
Monotone Boolean Formulas can Approximate

Monotone Linear Threshold Functions

Rocco A. Servedio∗

Department of Computer Science

Columbia University
New York, NY 10027

rocco@cs.columbia.edu

July 23, 2003

Abstract

We show that any monotone linear threshold function on n Boolean variables can
be approximated to within any constant accuracy by a monotone Boolean formula of
poly(n) size.

1 Introduction

Over the past two decades, researchers in computational complexity have studied monotone
computation models in a variety of contexts. While many notable results have been achieved,
some seemingly basic questions about low-level monotone complexity remain unanswered.
In this paper we examine the relative power of two simple models of monotone computation
for Boolean functions: monotone linear threshold functions, which compute a weighted sum
∑n

i=1 wixi of inputs and compare it with a threshold θ, and monotone Boolean formulas over
the basis {AND,OR}.

The question which motivates our study is the following: does every monotone linear
threshold function on n Boolean variables have a monotone Boolean formula of size poly(n)?
This is an interesting and natural question for several reasons:

• In a celebrated result Ajtai et al. [1] gave a polynomial size monotone formula which
computes the majority function (their construction also gives a monotone circuit of size
O(n log n) and depth O(log n)). Subsequently Valiant [10] gave an elegant probabilistic
construction of monotone formulas of size O(n5.3) for the majority function on n bits.
Since majority is simply a monotone linear threshold function in which each weight wi

∗Supported in part by an NSF Mathematical Sciences Postdoctoral Fellowship, by NSF grant CCR-
95-04436 and by ONR grant N00014-96-1-0550. Work was performed while the author was at Harvard
University.

1

is 1, it is natural to now ask whether all monotone linear threshold functions (regardless
of the size of the weights) have polynomial size monotone formulas.

• This question is equivalent to the question of whether monotone TC
0 (the class of

functions computed by monotone threshold circuits of constant depth and polynomial
size) is contained in monotone NC

1 (which can be defined as the class of functions
computed by monotone formulas of polynomial size; see Section 2.4 of [5]). A positive
answer would give an interesting contrast to results of Yao [11] who exhibits polynomial
size monotone formulas which cannot be computed by constant depth polynomial size
monotone threshold circuits.

• Goldmann and Karpinski [3] have posed the following question: does every monotone
linear threshold function have a monotone constant depth polynomial size circuit of
majority gates? (While several simulations of an arbitrary linear threshold gate by
constant-depth polynomial-size circuits of majority gates are known [4, 3], these sim-
ulations do not preserve monotonicity.) By the results of Ajtai et al. [1] and Valiant
[10], a negative answer to our question would imply a negative answer to Goldmann
and Karpinski’s question.

In this paper we prove that any monotone linear threshold function can be approximated
to within any constant accuracy by a monotone Boolean formula of polynomial size. Our
proof uses the existence of polynomial size monotone formulas for the majority function
[1, 10] together with inequalities for sums of independent random variables (which assert
that such sums are unlikely to have very small deviations from their expected values) and a
recursive decomposition technique.

2 Preliminaries

We write log for log2 and ln for loge . For a vector v ∈ R
n we write ‖v‖2 to denote the 2-norm

√
∑n

i=1 v2
i . The function sgn(z) takes value 1 if z > 0 and −1 if z < 0.

A Boolean function f : {−1, 1}n → {−1, 1} is a linear threshold function (henceforth
simply a threshold function) if there exist coefficients w = (w1, . . . , wn) ∈ R

n and a threshold
θ ∈ R such that f(x) = sgn(w · x − θ). Such a pair w, θ is said to represent f. A monotone

threshold function is a threshold function which computes a monotone Boolean function;
equivalently, a monotone threshold function is one which has some representation in which
each wi > 0.

Since we are only concerned with the discrete Boolean cube, for any threshold function
f there are infinitely many different representations of f. The weight of a threshold function
f is the smallest value of

∑n
i=1 |wi| across all representations of f such that wi, θ are all

integers. Note that the weight of any threshold function is well defined since every threshold
function f has a representation with integer coefficients and threshold. It has long been
known [7] that every threshold function on n variables has weight at most 2O(n log n), and
H̊astad [9] has exhibited a threshold function on n variables which has weight 2Θ(n log n).

