INTRO TO LOGIC

Dr Shlomo Hershkop March 23 2010

LOGICAL REASONING

• How do we know what we know ?

• Knowledge representation in AI

- How to represent knowledge in a specific domain
- Reason and make decisions about this knowledge

• Logic

• well studied area which is a formal language to describe facts (syntax and symantics) and the tools to perform reasoning about those facts.

WHY LOGIC ?

- Example of some facts:
 - Someone throws a rock through your window
 - You get more hate mail than usual
 - Your telephone is always ringing
- Use logic to draw a conclusion
- Use logic to decide on how to move forward

• Top down approach

• Deductive reasoning: take general rules/axioms and apply to logical conclusions

• Bottom up approach

• Inductive reasoning: moving from specifics to general

1. If it is midterm time, Students feel they are being treated unfairly.

- 1. If it is midterm time, Students feel they are being treated unfairly.
- 2. If Students feel they are being treated unfairly, they hate their Professor.

- 1. If it is midterm time, Students feel they are being treated unfairly.
- 2. If Students feel they are being treated unfairly, they hate their Professor.
- 3. If Students hate their Professor, the Professor is unhappy.

- 1. If it is midterm time, Students feel they are being treated unfairly.
- 2. If Students feel they are being treated unfairly, they hate their Professor.
- 3. If Students hate their Professor, the Professor is unhappy.

Question: Is the Professor unhappy ??

PROPOSITION LOGIC

- Variables/Symbols:
 - P, Q, R
- Connectors
 - ~ negation
 - ^ conjunction
 - disjunction
 - \Rightarrow implication
 - \Leftrightarrow biconditional
- Sentences
 - wffs

LOGIC

- Syntax:
 - Legal symbols we can use
- Sentences
 - WFFs
 - Well formed formulas
 - True and False are sentences
 - Legal symbols are sentences
 - Connectors + Symbols are sentences

• Meaning of sentence will be T/F

• Interpretation / Evaluation:

• Specific set of t/f assignments to the set of atoms

• Model :

- Specific set of assignments to make the sentence true
- Valid:
 - A valid wff is true under all interpretations
 It is raining
- Inconsistent / unsatisfiable
 - False under all interpretations
 Raining AND ~Raining

DEDUCTION THEORY

• G is a logical consequence of statements F₁,...,F_n if a model of the statements is also a model of G • i.e.

$$\mathbf{A}=(\mathbf{F}_1\wedge\mathbf{F}_2\wedge\mathbf{F}_3\wedge\ldots\mathbf{F}_n\,)\,\supset\mathbf{G}$$

•How to prove this ?

LOGICAL CONSEQUENCE

- G is a logical consequence of wwf's F1..Fn iff
 for any model of (F1 ∧ F2 ∧ .. Fn) ⊃ G is valid
- Plain english: if all wff are true, the conclusion must be consistent.

• Deductive Theorem:

• A follows from a logical consequence the premises F1,..,Fn $\; iff \, (F1 \land .. \land Fn \,) \; \supset S$

• Interpretation

• Assignment of T/F to each proposition

• Satisfiability

• Finding the model where conclusion is true

- \circ P = Hot
- Q = Humid
- R = Raining
- Given Facts:
- \circ (P \land Q) => R)
 - if its hot and humid its raining
- \circ (Q => P)
 - if its humid then its hot
- o Q
 - It is humid
- Question: IS IT RAINING ?

REFUTATION

- Sometimes can also prove the opposite
- Proof by contradiction
- ${\rm o}$ Attempt to show ~S is inconsistent

$$\circ \ \mathsf{\sim S} = \mathbf{F}_1 \land \mathbf{F}_2 \land \ \dots \land \mathbf{F}_n \land \mathsf{\sim G}$$

MILLION DOLLAR QUESTION

• Given F1, F2, .., Fn can we conclude G ??

• Mechanical way:

- $(F_1 \wedge F_2 \wedge .. \wedge F_n) \supset G$
 - Establish it is valid: no matter what it evaluates to TRUE G is a logical consequence of $F_1 \wedge F_2 \wedge \ .. \wedge F_n$

- P = "it is midterm season"
- Q = "Students feel treated unfairly"
- \circ S = "Hate Prof"
- U = "Prof unhappy"
- Facts:
 - $P \supset Q$
 - $Q \supset S$
 - $S \supset U$
 - P
 - ??U??

