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ABSTRACT
We give new upper and lower bounds on the degree of real

multivariate polynomials whih sign-represent Boolean fun-

tions. Our upper bounds for Boolean formulas yield the �rst

known subexponential time learning algorithms for formu-

las of superonstant depth. Our lower bounds for onstant-

depth iruits and intersetions of halfspaes are the �rst

new degree lower bounds sine 1968, improving results of

Minsky and Papert. The lower bounds are proved onstru-

tively; we give expliit dual solutions to the neessary linear

programs.
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1. INTRODUCTION
Let f be a Boolean funtion f : f�1; 1g

n

! f�1; 1g and

let p be a degree d multilinear polynomial in n variables

with real oeÆients. If the sign of p(x) equals f(x) for

every x 2 f�1; 1g

n

; then we say that f is omputed by a

polynomial threshold funtion of degree d; equivalently we

say that p sign-represents f:

�
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Polynomial threshold funtions are an interesting and nat-

ural representation for Boolean funtions whih have many

appliations in omplexity theory and learning theory, see,

e.g., [2, 5, 6, 4, 22, 14, 13℄. Positive results showing that

funtions have low degree polynomial threshold funtions

an be used to obtain eÆient learning algorithms via linear

programming; see, e.g., [14, 13℄. Negative results showing

that a funtion requires threshold polynomials of large de-

gree and/or large oeÆients an be used to obtain orales

separating PP from smaller lasses; see, e.g., [5, 25℄.

In this paper we give new upper and lower bounds on

polynomial threshold funtion degree for several interesting

and natural lasses of funtions whih have been previously

onsidered (but not resolved) in the literature. It seems

likely that both the upper and lower bound tehniques we

use will prove useful for broader lasses of funtions.

1.1 Previous work
The study of polynomial threshold funtions began with

Minsky and Papert in their 1968 book on pereptrons [18℄.

Minsky and Papert gave three lower bounds on the degree

of polynomial threshold funtions:

� Any polynomial threshold funtion whih omputes

parity on n variables must have degree at least n: This

result has sine been reproved many times, see, e.g.,

[2, 7℄.

� Any polynomial threshold funtion whih omputes a

partiular linear-size CNF formula, the \one-in-a-box"

funtion on n variables, must have degree 
(n

1=3

): By

Boolean duality this lower bound also holds for a or-

responding DNF formula.

� Any polynomial threshold funtion whih omputes

the AND of two majorities eah on n variables must

have degree !(1):

Despite the fat that many researhers in learning the-

ory and omplexity theory have studied polynomial thresh-

old funtions, relatively little progress has been made on

improving these lower bounds sine 1968. In partiular,

Vereshhagin [25℄ has a lower bound for a promise-problem

extension of one-in-a-box and Beigel [5℄ has a lower bound

for a ertain linear threshold funtion; however, both of

these show degree lower bounds for polynomial threshold

funtions only under the added assumption that the poly-

nomials have small integer oeÆients. (Krause and Pudlak



[15℄ have given lower bounds on the number of nonzero oef-

�ients whih must be present in any polynomial threshold

funtion for a partiular depth-3 Boolean iruit, but their

lower bounds are not strong enough to imply new lower

bounds on polynomial threshold funtion degree.) More

progress has been made on upper bounds; Beigel, Reingold,

and Spielman [6℄ proved that there is a polynomial threshold

funtion of degree O(log n) whih omputes the AND of two

n-bit majorities. More reently, Klivans and Servedio [14℄

showed that any polynomial-size DNF formula (equivalently,

CNF formula) has a polynomial threshold funtion of de-

gree O(n

1=3

log n), and Klivans et al. [13℄ showed that any

Boolean funtion of a polylogarithmi number of halfspaes

with quasipolynomially-bounded weights has a polynomial

threshold funtion of polylogarithmi degree.

1.2 Our results
We give new upper and lower bounds on polynomial thresh-

old funtions for several interesting and natural lasses of

funtions. Our main results are:

� We prove that any Boolean formula of depth d and

size s is omputed by a polynomial threshold fun-

tion of degree

p

s(log s)

O(d)

: This gives us the �rst

known upper bound for Boolean formulas of super-

onstant depth. In partiular, any Boolean formula

of size o(n

2

) and depth o(

log n

log log n

) has a polynomial

threshold of nontrivial (sublinear) degree. We use our

upper bound to provide the �rst known subexponential

learning algorithm for suh formulas. Note that sine

parity on

p

s variables an be omputed by a formula

of size s; the best possible degree upper bound whih

depends only on s is

p

s:

� We give an 
(

log n

log logn

) lower bound on the degree of

any polynomial threshold funtion whih omputes the

AND of two n-bit majorities. Equivalently, this lower

bound holds for the degree of any bivariate real poly-

nomial p(x; y) whih is positive on the lattie points

in the upper-right quadrant with oordinates bounded

by n, and is negative on the lattie points in the other

three quadrants with oordinates bounded in magni-

tude by n. This result (and our next) is the �rst new

unonditional lower bound for polynomial threshold

degree sine 1968; it improves on Minsky and Papert's

lower bound of !(1) and nearly mathes the O(log n)

upper bound of Beigel, Reingold and Spielman.

� We prove an \XOR lemma" for polynomial thresh-

old funtion degree and use this lemma to obtain an


(n

1=3

log

2d=3

n) lower bound on the degree of an ex-

pliit Boolean iruit of polynomial size and depth

d + 2: This is the �rst improvement on Minsky and

Papert's 
(n

1=3

) lower bound for any onstant-depth

iruit.

1.3 Our techniques
Perhaps surprisingly, our lower bounds are ahieved on-

strutively. The question of whether a given funtion has

a polynomial threshold funtion of degree d an be formu-

lated as the feasibility question for a ertain linear program.

