
Learning DNF in Time 2

~

O(n

1=3

)

Adam R. Klivans

�

Laboratory for Computer Siene

MIT

Cambridge, MA 02139

klivans�math.mit.edu

Roo A. Servedio

y

Division of Engineering and Applied Sienes

Harvard University

Cambridge, MA 02138

roo�deas.harvard.edu

Abstrat

Using tehniques from learning theory, we show that any s-term DNF over n variables an

be omputed by a polynomial threshold funtion of degree O(n

1=3

log s). This upper bound

mathes, up to a logarithmi fator, the longstanding lower bound given by Minsky and Papert

in their 1968 book Pereptrons. As a onsequene of this upper bound we obtain the fastest

known algorithm for learning polynomial size DNF, one of the entral problems in omputational

learning theory.

�

Supported in part by NSF grant CCR-97-01304.

y

Supported in part by NSF grant CCR-95-04436 and by NSF grant CCR-98-77049.

0

1 Introdution

1.1 Polynomial Threshold Funtions

Let f be a Boolean funtion f : f0; 1g

n

! f�1; 1g and let p be a degree d polynomial in n

variables with rational oeÆients. If the sign of p(x) equals f(x) for every x 2 f0; 1g

n

; then we

say that f is omputed by a polynomial threshold funtion of degree d. In their well known 1968

book Pereptrons, Minsky and Papert studied some omputational aspets of polynomial threshold

funtions from an Arti�ial Intelligene perspetive [32℄. They proved, among other things, that no

polynomial threshold funtion of degree less than n an ompute the parity funtion on n variables,

and that there is a read-one DNF formula whih annot be omputed by any polynomial threshold

funtion of degree less than
(n

1=3

). Sine then, omplexity theorists have used these and related

properties of polynomial threshold funtions to prove several important results in both iruit and

strutural omplexity [2, 3, 19℄.

In the omputational learning theory ommunity, learning a polynomial threshold funtion

from labeled examples has long been a entral problem and ontinues to be an ative area of

researh. A speial fous of attention has been direted toward learning polynomial threshold

funtions of degree 1, whih are known as linear threshold funtions. The problem of learning

a linear threshold funtion over f0; 1g

n

an be formulated as a linear programming problem and

thus an be solved in poly(n) time in both the PAC model of learning from random examples and

in the model of exat learning from equivalene queries [10, 31℄. Re�nements of the basi linear

programming approah have led to polynomial-time algorithms for PAC learning linear threshold

funtions in the presene of lassi�ation noise [7, 14℄. Muh attention has also been given to

fast, simple heuristis, most notably the Winnow and Pereptron algorithms, for learning linear

threshold funtions [12, 18, 25, 29, 34, 35℄.

1.2 Learning DNF

Another intensively studied problem in omputational learning theory, whih has met with less

suess, is the problem of learning DNF formulae. DNF are attrative from a learning theory

perspetive beause of their high expressive power (any Boolean funtion an be represented as

a DNF) and beause they seem to be a natural form of knowledge representation for humans.

Valiant �rst posed the question of whether DNF are eÆiently learnable in his seminal 1984 paper

introduing the PAC learning model [37℄; more than �fteen years later this question is widely

regarded as one of the most important open problems in learning theory. While many partial

results have been given for restrited versions of the DNF learning problem (see e.g. [8, 9, 21, 23,

24, 26, 27, 33, 38, 39℄), the diÆulty of the unrestrited DNF learning problem is evidened by the

fat that, prior to the urrent work, only two algorithms were known whih improve on the naive

2

n

time bound [11, 36℄.

The �rst subexponential time algorithm for learning DNF was due to Bshouty [11℄, who gave an

algorithm whih learns any s-term DNF over n variables in time 2

O(

p

n log s log

3=2

n)

: At the heart of

Bshouty's algorithm is a strutural result whih shows that that any s-term DNF an be expressed

as an O(

p

n logn log s)-deision list; armed with this result, Bshouty uses a standard algorithm [22℄

for learning deision lists to obtain his DNF learning result.

Tarui and Tsukiji [36℄ gave a ompletely di�erent proof of a similar time bound for learning

DNF. They adapted the mahinery of \approximate inlusion/exlusion" developed by Linial and

Nisan [28℄ to show that for any s-term DNF f and any distribution D over f0; 1g

n

; there is a

onjuntion C of size O(

p

n log s) whih has jPr

x2D

[C(x) = f(x)℄ �

1

2

j = 2

�O(

p

n log n log s)

: Using

1

this result in onjuntion with Freund's \boost-by-majority" algorithm [17℄, Tarui and Tsukiji

obtained an algorithm for learning s-term DNF in time 2

O(

p

n log n log s)

:

1.3 A New Approah: Learning DNF via Polynomial Threshold Funtions

In this paper we approah the DNF learning problem by representing a DNF formula as a low-

degree polynomial threshold funtion. As we observe in Setion 2, we an use known polynomial-

time algorithms for learning linear threshold funtions to learn polynomial threshold funtions of

degree d in time n

O(d)

. Thus, upper bounds on the degree of polynomial threshold funtions whih

ompute DNF translate diretly into bounds on the running time of a DNF learning algorithm.

