www.xilinx.com

Glossary
R

compiler
A compiler is a language interpreter. The Synopsys compiler
interprets HDL and makes concurrent process implementations for
target architectures.

component
A component is an instantiation or symbol reference from a library of
logic elements that can be placed on a schematic.

configuration
Configuration is the process of loading design-specific bitstreams into
one or more FPGA devices to define the functional operation of the
logical blocks, their interconnections, and the chip I/O.

This concept also refers to the configuration of a design directory for a
particular design library.

constraints
Constraints are specifications for the implementation process. There
are several categories of constraints: routing, timing, area, mapping,
and placement constraints.

Using attributes, you can force the placement of logic (macros) in
CLBs, the location of CLBs on the chip, and the maximum delay
between flip-flops. PAR does not attempt to change the location of
constrained logic.

constraints file
A constraints file specifies constraints (location and path delay)
information in a textual form. An alternate method is to place
constraints on a schematic.

contention
Contention is the state in which multiple conflicting outputs drive the
same net.

counter
A counter is a circuit, composed of registers, that counts pulses, often
reacting or causing a reaction to a predetermined pulse or series of
pulses. Also called a divider, sometimes accumulator.

CPLD
Complex Programmable Logic Device (CPLD). Is an erasable
programmable logic device that can be programmed with a schematic
or a behavioral design. CPLDs constitute a type of complex PLD based
on EPROM or EEPROM technology. They are characterized by an
architecture offering high speed, predictable timing, and simple
software.
440 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

The basic CPLD cell is called a macrocell, which is the CPLD
implementation of a CLB. It is composed of AND gate arrays and is
surrounded by the interconnect area.

CPLDs consume more power than FPGA devices, are based on a
different architecture, and are primarily used to support behavioral
designs and to implement complex counters, complex state machines,
arithmetic operations, wide inputs, and PAL crunchers.

D

daisy chain
A daisy chain is a series of bitstream files concatenated in one file. It
can be used to program several FPGAs connected in a daisy chain
board configuration.

dangling bus
A dangling bus connects to a component pin or net at one end and
unconnects at the other. A small filled box at the end of the bus
indicates a dangling bus.

dangling net
A dangling net connects to a component pin or net at one end and
unconnects at the other. A small filled box at the end of the net
indicates a dangling net.

debugging
Debugging is the process of reading back or probing the states of a
configured device to ensure that the device is behaving as expected
while in circuit.

decimal
Decimal refers to a numbering system with a base of 10 digits starting
with zero.

decoder
A decoder is a symbol that translates n input lines of binary
information into 2n output lines. It is the opposite of an encoder.

Delay Locked Loop (DLL)
A digital circuit used to perform clock management functions on and
off-chip.

density
Density is the number of gates on a device.
Development System Reference Guide www.xilinx.com 441
 1-800-255-7778

http://www.xilinx.com

Glossary
R

design implementation
Design implementation is a design implementation specification as
opposed to the functional specification of the design. The
implementation specification refers to the actual implementation of
the design from low-level components expressed in bits. The
functional specification refers to the definition of the design or circuit
function.

The two common implementation tools are module generators
(LogiBLOX or LPM) and synthesis packages.

device
A device is an integrated circuit or other solid-state circuit formed in
semiconducting materials during manufacturing.

digital
Digital refers to the representation of information by code of discrete
elements, as opposed to the continuous scale of analog representation.

DONE pin
The DONE pin is a dual-function pin. As an input, it can be configured
to delay the global logic initialization or the enabling of outputs. As an
output, it indicates the completion of the configuration process.

downloading
Downloading is the process of configuring or programming a device
by sending bitstream data to the device.

DRC
The Design Rule Checker (DRC). A program that checks the (NCD)
file for design implementations for errors.

DSP
Digital Signal Processing (DSP). A powerful and flexible technique of
processing analog (linear) signals in digital form used in CoreGen.

E

EDA
Electronic Design Automation (EDA). A generic name for all methods
of entering and processing digital and analog designs for further
processing, simulation, and implementation.
442 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

edge decoder
An edge decoder is a decoder whose placement is constrained to
precise positions within a side of the FPGA device.

EDIF
EDIF is the Electronic Data Interchange Format, an industry standard
file format for specifying a design netlist. It is generated by a third-
party design-entry tool. In the Xilinx M1 flow, EDIF is the standard
input format.

effort level
Effort level refers to how hard the Xilinx Design System (XDS) tries to
place a design. The effort level settings are.

High, which provides the highest quality placement but requires the
longest execution time. Use high effort on designs that do not route or
do not meet your performance requirements.

Medium, which is the default effort level. It provides the best trade-off
between execution time and high quality placement for most designs.

Low, which provides the fastest execution time and adequate
placement results for prototyping of simple, easy-to-route designs.
Low effort is useful if you are exploring a large design space and only
need estimates of final performance.

ENRead
Mentor Graphics EDIF netlist reader. Translates an EDIF netlist into an
EDDM single object.

entity
An entity is a set of interconnected components.

EPROM
An EPROM is an erasable PROM, which can be reprogrammed many
times. Previous programs are simply erased by exposing the chip to
ultra-violet light.

An EEPROM, or electrically erasable PROM, is another variety of
EPROM that can be erased electrically.

F

FD
FD is a D flip-flop used in CLBs. Contrast with IFD.

FDSD
FDSD is a D flip-flop with Set Direct.
Development System Reference Guide www.xilinx.com 443
 1-800-255-7778

http://www.xilinx.com

Glossary
R

FIFO
A FIFO is a serial-in/serial-out shift register.

fitting
Fitting is the process of putting logic from your design into physical
macrocell locations in the CPLD. Routing is performed automatically,
and because of the UIM architecture, all designs are routable.

fitter
The fitter is the software that maps a PLD logic description into the
target CPLD.

flat design
A flat design is a design composed of multiple sheets at the top-level
schematic.

flattening
Flattening is the process of resolving all of the hierarchy references in
a design. If a design contains several instantiations of a logic module,
the flattened version of that design will duplicate the logic for each
instantiation. A flattened design still contains hierarchical names for
instances and nets.

flip-flop
A flip-flop is a simple two-state logic buffer activated by a clock and
fed by a single input working in combination with the clock. The states
are High and Low. When the clock goes High, the flip-flop works as a
buffer as it outputs the value of the D input at the time the clock rises.

The value is kept until the next clock cycle (rising clock edge). The
output is not affected when the clock goes Low (falling clock edge).

floorplanning
Floorplanning is the process of choosing the best grouping and
connectivity of logic in a design.

It is also the process of manually placing blocks of logic in an FPGA
where the goal is to increase density, routability, or performance.

flow
The flow is an ordered sequence of processes that are executed to
produce an implementation of a design.

FMAP
An FMAP is a symbol that defines mapping into a 4-input function
generator (F or G).
444 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

FPGA
Field Programmable Gate Array (FPGA), is a class of integrated
circuits pioneered by Xilinx in which the logic function is defined by
the customer using Xilinx development system software after the IC
has been manufactured and delivered to the end user. Gate arrays are
another type of IC whose logic is defined during the manufacturing
process. Xilinx supplies RAM-based FPGA devices.

FPGA applications include fast counters, fast pipelined designs,
register intensive designs, and battery powered multi-level logic.

function generator
A function generator is a look-up table or black box with three or four
inputs implementing any combinational functions of (22)4 or 256
functions or (22)2 or 65556 functions. The output is any value resulting
from the logical functions executed within the box. The function
generator implements a complete truth table, allowing speedy
prediction of the output.

functional simulation
Functional simulation is the process of identifying logic errors in your
design before it is implemented in a Xilinx device. Because timing
information for the design is not available, the simulator tests the logic
in the design using unit delays. Functional simulation is usually
performed at the early stages of the design process.

G

gate
A gate is an integrated circuit composed of several transistors and
capable of representing any primitive logic state, such as AND, OR,
XOR, or NOT inversion conditions. Gates are also called digital,
switching, or logic circuits.

gate array
A gate array is part of the ASIC chip. A gate array represents a certain
type of gate repeated all over a VLSI-type chip. This type of logic
requires the use of masks to program the connections between the
blocks of gates.

global buffers
Global buffers are low-skew, high-speed buffers that connect to long
lines. They do not map logic.

There is one BUFGP and one BUFGS in each corner of the chip.
Primary buffers must be driven by an IOB. Secondary buffers can be
driven by internal logic or IOBs.
Development System Reference Guide www.xilinx.com 445
 1-800-255-7778

http://www.xilinx.com

Glossary
R

global Set/Reset net
A global Set/Reset net is a high-speed, no-skew dedicated net, which
reduces delays and routing congestion. This net accesses all flip-flops
on the chip and can reinitialize all CLBs and IOBs.

global 3-state net
A global 3-state net is a net that forces all device outputs to high-
impedance state unless boundary scan is enabled and executes an
EXTEST instruction.

GND pin
The GND pin is Ground (0 volts).

group
A group is a collection of common signals to form a bus. In the case of
a counter, for example, the different signals that produce the actual
counter values can be combined to form an alias, or group.

guide file
A guide file is a previously placed and routed NCP file that can be
used in a subsequent place and route operation.

guided design
Guided design is the use of a previously implemented version of a file
for design mapping, placement, and routing. Guided design allows
logic to be modified or added to a design while preserving the layout
and performance that have been previously achieved.

H

HDL
Hardware Description Language. A language that describes circuits in
textual code. The two most widely accepted HDLs are VHDL and
Verilog.

An HDL, or hardware description language, describes designs in a
technology-independent manner using a high level of abstraction. The
most common HDLs in use today are Verilog and VHDL.

hexadecimal
Hexadecimal is a numbering system with a base of 16 digits (0, 1, 2, 3,
4, 5, 6, 7, 8, 9, A, B, C, D, E, F)
446 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

hierarchical annotation
Hierarchical annotation is an advance method of running logical
annotation that requires three things: 1) .ncd file, 2) .ngm file, and 3)
KEEP_HIERARCHY constraint placed on explicit hierarchy blocks
prior to mapping. When this is done, the back-annotation guarantees
to preserve the user’s hierarchy.

hierarchical design
A hierarchical design is a design composed of multiple sheets at
different levels of your schematic.

HMAP
An HMAP is a symbol that defines mapping into a three-input
function generator (H). The HMAP symbol has two FMAP inputs and,
optionally, one non-FMAP input.

hold time
Hold time is the time following a clock event during which the data
input to a latch or flip-flop must remain stable in order to guarantee
that the latched data is correct.

I

IBUF
An IBUF acts as a protection for the chip, shielding it from eventual
current overflows.

IC
Integrated Circuit (IC) is a single piece of silicon on which thousands
or millions of transistors are combined. ICs are the major building
blocks of modern electronic systems.

IEEE
Institute of Electrical and Electronics Engineers.Pronounced I triple E.

IFD
IFD is an IOB flip-flop.

impedance
Impedance is the sum of all resistance and reactance of a circuit to the
flow of alternating current.

implementation
Implementation is the mapping, placement and routing of a design. A
phase in the design process during which the design is placed and
routed.
Development System Reference Guide www.xilinx.com 447
 1-800-255-7778

http://www.xilinx.com

Glossary
R

incremental design
Incremental design refers to the implementation and verification of a
design in stages using guided design.

indexes
Indexes are the left-most and right-most bits of a bus defining the bus
range and precision.

inertial delay
If the pulse width of a signal is smaller than the path delay (from an
input port to an output port) then an inertial delay does not propogate
the pulse event through to the output port. This is known as pulse
swallowing.

input
An input is the symbol port through which data is sourced.

input pad registers and latches
Input pad registers and latches are D-type registers located in the I/O
pad sections of the device. Input pad registers can be used instead of
macrocell resources.

instance
An instance is one specific gate or hierarchical element in a design or
netlist. The term "symbol" often describes instances in a schematic
drawing. Instances are interconnected by pins and nets. Pins are ports
through which connections are made from an instance to a net. A
design that is flattened to its lowest level constituents is described
with primitive instances.

instantiation
Instantiation is the act of placing a symbol that represents a primitive
or a macro in a design or netlist.