By duality, we an show the linear program is infeasible |

and hene the funtion has polynomial threshold degree ex-

eeding d | by showing that the dual linear program is fea-

sible. We onstrut expliit dual solutions. (Interestingly,

Vereshagin's lower bound [25℄ involves showing that a er-

tain linear program is feasible by expliitly demonstrating

the infeasibility of the dual.)

Our upper bounds build on ideas from [14, 13℄ and use

tools from real approximation theory.

1.4 Organization
Setion 2 gives preliminaries on polynomial threshold fun-

tions and desribes the duality tehnique we use for our

lower bounds. In Setion 3 we give our upper bounds for

Boolean formulas and the appliation to learning. In Se-

tion 4 we prove our XOR lemma for polynomial threshold

funtions using the duality tehnique, and use this lemma

to obtain new lower bounds for onstant depth iruits. In

Setion 5 we apply the lower bound tehnique to prove our


(

log n

log log n

) lower bound for the AND of two majorities. Fi-

nally, in Setion 6 we make some onjetures and sketh

possible future appliations of our upper and lower bound

tehniques.

2. PRELIMINARIES
We make the following standard de�nitions of sign-

representing polynomials (see [2℄). Let f : f�1; 1g

n

!

f�1; 1g be a Boolean funtion. Let p : f�1; 1g

n

! R be

a multilinear polynomial of degree at most n whih is not

identially 0. De�ne the support of p to be the set of mono-

mials S � 2

[n℄

on whih p has nonzero oeÆients.

Definition 1. We say that p weakly (sign-)represents

f if f(x) = sgn(p(x)) for all x suh that p(x) 6= 0. If

p(x) 6= 0 for every x 2 f�1; 1g we say that p strongly (sign-)

represents (or simply (sign-)represents) f . We let thr(f)

denote the minimum degree of a polynomial strongly rep-

resenting f , and thr

w

(f) denote the minimum degree of a

polynomial weakly representing f .

On oasion we will view the domain of f as f0; 1g

n

in-

stead of f�1; 1g

n

; it is easy to see that this does not hange

the degree of any sign-representing polynomial.

There is a sense in whih sign-representing polynomials

are equivalent to distributions over f�1; 1g

n

.

Definition 2. We all a map w : f�1; 1g

n

! R

�0

whih

is not identially 0 a distribution. The set of points fx :

w(x) 6= 0g is alled the support of w. If the support of w is

all of f�1; 1g

n

we all w a total distribution. If

P

x2f�1;1g

n

w(x) = 1 we all w a probability distribution.

If w is a map w : f�1; 1g

n

! R, not identially 0, whih

takes on at least one negative value, we all w an improper

distribution. Given a monomial x

S

, S � [n℄, we say that

the orrelation of x

S

with f under w is E

w

[f(x)x

S

℄ :=

P

x2f�1;1g

n

f(x)x

S

w(x). (Here x

S

denotes

Q

i2S

x

i

.)

Notie that multilinear polynomials of degree at most n

are given by vetors of 2

n

real oeÆients. Improper dis-

tributions too are given by vetors of 2

n

real weights. The

onnetion between sign-representations and distributions is

this:

Proposition 3. For any Boolean funtion f : f�1; 1g

n

!

f�1; 1g, there is an (orthogonal) linear bijetion A

f

between

weak representations of f and distributions. If p and w are

in orrespondene then p(x) = jw(x)j and hene strong rep-

resentations are in bijetive orrespondene with total dis-

tributions. Further, the S oeÆient of p is proportional to



the orrelation of x

S

with f under w. Hene p is supported

on S i� f has zero orrelation with x

S

under w for every

monomial S 62 S. (Finally, sign-representations whih make

mistakes orrespond to improper distributions.)

Proof. The bijetion maps olumn vetors of polynomial

oeÆients indexed by monomials S � [n℄ to olumn vetors

of distribution weights indexed by points x 2 f�1; 1g

n

. The

map is given by the matrix A

f

with rows indexed by x 2

f�1; 1g

n

and olumns indexed by monomials S � [n℄; the

entry A

f

[x; S℄ is equal to f(x)x

S

. This matrix is orthogonal,

being a Hadamard matrix.

Our main tool for proving polynomial threshold degree

lower bounds is the following so-alled \Theorem of the Al-

ternative." It an be proved immediately using linear pro-

gramming duality, as was essentially done by Aspnes et al.

in [2℄; a ompletely di�erent proof based on the distribu-

tion perspetive an be given by ombining the \Disrimi-

nator Lemma" of [11℄ with the learning-theoreti tehnique

of boosting, see [9, 10℄.

Theorem 4. Let f : f�1; 1g

n

! f�1; 1g be a Boolean

funtion. Let S � 2

[n℄

be any set of monomials. Then ex-

atly one of the following holds:

� f has a strong representation with support in S; or,

� f has a weak representation with support in 2

[n℄

n S.

Given the equivalene of sign-representations and distri-

butions, there are three other ways of restating Theorem 4.

We will need one more:

Theorem 5. Let f : f�1; 1g

n

! f�1; 1g be a Boolean

funtion. Let S � 2

[n℄

be any set of monomials. Then ex-

atly one of the following holds:

� f has a strong representation with support in S; or,

� there is a distribution on f�1; 1g

n

under whih f has

zero orrelation to every monomial in S.

3. UPPER BOUNDS FOR BOOLEAN FOR-
MULAS

In this setion we onsider Boolean formulas omposed of

NOT gates and unbounded fan-in AND and OR gates. The

depth of a formula is the length of the longest path from the

root to any leaf, and the size is the number of ourrenes

of variables.