Viewing DNF formulae as polynomial threshold funtions immediately yields a new interpreta-

tion of the DNF learning algorithms of Bshouty [11℄ and Tarui and Tsukiji [36℄. Sine any r-deision

list is equivalent to a polynomial threshold funtion of degree r [16℄, in the language of polynomial

threshold funtions Bshouty's strutural result implies that any s-term DNF an be expressed as

a polynomial threshold funtion of degree O(

p

n logn log s): In the ase of Tarui/Tsukiji, it an

be shown as a orollary of their results that any s-term DNF an be expressed as a polynomial

threshold funtion of degree O(

p

n log s): Thus, eah of these earlier learning algorithms implies an

O(

p

n logn) upper bound on the degree of a polynomial threshold funtion for any polynomial-size

DNF. A substantial gap still remains, though, between these O(

p

n logn) upper bounds and the

(n

1=3

) lower bound due to Minsky and Papert.

1

1.4 Our Results

Our �rst result is the following theorem:

Theorem 1 Any s-term DNF over f0; 1g

n

in whih eah onjuntion is of size at most t an be

expressed as a polynomial threshold funtion of degree O(

p

t log s):

A useful feature of Theorem 1 is that the degree bound depends on

p

t whih an be muh

smaller than

p

n: Close inspetion of the results due to Tarui/Tsukiji reveal that a similar theorem

an be derived from their analysis. An advantage of our proof (whih is self-ontained and does not

use approximate inlusion-exlusion or boosting) is that it highlights this dependene whih plays

a ruial role in our later results.

We then use Theorem 1 to give several new results about the degree of polynomial threshold

funtions whih ompute various lasses of Boolean formulas.

By ombining Theorem 1 with a deomposition tehnique due to Bshouty [11℄ we obtain our

main result:

Theorem 2 Any s-term DNF over f0; 1g

n

an be expressed as a polynomial threshold funtion of

degree O(n

1=3

log s):

Theorem 2 essentially loses the gap whih was left open by the O(

p

n log n) upper bounds impliit

in [11, 36℄; it shows that the Minsky-Papert lower bound is in fat tight, up to a logarithmi fator,

for all polynomial-size DNF. Theorem 3 also yields a 2

O(n

1=3

log

2

n)

-time algorithm for learning

polynomial-size DNF, whih improves on the algorithms of Bshouty and Tarui/Tsukiji and is the

fastest known algorithm for the unrestrited DNF learning problem.

We an improve upon the bounds of Theorem 2 for read-one DNF:

1

Beigel et al. stated in [5℄ that Minsky and Papert gave an
(

p

n) lower bound for DNF but this was in error [4℄.

2

Theorem 3 Any read-one DNF over f0; 1g

n

an be expressed as a polynomial threshold funtion

of degree O(n

1=3

log

2=3

n):

Finally, we would like (but are urrently unable) to prove similar upper bounds on the degree of

polynomial threshold funtions whih ompute arbitrary AC

0

funtions. As a step in this diretion,

we prove

Theorem 4 For d � 3; any read-one Boolean formula of depth d over f^;_;:g an be omputed

by a polynomial threshold funtion of degree

~

O(n

1�

1

3�2

d�3

):

Theorem 4 implies that the lass of read-one AC

0

formulas an be learned in subexponential

time.

2 Preliminaries

2.1 DNF, Deision Lists, Deision Trees, and Polynomial Threshold Funtions

A disjuntive normal form formula or DNF is a disjuntion T

1

_ � � � _T

s

of onjuntions of Boolean

literals. An s-term DNF is one whih has at most s onjuntions (also known as terms) and a

t-DNF is one in whih eah term is of size at most t: A DNF (or Boolean formula) is read-one if

it ontains at most one ourrene of eah variable.

A k-deision list is a list L = (T

1

; f

1

); : : : ; (T

m

; f

m

) where eah T

i

is a term of size at most k

and eah f

i

is a Boolean funtion on f0; 1g

n

: Given an input x 2 f0; 1g

n

the value of L(x) is f

j

(x)

where j � 1 is suh that T

j

(x) = 1 and T

i

(x) = 0 for i < j: If T

i

(x) = 0 for all 1 � i � m then

L(x) = 1:

A k-deision tree is a rooted binary tree where eah internal node has 2 hildren and is labeled

with a term of size at most k and eah leaf is labeled with a Boolean funtion. A deision tree

represents a Boolean funtion as follows: if the root is labeled with a term T then then to ompute

the value of the tree on an input x 2 f0; 1g

n

we go left from the root if T (x) = 0 and go right

if T (x) = 1: We ontinue in this fashion until reahing a leaf ` labeled with some funtion f

`

and

then output f

`

(x):

The rank of a deision tree T is de�ned indutively as follows:

� If T is a single leaf then rank(T) = 0:

� If T has subtrees T

0

and T

1

then

rank(T) =

(

max (rank(T

0

); rank(T

1

)) if rank(T

0

) 6= rank(T

1

)

rank(T

0

) + 1 otherwise.

The following lemma will be useful:

Lemma 5 [6℄ Let f be omputed by a 1-deision tree of rank r whose leaves are labeled with the

funtions f

1

; : : : ; f

m

: Then there is an r-deision list (T

1

; f

1

); : : : ; (T

m

; f

m

) whih is equivalent to f:

A polynomial threshold funtion is de�ned by a multivariate polynomial p(x

1

; : : : ; x

n

): The

output of the polynomial threshold funtion on input x 2 f0; 1g

n

is 1 if p(x

1

; : : : ; x

n

) � 0 and is �1

otherwise. The degree of a polynomial threshold funtion is simply the degree of the polynomial p.