Integrated Synthesis Environment (ISE)
ISE is an integrated tool suite that enables you to produce, test, and
implement designs for Xilinx FPGAs or CPLDs.

interconnect
Interconnect is the metal in a device that is used to implement the nets
of the design.

interconnect line
An interconnect line is any portion of a net.
448 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

IOB (input/output block)
An IOB is a collection or grouping of basic elements that implement
the input and output functions of an FPGA device.

I/O pads
I/O pads are the input/output pads that interface the design logic
with the pins of the device.

J

JEDEC
JEDEC is a CPLD file format used for downloading device bitmap
information to a device programmer.

L

latch
A latch is a two-state buffer fed by two inputs, D and L. When the L
input is Low, it acts as a transparent input; in this case, the latch acts
as a buffer and outputs the value input by D. When the L input is
High, it ignores the D input value.

library
A library is a set of macros, such as adders, buffers, and flip-flops that
is part of the Xilinx interface. A library is used to create schematic
designs.

load
A load is an input port.

logic
Logic is one of the three major classes of ICs in most digital electronic
systems: microprocessors, memory, and logic. Logic is used for data
manipulation and control functions that require higher speed than a
microprocessor can provide.

logical annotation
The method of back-annotation that uses the old .ngm and .ncd to
attempt to back-annotate the physical information (physical delays)
back into the logical (.ngd) file.

logic allocation file
A logic allocation file, design.ll file, designates a file used for probing.
The file provides bit locations of the values of RAM, I/O, latches, and
flip-flops.
Development System Reference Guide www.xilinx.com 449
 1-800-255-7778

http://www.xilinx.com

Glossary
R

logic optimization
Logic optimization is the process that decreases the area or increases
the speed of a design.

longline
A longline connects to a primary global net or to any secondary global
net. Each CLB has four dedicated vertical longlines. These lines are
very fast.

look-up table (LUT)
A Look-Up Table (LUT), implements Boolean functions.

See function generator.

low
Low is a logical state for which no output is generated.

LSB
An LSB, or least significant bit, is the left-most bit of the bus bounds or
indexes. In one-hot and twos-complement encoding, the LSB is the
right-most bit.

M

macro
A macro is a component made of nets and primitives, flip-flops, or
latches that implements high-level functions, such as adders,
subtracters, and dividers. Soft macros and Relationally Placed Macros
(RPMs) are types of macros.

macrocell
A macrocell is the CPLD logic cell, which is made of gates only. A
macrocell can implement both combinational and registered
equations. High-density function block macrocells also contain an
arithmetic logic unit (ALU) for implementing arithmetic functions.

mapping
Mapping is the process of assigning a design’s logic elements to the
specific physical elements that actually implement logic functions in a
device.

MCS-86 (Intel)
MCS-86 (Intel) is a PROM format supported by the Xilinx tools. Its
maximum address is 1 048 576. This format supports PROM files of up
to (8 x 1 048 576) = 8 388 608 bits.
450 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

microprocessor
A silicon chip that contains a CPU. Microprocessors control the logic
of almost all digital devices, e.g. PCs, workstations, clock radios, and
fuel-injection systems for automobiles

MSB
The Most Significant Bit (MSB) is the right-most bit of the bus bounds
or indexes. In one-hot binary and twos-complement encoding, the
MSB is the left-most bit.

MultiLINX
A cable designed to function as a download, read back, verification
and logic probing tool for the larger Xilinx devices. MultiLINX
functions as a USB device to send and receive data from host.

multiplexer
A multiplexer is a reprogrammable routing control. This component
selects one input wire as output from a selection of wires.

N

NCD
A Native Circuit Description (NCD). The physical database format for
Xilinx Implementation software tools.

net
A logical connection between two or more symbol instance pins. After
routing, the abstract concept of a net is transformed to a physical
connection called a wire.

An electrical connection between components or nets. It can also be a
connection from a single component. It is the same as a wire or a
signal.

netlist
A netlist is a text description of the circuit connectivity. It is basically a
list of connectors, a list of instances, and, for each instance, a list of the
signals connected to the instance terminals. In addition, the netlist
contains attribute information.

network
A network is a collection of logic elements and the wires (nets or
connections) that define how they interconnect.
Development System Reference Guide www.xilinx.com 451
 1-800-255-7778

http://www.xilinx.com

Glossary
R

NGDAnno
A program that distributes delays, setup and hold times, and pulse
widths found in the physical NCD design file onto the logic design
view represented in the NGD.

NGDBuild
A program that converts all input design netlists and then writes the
results into a single merged file.

NGD2EDIF
A program that produces an EDIF 2 0 0 netlist in terms of the Xilinx
primitive set. It allows you to simulate pre-route and post- route
designs.

NGD2VER
A program that translates your design into a Verilog HDL file
containing a netlist description of the design in terms of Xilinx
simulation primitives. The Verilog file can be used to perform a back-
end simulation by a Verilog simulator.

NGD2VHDL
A program that translates your design into a VITAL 95 IEEE compliant
VHDL file containing a net list description of the design in terms of
Xilinx simulation primitives. The VHDL file can be used to perform a
back-end simulation by a VHDL simulator.

NGM
A design file produced by MAP that contains information about the
logical design and information about how the logical design
corresponds to the physical design. If you specify an NGM file,
NGDAnno attempts to annotate physical information onto the logical
netlist.

O

optimization
Optimization is the process that decreases the area or increases the
speed of a design.

oscillator
An oscillator is a bi-stable circuit that can be used as a clock. The stable
states are 0 and 1.
452 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

P

package
A package is the physical packaging of a chip, for example, PG84,
VQ100, and PC48.

pad
A pad is the physical bonding pad on an integrated circuit. All signals
on a chip must enter and leave by way of a pad. Pads are connected to
package pins in order for signals to enter or leave an integrated circuit
package.

PAL
A PAL is a programmable logic device that consists of a
programmable AND matrix whose outputs drive fixed OR gates. This
was one of the earliest forms of programmable logic. PALs can
typically implement small functions easily (up to a hundred gates)
and run very fast, but they are inefficient for large functions.

Parallel Cable III
Parallel Cable III is a cable assembly which contains a buffer to protect
your PCs parallel port and a set of headers to connect to your target
system.

path
A path is a connected series of nets and logic elements. A path has a
start point and an end point that are different depending on the type
of path. The time taken for a signal to propagate through a path is
referred to as the path delay.

path delay
Path delay is the time it takes for a signal to propagate through a path.

period
The period is the number of steps in a clock pattern multiplied by the
step size.

physical annotation
Physical annotation uses just the .ncd file. In this mode, a timing
simulation model is generated from the physical device components.

PIM
Physically Implemented Module

pin
A pin can be a symbol pin or a package pin. A package pin is a
physical connector on an integrated circuit package that carries
Development System Reference Guide www.xilinx.com 453
 1-800-255-7778

http://www.xilinx.com

Glossary
R

signals into and out of an integrated circuit. A symbol pin, also
referred to as an instance pin, is the connection point of an instance to
a net.

PIP (programmable interconnect points)
Programmable interconnect points, or PIP, provide the routing paths
used to connect the inputs and outputs of IOBs and CLBs into logic
networks.

A PIP is made of a CMOS transistor, which you can turn on and off to
activate the PIP.

placing
Placing is the process of assigning physical device cell locations to the
logic in a design.

PLD
A Programmable Logic Device (PLD), is composed of two types of
gate arrays: the AND array and the OR array, thus providing for sum
of products algorithmic representations. PLDs include three distinct
types of chips: PROMs, PALs, and PLAs. The most flexible device is
the PLA (programmable logic array) in which both the AND and OR
gate arrays are programmable. In the PROM device, only the OR gate
array is programmable. In the PAL device, only the AND gate array is
programmable. PLDs are programmed by blowing the fuses along the
paths that must be disconnected.

FPGAs and CPLDs are classes of PLDs.

post-synthesis simulation
This type of simulation is usually done after the HDL code has been
expanded into gates. Post-synthesis simulation is similar to behavioral
simualtion since design behavior is being checked. The difference is
that in post-synthesis simulation the synthesis tool’s results are being
checked. If post-synthesis and behavioral simulation match, then the
HDL synthesis tool has interpreted the HDL code correctly.

primitive
A basic logic element, such as a gate (AND, OR, XOR, NAND, or
NOR), inverter, flip-flop, or latch.

A logic element that directly corresponds, or maps, to one of these
basic elements.

programming
Programming is the process of configuring the programmable
interconnect in the FPGA.

PROM
A PROM is a programmable read-only memory.
454 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

PROM file
A PROM file consists of one or more BIT files (bitstreams) formed into
one or more datastreams. The file is formatted in one of three industry-
standard formats: Intel MCS86 HEX, Tektronics TEKHEX, or Motorola
EXORmacs. The PROM file includes headers that specify the length of
the bitstreams as well as all the framing and control information
necessary to configure the FPGAs. It can be used to program one or
more devices.

propagation
Propagation is the repetition of the bus attributes in LogiBLOX along
a data path so that they only need to be defined on one bus in a data
path.

pull-down resistor
A pull-down resistor is a device or circuit used to reduce the output
impedance of a device, often a resistor network that holds a device or
circuit output at or less than the zero input level of a subsequent
digital device in a system.

pull-up resistor
A pull-up resistor is a device or method used to keep the output
voltage of a device at a high level, often a resistor network connected
to a positive supply voltage.

R

RAM
Random Access Memory (RAM) is a read/write memory that has an
access time independent of the physical location of the data.

RAM can be used to change the address values (161) of the function
generator it is a part of.

readback
Readback is the process of reading the logic downloaded to an FPGA
device back to the source. There are two types of readback.

A readback of logic usually accompanied by a comparison check to
verify that the design was downloaded in its entirety.

A readback of the states stored in the device memory elements to
ensure that the device is behaving as expected.

register
A register is a set of flip-flops used to store data. It is an accumulator
used for all arithmetic operations.
Development System Reference Guide www.xilinx.com 455
 1-800-255-7778

http://www.xilinx.com

Glossary
R

resistance
The property — based on material, dimensions, and temperature of
conductors — that determines the amount of current produced at a
given difference in potential. A material’s current impedance that
dissipates power in the form of heat.

The drive of the output pins on a network.

resistor
A resistor is a device that provides resistance.

ROM
Read Only Memory (ROM) is a static memory structure that retains a
state indefinitely, even when the power is turned off. It can be part of
a function generator.

routing
Routing is the process of assigning logical nets to physical wire
segments in the FPGA that interconnect logic cells.

RPM
A Relationally Placed Macro (RPM) defines the spatial relationship of
the primitives that constitute its logic. An indivisible block of logic
elements that are placed as a unit into a design.

RTL
Resistor Transistor Logic

S

schematic
A schematic is a hierarchical drawing representing a design in terms
of user and library components.

script
A script is a series of commands that automatically execute a complex
operation such as the steps in a design flow.

SDF (standard delay format)
Standard Delay Format (SDF) is an industry-standard file format for
specifying timing information. It is usually used for simulation.

seed
A seed is a random number that determines the order of the cells in the
design to be placed.
456 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

set/reset
This operation is made possible by the asynchronous set/reset
property. This function is also implemented by the Global Reset
STARTUP primitive.

shift register
A shift register is a register in which data is loaded in parallel and
shifted out of the register again. It refers to a chain of flip-flops
connected in cascade.

signal
A signal is a wire or a net. See “net.”

simulation
Simulation is the process of verifying the logic and timing of a design.

skew
Skew is clock delay. See clock skew.

slew rate
The slew rate is the speed with which the output voltage level
transitions from +5 V to 0 V or vice-versa. The slew rate determines
how fast the transistors on the outputs change states.

slice
Two slices form a CLB within Virtex and Spartan-II families.

speed
Speed is a function of net types, CLB density, switching matrices, and
architecture.