• ((P \supset Q) \land (Q \supset S) \land (S \supset U) \land (P))=> (U)

- Most mechanical way:
- Truth Tables!

Р	Q	S	U
Т	Т	Т	Т
Т	Т	Т	F

- 2^d decidable
- At worst would need to step through 2ⁿ if enumerate every state

Ρ	Q	R	(P ^	Q)	=>	R	Q	=>	Ρ	I.	Q	I.	KB	I.	R	I.	KB	=>	R
т	т	т		т				т			т		т		т			т	
т	т	F		F				т			т		F		F			т	
т	F	т		т				т			F		F		т			т	
т	F	F		т				т			F		F		F			т	
F	т	т		т				F			т		F		т			т	
F	т	F		т				F			т		F		F			т	
F	F	т		Т				т			F		F		т			т	
F	F	F		т				т			F		F		F			т	

PROVING

• Is propositional logic decidable ?

A BETTER METHOD

• Instead of listing the truth table

• Can use inference to deduce the truth

• Called natural deduction

NATURAL DEDUCTION TOOLS

- Modus Ponens (i.e. forward chaining)
 - If A, then B A is true Therefore B

• Unit resolution

- A or B is true
- ~B given, therefore A
- And Elimination
 - (A and B) are true
 - Therefore A is true
- Implication elimination
 - If A then B equivalent

 $\sim A \lor B$

USEFUL TOOLS

- Double negation
 - \sim (\sim A) equivalent A

• De Morgan's Rule

- ~(A \land B) equivalent to (~A \lor ~B)
- \sim (A \vee B) \equiv (\sim A \wedge \sim B)

• Distribution

• $F \lor (G \land H) \equiv (F \lor G) \land (F \lor H)$

PROVING

• Proof is a sequence of wffs each given or derived

1.Q(premise)2. $Q \Rightarrow P$ (premise)3.P(modus p)4. $(P \land Q) \Rightarrow R$ (premise)5. $P \land Q$ (and introduction)6.R(conclusion)

NORMAL FORMS

• To expand the known facts, we can move to another logically equivalent form

• Biconditional:

• A ⇔ B

•
$$(A \Rightarrow B) \land (B \Rightarrow A)$$

• (~A \lor B) \land (A \lor ~B)

SATISFIABILITY

• Many problems can be framed as a list of constraints

- Some students want the final early
- Some students can't take it before 11am
- Some can't stay more than X hours except Tuesday

• Usually written as CNF

• $(A \lor B) \land (\sim B \lor C) \land ..$

• $(A \lor B) \land (\sim B \lor C) \land ..$

- $(A \lor B)$ is a clause
- A, B are literals
- Every sentence in Propositional Logic can be written as CNF

• Converting:

- Get rid of implications and conditionals
- Fold in negations using De Morgans Law
- Or's insider, ands outside
- Will end up growing the sentence
- Used for input for resolution

• $(A \lor B) \rightarrow (C \rightarrow D)$

• Can you convert this to CNF ??

- $(A \lor B) \rightarrow (C \rightarrow D)$
- C -> D • ~C ∨ D
- \sim (A \vee B) \vee (\sim C \vee D)

• $(\sim A \land \sim B) \lor (\sim C \lor D)$

• (~A \lor ~C \lor D) \land (~B \lor ~C \lor D)

RESOLUTION

- A ∨ B • ~B ∨ C
- Conclude: • A ∨ C
- Algorithm:
 - Convert everything to CNF
 - Negate the desired state
 - Apply resolution until get False or can't go on

• A \to B • A => C • B => C

• Is C true ?

- 1. $A \lor B$ (known)
- 2. $\sim A \lor C$ (known)
- 3. $\sim B \lor C$ (known)
- 4. ~C (negate target)

- 5. $B \lor C$ (combine first 2)
- 6. ∼A (2,4)
- **7**. ∼B (3,4)
- 8. C (5,7)
- 9. (4,8)

HORN CLAUSE

• Disjunction of literals with exactly one positive • $\sim F_1 \lor \sim F_2 \lor \sim F_3 \dots \lor \sim F_n \lor A$

P => Q
L ∧ M => P
B ∧ L => M
A ∧ P => L
A ∧ B => L
A

LIMITATIONS

• Proposition logic limits

• FOPL