If eah oeÆient a

�

of the polynomial is an integer, then the weight of the polynomial threshold

funtion is

P

ja

�

j:

3

2.2 Learning theory bakground

We onsider two widely studied learning models: the Probably Approximately Corret (PAC) model

introdued by Valiant [37℄ and the model of exat learning from equivalene queries introdued by

Angluin [1℄ and Littlestone [29℄. In eah of these models a onept lass C is a olletion of Boolean

funtions : f0; 1g

n

! f�1; 1g:

In the PAC model, for Boolean funtions ; h on f0; 1g

n

and D a distribution on f0; 1g

n

; we

say that h is an �-approximator for under D if Pr

D

[(x) = h(x)℄ � 1 � �: The learning algo-

rithm has aess to an example orale EX(;D) whih, when queried, provides a labeled example

hx; (x)i where x is drawn from f0; 1g

n

aording to the distribution D and 2 C is the unknown

target onept whih the algorithm is trying to learn. The goal of the learner is to generate an

�-approximator for under D: An algorithm A is a PAC learning algorithm for a onept lass C

if the following ondition holds: for any 2 C; any distribution D on f0; 1g

n

; and any 0 < �; Æ < 1,

if A is given � and Æ and has aess to EX(;D); then with probability at least 1� Æ algorithm A

outputs an �-approximator for under D:

In the model of exat learning from equivalene queries, learning proeeds in a sequene of

stages. In eah stage the learning algorithm submits an equivalene query (a Boolean funtion h)

to the teaher. If h is equivalent to the target onept then the teaher answers \YES" and

learning halts; otherwise the teaher sends bak a point x 2 f0; 1g

n

suh that h(x) 6= (x): A

learning algorithm A learns onept lass C in time t if for all 2 C; algorithm A an exatly

identify the target in at most t time steps, using at most t equivalene queries, with hypotheses h

whih eah an be represented with t bits and an be evaluated on any point x 2 f0; 1g

n

in time t:

The following fat is well known:

Fat 6 ([10, 31℄) In both the PAC model and the model of exat learning from equivalene queries,

there are algorithms whih learn the lass of linear threshold funtions over f0; 1g

n

in time poly(n):

The algorithms of Fat 6 are based on polynomial time linear programming. We will need the

following extension of Fat 6:

Fat 7 Let C be a lass of funtions eah of whih an be expressed as an degree-d polynomial

threshold funtion over f0; 1g

n

: Then in both the PAC learning model and the model of exat learning

from equivalene queries, there is a learning algorithm for C whih runs in time n

O(d)

:

Proof sketh: The idea is to run a polynomial-time algorithm for learning linear threshold fun-

tions over an expanded version of the input spae. Sine z

2

= z for z 2 f0; 1g we an suppose

without loss of generality that the target polynomial threshold funtion is a multilinear polynomial

of degree d: Suh a polynomial threshold funtion an be viewed as a linear threshold funtion

over the spae of all multilinear monomials of degree at most d: There are N =

P

d

i=1

�

n

i

�

� n

d

suh monomials and hene by Fat 6 we an learn suh a polynomial threshold funtion by running

a poly(N)-time algorithm for learning linear threshold funtions over the domain f0; 1g

N

where

N � n

d

:

2.3 The Minsky Papert Lower Bound

It is lear that any depth-1 iruit over f^;_;:g an be expressed as a linear threshold funtion. In

ontrast, Minsky and Papert gave a
(n

1=3

) lower bound on the degree of any polynomial threshold

funtion whih omputes a partiular read-one DNF. For ompleteness we give their simple proof.

4

Theorem 8 (Minsky & Papert [32℄) Let f = T

1

_ � � � _ T

m

be an m-term DNF over f0; 1g

n

where eah term T

i

is a onjuntion over 4m

2

variables, eah variable appears in preisely one term,

and n = 4m

3

: Then any polynomial threshold funtion whih omputes f must have degree at least

m:

Proof: Let p(x

1

; : : : ; x

n

) be a polynomial of degree d suh that for all x 2 f0; 1g

n

we have p(x) � 0

i� x satis�es f: For i = 1; : : : ;m let S

i

be the set of 4m

2

variables whih appears in term T

i

: It

is lear that for any permutations �

1

; : : : ; �

m

over a set of size 4m

2

; we have p(S

1

; : : : ; S

m

) � 0 i�

p(�

1

(S

1

); : : : ; �

m

(S

m

)) � 0: Consequently the polynomial

q(x

1

; : : : ; x

n

) =

X

�

1

;:::;�

m

p(�

1

(S

1

); : : : ; �

m

(S

m

))

is of degree at most d and has q(x

1

; : : : ; x

n

) � 0 i� x satis�es f: Sine q(x) is symmetri in the ele-

ments of eah set S

i

; one an straightforwardly show that there is a polynomial r(

P

S

1

x

j

; � � � ;

P

S

m

x

j

)

of degree at most d suh that r(

P

S

1

x

j

; : : : ;

P

S

m

x

j

) = q(x

1

; : : : ; x

n

) for all x 2 f0; 1g

n

: It follows

from the de�nition of f that for all (a

1

; : : : ; a

m

) 2 f0; 1; : : : ; 4m

2

g

m

; we have r(a

1

; : : : ; a

m

) �

0 i� some a

i

= 4m

2

: Let s(t) be the univariate polynomial r(a

1

; : : : ; a

m

) where a

i

= 4m

2

�

(t � (2i � 1))

