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Concept Learning

• Data Set: collection of instances = D.

• Instance: (list of attributes, class) = di = (xi, c(xi))

• Hypothesis: mapping h : xi → c ∈ C (where C = set of classes)

• Consistent Hypothesis: Consistent(h, D)↔ ∀di ∈ D h(xi) = c(xi)

• Classification = Hypothesis Elimination

– Begin with H∗ = whole hypothesis space, H.

– For each di ∈ D

∗ For each hk ∈ H∗ : If hk(xi) 6= c(xi), then H∗← H∗ − hi.

– consistent(hk, D) ∀hk ∈ H∗

H∗ can be VERY LARGE
Can we work with a single h and generalize and specialize it to fit D?
Yes, but lots of search, since ∃ many ways to generalize and specialize!



Generalizing and Specializing a Hypothesis

• Extension of h = all instances that h classifies as positive.

• Generalize h: Changing h so as to expand its extension.

– Drop a conjunct:
red(x) ∧ round(x) −→ round(x).

– Add a disjunct:
red(x) ∧ round(x) −→ (red(x) ∨ blue(x)) ∧ round(x)

• Specialize h: changing h so as to contract its extension.

– Add a conjunct:
red(x) ∧ round(x) −→ red(x) ∧ striped(x) ∧ round(x)

– Drop a disjunct:
red(x) ∨ blue(x) −→ blue(x)



Hypothesis Refinement
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a The Consistent Hypothesis (h): h agrees with all the instance classifica-
tions.

b A false negative: h(x) = -, but C(x) = +, where C(x) = correct class of
instance x.

c Generalizing h to cover x.

d A false positive: h(y) = +, but C(y) = -.

e Specializing h to exclude y.



Hypothesis Filtering and Refinement
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Hypothesis Filtering and Refinement (2)
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Hypothesis Filtering and Refinement (3)
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Hypothesis Filtering and Refinement (4)
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Version Space
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Beauty of the Version Space

• The version space represents the entire space of consistent hypotheses.

• But only implicitly via the boundaries of that space:

– S - the set of most specific hypotheses, all of which cover every positive
example and no negative examples, but as few of the other instances
as possible.

– G - the set of most general hypotheses, all of which cover every positive
example and no negative examples, but as many of the other instances
as possible.

• As examples are presented, the version space contracts by:

– Generalizing the hypotheses in S to cover new positive examples.

– Specializing the hypotheses in G to avoid covering new negative exam-
ples.

•When all pos and neg examples have been seen, the current version space
represents all possible hypotheses that are consistent with each example.



Candidate Elimination Algorithm

Init G to max-general hypos
Init S to max-specific hypos
∀di ∈ D do:

• If C(di) = + then:

– ∀g ∈ G 3 inconsistent(g,d): G← G− g

– ∀s ∈ S 3 inconsistent(s,d):

∗ S ← S − s

∗ Add all minimal generalizations smg of s to S, where:

· consistent(smg,di), and

· ∃g ∈ G 3 more-general(g,smg)

∗ ∀s1, s2 ∈ S 3 more-general(s1, s2) S ← S − s1



Candidate Elimination Algorithm (2)

• If C(di) = − then:

– ∀s ∈ S 3 inconsistent(s,d): S ← S − s

– ∀g ∈ G 3 inconsistent(g,d):

∗ G← G− g

∗ Add all minimal specializations gms of g to G, where:

· consistent(gms,di), and

· ∃s ∈ S 3 more-general(gms,s)

∗ ∀g1, g2 ∈ G 3 more-general(g1, g2) G← G− g2

The target concept is precisely learned when G = S.
Before this convergence of G and S, the system may give ambiguous classi-
fications of some test cases: G may include it, while S may exclude it.
E.g. (blue ellipse) in the upcoming example.



Candidate Elimination Algorithm (3)

In general:

• S set summarizes (in most specific form) ALL pos examples seen so far.