STARTUP symbol
The STARTUP symbol is a symbol used to set/reset all CLB and IOB
flip-flops.

state
A state is the set of values stored in the memory elements of a device
(flip-flops, RAMs, CLB outputs, and IOBs) that represent the state of
that device at a particular point of the readback cycle. To each state
there corresponds a specific set of logical values.

state machine
A state machine is a set of combinatorial and sequential logic elements
arranged to operate in a predefined sequence in response to specified
inputs. The hardware implementation of a state machine design is a
set of storage registers (flip-flops) and combinatorial logic, or gates.
Development System Reference Guide www.xilinx.com 457
 1-800-255-7778

http://www.xilinx.com

Glossary
R

The storage registers store the current state, and the logic network
performs the operations to determine the next state.

static timing analysis
A static timing analysis is a point-to-point delay analysis of a design
network.

T

TEKHEX (Tektronix)
TEKHEX (Tektronix) is a PROM format supported by Xilinx. Its
maximum address is 65 536. This format supports PROM files of up to
(8 x 65 536) = 524 288 bits.

testbench
An HDL netlist containing test vectors to drive a simulation.

threshold
The threshold is the crossover point when something occurs or is
observed or indicated. The CMOS threshold and TTL threshold are
examples.

timing
Timing is the process that calculates the delays associated with each of
the routed nets in the design.

timing simulation
This type of simulation takes place after the HDL design has been
synthesized and placed and routed. The purpose of this simulation is
to check the dynamic timing behavior of the HDL design in the target
technology.

Use the block and routing delay information from the routed design to
assess the circuit behavior under worst-case conditions.

timing specifications
Timing specifications define the maximum allowable delay on any
given set of paths in a design. Timing specifications are entered on the
schematic.

TRACE
Provides static timing analysis of a design based on input timing
constraints.

trace information
Trace information is a list of nodes and vectors to be simulated in
functional and timing simulation. This information is defined at the
schematic level.
458 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

transistor
A transistor is a three-terminal semiconductor device that switches or
amplifies electrical current. It acts like a switch: On is equal to 1, and
Off is equal to 0.

trimming
Trimming is the process of removing unconnected or unused logic.

tristate (3-state)
A 3-state, or 3-state buffer, is a buffer that places an output signal in a
high-impedance state to prevent it from contending with another
output signal.

tristate (3-state) condition
A 3-state condition is a high-impedance state. A 3-state can act also as
a normal output; i.e. it can be on, off, or not connected.

truth table
A truth table defines the behavior for a block of digital logic. Each line
of a truth table lists the input signal values and the resulting output
value.

TTL
TTL, or transistor-transistor logic, is a technology with specific
interchange (communication of digital signals) voltages and currents.
Other technologies include ECL, MOS, and CMOS. These types of
logic are used as criteria to classify digital integrated circuits.

U

unbonded
Unbonded describes an IOB used for internal logic only. This element
does not have an external package pin.

Unified Libraries
The Unified Libraries are a set of logic macros and functions that are
used to define the logic of a design. The elements are compatible
across families and schematic editors. For example, a Mentor Graphics
symbol has the same configuration as a Innoveda symbol; that is, it
has the same footprint and name. On the other hand, the Unified
Libraries support device-independent design, allowing a design to be
retargeted to different devices with minimal overhead; thus, a
Innoveda XC2000 macro will be similar to an XC3000 macro. Unified
Library Xilinx library standard which emphasizes standardization of
component naming and physical appearance of all schematic symbols
across all FPGA and CPLD architectures.
Development System Reference Guide www.xilinx.com 459
 1-800-255-7778

http://www.xilinx.com

Glossary
R

V

VCC pin
The VCC pin is Power (5 volts). It is the supply voltage.

verification
Verification is the process of reading back the configuration data of a
device and comparing it to the original design to ensure that all of the
design was correctly received by the device.

Verilog
Verilog is a commonly used Hardware Description Language (HDL)
that can be used to model a digital system at many levels of
abstraction ranging from the algorithmic level to the gate level. It is
IEEE standard 1364-1995. Verilog was originally developed by
Cadence Design Systems and is now maintained by OVI.

A Verilog file has a .v extension.

VHDL
VHDL is an acronym for VHSIC Hardware Description Language
(VHSIC an acronym for Very High-Speed Integrated Circuits). It can
be used to describe the concurrent and sequential behavior of a digital
system at many levels of abstraction ranging from the algorithmic
level to the gate level. VHDL is IEEE standard 1076-1993.

A VHDL file has a .vhd or .vhdl extension.

VITAL
VITAL is an acronym for VHDL Intitiative Toward ASIC Libraries. It
is a VHDL-library standard (IEEE 1076.4) that defines standard
constructs for simulation modeling, accelerating, and improving the
performance of VHDL simulators.

W

wire
A wire is a net or a signal. See net.

X

XFF file
An XFF file is a flattened XNF file, including all the XNF files that are
part of a design. XNFMerge generates this file.
460 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Development System Reference Guide www.xilinx.com 461
 1-800-255-7778

http://www.xilinx.com

Glossary
R

462 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

Index
A
-a option

EDIF2NGD 422

NGD2VHDL 328, 364

NGDBuild 135

TRACE 219
active module implementation

phase, modular design 87
advanced analysis 219
-aka option

NGD2VER 354

NGD2VHDL 324, 331, 334, 364
ALF files 343, 413
-ar option

NGD2VHDL 328, 364
architecture name, renaming 328,

364
architectures supported

for EDIF2NGD 419

for IBISWriter 299

for logical DRC 143

for MAP 147

for MAP options 150

for modular design 61, 81

for NGD2VER 351

for NGD2VHDL 341, 351, 361

for NGDAnno 319, 341

for NGDBuild 131

for PAR 173, 205

for physical DRC 169

for PIN2UCF 211

for SPEEDPRINT 261

for XFLOW 373, 397
area group summary

MAP, description 164
area setting 152
-assemble flow type 379
-aul option

NGDBuild 136, 422
automatic timespecing

PAR 184
automount points 198

B
-b option

BitGen 269

PROMGen 286
back-annotation

description 341

errors 161

global signals
Virtex and Spartan-II 347

NGDAnno 51
balanced setting 152
BAT files 376

using 396
BGN files 413
bidirectional pads 145
BIT files

creating with XFLOW 380

description 413

disabling 282

loading downward 287

loading up or down 287

loading upward 289
bit swapping

description 290

disabling 286
BitGen

-b option 269

BGN files 413

BIT files 413

-d option 269

description 47, 265, 291

disabling DRC 269

DRC files 413

-f option, BitGen 269

filename extension 266

-g option 269, 272

input files 267

-j option 282

-l option 282

LL files 414

-m option 282

MSK files 415

options 268

output files 267

RBT files 416

-w option 283

XFLOW 380
BLD files 135, 413
block

check, logical DRC 144

check, physical DRC 171

placement 43

STARTUP, VHDL only 367

STARTUP_VIRTEX,
VHDL only 368

blocks
allowing unexpanded 140

optimized 163

removed 163

trimmed 163
-bp option

MAP, architectures 150

MAP, description 151
BSCAN primitive 144
buffers 144
BUFGMUX element 347
bus

matching 426

matching in Virtex 426

order in Verilog files 358

order in VHDL files 370

C
-c option

checksum 287

MAP, architectures 150

MAP, description 151
Cadence Synergy synthesis tool 354
case-sensitivity

command line options 32

modular design 99, 101
CclkPin option 270
-cd option

NGD2VER 354
cell

ROC 368

ROCBUF 369
Development System Reference Guide www.xilinx.com 463
 1-800-255-7778

http://www.xilinx.com

R

STARTBUF 367

STARTBUF_VIRTEX 368

TOC 369

TOCBUF 370
chip check, physical DRC 171
circuit cycles 228
CLBs 151
cleanup

routing 183
clock

buffer check 145

distribution, global 57

enable 58, 60

resource, global 57

skew 225, 226
clocks

at different chip inputs 227

in synchronous designs 60

stamp, for TRACE 221

through multiple buffers 226
clock-to-output propagation delays

229
-cm option

architectures 150

description 152
command files 33
commands

file, executing 32

part numbers in 33
compile scripts, Verilog 359
compile scripts, VHDL 371
Compress option

Spartan-II 271

Virtex 271
-config flow type 380
ConfigRate option

Spartan-II 271

Virtex 271, 272
configuration

clock rate 271

-g option 281
constraints

controlling implementation
43

net delay 224

net skew 224

path delay 224

pin locking 212
constructive

placement 183

routing 183
CONTROL-BREAK

halting TRACE 249
CONTROL-C

halting TRACE 249

halting XFLOW 396
CORE Generator tool

description 42
cores 352, 362
cost tables, placer 181
cost-based

PAR, description 173
counters 59
cover mode option 152
CPLD Fitter

GYD files 414

JED files 414
cycles

detecting in TRACE 228

D
-d option

BitGen 269

PROMGen 287
data feedback 58
DATA files 413
data sheet reports

comparing with verbose re-
port 239

obtaining a complete report
230

DC files 413
-dd option

NGDBuild 136
debug mode, turns engine 199
DebugBitstream option 272
debugging, turns engine 199
design entry

controlling implementation
with constraints 43

description 37, 40

library elements 42

modular design 81

schematic entry 42
design flow

description 37

flow diagram 39

modular design 81

modular design flow dia-
gram 83

design implementation
description 37, 44

mapping 43

modular design 82
design performance 57, 105
design size 57, 105
design techniques, for FPGAs 56
design verification

description 37, 47

functional simulation 52

schematic-based simulation
52

timing simulation 52

tools 48
-detail option

MAP, architectures 150

MAP, description 152
device

attributes 126

listing with PARTGen 122

speed, annotating to NGA
file 326, 336, 345

DLY files 413
Done_cycle option 273
DonePin option

Spartan-II 273

Virtex 273
DonePipe option 273
download cables, description 56
DRC

 see also DRC, logical
 see also DRC, physical
description 56

disabling for BitGen 269

files 413

options 170
DRC, logical

block check 144

clock buffer check 145

description 143

name check 145

net check 144

netlist writers 143

pad check 144

primitive pin check 146
464 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

running automatically 143

supported families 143

types of tests 144
DRC, physical

block check 171

chip check 171

compatible families 169

description 169

-e option 170

error report 170

errors 171

-f option 170

incomplete programming 171

input files 170

net check 171

-o option 170

output files 170

report files 170

-s option 170

syntax 170

TDR files 417

-v option 170

verbose report 170

warnings 171

-z option 171
DriveDone option 273
duplicate coverage, in TSI report

242

E
-e option

physical DRC 170

TRACE 219
-ed option

XFLOW 392
EDIF files 413

description 421
EDIF2NGD

-a option 422

description 419

-f option 422

flow diagram 420

input files 421

-l option 423

options 422

output files 422

-p option 423

-quiet option 423

-r option 423

supported families 419

syntax 421
EDN files 413
effort level

-ol PAR option 179

router, -rl PAR option 180,
181

entity
suppressing 328, 364

environment
problems, turns engine 199

variables, for turns engines
198

variables, XFLOW 396
EPL files 413
error reports

generating with TRACE 219

TRACE 237
errors

DRC, physical 171

MRP files 163

net delay 223

net skew 223

offset 223

path delays 223
EXACT mode 153, 160
exact option for PAR 186
exclusive coverage, in TSI report

