KNOWLEDGE IN LEARNING

Chapter 19

Concept Learning

- Data Set: collection of instances = D.
- Instance: (list of attributes, class) = $d_i = (x_i, c(x_i))$
- Hypothesis: mapping $h: x_i \to c \in C$ (where C = set of classes)
- Consistent Hypothesis: $Consistent(h, D) \leftrightarrow \forall d_i \in D \ h(x_i) = c(x_i)$
- \bullet Classification = Hypothesis Elimination
 - Begin with H^* = whole hypothesis space, H.
 - For each $d_i \in D$
 - * For each $h_k \in H^*$: If $h_k(x_i) \neq c(x_i)$, then $H^* \leftarrow H^* h_i$.
 - $-consistent(h_k, D) \, \forall h_k \in H^*$

 H^\ast can be VERY LARGE

Can we work with a single h and generalize and specialize it to fit D? Yes, but lots of search, since \exists many ways to generalize and specialize!

Generalizing and Specializing a Hypothesis

- **Extension** of h = all instances that h classifies as positive.
- Generalize h: Changing h so as to expand its extension.
 - $\begin{array}{l} \text{ Drop a conjunct:} \\ \text{ red}(x) \, \land \, \text{ round}(x) \longrightarrow \text{ round}(x). \end{array}$
 - $\begin{array}{l} \mbox{ Add a disjunct:} \\ \mbox{ red}(x) \ \land \ \mbox{ round}(x) \longrightarrow (\mbox{ red}(x) \ \lor \ \mbox{ blue}(x)) \ \land \ \mbox{ round}(x) \end{array}$
- **Specialize** h: changing h so as to **contract** its extension.
 - $\begin{array}{l} \mbox{ Add a conjunct:} \\ \mbox{ red}(x) \ \land \ \mbox{ round}(x) \longrightarrow \ \mbox{ red}(x) \ \land \ \mbox{ striped}(x) \ \land \ \mbox{ round}(x) \end{array}$

- Drop a disjunct: red(x) \lor blue(x) \longrightarrow blue(x)

Hypothesis Refinement

- a The Consistent Hypothesis (h): h agrees with all the instance classifications.
- b A false negative: h(x) = -, but C(x) = +, where C(x) =correct class of instance x.
- c Generalizing h to cover x.

d A false positive: h(y) = +, but C(y) = -.

 ${\bf e}$ Specializing h to exclude y.

Hypothesis Filtering and Refinement

Hypothesis Filtering and Refinement (2)

Consistent Hypotheses:

Hypothesis Filtering and Refinement (3)

Hypothesis Filtering and Refinement (4)

Consistent Hypotheses:

Version Space

Beauty of the Version Space

- The version space represents the entire space of consistent hypotheses.
- But only **implicitly** via the boundaries of that space:
 - S the set of most specific hypotheses, all of which cover every positive example and no negative examples, but as **few** of the other instances as possible.
 - G the set of most general hypotheses, all of which cover every positive example and no negative examples, but as **many** of the other instances as possible.
- As examples are presented, the version space contracts by:
 - Generalizing the hypotheses in S to cover new positive examples.
 - Specializing the hypotheses in G to avoid covering new negative examples.
- When all pos and neg examples have been seen, the current version space represents all possible hypotheses that are consistent with each example.

Candidate Elimination Algorithm

Init G to max-general hypos Init S to max-specific hypos $\forall d_i \in D$ do:

• If $C(d_i) = +$ then:

- $-\forall g \in G \ni \mathsf{inconsistent}(g,d): G \leftarrow G g$
- $-\forall s \in S \ni \mathsf{inconsistent}(\mathsf{s},\mathsf{d}):$

 $*S \leftarrow S-s$

* Add all minimal generalizations s_{mg} of s to S, where:

 $\cdot \mathsf{consistent}(s_{mg}, d_i)$, and

 $\cdot \exists g \in G \ni \mathsf{more-general}(\mathsf{g}, s_{mg})$

 $* \forall s_1, s_2 \in S \ni \mathsf{more-general}(s_1, s_2) S \leftarrow S - s_1$

Candidate Elimination Algorithm (2)

- If $C(d_i) = -$ then:
 - $-\forall s \in S \ni \mathsf{inconsistent}(\mathsf{s},\mathsf{d}): S \leftarrow S s$
 - $-\forall g \in G \ni \mathsf{inconsistent}(g,d):$

 $\ast ~ G \leftarrow G - g$

- * Add all **minimal specializations** g_{ms} of g to G, where:
 - $\cdot \operatorname{consistent}(g_{ms}, d_i)$, and
 - $\cdot \exists s \in S \ni \mathsf{more-general}(g_{ms}, \mathsf{s})$
- $* \forall g_1, g_2 \in G \ni \mathsf{more-general}(g_1, g_2) G \leftarrow G g_2$

The target concept is precisely learned when G = S. Before this convergence of G and S, the system may give ambiguous classifications of some test cases: G may include it, while S may exclude it. E.g. (blue ellipse) in the upcoming example.