2

for i = 1; : : : ;m: Then the degree of s is at most 2d; and moreover we have

s(0); s(2); s(4); : : : ; s(2m) < 0 and s(1); s(3); : : : ; s(2m � 1) � 0: Consequently s has at least 2m

real zeros, so 2d � deg(s) � 2m:

3 An Optimal Bound for Representing DNF by Polynomial Thresh-

old Funtions

In this setion we prove our main result: any s-term DNF over f0; 1g

n

an be omputed by a

polynomial threshold funtion of degree O(n

1=3

log s):

3.1 Low-Degree Polynomial Threshold Funtions for DNF with Small Terms

We start by proving Theorem 1:

Theorem 1 Any s-term t-DNF an be expressed as a polynomial threshold funtion of degree

O(

p

t log s):

This theorem plays an important role in the proof of the main result. We disuss some other

onsequenes of Theorem 1 in Setion 4.

Proof of Theorem 1: Let f = T

1

_ T

2

_ � � � _ T

s

be an s-term t-DNF. The arithmetization of a

Boolean literal ` is x

j

if ` = x

j

and is 1�x

j

if ` = x

j

: Let S

i

denote the sum of the arithmetizations

of the literals appearing in T

i

and let t

i

denote the number of literals in T

i

:We de�ne the polynomial

Q

i

(x) = p

�

S

i

t

i

�

where

p(y) = C

d

�

y

�

1 +

1

t

��

:

Here C

d

is the d-th Chebyshev polynomial of the �rst kind and d = d

p

te:

Consider the polynomial threshold funtion \P (x) � s+

1

2

" where

5

P (x) =

s

X

i=1

Q

i

(x)

log 2s

:

Sine C

d

is a polynomial of degree d =

p

t and S

i

is a polynomial of degree 1, this polynomial

threshold funtion has degree

p

t log 2s: We will show that this polynomial threshold funtion

omputes the DNF f exatly.

The following basi fats about the Chebyshev polynomials C

d

are well known [13℄:

� jC

d

(x)j � 1 for jxj � 1 with C

d

(1) = 1;

� C

0

d

(x) � d

2

for x > 1 with C

0

d

(1) = d

2

:

These fats imply that p(1) � 2 but jp(y)j � 1 for y 2 [0; 1�

1

t

℄:

Fix any element x 2 f0; 1g

n

.

� If f(x) = 0 then in eah term T

i

at least one arithmetized literal takes value 0 on x: Thus for

eah i = 1; : : : ; s we have S

i

=t

i

� (t

i

�1)=t

i

� 1�

1

t

and hene eah jQ

i

(x)j � 1: Consequently

P (x) � s:

� If f(x) = 1 then some term T

i

must be satis�ed by x so S

i

=t

i

= 1: Consequently Q

i

(x) � 2

and hene Q

i

(x)

log 2s

ontributes at least 2s to P (x): Sine Q

i

(x)

log 2s

� �1 for all i; we have

P (x) � s+ 1:

3.2 From DNF to Deision Trees

Let f be an arbitrary s-term DNF over n variables. As the �rst step in our onstrution of a

polynomial threshold funtion for f; we transform f into a 1-deision tree in whih eah leaf is

a DNF with small terms; this is a re�nement of a transformation given by Bshouty in [11℄. Our

original proof gave a bound on the size of the resulting deision tree. S. Lokam [30℄ has observed

that a slightly stronger bound an be obtained by onsidering the rank of the deision tree instead.

We use Lokam's approah in the following lemma:

Lemma 9 Let f : f0; 1g

n

! f�1; 1g be an s-term DNF. For any value 1 � t � n; f an be

expressed as a 1-deision tree T where

� eah leaf of T ontains an s-term t-DNF,

� T has rank at most (2n=t) log s+ 1.

Proof of Lemma 9: Let T

1

; : : : ; T

p

be the terms of f that have size at least t: Sine eah term T

i

ontains at least t literals, there must be some variable x

i

that ours (either negated or unnegated)

in at least pt=n of these terms. This variable x

i

is plaed in the root of the deision tree, and the

left and right hildren of x

i

will be deision trees for the restritions f j

x

i

 0

and f j

x

i

 1

respetively.

This onstrution is reursively arried out for eah of the funtions f j

x

i

 0

and f j

x

i

 1

; stopping

when a DNF with no terms larger than t is obtained.

It is lear that this reursive proedure generates some 1-deision tree T: Sine the funtion

obtained by �xing some subset of variables of an s-term DNF is an s-term DNF, we have that eah

leaf of T ontains an s-term t-DNF.

6

Let r(n; p) be the maximum (taken over all DNFs f on n variables with p terms having size at

least t) rank of the deision tree generated by the above proedure. We bound r(n; p) using the

following simple observation: if T

a

is a term of f whih ontains an unnegated (negated) variable

x

i

(x

i

), then the restrition f j

x

i

 0

(f j

x

i

 1

) auses the term T

a

to vanish. Sine the variable x

i

at the root of T ours in at least pt=n terms of size at least t; for at least one of the bit values

b 2 f0; 1g the restrition f j

x

i

 b

will be a DNF whih has at most p(1 �

t

2n

) terms of size at least

t: Let T

0

(T

1

) denote the subtree of T whih orresponds to the restrition f j

x

i

 0

(f j

x

i

 1

), and

suppose without loss of generality that f j

x

i

 0

is a s-term DNF whih has at most p(1�

t

2n

) terms

of size at least t: Note that rank(T

0

) � r(n� 1; p(1�

t

2n

)) and rank(T

1

) � r(n� 1; p): We onsider

several ases:

� If rank(T

0

) < rank(T

1

), then rank(T) = rank(T

1

) and hene r(n; p) � r(n� 1; p):

� If rank(T

0

) > rank(T

1

), then rank(T) = rank(T

0

) and hene r(n; p) � r(n� 1; p(1 �

t

2n

)):

� If rank(T

0

) = rank(T

1

), then rank(T) = rank(T

0

) + 1 and hene r(n; p) � r(n � 1; p(1 �

t

2n

)) + 1:

To establish initial onditions for the reurrene relation we onsider the ase p = 1: In this ase

there is one term in f whih ontains more than t variables; without loss of generality we suppose

that this term is v

1

v

2

: : : v

`

: Then the 1-deision list

(v

1

; f j

v

1

 0

); : : : ; (v

`

; f j

v

`

 0

)

is equivalent to a rank-1 deision tree in whih eah leaf ontains an s-term t-DNF. Hene for any

n we have r(n; 1) = 1:

Solving this easy reurrene relation for r(n; p) shows that r(n; p) � (2n=t) ln p+1: Sine p � s

the theorem is proved.

3.3 An Optimal Bound for Representing DNF by Polynomial Threshold Fun-

tions

Theorem 2 Let f be an s-term DNF over n variables. Then f an be expressed as a polynomial

threshold funtion of degree O(n

1=3

log s).

Proof: From Lemma 9 and Theorem 1, we know that f an be expressed as a 1-deision tree T of

rank (2n=t) ln s+1 where eah leaf ontains a polynomial threshold funtion of degree O(

p

t log s)

(the value of t will be �xed later). From Lemma 5 we know that this deision tree T an be

expressed as an r-deision list where r = (2n=t) ln s + 1 and eah output of the deision list is a

polynomial threshold funtion of degree O(

p

t log s): Call this deision list L:

Let C

1

; : : : ; C

R

be the onjuntions ontained in the suessive nodes of L and let P

1

(x); : : : ; P

R

(x)

be the orresponding polynomials for the assoiated polynomial threshold funtions at the outputs,

i.e. the polynomial threshold funtion orresponding to the j-th onjuntion C

j

omputes the fun-

tion \P

j

(x) � 0:" If P

j

(x) = 0 for some x 2 f0; 1g

n

then we an replae P

j

(x) by P

j

(x)+Æ=2; where

Æ = minf�P

j

(x) : x 2 f0; 1g

n

and P

j

(x) < 0g; without hanging the funtion omputed by the

polynomial threshold funtion. Now by saling eah P

j

by an appropriate multipliative fator we

an suppose without loss of generality that for eah j = 1; : : : ; R we have min

x2f0;1g

n jP

j

(x)j � 1:

Consider the polynomial

Q(x) = A

1

~

C

1

(x)P

1

(x) +A

2

~

C

2

(x)P

2

(x) + � � �+A

R

~

C

R

(x)P

R

(x): (1)

7

Here

~

C

j

is the zero/one valued polynomial whih orresponds to the monomial C

j

(e.g. if C

j

is

x

3

x

4

x

5

then

~

C

j

(x) is x

3

(1�x

4

)x

5

). Eah value A

j

is a positive onstant hosen so as to satisfy the

following onditions:

A

R

= 1;

A

R�1

> max

x2f0;1g

n

jA

R

~

C

R

(x)P

R

(x)j;

.

.

.

A

j

> max

x2f0;1g

n

jA

j+1

~

C

j+1

(x)P

j+1

(x) + � � �+A

R

~

C

R

(x)P

R

(x)j:

.

.

.

A

1

> max

x2f0;1g

n

jA

2

~

C

2

(x)P

2

(x) + � � �+A

R

~

C

R

(x)P

R

(x)j:

Then the polynomial threshold funtion \Q(x) � 0" omputes exatly the same funtion as the

deision list L: To see this, �x an input x 2 f0; 1g

n

: If j is the index of the �rst onjuntion C

j

whih is satis�ed by x; then

~

C

1

(x) =

~

C

2

(x) = � � � =

~

C

j�1

(x) = 0; so the only terms of (1) whih

make a nonzero ontribution to Q are A

i

~

C

i

(x)P

i

(x) for i � j: Sine

~

C

j

(x) = 1 and jP

j

(x)j � 1; the

hoie of A

j

ensures that the sign of Q(x) will be the same as the sign of P

j

(x):

The degree of the polynomial Q(x) is at most (2n=t) ln s+ 1 +O(

p

t log s): If we take t = n

2=3

then this value is O(n

1=3

log s):

Applying Fat 7 gives our main DNF learning result:

Corollary 10 The lass of polynomial-size DNF an be learned (in both the PAC model and the

model of exat learning from equivalene queries) in time 2

O(n

1=3

log

2

n)

:

Remark: Several algorithms are known [7, 14℄ for PAC learning linear threshold funtions over

f0; 1g

n

in the presene of lassi�ation noise in time poly(n): It follows that our time bounds for

learning DNF ontinue to hold in the presene of lassi�ation noise.

Corollary 11 The
(n

1=3

) lower bound given by Minsky and Papert for the degree of a polynomial

threshold funtion required to ompute a polynomial size DNF is tight up to a logarithmi fator.