We will also onsider variants of polynomial threshold

funtions in whih the polynomial is subjet to a striter

requirement than just sign-representing f: Following Nisan

and Szegedy [20℄, we write

g

deg(f) to denote the minimum

degree of any polynomial whih approximates f to within

1=3 on all inputs; i.e., suh a polynomial p(x) must satisfy:

8x 2 f0; 1g

n

jf(x)� p(x)j �

1

3

:

Clearly we have

g

deg(f) � thr(f) for all f: We write jp�f j

1

to denote max

x2f0;1g

n

jp(x) � f(x)j: Thus if jp � f j

1

�

1

3

we have deg(p) �

g

deg(f) � thr(f):

We prove two similar theorems bounding the polynomial

threshold degree of Boolean formulas:

Theorem 6. Let f be omputed by a Boolean formula of

depth d and size s: Then there is a polynomial p(x

1

; : : : ; x

n

)

of degree at most 2

O(d)

(log s)

5d=2

p

s suh that jp�f j

1

�

1

s

:

Theorem 7. Let f be omputed by a Boolean formula of

depth d and size s: Then there is a polynomial p(x

1

; : : : ; x

n

)

of degree at most 2

O(d)

(log s)

5d

s

1

2

�

1

2

d+1

�2

suh that

sgn(p(x)) = f(x):

The proof tehnique in both ases is to �rst manipulate

the formula to get a more strutured form, and then to apply

real approximating funtions (Chebyshev polynomials, the

rational funtions of [6℄) at eah gate.

Some preliminary notes: Throughout this setion we let

0 represent FALSE and 1 represent TRUE, and thus we

view Boolean funtions as mappings from f0; 1g

n

to f0; 1g:

Without loss of generality we may assume that our formulas

ontain no NOT gates; i.e., they onsist only of AND and

OR gates. This is beause any negations in a formula F

an be pushed to the leaves using DeMorgan's laws with no

inrease in size or depth. One all negations are at the leaves

we an replae eah negated variable :x

i

with a variable y

i

to obtain a formula F

0

whih has no negations. Given a

polynomial whih sign-represents or approximates F

0

; we

an obtain a orresponding polynomial for F by replaing

eah y

i

with 1� x

i

; and this will not inrease the degree.

3.1 Proof of Theorem 6
Heneforth the variables 

1

; 

2

; : : : refer to �xed universal

onstants.

Theorem 6 Let f be omputed by a Boolean formula of

depth d and size s: Then there is a polynomial p(x

1

; : : : ; x

n

)

of degree at most 

d

1

(log s)

5d=2

p

s suh that jp� f j

1

�

1

s

:

We will use the following lemma:

Lemma 8. Let f =

V

`

i=1

f

i

be a Boolean formula where

` � 2: For 1 � i � ` let p

i

be a polynomial with deg(p

i

) � r

suh that jp

i

� f

i

j

1

� �; where 0 < � <

1

8`

: Then there is a

polynomial p with deg(p) � (4

p

` log

1

�

)r suh that jp�f j

1

�

(

2

` log

1

�

)�:

Proof. The following onvention will be useful: for P a

polynomial we write \P (x) 2

f

([a; b℄; [; d℄)" as shorthand

for

\8x 2 f0; 1g

n

: if f(x) = 0 then P (x) 2 [a; b℄

and if f(x) = 1 then P (x) 2 [; d℄:"

Thus by assumption we have p

i

(x) 2

f

i

([��; �℄; [1� �; 1+ �℄)

for eah i:

Let P (x) denote p

1

(x)+ � � �+p

`

(x)+`�: It is easy to verify

that we have

P (x) 2

f

([0; `� 1 + 2`�℄; [`; `+ 2`�℄):

Let Q(x) denote P (x)=(`� 1 + 2`�): We then have

Q(x) 2

f

([0; 1℄; [1 +

1� 2`�

`� 1 + 2`�

; 1 +

1

`� 1 + 2`�

℄):

Let k =

1�2`�

`�1+2`�

:We an rewrite and say Q(x) 2

f

([0; 1℄; [1+

k; 1 + k +

2`�

`�1+2`�

℄): Sine

2`�

`�1+2`�

<

2`�

`�1

� 4� we have

Q(x) 2

f

([0; 1℄; [1 + k; 1 + k + 4�℄):

Reall that the Chebyshev polynomial of the �rst kind

C

d

(t) is a univariate polynomial of degree d: The following



fat is straightforward to prove; we omit the proof from this

extended abstrat.

Fat 9. For all d � 1 we have:

1. C

d

(t) 2 [�1; 1℄ for t 2 [0; 1℄:

2. Let t

d

denote C

d

p

de

(1 + 1=d): Then t

d

> 2:

3. For all 0 < � <

1

d

we have C

d

p

de

(1 + 1=d + � ) 2

[t

d

; t

d

+ 26d� ℄:

Let R(x) denote C

dk

�1=2

e

(Q(x)): Sine 4� <

1

2`

< k; by

parts 1 and 3 of Fat 9 we have thatR(x) 2

f

([�1; 1℄; [t

k

; t

k

+

104�

k

℄): Let S(x) denote (

1

t

k

R(x))

dlog

1

�

e

: Using part 2 of Fat

9 we �nd that S(x) 2

f

([��; �℄; [1; (1+

104�

t

k

k

)

dlog

1

�

e

℄):We now

use the fat that �

r

� 1�(1��)r for all 0 � r � 1 and � > 0

(this an be proved using a simple onvexity argument). We

thus �nd that

�

1 +

104�

t

k

k

�

dlog

1

�

e

� 1 +

104�dlog

1

�

e

t

k

k

� 1 +

208 log

1

�

t

k

k

�:

Using our bounds on t

k

and k, this is at most 1+(

2

` log

1

�

)�

as desired.