242
EXO files 414
external setup and hold 348
external setup/hold requirements

229
extracted coverage, in TSI report

242

F
-f option

architectures supported for
MAP 150

BitGen 269

description 32

EDIF2NGD 422

MAP 152

NGD2VER 355

NGD2VHDL 364

NGDAnno 344

NGDBuild 136

PAR 178

physical DRC 170

PIN2UCF 213

PROMGen 287

TRACE 220

XFLOW 392, 394
families supported

for EDIF2NGD 419

for IBISWriter 299

for logical DRC 143

for MAP 147

for modular design 61, 81

for NGD2VER 351

for NGD2VHDL 341, 351, 361

for NGDAnno 319, 341

for NGDBuild 131

for PAR 173, 205

for physical DRC 169

for PIN2UCF 211

for SPEEDPRINT 261

for XFLOW 373, 397
files

 see also input or output files
in commands 32

package, creating 125

partlist.xct 125

redirecting messages 35
final assembly phase, modular de-

sign 88
-fit flow type 381
flip-flops

register ordering 158
Floorplanner

-fp option 152

MFP files 149, 415
flow files

description 388

ExportDir section 389

program block 389

ReportDir section 389

user command block 391
flow types

description 379

examples 395
Development System Reference Guide www.xilinx.com 465
 1-800-255-7778

http://www.xilinx.com

R

FLW files 375, 414
FMAP symbol 43
-fp option

MAP 149, 150, 152
FPGA Editor

block checks 171

command log files 413

net checks 171

NMC files 416

PCF files 416

RCV files 416

SCR files 417
fpga_editor.ini script 414
fpga_editor_user.ini script 414
-fsim flow type 331, 380, 381
functional simulation

description 43, 52

-fsim flow type, XFLOW
331, 380, 381

G
-g BitGen option

description 269

Spartan-II
CclkPin 270

Compress option 271

ConfigRate 271

DebugBitstream 272

Done_cycle 273

DonePin 273

DonePipe 273

DriveDone 273

Gclkdel 274

GSR_cycle 274

GTS_cycle 275

GWE_cycle 274

LCK_cycle 276

M0Pin 276

M2Pin 274, 275, 276, 277

Persist 278

ProgPin 278

ReadBack 279

Security 279

StartupClk 280

TckPin 280

TdiPin 280

TdoPin 281

TmsPin 281

UnusedPin 281

UserID 281

Virtex
CclkPin 270

Compress 271

ConfigRate 271, 272

DebugBitstream 272

Done_cycle 273

DonePin 273

DonePipe 273

DriveDone 273

Gclkdel 274

GSR_cycle 274

GTS_cycle 275

GWE_cycle 274

LCK_cycle 276

M0Pin 276

M1Pin 276

M2Pin 277

Persist 278

ProgPin 278

ReadBack 279

Security 279

StartupClk 280

TckPin 280

TdiPin 280

TdoPin 281

TmsPin 281

UnusedPin 281

UserID 281
-g option

IBISWriter 301

XFLOW 392
gated clocks 58, 59, 60
Gclkdel option 274
-gf option

MAP, architectures 150

MAP, description 152

PAR 178
global

3-state signal, as port 366

clock distribution 57

clock resources 57

reset, as port 325, 355, 364

set/reset, back-annotation

Virtex and Spartan-II 347

tristate signal, as port 326, 357

variable, XFLOW 392
Global PRLD, setting 358
Global Set/Reset, setting 358
Global Set/Reset, simulation 55
Global Tristate, setting 358
-gm option

MAP, architectures 150

MAP, description 153

PAR 178
-gp option

NGD2VER 355

NGD2VHDL 325, 364
GSR_cycle option 274
GTS_cycle option 275
guaranteed setup and hold 232, 233
guide

designs, using 186

files, NCD files 149

mode 178

mode option 153

NCD file 178

NCD file, for MAP 152

NGD file, for MAP 152

reporting 195
guided

mapping, description 159

mapping, -gm option 153

mapping, HDL designs 161

mapping, illustration 160

mapping, MFP files 152
GWE_cycle option 274
GYD files 213, 414

H
HDL

advantages 42

description 42
HDL designs

guided mapping 161
HDL-based simulation

description 53

post-synthesis functional
simulation 53

RTL simulation 53

simulation points 54
466 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

-help option 34
HEX files 414
hierarchical

design 41

names 41
hierarchy, retaining in design

NGD2VER 356

NGD2VHDL 365
HIS files 376
HMAP symbol 43
hold time 233

I
-i option

NGDBuild 136

PARTGen 120, 122
IBISWriter

description 299

-g option 301

IBS files 414

input files 300

options 301

output files 301

supported families 299

syntax 300
IBS files 414
identifiers

in Verilog 359

in VHDL 370

user-defined names as com-
ments in Verilog
netlist 354

user-defined names as com-
ments in VHDL
netlist 324, 331, 334, 364

-implement flow type 382
implementation

-implement flow type,
XFLOW 382

tools, invoking 35
in-circuit verification

description 56

Design Rule Checker 56
initial budgeting phase, modular

design 85
-initial flow type 383
input files

BitGen 267

DRC, physical 170

EDIF2NGD 421

IBISWriter 300

MAP 149

NGD2VER 353

NGDAnno 343

NGDBuild 133

PAR 175, 202

PARTGen 119

PIN2UCF 213

PROMGen 286

TRACE 218

turns engine 197

XFLOW 304, 316, 375
input functions, mapping to 153
input pads

connecting to primitives 144
input-to-output propagation de-

lays 230
instance name

specifying in SDF and
TVHD file 365, 366

specifying in TV file 326, 357
intermediate files see NGO files
-ir option

MAP 153

MAP architectures 150
-ism option

NGD2VER 327, 355
iterations

multiple, for PAR 187

-n option, PAR 179
ITR

files 414

J
-j option

BitGen 282
JED files 414

K
-k option

description 153

MAP, architectures 150

PAR 178

L
-l option 287

BitGen 282

EDIF2NGD 423

MAP 154

MAP, architectures 150

NGDBuild 137
LCA2NCD

MDF files 414
LCK_cycle option 276
LEVERAGE mode 153, 160, 161
leverage option for PAR 186
libraries, searching 137, 423
library elements

description 42

macros 42
LL files 282, 414
LOC see location constraints
location constraints

allowing unmatched 136, 422

eliminating 139

filtering 423
LOG files 355, 365, 393, 414

NGD2VER 353

NGD2VHDL 364

XFLOW 376
-log option

NGD2VER 355

NGD2VHDL 365

XFLOW 393
LogiBLOX

MEM files 414

NGC files 415
logic

allocation file 282

removed from NGD files 163

unused 157
logical DRC

 see DRC, logical
longlines, pullups 183
LUTs, reducing 152

M
-m option

BitGen 282

PAR 179
M0Pin option
Development System Reference Guide www.xilinx.com 467
 1-800-255-7778

http://www.xilinx.com

R

Spartan-II 276

Virtex 276
M1Pin option

Virtex 276
M2Pin option

Spartan-II 274, 275, 276, 277

Virtex 277
macros

relationally placed 42

soft 42

synthesis 42
MAP

-bp option 151

-c option 151

-cm option 152

description 47, 147

-detail option 152

EXACT mode 160

-f option, MAP 152

Floorplanner File see MFP
files

-fp option 152

-gf option 152

-gm option 153

halting 167

input files 149

-ir option 153

-k option 153

-l option 154

LEVERAGE mode 160, 161

MDF files 414

MRP files
area group summary 164

description 415

NGM files 416

-o option 154

options and architectures 150

output files 149

-p option 155

PCF files 416

-pr option 155

process 157

-quiet option 155

-r option 155

register ordering 158

simulating results 161

supported families 147

syntax 148

-timing option 156

-tx option 156

-u option 157
map slice logic option 151
mapping

description 43

to input functions 153
Mask file 282
matching, buses 426
MCS files 414
MDF files 414
MEM files 414
messages

on screen displays 35

redirecting to files 35

symbols used 35

verbose mode 358, 366
MFP files 149, 152, 415
-min option

SPEEDPRINT 262
MOD files 415
-modular assemble option

NGDBuild 137
modular design

active module 138

active module implementa-
tion phase

description 87

-module flow type,
XFLOW 384

overview 82

running 94

active module simulation 97

code examples
Verilog module design

117

Verilog top-level design
114

VHDL module design
116

VHDL top-level design
111

constraints 102, 106, 107

description 81

design entry
coding guidelines 90

description 84

flow diagram 84

overview 81

synthesis guidelines 92

design flow
description 81

flow diagram 83

design implementation
description 85

overview 82

design size recommenda-
tions 105

design synthesis
description 84

flow diagram 84

FPGA Express/FPGA
Compiler II, ver-
sion 3.3.1 or ear-
lier 107

FPGA Express/FPGA
Compiler II, ver-
sion 3.4 or later
108

LeonardoSpectrum 109

overview 81

Synplify 107

XST 110

final assembly phase
-assemble flow type,

XFLOW 379

description 88

flow diagram 89

overview 82

initial budgeting 138

initial budgeting phase
description 85

-initial flow type,
XFLOW 383

overview 82

running 92

linking PIMs to top-level de-
sign 137

locating the active module
325, 332, 335, 345

multiple output ports 106

part types 106

report files 105
468 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

resource contention 107

sequential flow
description 98

incremental guide flow
99

partial design assembly
flow 98

setting up directories 89

supported families 61, 81

XFLOW automation 106
-modular initial option

NGDBuild 138
-modular module option

NGDBuild 138
module

as black box in Verilog file
354

name, changing 326, 332, 336,
357

-module flow type 384
-module option

NGDAnno 325, 332, 335, 345
mount points 198
-mppr flow type 385
MRP files

description 150, 415

errors 163

modular design 105

sections 162

warnings 163
MSK files 415
multi-pass place and route

-mppr flow type, XFLOW
385

multiple
buffers 226

iterations for PAR 187

pads 145

PROM files 289
multi-tasking

mode, -m PAR option 179

option, for PAR 195, 197

N
-n option

PAR 179

PROMGen 287

name
check, logical DRC 145

escaping 327, 332, 335, 356

legalization, in VHDL files
324, 331, 334, 364

naming conventions
Verilog 359

VHDL 370
NAV files 415
NCD files

as guide file 149, 178

description 47, 147, 149, 323,
324, 330, 334, 343, 415

output file name 154

reading with NCDRead 36
NCDRead 36
NCF files

description 134, 415, 421
-ne option 327, 332, 335, 356

NGD2VER 327, 332, 335, 356
negative slack 225
net

check, logical DRC 144

check, physical DRC 171

delay constraints 224

delay errors 223

skew constraints 224

skew errors 223
NetGen 319
netlist

bus matching 426

converting to NGD files 132

translation 132, 425

translation, description 44

writers, logical DRC 143
Netlister Launcher

description 426

system rules file 430

treatment of timestamps 139
networks

automount points 198

problems, turns engine 199
NGA files 343

annotating device speed 326,
336, 345

description 353, 415

specifying 345
NGC files 134, 415

NGD files
allowing unexpanded blocks

140

allowing unmatched LOCs
136, 422

description 135, 353, 415

input to MAP 149

removed logic 163
NGD2EDIF

EDN files 413
NGD2VER

-10ps option 354

-aka option 354

-cd option 354

compile scripts 359

description 351

-f option 355

flow diagram 352

-gp option 355

identifiers 359

input design stages 351

input files 353

-ism option 327, 355

LOG files 414

-log option 355

-ne option 327, 332, 335, 356

options 327, 354

output files 353

-pf option 327, 356

-r option 356

SDF files 417

-sdf option 328, 356

-shm option 328, 357

supported families 351

syntax 352

-tf option 326, 357

-ti option 326, 357

-tm option 326, 332, 336, 357

-tp option 326, 357

TV files 417

-ul option 328, 357

V files 417

-verbose option 358

-w option 358
NGD2VHDL

-a option 328, 364

-aka option 324, 331, 334, 364
Development System Reference Guide www.xilinx.com 469
 1-800-255-7778