2

The majority function MAJn : {−1, 1}n → {−1, 1} is the monotone threshold function

MAJn(x1, . . . , xn) = sgn(

n
∑

i=1

xi).

A monotone formula on x1, . . . , xn is a Boolean formula F which uses only the binary
connectives ∧ (AND) and ∨ (OR). Equivalently, F is is a rooted binary tree in which each
internal node has degree exactly two and is labelled with either ∧ or ∨, and each leaf is
labelled with one of the variables x1, . . . , xn. We view −1 as representing FALSE and 1 as
representing TRUE. The size of a formula is the total number of occurences of variables in
the formula, i.e. the number of leaves in the binary tree. Note that this is exactly one more
than the number of gates (internal nodes) of the binary tree.

If f is a Boolean function on inputs x1, . . . , xn and b is a bit we write f |x1←b to denote
the function f(b, x2, . . . , xn) on inputs x2, . . . , xn. If f, g are Boolean functions we say that
g is an ε-approximator for f if Pr[f(x) 6= g(x)] 6 ε where the probability is uniform over
x ∈ {−1, 1}n.

We will use the following result due to Valiant:

Theorem 1 (Valiant) There exist monotone formulas for MAJn of size O(n5.3).

By reduplicating inputs to MAJn and inserting some number of constant inputs 0 or 1, we
obtain the following corollary:

Corollary 2 Let f be a monotone linear threshold function of weight W. Then f has a

monotone formula of size O(W 5.3).

3 Small monotone formulas can approximate mono-

tone threshold functions

Our main result is the following:

Theorem 3 Let f be any monotone threshold function on n variables and let 0 < ε < 1
2
.

There is a poly(n, 2(log 1/ε)2ε−4

) size monotone formula F which is an ε-approximator for f.

This theorem implies that for any constant ε (in fact for any ε = Ω((log log n)1/2

(log n)1/4)), there is

an ε-approximating monotone formula of size poly(n) for any monotone threshold function.

Proof of Theorem 3: Let f(x) = sgn(
∑n

i=1 wixi − θ). Without loss of generality we may
suppose that 1 = w1 > w2 > · · · > wn > 0. The proof has several cases.

Case I: ε >
6
‖w‖2 , i.e. ε = 6λ

‖w‖2 for some λ > 1. For i = 1, . . . , n let w′i be obtained by

rounding wi to the nearest integer multiple of 1
n
, and let f ′(x) = sgn(

∑n
i=1 w′ixi − θ). Clearly

f ′ has weight at most O(n2), and hence by Corollary 2 there is a monotone formula F for
f ′ of size O(n10.6). Since |w′i −wi| 6

1
2n

for all i, we have |∑n
i=1 w′ixi −

∑n
i=1 wixi| 6 1/2 and

thus

Pr[f(x) 6= f ′(x)] 6 Pr[|
n

∑

i=1

wixi − θ| 6
1

2
] 6 Pr[|

n
∑

i=1

wixi − θ| 6 λ]. (1)

3

We now use the following bound which asserts that the distribution of a sum of independent
random variables cannot be too tightly clustered around its expected value:

Theorem 4 Let 0 < w1, . . . , wn 6 1, and let X1, . . . , Xn be independent random variables

such that Xk is wk with probability 1
2

and −wk with probability 1
2
. Let x =

∑n
k=1 Xk. Then

for every λ > 1 and every θ ∈ R, we have Pr[|x − θ| 6 λ] < 6λ
‖w‖2 .

Theorem 4 can be derived from Theorem 2.14 in [8]. Since the proof in [8] is long and
complicated we give a self-contained proof of Theorem 4 in Appendix A.

By Theorem 4 and inequality (1) we have that Pr[f(x) 6= f ′(x)] 6
6λ
‖w‖2 = ε. Hence the

monotone formula F of size O(n10.6) for f ′ is the desired ε-approximator for f.

Case II: ε < 6
‖w‖2 . We define a sequence T0, T1, . . . , Tn of augmented monotone formulas

as follows: (The formulas are augmented in that the leaves may contain either variables as
usual or monotone threshold functions.)