It remains only to bound deg(S): From our onstru-

tion it is lear that deg(S) � r � dk

�1=2

e � dlog

1

�

e: We have

that dk

�1=2

e � d

p

2`e � 2

p

` and dlog

1

�

e < 2 log

1

�

: Thus

deg(S) � 4r

p

` log

1

�

and the lemma is proved.

It is easy to see that an idential result holds if f =

W

`

i=1

f

i

; i.e. f 's top-level gate is an OR instead of an AND.

The following lemma is now easy to establish:

Lemma 10. Let f be omputed by a Boolean formula F

of depth d and size s: Suppose that for any path from the

root of F to a leaf, the produt of the fanins of the gates

on the path is at most t: Then there is a polynomial p with

deg(p) � (

3

log s)

d

p

t suh that jp� f j

1

�

1

s

:

Proof. Note �rst that for any Boolean formula of size s;

there is a multilinear interpolating polynomial whih om-

putes the formula exatly and is of degree at most s: Con-

sequently if (

3

log s)

d

p

t � s the lemma is trivially true, so

we assume that (

3

log s)

d

p

t < s:

Consider the formula F: Eah leaf ontains some variable

x

i

; so learly there is a degree-1 polynomial whih exatly

omputes the funtion at eah leaf. Now apply Lemma 8

suessively to every gate in F; going up from the leaves to

the root. At eah leaf we may take � in Lemma 8 to be

any positive value; we take � =

1

s

3

: Eah time we go up

through a gate of fanin ` the value of � whih we may use

in Lemma 8 is multiplied by at most 

2

` log(s

3

) = 

3

` log s:

An easy indution on the depth of F shows that at the root

we obtain a polynomial p suh that

deg(p) � (4 log(s

3

))

d

p

t < (

3

log s)

d

p

t

and

jp� f j

1

�

1

s

3

� (

3

log s)

d

t <

1

s

3

� s

2

=

1

s

as desired.

With Lemmas 8 and 10 in hand, in order to prove Theo-

rem 6 it suÆes to bound the produt of the fanins on any

path from the root to a leaf. In an arbitrary formula this

produt an be quite large; it is easy to onstrut a formula

of size s and depth d in whih there is a path omposed of

d gates eah of fanin

s

d

: Thus in general this produt an be

as large as (

s

d

)

d

; however we an remedy this situation as

desribed below.

Lemma 11. Let F be a formula of size s and depth d:

There is a formula G of size s and depth 2d omputing the

same funtion as F suh that the produt of the fanins on

any root-to-leaf path in G is at most (4 log s)

d

s:

Proof. We prove the following slightly stronger state-

ment: for any formula F of size s and depth d; there is a

formula G of size s and depth 2d omputing F suh that

the produt of the fanins on any root-to-leaf path in G is at

most (2dlog se)

d

s: The lemma follows sine 2 log s � dlog se

for all s:

The proof is by indution on d: For d = 0 the formula

must be a single variable so s = 1 and the laim is trivially

true. Suppose without loss of generality that F =

V

`

i=1

F

i

where ` � 2; eah F

i

has depth at most d� 1; and the sum

of the sizes of F

1

; : : : ; F

`

is s: Let jF

i

j denote the size of

F

i

: We partition the formulas F

1

; : : : ; F

`

into disjoint lasses

C

1

; : : : ; C

dlog se

where the lass C

j

ontains exatly those F

i

suh that 2

j�1

� jF

i

j < 2

j

: By the indution hypothesis eah

formula F

i

2 C

j

has an equivalent formula G

i

of size jF

i

j and

depth at most 2d�2 suh that the produt of the fanins along

any root-to-leaf path in G

i

is at most (2dlog se)

d�1

jF

i

j <

2

d+j�1

dlog se

d�1

: Let G =

V

dlog se

j=1

H

j

where the formula H

j

is de�ned as H

j

=

V

i:F

i

2C

j

G

i

:

To see that this works, �rst observe that eah C

j

ontains

at most s=2

j�1

formulas F

i

: Thus the fanin at the root of H

j

is at most s=2

j�1

; and hene the produt of the fanins along

any path in H

j

is at most 2

d

sdlog se

d�1

: Thus the produt

of the fanins along any path in G is at most (2dlog se)

d

s as

desired and the lemma is proved.

Theorem 6 follows from ombining Lemmas 10 and 11.

3.2 Proof of Theorem 7
Reall Theorem 7:

Theorem 7 Let f be omputed by a Boolean formula of

depth d and size s: Then there is a polynomial p(x

1

; : : : ; x

n

)

of degree at most 

d

4

(log s)

5d

s

1

2

�

1

2

d+1

�2

suh that sgn(p(x)) =

f(x):

This bound is asymptotially superior to the one in The-

orem 6, for any onstant d. However, Theorem 7 only pro-

dues a polynomial whih sign-represents the formula's val-

ues, not one that losely approximates them. The proof of

Theorem 7 builds on the proof of Theorem 6 and uses the

rational funtions onstruted by Beigel et al. [6℄ for ap-

proximating the sgn funtion. We omit the proof from this

extended abstrat.

3.3 Discussion
In earlier work Klivans and Servedio [14℄ showed that

any Boolean formula of onstant depth d and size s has a

polynomial threshold funtion of degree

~

O(s

1�

1

3�2

d�3

): For

even moderately large onstant values of d, this bound is

not far from the trivial upper bound of s: In ontrast, our

new bounds are onsiderably stronger. Theorem 7 gives an



o(s

1=2

) bound for some d = 
(log log s); and Theorems 6

and 7 both give a bound of O(s

1=2+�

) for any d = o(

log s

log log s

):

To our knowledge Theorems 6 and 7 are the �rst nontrivial

upper bounds on polynomial threshold funtion degree for

formulas of superonstant depth.