http://www.xilinx.com

R

-ar option 328, 364

compile scripts 371

description 361

-f option 364

flow diagram 362

global set/reset and tristate
port 367

-gp option 325, 364

identifiers 370

input design stages 361

LOG files 414

-log option 365

options 328, 364

output files 363

-r option 365

-rpw option 328, 365

supported families 341, 351,
361

syntax 362

-tb option 365

-te option 365

-ti option 366

-tp option 366

-tpw option 329, 366

TVHD files 417

-verbose option 366

VHD files 417

-w option 327, 333, 336, 366

-xon option 329, 366
NGDAnno

ALF files 413

description 341

external setup and hold 348

-f option 344

flow diagram 342

global reset signals 347

input files 343

-module option 325, 332, 335,
345

NGA files 415

-o option 345

options 316, 324, 334, 344

output files 343

-p option 325, 336, 345

-quiet option 345

-s option 326, 336, 345

supported families 319, 341

syntax 321, 342
NGDBuild

-a option 135

-aul option 136, 422

BLD files 413

bus matching 426

bus matching, Virtex 426

converting netlists 132

converting netlists (detailed)
425

-dd option 136

description 131

-f option 136

file naming conventions 433

flow diagram 131

-i option 136

input files 133

intermediate files 135

-l option 137

logical DRC 143

-modular assemble option
137

-modular initial option 138

-modular module option 138

NAV files 415

Netlister Launcher 426

NGD files 131, 415

-nt option 139

options 135

output files 135

-p option 139

-quiet option 139

-r option 139

report files 135

-sd option 140

supported families 131

syntax 133

system rules file 430

-u option 140

-uc option 140

-ur option 141

-verbose option 141
NGM files 149, 157, 323, 330, 334,

343, 416
NGO files

description 135, 416, 422

overriding information 139

specifying a destination di-
rectory 136

timestamps 139
NMC files 134, 149, 416
no logic replication option 154
no register ordering option 155
nodelist files 197
-norun option

XFLOW 393
-nt option

NGDBuild 139

O
-o option

MAP, architectures 150

MAP, description 154

NGDAnno 345

physical DRC 170

PIN2UCF 214

PROMGen 288

TRACE 220, 222

XFLOW 393
offset errors 223
-ol option

PAR 179
OPT files 376, 416
option files

description 391

for -assemble flow type 380

for -fit flow type 381

for -fsim flow type 382

for -implement flow type 382

for -module flow type 384

for -mppr flow type 385

for -synth flow type 387
options

using spaces 32
output files

BitGen 267

DRC, physical 170

EDIF2NGD 422

IBISWriter 301

MAP 149

name, NCD files 154

name, PROMGen 288

NGD2VER 353
470 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

NGD2VHDL 363

NGDAnno 343

NGDBuild 135

overwriting 283, 327, 333, 336,
358, 366

PAR 175, 187, 202

PARTGen 120

PIN2UCF 213

PROMGen 286

specifying for XFLOW 393

SPEEDPRINT 263

TRACE 219, 223

XFLOW 304, 316, 376
output pads, connecting to primi-

tives 145
output signal names, register or-

dering 159

P
-p option

EDIF2NGD 423

for part numbers 33

MAP, architectures 150

MAP, description 155

modular design 394

NGDAnno 325, 336, 345

NGDBuild 139

PAR 180

PARTGen 125

PROMGen 288

XFLOW 394
pack

CLBs 151
pack registers in I/O option 155
package files 125
package, listing with PARTGen 122
pad check, logical DRC 144
PAD files 194, 416
pads

adding to top-level port sig-
nals 135, 422

connecting to top-level sym-
bols 145

input, connecting to primi-
tives 144

output, connecting to primi-
tives 145

unbonded, connecting to
primitives 145

PAR
automatic timespecing 184

command examples 184

cost-based 173

DLY files 413

exact option 186

extra effort level 182

-f option 178

flow diagram 174

-gf option 178

-gm option 178

guide files 185

guide reporting 195

guided design strategies 186

halting 203

ignoring timing constraints
182

incremental designs 185

input files 175, 202

ITR files 414

-k option 178

leverage option 186

-m option 179

multiple iterations 187

multi-tasking option 195, 197

-n option 179

operation, placement 183

options 175

output files 175, 187, 202

-p option 180

PAD file 194

PAD files 416

PCF files 175

PCI cores 187

register placement 158

report file 416

-s option 181

saving results 181

supported families 173, 205

syntax 174, 202

-t option 181

timing driven 173, 183

-x option 182

-xe option 182

PAR_AUTOMNTPT 198
PAR_AUTOMNTTMPPT 199
PAR_M_DEBUG 199
PAR_M_SETUPFILE 198
part number option 139, 155, 394,

423
part numbers

commands 33

specifying in commands 33
PARTGen

description 119

-i option 120, 122

input files 119

listing device attributes 126

options 120

output files 120

-p option 125

package files 125

syntax 119

-v option 125
partlist.xct file 120, 125, 126
paths

delay constraints 224

loops, detecting with
TRACE 228

PCF files 323, 334, 343
BitGen 267

description 149, 416

PAR 175

specifying 325, 336, 345

summary reports 234

TRACE 218
PCI cores, PAR 187
performance, design 57
Persist option 278
-pf option

NGD2VER 327, 356
physical DRC see DRC, physical
PIMs 88
pin check, primitive 146
PIN files 327, 353, 356, 416
pin locking constraints

PIN2UCF 212

user-specified 212
PIN2UCF

description 211

-f option 213

flow diagram 211

input files 213
Development System Reference Guide www.xilinx.com 471
 1-800-255-7778

http://www.xilinx.com

R

-o option 214

options 213

output files 213

output files, changing de-
fault name 214

pinlock.rpt files 212, 416

-r option 214

report files 214

RPT files 416

scenarios 214

supported families 211

syntax 213
pinlock.rpt files 212, 416
placement

block 43

bypassing, -p PAR option 180

constructive 183
placer

cost tables 181
port

global 3-state signal as 366

global reset signal as 325, 355,
364

global tristate signal as 326,
357

post-synthesis functional simula-
tion 53

-pr option
MAP, architectures 150

MAP, description 155
pre-simulation translation 50
primitive pin check 146
primitives

connecting to bidirectional
pads 145

connecting to input pads 144

connecting to output pads 145

connecting to unbonded pads
145

description 42
PRM files 286, 416
ProgPin option

Spartan-II 278

Virtex 278
program blocks

description 389

End Program section 390

Executable section 390

Exports section 390

Flag section 389

Input section 390

Program section 389

Reports section 390

Triggers section 390
PROM

formats 288

sizes 288
PROM files

bit swapping 290

description 286

loading 288

multiple 289
PROMGen

-b option 286

-d option 287

description 285

examples 290

EXO files 414

-f option, PROMGen 287

flow diagram 285

HEX files 414

input files 286

MCS files 414

-n option 287

-o option 288

options 286

output file name 288

output files 286

-p option 288

PRM files 416

-r option 288

-s option 288

syntax 286

TEK files 417

-u option 289

-w option 287, 289

-x option 289
propagation delays

clock-to-output 229

input-to-output 230
pseudo logic 86
PULLDOWN primitive 144
pulldowns

adding to Spartan-II M0 pin
276

adding to Spartan-II M1 pin
276

adding to Spartan-II M2 pin
277

adding to Spartan-II TCK
pin 280

adding to Spartan-II TDI pin
280

adding to Spartan-II TDO
pin 281

adding to Spartan-II TMS
pin 281

adding to Spartan-II Unused-
Pin 281

adding to Virtex M0 pin 276

adding to Virtex M1 pin 276

adding to Virtex M2 pin 277

adding to Virtex TCK pin 280

adding to Virtex TDI pin 280

adding to Virtex TDO pin 281

adding to Virtex TMS pin 281

adding to Virtex UnusedPin
281

pullups
adding to Cclk pin 270

adding to Spartan-II M0 pin
276

adding to Spartan-II M1 pin
276

adding to Spartan-II M2 pin
277

adding to Spartan-II ProgPin
278

adding to Spartan-II TCK
pin 280

adding to Spartan-II TDI pin
280

adding to Spartan-II TDO
pin 281

adding to Spartan-II TMS
pin 281

adding to Spartan-II Unused-
Pin 281

adding to Virtex M0 pin 276

adding to Virtex M1 pin 276

adding to Virtex M2 pin 277
472 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

adding to Virtex TCK pin 280

adding to Virtex TDI pin 280

adding to Virtex TDO pin 281

adding to Virtex TMS pin 281

adding to Virtex UnusedPin
281

longline 183
pulse width

for ROC 328, 365

for TOC 329, 366

Q
-quiet option

EDIF2NGD 423

MAP, architectures 150

MAP, description 155

NGDAnno 345

NGDBuild 139

R
-r option

EDIF2NGD 423

MAP, architectures 150

MAP, description 155

NGD2VER 356

NGD2VHDL 365

NGDBuild 139

PIN2UCF 214

PROMGen 288
rawbits file 269
RBT files 269, 416
RCV files 416
-rd option

XFLOW 394
ReadBack option

Spartan-II 279

Virtex 279
re-entrant routing, -k option, PAR

178
register

ordering 158

placement 158
register-to-register paths 225
Relationally Placed Macros (RPMs)

42, 153
report files

DRC, physical 170

NGDBuild 135

PAR PAD file 194

PIN2UCF 214

pinlock.rpt 212

summary TRACE report 234

TRACE 227

tsi 221

verbose 222

XFLOW 394
report warnings and errors only

option 155
reserved names 325, 327, 332, 335,

355, 356, 365, 420
Reset-On-Configuration see ROC
-rl option

PAR 180, 181
RLOC constraints 153
ROC

description 368

specifying pulse width 328,
365

ROCBUF 369
router

effort level,-rl PAR option
180, 181

routing
cleanup 183

constructive 183

re-entrant 178
RPT files 416
-rpw option

NGD2VHDL 328, 365
RTL simulation 53
rules files see user rules file, system

rules file

S
-s option

NGDAnno 326, 336, 345

PAR 181

physical DRC 170

PROMGen 288

SPEEDPRINT 262

TRACE 221
schematic entry 42
schematic-based simulation 52
SCR files 376, 417

using 396
screen messages 35
script files

fpga_editor.ini 414

fpga_editor_user.ini 414
-sd option

NGDBuild 140
SDF files

description 353, 364, 417

outputting to specified path
328, 356

-sdf option
NGD2VER 328, 356

search paths, specifying 140
Security option 279
setup checking 225
setup time 233
setup/hold

external 348

guaranteed 232, 233

requirements 229
-shm option

NGD2VER 328, 357
shm statements, in Verilog file 328,

357
signals

connecting to pads 145, 422

merged 163

removed 163
SimPrim

libraries, pointing to 328, 357

modules, including in the
Verilog file 327, 355

simulation
functional 52

global reset 55

HDL-based 53

in-circuit verification 56

MAP results 161

schematic-based 52

timing 52
sizes

designs 57

modular designs 105

of PROMs 288
-skew option 225
slack 225
slices 158
soft macros 42
Development System Reference Guide www.xilinx.com 473
 1-800-255-7778

http://www.xilinx.com

R

spaces, in options 32
Spartan-II

slices 158
Spartan-II/-IIE

-g BitGen option 269
speed setting 152
speed, listing with PARTGen 122
speed, overriding with -s option 221
SPEEDPRINT

description 261

example commands 263

example outputs 263

-min option 262

options 262

-s option 262

supported families 261

syntax 262

-t option 262

temperature 262

-v option 262

voltage 262
SRF file see system rules file
STAMP model, comparing with

verbose report 239
-stamp option 221

TRACE 221
STARTBUF cell

description 367

Virtex 368
startup

STARTBUF 367

STARTBUF_VIRTEXonly
368

STARTUP block, VHDL
only 367

STARTUP_VIRTEX block,
VHDL only 368

STARTUP block, VHDL only
description 367

Virtex 368
StartupClk option

Spartan-II 280

Virtex 280
static timing analysis, description

55
summary reports

TRACE 234

without PCF file 234
symbols, in messages 35

synchronous designs
considerations 60

data feedback 59

global clock distribution 57
-synth flow type 386
synthesis

description 42

modular design 84

XFLOW automation 386
synthesis, macros 42
system rules file

displayed 430

example 432

versus user rules 428

T
-t option

PAR 181

SPEEDPRINT 262
-tb option

NGD2VHDL 365
TckPin option, Spartan-II 280
TckPin option, Virtex 280
TdiPin option, Spartan-II 280
TdiPin option, Virtex 280
TdoPin option