4 Disussion

Sine t � n in Theorem 1, Fat 7 implies that there is a linear-programming based algorithm for

PAC learning DNF whih takes 2

O(

p

n log n log s)

time steps. Tarui and Tsukiji gave an idential time

bound for a di�erent algorithm based on hypothesis boosting using onjuntions. In this setion we

note that the proof of Theorem 1 gives an upper bound on the weight of the resulting polynomial

threshold funtion. This observation an be used to prove orretness of the Tarui/Tsukiji boosting-

based algorithm and to show that simpler algorithms suh as Winnow or Pereptron an be used

to learn

~

O(

p

n) degree polynomial threshold funtions whih ompute a DNF (instead of boosting

algorithms or algorithms for solving linear programs).

The d-th Chebyshev polynomialC

d

(x) =

P

d

i=0

a

i

x

i

has all integer oeÆients with eah ja

i

j � 2

d

[13℄. By inspetion of the proof of Theorem 1 we obtain

8

Corollary 12 Any s-term t-DNF an be expressed as a polynomial threshold funtion of degree

O(

p

t log s) and weight t

O(

p

t log s)

:

Using this orollary we obtain an easy proof of one of the main theorems from [36℄, desribed

in Setion 1.2, whih asserts that for any DNF f and any probability distribution D there exists

some short onjuntion whih is notieably orrelated with f under D: We use a simple lemma due

to Goldmann, Hastad and Razborov ([20℄ Lemma 4) whih states that if a funtion f over f0; 1g

n

an be expressed as a majority of at most W �1-valued funtions (possibly with repetitions) drawn

from a set H; then for any distribution D over f0; 1g

n

there is some funtion h 2 H suh that

jPr

x2D

[h(x) = f(x)℄�

1

2

j �

1

W

: In our setting we take H to be the set of all onjuntions of length

O(

p

t log s) and their negations. There is a lear orrespondene between polynomial threshold

funtions with integer oeÆients and depth-2 iruits with a MAJORITY gate at the root and

(possibly negated) AND gates at depth 1. Corollary 12 gives the required bound on W; and we

obtain

Corollary 13 Given any s-term t-DNF f and any distribution D over f0; 1g

n

; there is a onjun-

tion C of size at most O(

p

t log s) suh that jPr

x2D

[C(x) = f(x)℄�

1

2

j = 2

�O(

p

t log t log s)

:

Taking t = n gives Tarui and Tsukiji's Theorem 1.1, whih immediately implies the existene of a

boosting-based algorithm for learning DNF in time 2

~

O(n

1=2

)

:

Finally, we observe that the weight bound given in Corollary 12 implies that we do not need to

solve linear programs (or even to use boosting algorithms) in order to learn polynomial-sized DNF

in time 2

~

O(

p

n)

: If f is a polynomial threshold funtion of degree 1 and weight W over the domain

f0; 1g

N

; then either the Pereptron algorithm or the Winnow algorithm an be used to learn f

in poly(N;W) time steps [25, 29℄. As in Fat 7, we an view an degree-d polynomial threshold

funtion over f0; 1g

n

as a degree-1 polynomial threshold funtion over f0; 1g

n

d

; and thus we an in

fat use either the Pereptron or Winnow algorithm to learn s-term DNF in time 2

O(

p

n log n log s)

:

5 Low-Degree Polynomial Threshold Funtions for Read-One DNF

As seen in Setion 2.3 the Minsky-Papert
(n

1=3

) lower bound on polynomial threshold funtion

degree for polynomial size DNF is proved using a read-one DNF. Sine any read-one DNF an

have at most n terms, Theorem 2 implies that any read-one DNF an be expressed as a polynomial

threshold funtion of degree O(n

1=3

log n): Here we give a slightly better bound:

Theorem 3 Any read-one DNF over variables x

1

; : : : ; x

n

an be expressed as a polynomial thresh-

old funtion of degree O(n

1=3

log

2=3

n):

To prove Theorem 3 we use the following sharper version of Lemma 9:

Lemma 14 Let f : f0; 1g

n

! f�1; 1g be a read-one DNF. For any value 1 � t � n; f an be

expressed as a 1-deision tree T where eah leaf of T ontains a read-one t-DNF and T has rank

at most n=t:

Proof of Lemma 14: Let T

1

; : : : ; T

p

be the terms of f that have size at least t: We use the same

deomposition proedure as in Lemma 9, and we let r(n; p) be the maximum (taken over all read-

one DNFs f on n variables with p terms having size at least t) rank of the deision tree generated

by the deomposition proedure. Sine eah variable ours in at most one term, the reurrene

whih we obtain in this setting is r(n; p) � r(n � 1; p � 1) + 1: As before the initial ondition is

9

r(n; 1) = 1 for all n; and thus r(n; p) � p: Sine f is read-one we have that p � n=t; and the

lemma is proved. (Lemma 14)

Proof of Theorem 3: Let f be a s-term read-one DNF over f0; 1g

n

: Lemma 14, Theorem 1

and Lemma 5 together imply that f is omputed by a (n=t)-deision list where eah output of the

deision list is a polynomial threshold funtion of degree O(

p

t log s): As in the proof of Theorem

2 there is a polynomial threshold funtion for f whih is of degree n=t + O(

p

t log s): Sine f is

read-one s is at most n; and taking t = n

2=3

= log

2=3

n proves the theorem. (Theorem 3)

By the arguments given in Setion 2, we immediately have

Corollary 15 The lass of read-one DNF an be learned (in both the PAC model and the model

of exat learning from equivalene queries) in time 2

O(n

1=3

log

5=3

n)

:

Remark: Standard redutions are known in learning theory whih redue the problem of PAC

learning DNF to that of PAC learning read-one DNF. We note that applying these redutions here

does not yield a 2

~

O(n

1=3

)

-time algorithm for learning arbitrary polynomial-size DNF. The redutions

work by onverting a DNF with p(n) total ourrenes of variables to a read-one DNF over p(n)

variables, and thus if used in onjuntion with our theorem would yield a 2

~

O(p(n)

1=3

)

-time algorithm

for learning suh a DNF.