In other earlier work, Buhrman, Cleve and Wigderson

[3℄ gave an O(s

1=2

log

d�1

(s)) upper bound on the degree of

polynomials that approximate (in the sense of Theorem 6)

ertain Boolean formulas of size s and depth d. Their bound

applies only to \balaned formulas," namely to formulas in

whih all of the gates at any given depth have the same fanin

(the fanin an be di�erent for gates at di�erent depths). Our

Theorem 6 thus generalizes their bound on the degree of ap-

proximating polynomials to a substantially broader lass of

formulas. The motivation for the upper bounds of Buhrman

et al. was to obtain upper bounds on the bounded-error

quantum omplexity of prediates orresponding to balaned

formulas. Our Theorem 6 immediately implies orrespond-

ing upper bounds on the bounded-error quantum omplex-

ity of a broader lass of prediates orresponding to general

formulas.

1

3.4 Learning Boolean formulas of supercon-
stant depth in subexponential time

We lose this setion by desribing some onsequenes of

our results in omputational learning theory. It is known

(see [14, 13℄) that if a lass C of Boolean funtions has

thr(f) � r for all f 2 C; then C an be learned in time

n

O(r)

in either of two well-studied and demanding learning

models, the Probably Approximately Corret (PAC) model

of learning from random examples [12, 24℄ and the online

model of learning from adversarially generated examples [1,

16℄. Thus our polynomial threshold funtion upper bounds

from Theorems 6 and 7 immediately give a range of new

subexponential time learning results for various lasses of

Boolean formulas. For example, we immediately obtain:

Theorem 12. The lass of linear-size Boolean formulas

of depth o(

log n

log log n

) an be learned in time 2

n

1=2+�

for all

� > 0:

This is the �rst subexponential time learning algorithm for

linear size formulas of superonstant depth.

We emphasize that the PAC learning results whih fol-

low from our upper bounds hold for the general PAC model

of learning from random examples whih are drawn from

an arbitrary probability distribution over f0; 1g

n

: This is in

ontrast with many results in learning theory (suh as the

quasipolynomial time algorithm of Linial et al. [17℄ for learn-

ing onstant-depth iruits) whih require the random exam-

ples to be drawn from the uniform distribution on f0; 1g

n

:

4. AN XOR LEMMA FOR PTF DEGREE
Let f be any Boolean funtion f�1; 1g

n

! f�1; 1g de�ned

on variables x

1

; : : : ; x

n

and let g be any Boolean funtion

f�1; 1g

n

! f�1; 1g de�ned on variables y

1

; : : : ; y

n

: Let f �

1

We note in passing that an easy argument shows that any

balaned formula of size s has a polynomial threshold fun-

tion approximator of degree at most s

1=2

; the proof is based

on the observation that either the produt of the odd-depth

fanins or the even-depth fanins in any balaned formula must

be at most s

1=2

.

g denote the XOR (parity) of f and g: We will prove the

following \XOR lemma:"

Theorem 13. Let f and g be Boolean funtions on dis-

joint sets of variables. Then thr(f � g) = thr(f) + thr(g):

We note that Theorem 13 is similar in spirit (though inom-

parable) to a reent result of Sieling [23℄ whih shows that

DT (f � g) = DT (f) �DT (g); where DT (f) is the minimum

deision tree size of f:

Proof of Theorem 13: The upper bound is easy; if p

f

(x) is

a strong sign-representation of f of degree thr(f) and p

g

(y)

is a strong sign-representation of g with degree thr(g) then

p

f

(x)p

g

(y) is easily seen to be a strong sign-representation

of f � g, and deg(p

f

(x)p

g

(y)) = thr(f) + thr(g).

For the lower bound, sine f has no strong representation

on the set of monomials of degree stritly less than thr(f),

Theorem 4 tells us that f has a weak representation q

f

(x)

supported on the monomials x

S

with jSj � thr(f). Simi-

larly, g has a weak representation q

g

(y) supported on the

monomials y

T

with jT j � thr(g). Now q

f

(x)q

g

(y) is a weak

representation of f � g; in partiular, it is not identially

zero beause there is at least one x for whih q

f

(x) 6= 0 and

at least one y for whih q

g

(y) 6= 0, so q

f

(x)q

g

(y) 6= 0 for

these inputs. Note that q

f

(x)q

g

(y) is supported on the set

of monomials whih have degree at least thr(f) in x and

at least thr(g) in y. Applying Theorem 4 again we on-

lude that any strong representation for f � g must use

some monomial with degree at least thr(f) in x and at

least thr(g) in y; this is more than suÆient to prove that

thr(f � g) � thr(f) + thr(g).

For f a Boolean funtion let �

k

f denote the XOR of k

opies of f on disjoint sets of variables. From Theorem 13

we obtain:

Corollary 14. thr(�

k

f) = k � thr(f):

This orollary thus inludes Minsky and Papert's lower bound

of n for the parity funtion as a speial ase.

Corollary 14 also yields the following lower bound for on-

stant depth iruits:

Theorem 15. For all d � 1 there is an AND/OR/NOT

iruit C of depth d+2 and size poly(n) whih has polynomial

threshold funtion degree 
(n

1=3

(log n)

2d=3

):

Proof. The iruit C omputes the parity of (log n)

d

dis-

joint opies of Minsky and Papert's \one-in-a-box" funtion,

where eah one-in-a-box funtion is de�ned on n=(log n)

d

variables. It is well known that for any onstant d; parity

on (log n)

d

variables an be omputed by an AND/OR/NOT

iruit of depth d+1 and size poly(n): Sine the one-in-a-box

funtion on n=(log n)

d

variables is a depth-2 iruit of size

O(n=(log n)

d

); by substituting the appropriate one-in-a-box

funtion for eah input to the parity we see that C is a iruit

of poly(n) size and depth d+2 (we save one on depth by ol-

lapsing gates of the same kind on the next to bottom layer).