Spartan-II 281

Virtex 281
TDR files 417

changing default name 170
-te option

NGD2VHDL 365
TEK files 417
temperature, SPEEDPRINT 262
temporary mount points 199
test fixture file <PAL10ital>see TV

files
testbench file see TVHD files
-tf option

NGD2VER 326, 357
-ti option

NGD2VER 326, 357

NGD2VHDL 366
tilde

in TRACE report 228
timescale statement, changing de-

fault 354
timespec interaction report

TRACE 221

timestamp option 139
timestamps

checking in NGO files 139
timing analysis

advanced 219
timing constraints

ignoring in PAR 182

specifying 183
timing errors

net delay 223

net skew 223

offset 223

path delay 223
-timing option

MAP, architectures 150

MAP, description 156
timing simulation

description 52

post-implementation 53
timing specifications 43
timing verification, TRACE 224
timing violations

setting output behavior 329,
366

timing-driven packing 156
timing-driven PAR 173, 183
-tm option

NGD2VER 326, 332, 336, 357
TmsPin option 281
TOC

description 369

specifying pulse width 329,
366

TOCBUF 370
-tp option

NGD2VER 326, 357

NGD2VHDL 366
-tpw option

NGD2VHDL 329, 366
TRACE

-a option 219

DATA files 413

description 55, 217

detecting path cycles 228

-e option 219

error report 237

example commands 222

-f option 220

halting 249
474 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

R

input files 218

MOD files 415

-o option 220, 222

options 219

output files 219, 223

PCF files 218

reports 227

-s option 221

summary report 234

syntax 218

timing verification 224

TSI report 242

TWR files 417

TWX files 417

verbose report 239
transform buses 156
translation

of netlist 132

pre-simulation 50
trigger files, XFLOW 376
Tri-State-On-Configuration cell see

TOC
-tsi option

TRACE 221
TSI report

design example 243, 245

duplicate coverage 242

exclusive coverage 242

extracted coverage 242

TRACE 242
-tsim flow type

XFLOW, description 385, 387

XFLOW, example 388
turns engine

debug mode 199

debugging 199

description 195

environment problems 199

environment variables 198

halting with Ctrl C 200

input files 197

limitations 197

NCD output file 197

network problems 199

nodelist file 197

screen output 200

starting from command line

196
TV files 326, 353, 357, 358, 417
TVHD files 364, 417

generating
TWR files 417
TWX files 417
-tx option 156

MAP, architectures 151

U
-u option

MAP, architectures 151

MAP, description 157

NGDBuild 140

PROMGen 289

TRACE 222
-uc option

NGDBuild 140
UCF files 417

as NGDBuild input 134

ignoring 136

modular design 87, 88

specifying 140
-ul option

NGD2VER 328, 357
unbonded pads, connecting to

primitives 145
uncovered paths, for TRACE 222
underbars 159
unused logic, keeping 157
UnusedPin option

Spartan-II 281

Virtex 281
-ur option

NGDBuild 141
URF files 134, 417

specifying 141
user command blocks 391
user rules file

examples 432

format 428

key values 430

keys 429

specifying 141

versus system rules 428
UserID option 281

V
V files 353, 417

overwriting 358
-v option

PARTGen 125

physical DRC 170

SPEEDPRINT 262

TRACE 222
variables, in XFLOW flow files 389
-verbose option

NGD2VER 358

NGD2VHDL 366

NGDBuild 141
verbose reports

comparing with data sheet
report 239

comparing with STAMP
model 239

TRACE 222, 239
verification

timing, with TRACE 224

tools 48
Verilog

compile scripts 359

file naming 359

files, bus order 358

identifiers 359
VHD files 323, 324, 331, 363, 417
VHDL

compile scripts 371

file naming 370

files, bus order 370

identifiers 370
Virtex

bus matching 426
Virtex/-E/-II

slices 158
Virtex/-E/-II/-II PRO

-g BitGen option 269

-g Bitgen option 269
VM6 files 417
voltage, SPEEDPRINT 262

W
-w option

BitGen 283
Development System Reference Guide www.xilinx.com 475
 1-800-255-7778

http://www.xilinx.com

R

NGD2VER 358

NGD2VHDL 327, 333, 336, 366

PAR 182

PROMGen 287, 289
warnings

DRC, physical 171

MRP files 163
-wd option

XFLOW 395
wire 460

X
-x option

PAR 182

PROMGen 289
-xe option

PAR 182
XFLOW

-assemble flow type 379

-config flow type 380

description 6, 315, 373

-ed option 392

-f option 392, 394

-fit flow type 381

flow files 388

flow type examples 395

flow types 379

FLW files 414

-fsim flow type 331, 380, 381

-g option 392

halting 396

-implement flow type 382

-initial flow type 383

input files 304, 316, 375

LOG files 414

-log option 393

modular design automation
106

-module flow type 384

-mppr flow type 385

-norun option 393

-o option 393

OPT files 416

option files 391

options 392

output files 304, 316, 376

-p option 394

-rd option 394

report files 394

smart XFLOW 395

specifying output files 393

supported families 373, 397

syntax 311, 315, 374

-synth flow type 386

-tsim flow type 385, 387

-wd option 395

working directory 395

XIL_XFLOW_PATH envi-
ronment variable 396

XMM files 417
XNF files 417
-xon option

NGD2VHDL 329, 366
XPI files 417
XTF files 417

Z
-z option

physical DRC 171
476 www.xilinx.com Development System Reference Guide
1-800-255-7778

http://www.xilinx.com

	Software Manuals
	Development System Reference Guide
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Table of Contents
	1 Introduction
	Command Line Program Overview
	Command Line Syntax
	Command Line Options
	–f (Execute Commands File)
	–p (Part Number)
	–h (Help)

	Invoking Command Line Programs
	Reading NCD Files with NCDRead

	2 Design Flow
	Design Flow Overview
	Design Entry and Synthesis
	Hierarchical Design
	Schematic Entry Overview
	Library Elements
	CORE Generator Tool (FPGAs Only)

	HDL Entry and Synthesis
	Functional Simulation
	Constraints
	Mapping Constraints (FPGAs Only)
	Block Placement
	Timing Specifications

	Netlist Translation Programs

	Design Implementation
	Mapping (FPGAs Only)
	Placing and Routing (FPGAs Only)
	Bitstream Generation (FPGAs Only)

	Design Verification
	Simulation
	Back-Annotation
	Schematic-Based Simulation
	HDL-Based Simulation

	Static Timing Analysis (FPGAs Only)
	In-Circuit Verification
	Design Rule Checker (FPGAs Only)
	Xilinx Design Download Cables
	Probe
	ChipScope ILA and ChipScope PRO

	FPGA Design Tips
	Design Size and Performance
	Global Clock Distribution
	Data Feedback and Clock Enable
	Counters
	Other Synchronous Design Considerations

	3 Incremental Design
	Incremental Design Overview
	Incremental Design Benefits

	Hierarchical Design Guidelines
	Setting Up Designs for Incremental Design
	Identifying Logic Groups
	Creating AREA GROUP RANGEs
	Incremental Synthesis
	Mentor Leonardo Spectrum
	Synopsys FPGA Compiler II
	Synplicity Synplify/Synplify Pro
	XST: Xilinx Synthesis Tool

	Incremental Design Flows
	Incremental Enabled Flow
	Setting Up Incremental Enabled Mode in Project Navigator
	Setting Up Incremental Enabled Mode using the command line

	Incremental Guide Mode
	Setting Up the Incremental Guide Mode for Project Navigator
	Setting Up Incremental Guide Mode for the Command Line
	Rules for External Changes that can cause Logic Group Reimplementation
	Situations for Forcing a Reimplementation of a Logic Group

	Incremental Design Reports
	MAP Report File Information
	PAR Report File Information
	Description of the Design Totals Section:
	Description of the Guide File section:

	Vendor Specific Notes for Incremental Synthesis
	Incremental Synthesis Using Leonardo Spectrum
	Bottom-Up Methodology
	Top-Down Preserving Hierarchy Methodology

	Incremental Synthesis Using Synplify/ Synplify PRO
	Creating an EDIF for the Top Level

	Incremental Synthesis Using XST

	4 Modular Design
	Modular Design Overview
	Modular Design Entry and Synthesis
	Modular Design Implementation
	Initial Budgeting Phase
	Active Module Implementation Phase
	Final Assembly Phase

	Setting Up Modular Design Directories
	Running the Standard Modular Design Flow
	Entering the Design
	General Coding Guidelines
	Top-Level Design Coding Guidelines
	Module Coding Guidelines

	Synthesizing your Designs
	Running Initial Budgeting
	Implementing an Active Module
	Assembling the Modules
	Simulating an Active Module
	Running Simulation with Top-Level Design as Context
	Running Independent Module Simulation

	Running the Sequential Modular Design Flows
	Running the Partial Design Assembly Flow
	Running the Sequential Guide Flow

	Modular Design Tips
	Constraints
	Partial Reconfigurability AREA_GROUP Constraint Attributes
	Propagation of Constraints during Modular Design

	Design Size and Performance
	MAP Report
	PAR Reports
	XFLOW Automation of Modular Design

	Modular Design Troubleshooting
	Multiple Output Ports MAP Error
	Part Type Specification
	Constraints Not Working in Active Module Implementation
	Resource Contention or Timing Constraints Not Met in Final Assembly

	Vendor Specific Notes for Synthesis
	Synplify or FPGA Express/FPGA Compiler II, version 3.3.1 or earlier
	Creating a Netlist for Each Module (Synplify or FPGA Express/FPGA Compiler II, version 3.3.1 or e...
	Disabling I/O Insertion for a Module (Synplify or FPGA Express/FPGA Compiler II, version 3.3.1 or...
	Disabling I/O Insertion for a Module (Synplify Pro)
	Disabling I/O Insertion for a Module (FPGA Express/FPGA Compiler II, version 3.3.1 or earlier)
	Instantiating Primitives (Synplify and Synplify Pro)
	Instantiating Primitives (FPGA Express/FPGA Compiler II, version 3.3.1 or earlier)

	FPGA Express/FPGA Compiler II, version 3.4 or later
	Creating a Netlist for Each Module (FPGA Express/FPGA Compiler II, version 3.4 or later)
	Disabling I/O Insertion for a Module (FPGA Express/FPGA Compiler II, version 3.4 or later)
	Instantiating Primitives (FPGA Express/FPGA Compiler II, version 3.4 or later)

	LeonardoSpectrum
	Creating a Netlist for Each Module (LeonardoSpectrum)
	Disabling I/O Insertion for a Module (LeonardoSpectrum)
	Instantiating Primitives (LeonardoSpectrum)

	XST
	Creating a Netlist for Each Module (XST)
	Disabling I/O Insertion for a Module (XST)
	Instantiating Primitives (XST)

	HDL Code Examples
	Top-Level Design
	VHDL Example: Top-Level Design
	Verilog Example: Top-Level Design