6 Future Work

Many diretions remain for further researh. From a learning theory perspetive, an obvious goal is

to onstrut learning algorithms for DNF whih have even lower time omplexity than the algorithm

of this paper. The Minsky-Papert lower bound implies that our time bounds are essentially optimal

for algorithms whih work by learning polynomial threshold funtions. It would be interesting to

lose the remaining gap between the Minsky-Papert
(n

1=3

) lower bound and our O(n

1=3

logn)

upper bound on the degree of polynomial threshold funtions for polynomial-size DNF.

Another goal is to establish a bound on polynomial threshold funtion weight to go along with

our degree bound from Theorem 3. Is every polynomial-size DNF omputed by a polynomial

threshold funtion of degree

~

O(n

1=3

) and weight 2

~

O(n

1=3

)

? As in Setion 4, an aÆrmative answer

to this question would mean that the Pereptron or Winnow algorithm ould be used instead of a

linear programming based algorithm.

From a iruit omplexity perspetive, an interesting goal is to obtain results analogous to our

upper bound (and to the Minsky-Papert lower bound) for polynomial-size iruits of depth greater

than 2. What upper and lower bounds an be established for the degree of polynomial threshold

funtions whih ompute arbitrary AC

0

funtions? As a step towards answering this question, we

show how the tehniques of this paper an be used to obtain a nontrivial upper bound on the degree

of polynomial threshold funtions for read-one AC

0

funtions:

Theorem 4 For d � 2; any read-one Boolean formula of depth d over f^;_;:g an be omputed

by a polynomial threshold funtion of degree O(n

1�

1

3�2

d�3

log

1

3�2

d�3

n):

Proof: The proof is by indution on d: The base ase d = 2 is supplied by Theorem 3. We suppose

that the theorem holds for d = 2; : : : ; k � 1 and prove it for d = k:

Let f be a depth-k read-one formula. We say that a term is a gate at the bottom level of f

together with the literals that feed into it. Sine f is read-one there an be at most n=t terms of

size greater than t: We apply the deomposition proedure desribed in the proof of Lemma 9 to

10

transform f into a 1-deision tree whose leaves eah ontain a depth-k read-one formula in whih

eah term is of size at most t: As in Lemma 14 this deision tree is of rank at most n=t:

In eah leaf of this tree, we replae eah term with a new \dummy" variable that appears only

one. We thus obtain a deision tree of rank n=t whose leaves eah ontain a read-one formula

of depth k � 1 over these dummy variables. By the indution hypothesis, eah suh formula is

equivalent to a polynomial threshold funtion of degree O(n

1�

1

3�2

k�4

log

1

3�2

k�4

n) whih is de�ned

over the dummy variables desribed above.

In eah suh polynomial threshold funtion, we now replae eah dummy variable with a real-

valued polynomial over the original variables whih interpolates preisely the Boolean funtion

omputed by the original term. Sine eah term was of size at most t; eah suh polynomial is

of degree at most t: Consequently the funtion omputed at eah leaf of the deision tree is a

polynomial threshold funtion of degree O(tn

1�

1

3�2

k�4

log

1

3�2

k�4

n):

As in the proof of Theorem 3, our original funtion f an now be expressed as a polynomial

threshold funtion of degree

n

t

+O(tn

1�

1

3�2

k�4

log

1

3�2

k�4

n):

Taking t = n

1

3�2

k�3

= log

1

3�2

k�3

n proves the theorem.

Corollary 16 The lass of read-one AC

0

funtions an be learned in subexponential time.

7 Aknowledgements

We thank Rihard Beigel for several useful onversations and Les Valiant for his advie. We also

thank S. Lokam for allowing us to inlude his proof of Lemma 9.

Referenes

[1℄ D. Angluin. Queries and onept learning. Mahine Learning 2 (1988), 319-342.

[2℄ J. Aspnes, R. Beigel, M. Furst and S. Rudih. The expressive power of voting polynomials.

Combinatoria 14:2 (1994), 1-14. Earlier version in \Pro. 23rd ACM Symposium on Theory

of Computation" (1991), 402-409.

[3℄ R. Beigel. The polynomial method in iruit omplexity, in \Pro. 8th Conf. on Struture in

Complexity Theory" (1993), 82-95.

[4℄ R. Beigel, personal ommuniation, 2000.

[5℄ R. Beigel, N. Reingold and D. Spielman. The pereptron strikes bak, in \Pro. 6th Conf. on

Struture in Complexity Theory" (1991), 286-291.

[6℄ A. Blum. Rank-r deision trees are a sublass of r-deision lists. Information Proessing Letters

42:4 (1992), 183-185.

[7℄ A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning

noisy linear threshold funtions, in \Pro. 37th Symp. on Found. of Comp. Si." (1996), 330-

338.