By Minsky and Papert's lower bound, we know that any

polynomial threshold funtion for one-in-a-box on n=(log n)

d

variables must have degree 
((n=(log n)

d

)

1=3

): Consequently

Corollary 14 implies that thr(C) = 
(n

1=3

(log n)

2d=3

) and

the theorem is proved.



In fat, we an atually give an alternate proof of Min-

sky and Papert's lower bound for one-in-a-box by using our

lower bound of tehnique of applying the Theorem of the Al-

ternative (Theorem 5) and onstruting the neessary distri-

bution expliitly. The proof will appear in the �nal version

of this extended abstrat.

Theorem 15 is of interest sine it gives the �rst !(n

1=3

)

lower bound for any funtion in AC

0

:We note that Theorem

15 also shows that the n

1=3

log n upper bound of Klivans and

Servedio for depth-2 AC

0

iruits does not hold for depth-4

AC

0

:

5. A LOWER BOUND FOR THE AND OF
TWO MAJORITIES

Let n be odd, and let AND-MAJ

n

: f�1; 1g

n

�f�1; 1g

n

!

f�1; 1g be the funtion whih on input (x; y), x; y 2 f�1; 1g

n

,

outputs 1 if both MAJ

n

(x) = 1 and MAJ

n

(y) = 1. Here

MAJ

n

is the majority funtion on n bits, x 7! sgn(

P

n

i=1

x

i

).

In this setion we show that thr(AND-MAJ

n

) = 
(

logn

log logn

),

improving on the !(1) lower bound of Minsky and Papert.

Note that O(log n) is an upper bound, by Beigel, Reingold,

and Spielman [6℄.

We begin by applying a simple symmetrization due to

Minsky and Papert. Suppose p is a polynomial threshold

funtion for AND-MAJ

n

where n is odd. Let Z

odd

n

denote

the set f�n;�(n � 2); : : : ;�1; 1; : : : ; n � 2; ng � Z. Let

AND-sgn

n

: Z

odd

n

� Z

odd

n

! f�1; 1g be the funtion whih

on input (x; y) is 1 i� x > 0 and y > 0. Minsky and Papert

show:

Claim 16. There exists a polynomial threshold funtion

for AND-MAJ

n

of degree d if and only if there exists a bivari-

ate polynomial of degree d whih sign-represents AND-sgn

n

.

It follows that if we prove a lower bound on the degree

of a bivariate polynomial whih sign-represents AND-sgn

n

,

we get a lower bound on thr(AND-MAJ

n

). Following Theo-

rem 5, we shall show that there is a probability distribution

over Z

odd

n

� Z

odd

n

under whih every bivariate monomial of

degree at most d = 
(

log n

log log n

) has zero orrelation with

AND-sgn

n

. To see that this is enough, suppose that ~q is a

bivariate polynomial of degree d sign-representing AND-sgn

n

and w is a probability distribution over Z

odd

n

� Z

odd

n

with

the stated property. Then on one hand,

E

w

[AND-sgn

n

(x; y)~q(x; y)℄ = 0;

by linearity of expetation, sine eah monomial in ~q has zero

orrelation with AND-sgn

n

under w. But on the other hand,

sine ~q strongly sign-represents AND-sgn

n

,

AND-sgn

n

(x; y)~q(x; y) > 0 for all (x; y), hene,

E

w

[AND-sgn

n

(x; y)~q(x; y)℄ > 0;

whih gives a ontradition.

The problem is now set up to our satisfation. Fix an

integer d. We shall try to �nd a support (set of points)

Z � Z

odd

�Z

odd

and a probability distribution w over these

points suh that AND-sgn

n

has zero orrelation under w

with every monomial x

i

y

j

of total degree at most d. That

is, we want w : Z ! R

�0

with

P

z2Z

w(z) = 1 suh that:

8 0 � i + j � d;

E

w

[f(x; y) x

i

y

j

℄ =

X

(x;y)2Z

w(x; y)f(x; y) x

i

y

j

= 0:

In addition we would like to �nd a solution in whih size(Z)

is as small as possible, where size(Z) is de�ned to be

max

(x;y)2Z

fmaxfjxj; jyjgg. One we have suh a Z and w,

we get a lower bound of d + 1 for the degree of a polyno-

mial threshold funtion omputing AND-MAJ

size(Z)

. In the

remainder of this setion we give a onstrution in whih

size(Z) = d

O(d)

: This gives us the main result of this se-

tion:

Theorem 17. thr(AND-MAJ

n

) = 
(

log n

log log n

):

5.1 Proof of Theorem 17
Our onstraints are all bivariate monomials x

i

y

j

of total

degree at most d. We will refer to x

i

y

j

as the \(i; j) on-

straint monomial." There are a total of D =

(d+1)(d+2)

2

onstraint monomials, and for de�niteness we will onsider

them to be ordered as follows: 1, x, y, x

2

, xy, y

2

, x

3

, et.

Our support will be:

Z = f((�1)

`

h

k

; (�1)

k

h

`

) : 0 � k + ` � dg [ f(�1;�1)g;

where here h is a large quantity to be hosen later (eventu-

ally we will take h = �(d

9

)). The support Z is symmetri

about the line y = x and ontains exatly D + 1 points.

We will refer to ((�1)

`

h

k

; (�1)

k

h

`

) as the \(k; `) sup-

port point" and onsider the points to be ordered in the

same order as the monomials (i.e., (1; 1), (h;�1), (�1; h),

(h

2

; 1), (�h;�h), (1; h

2

), (h

3

;�1), et.), with the speial

point (�1;�1) oming last. Note that the value of f on the

(k; `) support point is (�1)

k`+k+`

.