	External I/Os in a Module
	VHDL Example: Module Design with Inserted I/Os
	Verilog Example: Module Design with Inserted I/Os

	5 PARTGen
	PARTGen Overview
	PARTGen Syntax
	PARTGen Input Files
	PARTGen Output Files
	PARTGen Options
	–arch (Print Information for Specified Architecture)
	–i (Print a List of Devices, Packages, and Speeds)
	–p (Creates Package file and Partlist.xct File)
	–nopkgfile
	–v (Creates Packages and Partlist.xct File)

	Partlist.xct File
	Header
	Device Attributes

	PKG File

	6 NGDBuild
	NGDBuild Overview
	Converting a Netlist to an NGD File

	NGDBuild Syntax
	NGDBuild Input Files
	NGDBuild Output Files
	NGDBuild Intermediate Files
	NGDBuild Options
	–a (Add PADs to Top-Level Port Signals)
	–aul (Allow Unmatched LOCs)
	–bm (Specify BMM Files)
	–dd (Destination Directory)
	–f (Execute Commands File)
	–i (Ignore UCF File)
	–insert_keep_hierarchy
	–intstyle
	–l (Libraries to Search)
	–modular assemble (Module Assembly)
	–modular initial (Initial Budgeting of Modular Design)
	–modular module (Active Module Implementation)
	–nt (Netlist Translation Type)
	–p (Part Number)
	–quiet (Report Warnings and Errors Only)
	–r (Ignore LOC Constraints)
	–sd (Search Specified Directory)
	–u (Allow Unexpanded Blocks)
	–uc (User Constraints File)
	–ur (Read User Rules File)
	–verbose (Report All Messages)

	7 Logical Design Rule Check
	Logical DRC Overview
	Logical DRC Checks
	Block Check
	Net Check
	Pad Check
	Clock Buffer Check
	Name Check
	Primitive Pin Check

	8 MAP
	MAP Overview
	MAP Syntax
	MAP Input Files
	MAP Output Files
	MAP Options
	–bp (Map Slice Logic)
	–c (Pack CLBs)
	–cm (Cover Mode)
	–detail (Write Out Detailed MAP Report)
	–f (Execute Commands File)
	–fp (Floorplanner)
	–gf (Guide NCD File)
	–gm (Guide Mode)
	–gm incremental (Guide Mode incremental)
	–ignore_keep_hierarchy
	–ir (Do Not Use RLOCs to Generate RPMs)
	–k (Map to Input Functions)
	–l (No logic replication)
	–o (Output File Name)
	–p (Part Number)
	–pr (Pack Registers in I/O)
	–quiet (Report Warnings and Errors Only)
	–r (No Register Ordering)
	–timing (Timing-Driven Packing)
	–tx (Transform Buses)
	–u (Do Not Remove Unused Logic)

	MAP Process
	Register Ordering
	Guided Mapping
	Simulating Map Results
	MAP Report (MRP) File
	Halting MAP

	9 Physical Design Rule Check
	DRC Overview
	DRC Syntax
	DRC Input File
	DRC Output File
	DRC Options
	–e (Error Report)
	–f (Execute Commands File)
	–o (Output file)
	–s (Summary Report)
	–v (Verbose Report)
	–z (Report Incomplete Programming)

	DRC Checks
	DRC Errors and Warnings

	10 PAR
	Place and Route Overview
	PAR Syntax
	PAR Input Files
	PAR Output Files
	PAR Options
	Detail Listing
	–f (Execute Commands File)
	–gf (Guide NCD File)
	–gm (Guide Mode)
	–intstyle
	–k (Re-Entrant Routing)
	–m (Multi-Tasking Mode)
	–n (Number of PAR Iterations)
	–nopad (No Pad)
	–ol (Overall Effort Level)
	–p (No Placement)
	–pl (Placer Effort Level)
	–r (No Routing)
	–rl (Router Effort Level)
	–s (Number of Results to Save)
	–t (Starting Placer Cost Table)
	–ub (Use Bonded I/Os)
	–w (Overwrite Existing Files)
	–x (Ignore Timing Constraints)
	–xe (Extra Effort Level)

	PAR Process
	Placing
	Routing
	Timing-driven PAR
	Automatic Timespecing
	Command Line Examples

	Guided PAR
	Guided Designs
	PCI Cores

	PAR Reports
	Place and Route Report File
	MPPR Reporting
	Select I/O Utilization and Usage Summary

	Importing the PAD File Information

	Guide Reporting
	Turns Engine (PAR Multi-Tasking Option)
	Turns Engine Overview
	Turns Engine Syntax
	Turns Engine Input Files
	Turns Engine Output Files
	Limitations
	System Requirements
	Turns Engine Environment Variables
	Debugging
	Screen Output

	ReportGen
	ReportGen Syntax
	ReportGen Input Files
	ReportGen Output Files
	ReportGen Options

	Halting PAR

	11 XPower
	XPower Overview
	XPower Syntax
	FPGA Flow
	CPLD Flow

	Using XPower
	VCD Data Entry
	Other Methods of Data Entry

	Files Used by XPower
	Command Line Options
	–v (Verbose Report)
	–l (Limit)
	–x (Specify XML Input File)
	–wx (Write XML File)
	–s (Specify VCD file)
	–tb (Turn On Time Based Reporting)
	–o (Rename Power Report)
	-ls (List Supported Devices)
	-h (Help)

	Command Line Examples
	Power Reports
	Standard Reports
	Detailed Reports
	Advanced Reports

	12 PIN2UCF
	PIN2UCF Overview
	PIN2UCF Syntax
	PIN2UCF Input Files
	PIN2UCF Output Files
	PIN2UCF Options
	–f (Execute Commands File)
	–o (Output File Name)
	–r (Write to a Report File)

	PIN2UCF Scenarios

	13 TRACE
	TRACE Overview
	TRACE Syntax
	TRACE Input Files
	TRACE Output Files
	TRACE Options
	–a (Advanced Analysis)
	–e (Generate an Error Report)
	–f (Execute Commands File)
	–fastpaths (Report Fastest Paths)
	–intstyle
	–l (Limit Timing Report)
	–nodatasheet (No Data Sheet)
	–o (Output Timing Report File Name)
	–quiet (Quiet Switch)
	–s (Change Speed)
	–skew (Analyze Clock Skew for All Clocks)
	–stamp (Generates STAMP local timing model files)
	–tsi (Generate a Timing Specification Interaction Report)
	–u (Report Uncovered Paths)
	–v (Generate a Verbose Report)
	–xml (XML Output File Name)

	TRACE Command Line Examples
	TRACE Reports
	Timing Verification with TRACE
	Net Delay Constraints
	Net Skew Constraints
	Path Delay Constraints
	Clock Skew and Setup Checking

	Reporting with TRACE
	Data Sheet Reports
	Data Sheet Tables
	Report Legend

	Guaranteed Setup and Hold Reporting
	Setup Times
	Hold Times

	Summary Report
	Summary Report (Without a Physical Constraints File Specified)

	Error Report
	Verbose Report
	Constraints Interaction Report
	Extracted Coverage Constraints Interaction Report Example
	Duplicate Coverage Constraints Interaction Report Example

	Halting TRACE
	OFFSET Constraints
	OFFSET IN Constraint Examples
	OFFSET IN Header
	OFFSET IN Path Details
	OFFSET IN Detailed Path Data
	OFFSET IN Detail Path Clock Path
	OFFSET In with Phase Shifted Clock

	OFFSET OUT Constraint Examples
	OFFSET OUT Header
	OFFSET OUT Path Details
	OFFSET OUT Detail Clock Path
	OFFSET OUT Detail Path Data

	-PERIOD Constraints
	PERIOD Constraints Examples
	PERIOD Header
	PERIOD Path
	PERIOD Path Details
	PERIOD Constraint with PHASE

	14 Speedprint
	Speedprint Overview
	Speedprint Syntax
	Speedprint Options
	–intstyle
	–min (Display Minimum Speed Data)
	–s (Speed Grade)
	–t (Specify Temperature)
	–v (Specify Voltage)

	Speedprint Example Commands
	Speedprint Example Reports

	15 BitGen
	BitGen Overview
	BitGen Syntax
	BitGen Input Files
	BitGen Output Files
	BitGen Options
	–a (Tie All Interconnect)
	–b (Create Rawbits File)
	–bd (Update Block Rams)
	–d (Do Not Run DRC)
	–f (Execute Commands File)
	–g (Set Configuration)
	–g (Set Configuration—Virtex/-E/-II/-II Pro and Spartan-II/-IIE/3 Devices)
	ActivateGCLK
	ActiveReconfig
	Binary
	CclkPin
	Compress
	ConfigRate
	CRC
	DCIUpdateMode
	DCMShutdown
	DebugBitstream
	DisableBandgap
	DONE_cycle
	DonePin
	DonePipe
	DriveDone
	Encrypt
	Gclkdel0, Gclkdel1, Gclkdel2, Gclkdel3
	GSR_cycle
	GWE_cycle
	GTS_cycle
	HswapenPin
	Key0, Key1, Key2, Key3, Key4, Key5
	KeyFile
	Keyseq0, Keyseq1, Keyseq2, Keyseq3, Keyseq4, Keyseq5
	LCK_cycle
	M0Pin
	M1Pin
	M2Pin
	Match_cycle
	PartialGCLK
	PartialMask0, PartialMask1, PartialMask2
	PartialLeft
	PartialRight
	Persist
	ProgPin
	ReadBack
	Security
	StartCBC
	StartKey
	StartupClk
	TckPin
	TdiPin
	TdoPin
	TmsPin
	UnusedPin
	UserID

	–intstyle
	–j (No BIT File)
	–l (Create a Logic Allocation File)
	–m (Generate a Mask File)
	–n (Save a Tied Design)
	–r (Create a Partial Bit File)
	–t (Tie Unused Interconnect)
	–u (Use Critical Nets)
	–w (Overwrite Existing Output File)

	16 PROMGen
	PROMGen Overview
	PROMGen Syntax
	PROMGen Input Files
	PROMGen Output Files
	PROMGen Options
	–b (Disable Bit Swapping—HEX Format Only)
	–c (Checksum)
	–d (Load Downward)
	–f (Execute Commands File)
	–i (Select Initial Version)
	–l (Disable Length Count)
	–n (Add BIT FIles)
	–o (Output File Name)
	–p (PROM Format)
	–r (Load PROM File)
	–s (PROM Size)
	–t (Template File)
	–u (Load Upward)
	–ver (Version)
	–w (Overwrite Existing Output File)
	–x (Specify Xilinx PROM)
	–z (Enable Compression)

	Bit Swapping in PROM Files
	PROMGen Examples

	17 BSDLAnno
	BSDLAnno Overview
	BSDLAnno Syntax
	BSDLAnno Input Files
	BSDLAnno Output Files
	BSDLAnno Options
	–s
	–intstyle

	BSDLAnno File Composition
	Entity Declaration
	Generic Parameter
	Logical Port Description
	Package Pin-Mapping
	USE Statement
	Scan Port Identification
	TAP Description
	Boundary Register Description
	Modifications to the DESIGN_WARNING Section
	Header Comments

	Boundary Scan Behavior in Xilinx Devices

	18 IBISWriter
	IBISWriter Overview
	IBISWriter Syntax
	IBISWriter Input Files
	IBISWriter Output Files
	IBISWriter Options
	–allmodels (Include all available buffer models for this architecture)
	–intstyle
	–g (Set Reference Voltage)