1. T0 is a single leaf which contains the monotone threshold function f on variables
x1, . . . , xn.

2. For i > 0, Ti+1 is obtained from Ti as follows: for each leaf of Ti which contains
a monotone threshold function f ′ on variables xi+1, . . . , xn, replace the leaf by the
augmented monotone formula f ′|xi+1←−1 ∨

(

xi+1 ∧ f ′|xi+1←1

)

.

An easy induction using the above definition (2) of Ti+1 and the base case (1) for T0 shows
that for each leaf of Ti which contains a monotone threshold function f ′, the inputs to f ′ are
indeed xi+1, . . . , xn as required by (2). Now observe that for any monotone threshold function
f ′ on variables xi+1, . . . , xn the augmented monotone formula f ′|xi+1←−1 ∨

(

xi+1 ∧ f ′|xi+1←1

)

is logically equivalent to f ′. (If xi+1 = −1 then the augmented monotone formula reduces
to f ′|xi+1←−1 which equals f ′ on any input such that xi+1 = −1. If xi+1 = 1 then the
augmented monotone formula reduces to f ′|xi+1←−1∨f ′|xi+1←1 which equals f ′|xi+1←1 since f ′

is a monotone function.) Thus replacing f ′ by the augmented monotone formula f ′|xi+1←−1∨
(

xi+1 ∧ f ′|xi+1←1

)

is similar to building a decision tree by splitting on xi+1: if xi+1 equals 1
then the value of the whole formula is given by the right-hand term f ′|xi+1←1, and if xi+1

equals −1 then the value of the whole formula is given by the left-hand term f ′|xi+1←−1.
Using these observations, the following facts are also easily verified by induction:

1. Each augmented formula Ti computes the function f.

2. Each augmented formula Ti has 2i leaves which are monotone threshold functions over
inputs xi+1, . . . , xn and 2i − 1 leaves which are variables.

3. Each monotone threshold function leaf in Ti corresponds to a unique i-bit string
b1 . . . bi ∈ {−1, 1}i, and the threshold function at that leaf is

f(b1, . . . , bi, xi+1, . . . , xi) = sgn(wi+1xi+1 + · · ·+ wnxn − (θ − w1b1 − · · · − wibi)).

Moreover, for any input in which the first i bits are b1, . . . , bi, the value of the entire
formula Ti is given by the value computed at this leaf.

4

Let ` = 5184
ε4

(

ln 4
ε

)2
. We henceforth suppose that ε is such that ` < n since otherwise the

bound of Theorem 3 is trivially true. We consider two subcases:

Case IIa:
w2

i∑n
j=i w2

j
< ε2

36
for some 1 6 i 6 `. In this case we rescale the coefficients wi, . . . , wn,

i.e. we define w′j =
wj

wi
for j = i to n; note that 1 = w′i > w′i+1 > · · · > w′n. Let w′ denote the

(n − i + 1)-dimensional vector (w′i, . . . , w
′
n). We have

‖w′‖2
2 =

n
∑

j=i

(

wj

wi

)2

>
36

ε2

and hence ε > 6
‖w′‖2 . Consequently for each leaf in Ti−1 which contains a monotone threshold

function f ′, as in Case I there is some monotone formula F ′ of size O(n10.6) which is an
ε-approximator for f ′. (Note that we are using the fact that all 2i−1 monotone threshold
functions in the leaves of Ti−1 have the same coefficients w′i, . . . , w

′
n.) By fact (3) above,

replacing each leaf f ′ in Ti−1 with the appropriate ε-approximating monotone formula F ′ gives
a monotone formula which ε-approximates f . This formula has size O(2in10.6) = O(2`n10.6).