Candidate Elimination Algorithm (3)

In general:

- S set summarizes (in most specific form) ALL pos examples seen so far. $\forall h(\exists a \in S \supset more general(s, h)) \rightarrow h$ fails to cover at least one not
 - $-\forall h(\exists s \in S \ni more-general(s,h)) \rightarrow h$ fails to cover at least one poseg., d+
 - Thus, d+ is a false negative of h.
- G set summarizes (in most general form) ALL neg examples seen so far.
 - $\forall h (\exists g \in G \ni \mathsf{more-general}(\mathsf{h},\mathsf{g})) \to \mathsf{h} \text{ includes at least one neg eg., } \mathsf{d}\text{-}$
 - $\mbox{ Thus, d- is a false positive of h.}$

Candidate Elimination Example

Assume the following list of training examples:

- 1. (blue pentagon) positive
- 2. (blue square) positive
- 3. (orange ellipse) negative
- 4. (black square) negative

Use Candidate Elimination to filter the hypothesis space.

- Init: $G = \{(Colored, Figure)\}$
- Init: $S = \{(nil, nil)\}$

Candidate Elimination Example (2)

On seeing $d_1 = (blue pentagon)(+)$

- G is unchanged, since G's only member is consistent with d_1 .
- S's only member is inconsistent with d_1 , so it is removed and minimally generalized to cover d_1 .

Candidate Elimination Example (3)

On seeing $d_2 = (\text{blue square})(+)$

- G is unchanged, since G's only member is consistent with d_2 .
- S's only member is inconsistent with d_2 , so it is removed and minimally generalized to cover d_2 .

Semantics of a Hypothesis

The hypotheses in S and G have the same semantics:

- Everything that satisfies their description is a positive example.
- Everything else is a negative example.

Candidate Elimination Example (4)

On seeing $d_3 = (\text{orange ellipse})(-)$

- G's only member is inconsistent with d_3 , so it is removed and minimally specialized to avoid d_3 .
- S's only member is consistent with d_3 , so no change.

Candidate Elimination Example (5)

On seeing $d_4 = (\text{black square})(-)$

- Both of G's members are inconsistent with d_4 , so remove and specialize both. But only one of the specializations is more general than a member of S (i.e. covers the pos egs.).
- S's only member is consistent with d_4 , so no change.

Pros and Cons of Candidate Elimination

Pros:

- One-shot learning
- Independent of ordering of instances
- Elegant model for hypothesis-space filtering

Cons:

- Cannot handle noisy data (i.e. pos examples that are really negative).
- Difficulties with disjunctive concepts (e.g. (red polygon) or (dark circle))
- Totally dependent upon the attribute hierarchy.

Inductive Learning Bias

- 4 x 4 = 16 instances $\longrightarrow 2^{16} = 65536$ hypotheses.
- But only $7 \ge 7 = 49$ conjunctive hypos are expressible in the rep.
- The rep strongly biases what the system can learn.

Expressibility - Generalizability Tradeoff

- Assume that unlimited disjunctions are allowed in the hypotheses.
- Consider a simple training set: $x_1(+), x_2(+), x_3(-), x_4(-)$
- After seeing these examples, the candidate-elimination algorithm would have:
 - $-\mathsf{G} = \{(\neg x_3 \land \neg x_4)\}$

$$-\mathsf{S} = \{(x_1 \lor x_2)\}$$

since these are the most general and most specific (respectively) hypotheses that:

* are expressible in the representation language

- * contain all pos examples and exclude all neg examples.
- But now, any new example, x_5 , will be ambiguous, since G will consider it positive, and S will consider it negative.
- Only the previously-seen examples can be unambiguously classified.
- To learn target concept, system must see **every** pos example of it!
- \bullet Cannot generalize beyond what it sees \rightarrow memorization, not learning!

Inductive Leaps

- As shown above, a representation in which where EVERY possible combination of instances is a legal hypothesis:
 - $\ensuremath{\mathsf{has}}$ no inductive bias, but
 - has no ability to generalize beyond what it sees.
 - So it has no ability to classify previously-unseen examples.
- The inductive bias in a language enables **inductive leaps** beyond the immediate evidence.
 - In generalizing an $s \in S$, the new s will often include more pos egs than seen so far.
 - In specializing a $g \in G$, the new g will often exclude more neg egs than seen so far.
- In both cases, the system **takes** a **chance**: it makes an inference that is not purely deductive!
- So induction, like abduction, = non-deductive (possibly faulty) reasoning.
- Rep, via its bias, determines types of risk the learning system takes.