	19 CPLDfit
	CPLDfit Overview
	CPLDfit Syntax
	CPLDfit Input Files
	CPLDfit Output Files
	CPLDfit Options
	–p <part>
	–optimize density/speed
	–nomlopt
	–ignoretspec
	–exhaust
	–inputs <m>
	–pterms <m>
	–init < low|high|fpga >
	–slew <fast | slow |auto >
	–loc < on|off|try >
	–log <logfile>
	–wysiwyg
	–f <cmdfile>
	–h < xc9500 |xc9500xl |xc9500xv|xcr3|xc2c | xc2cs >
	–unused < ground | pulldown | pullup | keeper | float >
	–power < std|low|auto >
	–nogclkopt
	–nogsropt
	–nogtsopt
	–nouim
	–localfbk
	–pinfbk
	–blkfanin <x>
	–nofbnand
	–noisp
	–ignoredatagate
	–terminate < pullup|keeper|float >
	–iostd <LVTTL|LVCMOS18|LVCMOS25 |SSTL2_I|SSTL3_I|HSTL_I| LVCMOS15 >
	–tckterminate < pullup | float >
	–keepio
	outfile.vm6

	20 TSIM
	TSIM Overview
	TSIM Syntax
	TSIM Input Files
	TSIM Output Files
	TSIM Options
	–intstyle [ise | xflow | silent]

	21 TAEngine
	TAEngine Overview
	TAEngine Syntax
	TAEngine Input Files
	TAEngine Output Files
	TAEngine Options
	–detail
	–l <filename>
	–iopath
	–help

	22 Hprep6
	Hprep6 Overview
	Hprep6 Syntax
	Hprep6 Input Files
	Hprep6 Output Files
	Hprep6 Options
	–intstyle <ise | xflow | silent>
	–n <signature>
	–nopullup
	–s <ieee1532 | ieee1149 >
	–help
	–autosig
	–tmv <tmv_file>

	23 NetGen
	NetGen Overview
	NetGen Syntax
	NetGen Supported Flows
	NetGen Timing Simulation Flow
	Syntax for NetGen Timing Simulation
	FPGA Timing Simulation
	Output files for FPGA Timing Simulation
	CPLD Timing Simulation
	Input files for CPLD Timing Simulation
	Output files for CPLD Timing Simulation
	NetGen Options for Timing Simulation
	–aka (Write Also-Known-As Names as Comments)
	–bd (Block RAM Data File)
	–dir (Directory Name)
	–fn (Control Flattening a Netlist)
	–gp (Bring Out Global Reset Net as Port)
	–intstyle (Reduce Screen Output)
	–ofmt (Output Format)
	–mhf (Multiple Hierarchical Files)
	–module (Simulation of Active Module)
	–ngm (Design Correlation File)
	–pcf (PCF File)
	–s (Change Speed)
	–sim (Generate Simulation Netlist)
	–tb (Generate Testbench Template File)
	–ti (Top Instance Name)
	–tm (Top Module Name)
	–tp (Bring Out Global 3-State Net as Port)
	–w (Overwrite Existing Files)

	Verilog-Specific Options for Timing Simulation
	–ism (Include SimPrim Modules in Verilog File)
	–ne (No Name Escaping)
	–pf (Generate PIN File)
	–sdf_anno (Include $sdf_annotate)
	–sdf_path (Full Path to SDF File)
	–shm (Write $shm Statements in Test Fixture File)
	–ul (Write ‘uselib Directive)
	–vcd

	VHDL Specific Options for Timing Simulation
	–a (Architecture Only)
	–ar (Rename Architecture Name)
	–rpw (Specify the Pulse Width for ROC)
	–tpw (Specify the Pulse Width for TOC)
	–xon (Select Output Behavior for Timing Violations)

	NetGen Equivalence Checking Flow
	Syntax for NetGen Equivalence Checking.
	Input files for NetGen Equivalence Checking
	Output files for NetGen Equivalence Checking
	NetGen Options for Equivalence Checking
	–aka (Write Also-Known-As Names as Comments)
	–bd (Block RAM Data File)
	–dir (Directory Name)
	–ecn (Equivalence Checking)
	–fn (Control Flattening a Netlist)
	–intstyle (Reduce Screen Output)
	–mhf (Multiple Hierarchical Files)
	–module (Verification of Active Module)
	–ne (No Name Escaping)
	–ngm (Design Correlation File)
	–tm (Top Module Name)
	–w (Overwrite Existing Files)

	NetGen Static Timing Analysis Flow
	Input files for Static Timing Analysis
	Output files for Static Timing Analysis
	Syntax for NetGen Static Timing Analysis
	NetGen Options for Static Timing Analysis
	–aka (Write Also-Known-As Names as Comments)
	–bd (Block RAM Data File)
	–dir (Directory Name)
	–fn (Control Flattening a Netlist)
	–intstyle (Reduce Screen Output)
	–mhf (Multiple Hierarchical Files)
	–module (Simulation of Active Module)
	–ne (No Name Escaping)
	–ngm (Design Correlation File)
	–pcf (PCF File)
	–s (Change Speed)
	–sta (Generate Static Timing Analysis Netlist)
	–tm (Top Module Name)
	–w (Overwrite Existing Files)

	Preserving and Writing Hierarchy Files
	Testbench File
	Hierarchy Information File

	Hierarchical Modules with Secure Netlist Attributes
	Dedicated Global Signals in Back-Annotation Simulation
	Global Signals in Verilog Netlist
	Global Signals in VHDL Netlist

	24 NGDAnno
	NGDAnno Overview
	NGDAnno Syntax
	NGDAnno Input Files
	NGDAnno Output Files
	Data Output
	Optimized (Trimmed) Ports, and Bus Information Preserved

	NGDAnno Options
	–bd (BRAM Data File)
	–f (Execute Commands File)
	–module (Simulation of Active Module)
	–o (Output File Name)
	–p (PCF File)
	–quiet (Report Warnings and Errors Only)
	–s (Change Speed)

	Preserving Hierarchy Annotation
	Hierarchical Design Annotation

	Dedicated Global Signals in Back-Annotation Simulation
	Virtex/-II/II Pro/-E and Spartan-II/IIE

	External Setup and Hold Check

	25 NGD2VER
	NGD2VER Overview
	NGD2VER Syntax
	NGD2VER Input Files
	NGD2VER Output Files
	NGD2VER Options
	–10ps (Set Time Precision to be 10ps)
	–aka (Write Also-Known-As Names as Comments)
	–cd (Include `celldefine\`endcelldefine in Verilog File)
	–f (Execute Commands File)
	-fn (Control flattening a netlist)
	–gp (Bring Out Global Reset Net as Port)
	–ism (Include SimPrim Modules in Verilog File)
	–log (Rename the Log File)
	–ne (No Name Escaping)
	–pf (Generate Pin File)
	-quiet (Reduce Screen Output)
	–r (Retain Hierarchy)
	–sdf_path (Full Path to SDF File)
	–shm (Write $shm Statements in Test Fixture File)
	–tf (Generate Test Fixture File)
	–ti (Top Instance Name)
	–tm (Top Module Name)
	–tp (Bring Out Global 3-State Net as Port)
	–ul (Write ‘uselib Directive)
	–verbose (Report All Messages)
	–w (Overwrite Existing Files)

	Setting Global Set/Reset, 3-State, and PRLD
	Test Fixture File
	Bus Order in Verilog Files
	Verilog Identifier Naming Conventions
	Compile Scripts for Verilog Libraries
	Secure Netlist Attribute
	Example: Verilog Syntax:

	26 NGD2VHDL
	NGD2VHDL Overview
	NGD2VHDL Syntax
	NGD2VHDL Input Files
	NGD2VHDL Output Files
	NGD2VHDL Options
	–a (Architecture Only)
	–aka (Write Also-Known-As Names as Comments)
	–ar (Rename Architecture Name)
	–f (Execute Commands File)
	–fn (Control flattening a netlist)
	–gp (Bring Out Global Reset Net as Port)
	–log (Specify the Log File)
	–quiet (Reduce Screen Output)
	–r (Retain Hierarchy)
	–rpw (Specify the Pulse Width for ROC)
	–tb (Generate Testbench File)
	–te (Top Entity Name)
	–ti (Top Instance Name)
	–tp (Bring Out Global 3-State Net as Port)
	–tpw (Specify the Pulse Width for TOC)
	–verbose (Report All Messages)
	–w (Overwrite Existing Files)
	–xon (Select Output Behavior for Timing Violations)

	VHDL Global Set/Reset Emulation
	VHDL Only STARTUP_VIRTEX Block
	VHDL Only STARTBUF_VIRTEX Cell
	VHDL Only STARTUP_VIRTEX Block and STARTBUF_VIRTEX Cell
	VHDL Only RESET-ON-CONFIGURATION (ROC) Cell
	VHDL Only ROCBUF Cell
	VHDL Only 3-State-On-Configuration (TOC) Cell
	VHDL Only TOCBUF

	Bus Order in VHDL Files
	VHDL Identifier Naming Conventions
	Compile Scripts for VHDL Libraries
	Secure Netlist Attribute
	Example: VHDL Syntax

	27 XFLOW
	XFLOW Overview
	XFLOW Syntax

	XFLOW Input Files
	XFLOW Output Files
	XFLOW Flow Types
	–assemble (Module Assembly)
	–config (Create a BIT File for FPGAs)
	–ecn (Create a File for Equivalence Checking)
	–fit (Fit a CPLD)
	–fsim (Create a File for Functional Simulation)
	–implement (Implement an FPGA)
	–initial (Initial Budgeting of Modular Design)
	–module (Active Module Implementation)
	–mppr (Multi-Pass Place and Route for FPGAs)
	–sta (Create a File for Static Timing Analysis)
	–synth
	Synthesis Types
	Option Files for -synth Flow Types

	–tsim (Create a File for Timing Simulation)
	Flow Files
	Flow File Format
	User Command Blocks

	XFLOW Option Files
	Option File Format

	XFLOW Options
	–active (Active Module)
	–ed (Copy Files to Export Directory)
	–f (Execute Commands File)
	–g (Specify a Global Variable)
	–log (Specify Log File)
	–norun (Creates a Script File Only)
	–o (Change Output File Name)
	–p (Part Number)
	–pd (PIMS Directory)
	–rd (Copy Report Files)
	–wd (Specify a Working Directory)

	Running XFLOW
	Using XFLOW Flow Types in Combination
	Running “Smart Flow”
	Using the SCR, BAT, or TCL File
	Using the XIL_XFLOW_PATH Environment Variable

	Halting XFLOW

	28 Data2MEM
	Introduction
	Input and Output Files
	Block RAM Memory Map (.bmm) files
	Executable and Linkable Format (.elf) files
	Debugging Information Format DWARF (.drf) files
	Memory (.mem) files
	Memory Files as Output
	Memory Files as Input

	Bit (.bit) files
	Verilog (.v) files
	VHDL (.vhd) files
	UCF (.ucf) files

	Use Overview
	Process Overview
	Command Line Option Reference
	Listing 1- Example Block RAM Memory Map File

	A Xilinx Development System Files
	B EDIF2NGD, and NGDBuild
	EDIF2NGD
	EDIF2NGD Syntax
	EDIF2NGD Input Files
	EDIF2NGD Output Files
	EDIF2NGD Options
	–a (Add PADs to Top-Level Port Signals)
	–aul (Allow Unmatched LOCs)
	–f (Execute Commands File)
	–instyle
	–l (Libraries to Search)
	–p (Part Number)
	–quiet (Report Warnings and Errors Only)
	–r (Ignore LOC Constraints)

	NGDBuild
	Converting a Netlist to an NGD File
	Bus Matching

	Netlist Launcher (Netlister)
	Netlist Launcher Rules Files
	User Rules File
	User Rules and System Rules
	User Rules Format
	Value Types in Key Statements

	System Rules File
	Rules File Examples
	Example 1: EDF_RULE System Rule
	Example 2: User Rule
	Example 3: User Rule
	Example 4: User Rule

	NGDBuild File Names and Locations

	Glossary
	Index