Case IIb:
w2

i∑n
j=i w2

j
>

ε2

36
for all 1 6 i 6 `. We thus have w2

i >
ε2

36

∑n
j=i w

2
j and hence

∑n
j=i+1 w2

j 6 (1 − ε2

36
)
∑n

j=i w
2
j for i = 1, . . . , `. Hence

n
∑

j=`+1

w2
j 6

(

1 − ε2

36

)` n
∑

j=1

w2
j 6

(

1 − ε2

36

)`

· 36

ε2
(2)

where the last inequality is because we are in Case II.
Let W denote

∑n
j=`+1 w2

j . Since w2
` >

ε2

36

∑n
j=` w2

j , we have w2
` > ε2

36

∑n
j=`+1 w2

j = ε2

36
· W

and hence w1 > w2 > · · · > w` > ε
6

√
W. Note also that by the definition of W we have√

W > w`+1, . . . , wn.
Consider the function g : {+1,−1}n → {+1,−1} defined by g(x1, . . . , xn) = sgn(

∑`
i=1 wixi−

(θ − η)) where η > 0 will be defined later. Clearly g is a monotone function, and since g
depends on only ` variables there is a monotone formula for g of size 2`. Now note that

for x ∈ {+1,−1}n we have g(x) 6= f(x) only if
∣

∣

∣

∑`
i=1 wixi − θ

∣

∣

∣
6 η or

∣

∣

∑n
i=`+1 wixi

∣

∣ > η.

(Suppose that both
∣

∣

∣

∑`
i=1 wixi − θ

∣

∣

∣
> η and

∣

∣

∑n
i=`+1 wixi

∣

∣ 6 η. If
∑`

i=1 wixi − θ > η, then

clearly g(x) = 1, and f(x) must also be 1 since
∑n

i=1 wixi is at most η less than
∑`

i=1 wixi.

If
∑`

i=1 wixi − θ < −η, then we have g(x) = −1 and f(x) must also be −1 since
∑n

i=1 wixi

is at most η more than
∑`

i=1 wixi.) We will bound each of Pr[|
∑`

i=1 wixi − θ| 6 η] and
Pr[|

∑n
i=`+1 wixi| > η] by ε

2
and thus establish Pr[g(x) 6= f(x)] 6 ε.

To bound Pr[|
∑n

i=`+1 wixi| > η] we use Bernstein’s inequality (see e.g. Section 7 of [6]
or Theorem 2.8 of [8]):

Bernstein’s Inequality: Let V1, . . . , Vr be independent random variables with zero means
and bounded ranges |Vi| 6 M. Let V =

∑r
i=1 Vi. Then for every η > 0 we have

Pr[|V | > η] 6 2 exp
[

−η2/(2(Var[V] + Mη))
]

. (3)

5

We will apply (3) to the random variables w`+1x`+1, . . . , wnxn. As noted above we have
|wj| 6

√
W for all j = `+1, . . . , n and moreover Var[V] =

∑n
j=`+1 w2

j = W. Hence we obtain
from Bernstein’s inequality

Pr[|
n

∑

j=`+1

wjxj| > η] 6 2 exp[−η2/(2W + 2
√

Wη)]. (4)

Let η = 3
√

W ln 4
ε
. Since ε < 1

2
we have ln 4

ε
> 1 and hence

η2 = 9W

(

ln
4

ε

)2

> 2W ln
4

ε
+ 6W

(

ln
4

ε

)2

=
(

2W + 2
√

Wη
)

ln
4

ε

so consequently the right side of (4) is less than ε
2
.

It remains to show that Pr[|
∑`

i=1 wixi − θ| 6 η] 6
ε
2
. To establish this we use a bound

which is somewhat different from Theorem 4:1

Theorem 5 Let 0 < b < w1, . . . , wn and let X1, . . . , Xn be independent random variables

such that Xk is wk with probability 1
2

and −wk with probability 1
2
. Let x =

∑n
k=1 Xk. Then

for every λ > 1 and every θ ∈ R, we have Pr[|x − θ| 6 λb] 6
2λ√

n
.

(This theorem can also be derived from results in [8]. We give a simple self-contained

proof due to Benjamini et al. [2] in Appendix B.) We take b = ε
6

√
W and λ =

18 ln 4

ε

ε
so

λb = 3
√

W ln 4
ε

= η. As mentioned earlier we have that w1 > · · · > w` > b, so Theorem 5
gives

Pr[|
∑̀

i=1

wixi − θ| 6 η] 6
36 ln 4

ε

ε
√

`
.

Our choice of ` implies that this bound is at most ε
2
.