Let

~

A be a D�(D+1) matrix whose olumns are indexed

by the support points and whose rows are indexed by the

onstraint monomials. De�ne

~

A[(i; j); (k; `)℄ to be the value

of the (i; j)th onstraint monomial at the (k; `)th support

point, times the value of f at the (k; `)th support point.

This de�nition shall inlude the ase of the speial (�1;�1)

support point, to whose olumn we assign the index (0

0

; 0

0

)

for reasons that will beome lear soon. Let A be the (D +

1) � (D + 1) matrix given by adding a row of 1's to the

bottom of

~

A. For notational onveniene we will also give

this row the index (0

0

; 0

0

). So for (i; j); (k; `) 6= (0

0

; 0

0

) we

have:

A[(i; j); (k; `)℄ = (�1)

k(j+1)+`(i+1)+k`

h

ik+j`

: (1)

Reall that we want to �nd values w : Z ! R suh that

P

(x;y)2Z

w(x; y)f(x; y) x

i

y

j

= 0 for all onstraints and suh

that

P

(x;y)2Z

w(x; y) = 1: By onstrution these values are

uniquely given by the solution to the following system of

linear equations:

A

2

6

6

6

6

6

6

6

6

6

4

w

(0;0)

w

(1;0)

w

(0;1)

w

(2;0)

.

.

.

w

(0;d)

w

(�1;�1)

3

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

4

0

0

0

0

.

.

.

0

1

3

7

7

7

7

7

7

7

7

7

5

: (2)



In the remainder of the proof we show that by taking h =

�(d

9

); we an ensure that the solution to Equation (2) on-

sists entirely of nonnegative numbers, and hene w orre-

sponds to a true probability distribution as desired. Sine

h = O(d

9

) means that size(Z) = d

O(d)

; and we may take h

to be odd, this proves Theorem 17.

We shall onsider solving Equation (2) via Cramer's rule.

Cramer's rule tells us that Equation (2) implies:

w

(u;v)

=

detA

(u;v)

detA

;

where A

(u;v)

denotes the matrix A with the (u; v) olumn

replaed by the right hand side of Equation (2), namely

�

0 0 0 � � � 0 1

�

T

. To show that eah w

(u;v)

is non-

negative we will show that detA

(u;v)

and detA have the

same sign.

Let � 2 f+1;�1g be the sign of the produt of the diag-

onal entries in A: We will prove the following two lemmas

and thus prove Theorem 17:

Lemma 18. sign(detA) = �:

Lemma 19. sign(detA

(u;v)

) = � for all (u; v):

5.1.1 Proof of Lemma 18
To prove Lemma 18 we view detA as a polynomial in h:

Let T := deg(detA) be the degree of detA: We show that

the leading term of detA (orresponding to h

T

) dominates

all the other terms for h suÆiently large, and thus the sign

of detA is the same as the sign of the leading term. More

preisely, we establish the following two fats:

Claim 20. The oeÆient of h

T

in detA is 2�:

Claim 21. For all u � 1 the oeÆient of h

T�u

in detA

is at most 2(D + 2)

4u

in magnitude.

Claim 21 implies that the sum of the absolute values of the

lower-order terms in detA is at most

P

T

u=1

2(D+2)

4u

h

T�u

�

h

T

P

T

u=1

(2(D+2)

4

=h)

u

. If we take h to be �(d

9

) then this

quantity will be stritly smaller than h

T

. But by Claim

20 we have that the leading term of detA is 2�h

T

. Thus

sgn(detA) = � and Lemma 18 holds.

We set the stage before proving Claims 20 and 21 with

some notation and some observations. Let S denote the

permutation group on the indies (0; 0), (1; 0), (0; 1), (2; 0),

: : : , (0; d), (0

0

; 0

0

). Then:

detA =

X

�2S

sgn(�)

Y

(i;j)

A[(i; j); �(i; j)℄: (3)

Reall that for (i; j); (k; `) 6= (0

0

; 0

0

), the entry A[(i; j); (k; `)℄

is �h

ik+j`

, whih we will write as � exp

h

((i; j) � (k; `)), with

exp

h

(t) denoting h

t

and � being the usual dot produt. In

the ase that (i; j) = (0

0

; 0

0

) or (k; `) = (0

0

; 0

0

), the entry

A[(i; j); (k; `)℄ is �1 = �h

0

. If we de�ne (0

0

; 0

0

) � (a; b) to be

0, then we have that for any permutation � 2 S,

Y

(i;j)

A[(i; j); �(i; j)℄ = � exp

h

0

�

X

(i;j)

(i; j) � �(i; j)

1

A

:

Given a permutation � 2 S, write t(�) =

P

(i;j)

(i; j) �

�(i; j); so the permutation � ontributes �1 to the oeÆ-

ient of h

t(�)

in detA: Then the absolute value of the oeÆ-

ient of h

u

in detA is at most jf� 2 S : t(�) = ugj. We will

use this fat to bound all the lower-order terms in detA; for

the leading term we will pay more attention to the signs.