– ∀h(∃s ∈ S 3 more-general(s,h)) → h fails to cover at least one pos
eg., d+

– Thus, d+ is a false negative of h.

• G set summarizes (in most general form) ALL neg examples seen so far.

– ∀h(∃g ∈ G 3 more-general(h,g)) → h includes at least one neg eg.,
d-

– Thus, d- is a false positive of h.



Candidate Elimination Example

Assume the following list of training examples:

1. (blue pentagon) - positive

2. (blue square) - positive

3. (orange ellipse) - negative

4. (black square) - negative

Use Candidate Elimination to filter the hypothesis space.

• Init: G = {(Colored, Figure) }

• Init: S = {(nil, nil)}



Candidate Elimination Example (2)
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On seeing d1 = (blue pentagon)(+)

• G is unchanged, since G’s only member is consistent with d1.

• S’s only member is inconsistent with d1, so it is removed and minimally generalized to cover d1.



Candidate Elimination Example (3)
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On seeing d2 = (blue square)(+)

• G is unchanged, since G’s only member is consistent with d2.

• S’s only member is inconsistent with d2, so it is removed and minimally generalized to cover d2.



Semantics of a Hypothesis
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The hypotheses in S and G have the same semantics:

• Everything that satisfies their description is a positive example.

• Everything else is a negative example.



Candidate Elimination Example (4)
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On seeing d3 = (orange ellipse)(-)

• G’s only member is inconsistent with d3, so it is removed and minimally specialized to avoid d3.

• S’s only member is consistent with d3, so no change.



Candidate Elimination Example (5)
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On seeing d4 = (black square)(-)

• Both of G’s members are inconsistent with d4, so remove and specialize both. But only one of the

specializations is more general than a member of S (i.e. covers the pos egs.).

• S’s only member is consistent with d4, so no change.



Pros and Cons of Candidate Elimination

Pros:

• One-shot learning

• Independent of ordering of instances

• Elegant model for hypothesis-space filtering

Cons:

• Cannot handle noisy data (i.e. pos examples that are really negative).

• Difficulties with disjunctive concepts (e.g. (red polygon) or (dark circle))

• Totally dependent upon the attribute hierarchy.



Inductive Learning Bias
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• 4 x 4 = 16 instances −→ 216 = 65536 hypotheses.

• But only 7 x 7 = 49 conjunctive hypos are expressible in the rep.

• The rep strongly biases what the system can learn.



Expressibility - Generalizability Tradeoff

• Assume that unlimited disjunctions are allowed in the hypotheses.

• Consider a simple training set: x1(+), x2(+), x3(−), x4(−)

• After seeing these examples, the candidate-elimination algorithm would
have:

– G = {(¬x3 ∧ ¬x4)}

– S = {(x1 ∨ x2)}

– since these are the most general and most specific (respectively) hy-
potheses that:

∗ are expressible in the representation language

∗ contain all pos examples and exclude all neg examples.

• But now, any new example, x5, will be ambiguous, since G will consider
it positive, and S will consider it negative.

• Only the previously-seen examples can be unambiguously classified.

• To learn target concept, system must see every pos example of it!

• Cannot generalize beyond what it sees → memorization, not learning!



Inductive Leaps

• As shown above, a representation in which where EVERY possible com-
bination of instances is a legal hypothesis:

– has no inductive bias, but

– has no ability to generalize beyond what it sees.

– So it has no ability to classify previously-unseen examples.

• The inductive bias in a language enables inductive leaps beyond the
immediate evidence.

– In generalizing an s ∈ S, the new s will often include more pos egs
than seen so far.

– In specializing a g ∈ G, the new g will often exclude more neg egs
than seen so far.

• In both cases, the system takes a chance: it makes an inference that
is not purely deductive!

• So induction, like abduction, = non-deductive (possibly faulty) reasoning.

• Rep, via its bias, determines types of risk the learning system takes.