Thus we see that the worst case size bound for an ε-approximating monotone formula
for f comes from Case IIa in our analysis, which gives a bound of O(2`n10.6) = n10.6·
poly(2(ln 1

ε
)2ε−4

), and Theorem 3 is proved.

4 Conclusion

In Case I of our proof, we saw that for certain monotone threshold functions we can round the
weights and obtain a low-weight monotone threshold function which is an ε-approximator.
A natural question is whether this technique works in general, i.e. can every monotone
threshold function be approximated by a low-weight monotone threshold function? If one
could show, for example, that any monotone threshold function can be ε-approximated by a
monotone threshold function of weight polynomial in n and exponential in 1

ε
, then this would

give an alternate proof of Theorem 3. While we have not been able to prove such a result,
we can show that in general there does not exist an ε-approximating monotone threshold
function of weight poly(n, 1

ε
):

1We cannot apply Theorem 4 here because η < 1; recall that from the definition of ` and equation (2) we

have W = 2−Ω(ε−2).

6

Claim 6 There is no polynomial p(·, ·) such that every monotone threshold function on n
variables can be ε-approximated by a monotone threshold function of weight p(n, 1

ε
).

Proof: As mentioned in Section 2, H̊astad [9] has given a threshold function h on n variables
which requires weight 2Ω(n log n). Since every threshold function is unate (i.e. can be made
monotone by flipping some coordinate axes) we may take h to be monotone; note that this
does not change its weight. If there were a polynomial p(n, 1

ε
) as described above then by

taking ε = 1
2n+1

we would obtain a monotone threshold function of weight p(n, 2n+1) = 2O(n)

which 1
2n+1

-approximates h. Since |{−1, 1}n| = 2n this approximator must in fact compute
h exactly, contradicting H̊astad’s lower bound on the weight of h.

5 Acknowledgements

Theorem 4 was derived with Ryan O’Donnell; we thank him. We thank Les Valiant for
helpful discussions and suggestions.

References

[1] M. Ajtai, J. Komlos, and E. Szemeredi. An O(n logn) sorting network. Combinatorica,
3(1):1–19, 1983.

[2] I. Benjamini, G. Kalai, and O. Schramm. Noise sensitivity of boolean functions and
applications to percolation. Inst. Hautes Études Sci. Publ. Math., 90:5–43, 1999.

[3] M. Goldmann and M. Karpinski. Simulating threshold circuits by majority circuits.
SIAM Journal on Computing, 27(1):230–246, 1998.

[4] M. Goldmann, J. H̊astad, and A. Razborov. Majority gates vs. general weighted thresh-
old gates. Computational Complexity, 2:277–300, 1992.

[5] M. Grigni and M. Sipser. Monotone complexity, pages 57–75. London Mathematical
Society lecture notes, 1992.

[6] W. Haerdle, H. Liang, and J. Gao. Partially linear models. e-book available at
http://www.quantlet.de/scripts/plm/, 1999.

[7] S. Muroga. Threshold logic and its applications. Wiley-Interscience, New York, 1971.

[8] V. V. Petrov. Limit theorems of probability theory. Oxford Science Publications, Oxford,
England, 1995.

[9] J. H̊astad. On the size of weights for threshold gates. SIAM Journal on Discrete

Mathematics, 7(3):484–492, 1994.

[10] L. Valiant. Short monotone formulae for the majority function. Journal of Algorithms,
5:363–366, 1984.

7

[11] A. Yao. Circuits and local computation. In Proceedings of the Twenty-First Symposium

on Theory of Computing, pages 186–196, 1989.

A Proof of Theorems 4 and 5

Proof of Theorem 4: We first handle the case λ = 1. Define:

p(x) =
2(1 − cos x)

x2
> 0 and h(t) =

{

1 − |t|, |t| 6 1

0, else
.

Elementary integration by parts shows that p(x) is the inverse Fourier transform of h(t); i.e.,

p(x) =

∫ ∞

−∞
e−itxh(t) dt.