11

[8℄ A. Blum, M. Furst, J. Jakson, M. Kearns, Y. Mansour, and S. Rudih. Weakly learning DNF

and haraterizing statistial query learning using Fourier analysis, in \Pro. 26th Ann. Symp.

on Theory of Computing" (1994), 253-262.

[9℄ A. Blum and S. Rudih. Fast learning of k-term DNF formulas with queries. J. Comp. Syst.

Si. 51(3) (1995), 367-373.

[10℄ A. Blumer, A. Ehrenfeuht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-

Chervonenkis dimension. J. ACM 36:4 (1989), 929-965.

[11℄ N. Bshouty. A subexponential exat learning algorithm for DNF using equivalene queries.

Information Proessing Letters 59 (1996), 37-39.

[12℄ T. Bylander. Worst-ase analysis of the pereptron and exponentiated update algorithms.

Arti�ial Intelligene 106 (1998).

[13℄ E. W. Cheney. Introdution to approximation theory. MGraw-Hill, 1966.

[14℄ E. Cohen. Learning noisy pereptrons by a pereptron in polynomial time, in \Pro. 38th

Symp. on Found. of Comp. Si." (1997), 514-523.

[15℄ A. Ehrenfeuht and D. Haussler. Learning deision trees from random examples. Information

and Computation 82:3 (1989), 231-246.

[16℄ A. Ehrenfeuht, D. Haussler, M. Kearns and L. Valiant. A general lower bound on the number

of examples needed for learning. Information and Computation 82:3 (1989), 247-251.

[17℄ Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation

121:2 (1995), 256-285.

[18℄ Y. Freund and R. Shapire. Large margin lassi�ation using the pereptron algorithm, in

\Pro. Eleventh Ann. Conf. on Comp. Learning Theory" (1998), 209-217.

[19℄ B. Fu. Separating PH from PP by relativization. Ata Math. Sinia 8:3 (1992), 329-336.

[20℄ M. Goldmann, J. H�astad and A. Razborov. Majority gates vs. general weighted threshold

gates. Computational Complexity 2 (1992), 277-300.

[21℄ T. Hanok and Y. Mansour. Learning monotone k-� DNF formulas on produt distributions,

in \Pro. 4th Ann. Workshop on Comp. Learning Theory" (1991), 179-183.

[22℄ D. Helmbold, R. Sloan and M. Warmuth. Learning nested di�erenes of intersetion-losed

onept lasses. Mahine Learning 5 (1990), 165-196.

[23℄ J. Jakson. An eÆient membership-query algorithm for learning DNF with respet to the

uniform distribution. J. Comput. Syst. Si. 55 (1997), 414-440.

[24℄ R. Khardon. On using the Fourier transform to learn disjoint DNF. Inf. Pro. Lett. 49 (1994),

219-222.

[25℄ J. Kivinen, M. Warmuth, and P. Auer. The pereptron algorithm vs. winnow: linear vs.

logarithmi mistake bounds when few input variables are relevant, in \Pro. 8th Conf. on

Computational Learning Theory," (1995), 289-296.

12

[26℄ L. Kuera, A. Marhetti-Spaamela and M. Protassi. On learning monotone DNF formulae

under uniform distributions. Inf. and Comput. 110 (1994), 84-95.

[27℄ E. Kushilevitz and D. Roth. On learning visual onepts and DNF formulae, in \Pro. Sixth

Ann. ACM Conferene on Computational Learning Theory" (1993), 317-326.

[28℄ N. Linial and N. Nisan. Approximate inlusion-exlusion. Combinatoria 10:4 (1990), 349-365.

[29℄ N. Littlestone. Learning quikly when irrelevant attributes abound: a new linear-threshold

algorithm. Mahine Learning 2 (1988), 285-318.

[30℄ S. Lokam, personal ommuniation (2001).

[31℄ W. Maass and G. Turan. How fast an a threshold gate learn? in \Computational Learning

Theory and Natural Learning Systems: Volume I: Constraints and Prospets," S. J. Hanson,

G. Drastal, & R. Rivest, eds., MIT Press (1994), 381-414.

[32℄ M. Minsky and S. Papert. Pereptrons. MIT Press, 1968 (expanded edition 1988).

[33℄ Y. Sakai and A. Maruoka. Learning monotone log-term DNF formulas under the uniform

distribution. Theory Comput. Systems 33 (2000), 17-33.

[34℄ M. Shmitt. Identi�ation riteria and lower bounds for Pereptron-like learning rules. Neural

Computation 10 (1998), 235-250.

[35℄ R. Servedio. On PAC learning using Winnow, Pereptron, and a Pereptron-like algorithm, in

\Pro. Twelfth Ann. Conf. on Comp. Learning Theory" (1999), 296-307.

[36℄ J. Tarui and T. Tsukiji. Learning DNF by approximating inlusion-exlusion formulae, in

\Pro. IEEE Conferene on Computational Complexity" (1999), 215-220.

[37℄ L. G. Valiant. A theory of the learnable. Comm. ACM 27:11 (1984), 1134-1142.

[38℄ K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time, in

\Pro. 3rd Ann. Workshop on Comp. Learning Theory" (1990), 314-326.

[39℄ K. Verbeurgt. Learning sub-lasses of monotone DNF on the uniform distribution, in \Pro.

9th Conf. on Algorithmi Learning Theory" (1998), 385-399.

13