By considering the first two terms of the Taylor series for cos x, we see that p(x) >
11
12

on
[−1, 1]. Hence:

Pr[|x − θ| 6 1] = E
x
[1x∈[θ−1,θ+1]]

6
12
11

E[p(x − θ)]

= 12
11

E
[

∫ ∞

−∞
e−it(x−θ)h(t) dt

]

=
12

11

∫ ∞

−∞
E[e−itxeitθh(t)] dt

=
12

11

∣

∣

∣

∫ ∞

−∞
eitθh(t)E[e−itx] dt

∣

∣

∣
(5)

6
12

11

∫ 1

−1

∣

∣E[e−itx]
∣

∣ dt, (6)

with (5) following because the quantity is already real and nonnegative, and (6) following
because |eitθ| 6 1, h(t) = 0 outside [−1, 1], and |h(t)| 6 1 otherwise. Now observe that

E
x
[e−itx] = E

x1←X1,...,xn←Xn

[exp(−it
n

∑

k=1

xk

)

]

= E
x1←X1,...,xn←Xn

[

n
∏

k=1

exp(−itxk)
]

=

n
∏

k=1

E
xk←Xk

[exp(−itxk)] (7)

=

n
∏

k=1

(1
2
exp(−itwk) + 1

2
exp(itwk))

=

n
∏

k=1

cos(wkt)

8

where equation (7) is by independence. By comparing Taylor expansions, we find that
cos u 6 exp(−u2/2) on the interval [−1, 1]. Since wk 6 1 for all i, we may conclude that:

Pr[|x − θ| 6 1] 6
12

11

∫ 1

−1

n
∏

k=1

exp(−w2
kt

2/2) dt

=
12

11

∫ 1

−1

exp(−t2/2(‖w‖−1
2)2) dt

6
12

11

∫ ∞

−∞
exp(−t2/2(‖w‖−1

2)2) dt

=
√

2π(12
11

)‖w‖−1
2

since (
√

2πσ)−1 exp(−t2/2σ2) is a probability density function for every positive σ. Since we
have made no assumptions about θ anywhere in the proof, this establishes that for every
θ′ ∈ R we have Pr[|x − θ′| 6 1] < 3

‖w‖2 .

For the general case fix any λ > 1 and any θ ∈ R; we must bound Pr[x ∈ [θ − λ, θ + λ]].
For any integer j > 1, by taking θ′ = θ − λ + (2j − 1) in the case we have already proved,
we have that Pr[x ∈ [θ − λ + (2j − 2), θ − λ + 2j]] < 3

‖w‖2 . Taking a union bound over

j = 1, 2, . . . , dλe, we have that Pr[x ∈ θ − λ, θ − λ + 2dλe] < 3dλe
‖w‖2 . Since −λ + 2dλe > λ and

dλe < 2λ, we have Pr[x ∈ θ − λ, θ + λ] < 6λ
‖w‖2 and the theorem is proved.

Proof of Theorem 5: As in the previous proof, we first prove the case λ = 1 and then use
this case to establish the general theorem.

The distribution of x as described in the theorem is easily seen to be identical to the
distribution obtained via the following process:

1. Choose a random permutation π on {1, . . . , n}.

2. Choose an integer ` ∈ {0, 1, . . . , n} according to the binomial distribution B(n, 1
2
).

3. Set x to
∑`

i=1 wπ(i) −
∑n

i=`+1 wπ(i).

Let W (π, `) denote
∑`

i=1 wπ(i) −
∑n

i=`+1 wπ(i). Note that W (π, `) increases with ` for each π.
Fix any θ ∈ R. Consider any fixed permutation π. Since each wi is greater than b, we have

W (π, i+1) > W (π, i)+2b for all i, and hence there is exactly one value ` ∈ {0, 1 . . . , n} such
that |W (π, `) − θ| 6 b. Hence for any fixed π we have that Pr[|W (π, `) − θ| 6 b] is at most

maxk=0,1,...,n Pr[` = k]. Since ` is drawn from B(n, 1
2
) this is at most

(

n
dn/2e

)

2−n 6

√

2
πn

< 4
5
√

n
.

Averaging over all choices of π, we find that Pr[|x − θ| 6 b] 6
4

5
√

n
.

For the general case of arbitrary λ > 1, the same argument and analysis as in the last
paragraph of the proof of Theorem 4 using a union bound proves the theorem.

9