To alulate t(�) from �, we deompose the permutation �

as a produt of yles. For eah yle �

0

= ((i

1

; j

1

) (i

2

; j

2

) � � �

(i

m

; j

m

)) we have by simple arithmeti:

m

X

r=1

(i

r

; j

r

) � (i

r

; j

r

)�

m

X

r=1

(i

r

; j

r

) � �

0

(i

r

; j

r

)

=

1

2

m

X

r=1

(i

r

� i

r�1

)

2

+ (j

r

� j

r�1

)

2

; (4)

where we use the notation (i

0

; j

0

) = (i

m

; j

m

). (Note that

a geometri interpretation of this quantity is that it is half

the sum of the squares of the lengths of the line segments

whih make up the yle in the two-dimensional plane from

(i

1

; j

1

) to (i

2

; j

2

) to (i

3

; j

3

) to : : : to (i

m

; j

m

) to (i

1

; j

1

):)

In partiular, this quantity is at least 1 for every nontriv-

ial yle, where a trivial yle for us is either a yle of

length 1 or the transposition exhanging (0; 0) and (0

0

; 0

0

):

The quantity in Equation (4) is 0 for trivial yles. Thus

we have that the identity permutation and the transposition

((0; 0); (0

0

; 0

0

)) are the only two permutations whih ahieve

the maximum value t(�) = T: It is easy to see that this

maximum value T is

P

(i;j)

i

2

+ j

2

, whih one easily alu-

lates to be T := d(d + 1)

2

(d + 2)=6. We further see that

every other permutation \pays a penalty" in its t value for

eah nontrivial yle it ontains, and this penalty is given

by the right-hand side of Equation (4). Hene to alulate

t(�) from � we simply sum up the penalties for eah yle

in its yle deomposition and subtrat the total from T .

Proof of Claim 20: As desribed above, we have that there

are exatly two permutations whih lead to the maximum

power h

T

in Equation (3): the identity permutation whih

takes all the diagonal elements, and the ((0; 0); (0

0

; 0

0

)) trans-

position whih takes the top-right entry of A, the bottom-

left entry of A, and the diagonal elements otherwise. The

produt of the top-left and bottom-right entries of A is 1.

The produt of the top-right and bottom-left entries is �1;

however this gets ipped to +1 by the sign of the permu-

tation (it is a transposition so its sign is �1). We onlude

that leading term of detA is 2�h

T

where � 2 f�1; 1g is the

sign of the produt of the diagonal entries in A.

Proof of Claim 21: To bound the oeÆient on the lower-

order term h

T�u

in detA we simply ount the number of

permutations � whih have t(�) = T � u. This ount gives

an upper bound on the magnitude of the oeÆient. If

t(�) = T�u then the penalty aounting sheme from Equa-

tion (4) tells us that � has at most u nontrivial yles. In

fat we an say more: any nontrivial yle of length m must

inur a penalty of at least bm=2. (This an be veri�ed us-

ing the geometri interpretation desribed earlier, together

with the fat that any nontrivial yle of length m � 3 an

inlude at most one segment of length 0 between (0; 0) and

(0

0

; 0

0

):) Consequently, if t(�) = T�u then the lengths of the

nontrivial yles in �'s yle deomposition must sum to at

most 3u (in the worst ase all its yles may be 3-yles eah



of whih inurs a penalty of 1). Now observe that there are

at most (D + 2)

4u

permutations on D + 1 elements whih

deompose into at most u yles whose total length is at

most 3u: (Any suh sequene of yles an be written as a

string of length 4u over a D+2 element alphabet, where the

extra symbol is used to mark the end of eah yle.) Dou-

bling this upper bound overs the optional addition of the

trivial ((0; 0); (0

0

; 0

0

)) transposition. We thus may onlude

that there are at most 2(D+2)

4u

permutations � 2 S whih

have t(�) = T � u.

5.1.2 Proof of Lemma 19
It now remains to show that sgn(detA

(u;v)

) = � for eah

(u; v): By the nature of ofator expansion, detA

(u;v)

is

equal to a ertain sign �, times the determinant of A with

the bottom row and the (u; v) olumn deleted. In the ase

(u; v) = (0

0

; 0

0

) we have � = 1 and we shall write A

0

(0

0

;0

0

)

for the matrix A with its last row and olumn deleted. For

all (u; v) 6= (0

0

; 0

0

), let us write A

0

(u;v)

for the matrix got-

ten by �rst deleting the bottom row and (u; v) olumn from

A, and then moving the (0

0

; 0

0

) olumn leftward until it is

in the plae where the old (u; v) used to be. Shifting the

(0

0

; 0

0

) olumn like this inurs a sign hange equal to ��;

we onlude that detA

(u;v)

= �detA

0

(u;v)

. Hene it is suf-

�ient for us to show that sgn(detA

0

(0

0

;0

0

)

) = � and that

sgn(detA

0

(u;v)

) = �� for all (u; v) 6= (0

0

; 0

0

).

Let us begin by dispensing with the ases (u; v) = (0

0

; 0

0

)

or (0; 0). In both of these ases A

0

(u;v)

is very similar to A

with the last row and olumn deleted; when (u; v) = (0

0

; 0

0

)

this is exatly what A

0

(u;v)

is, and when (u; v) = (0; 0) some

of the signs in the �rst olumn are hanged. Hene the

analysis of detA

0

(u;v)

is virtually idential to the above anal-

ysis of detA, exept that (0

0

; 0

0

) is no longer present. The

leading term will therefore be equal to the top-left entry of

A

0

(u;v)

times �h

T

; this entry is 1 when (u; v) = (0

0

; 0

0

) and is

�1 when (u; v) = (0; 0); as desired. The analysis bounding

the lower-order terms goes through in essentially the same

way as before (again without (0

0

; 0

0

)) and we onlude that

sgn(detA

0

(0

0

;0

0

)

) = � and sgn(detA

0

(0;0)

) = �� as desired.

Throughout the rest of this setion we assume that (u; v) 6=

(0

0

; 0

0

); (0; 0): Let T

(u;v)

denote the degree of det(A

0

(u;v)

):We

will prove the following two laims:

Claim 22. The oeÆient of h

T

(u;v)

in det(A

0

(u;v)

) is �2�C:

Claim 23. For all s � 1 the oeÆient of h

T

(u;v)

�s

in

det(A

0

(u;v)

) is at most 4C(D + 2)

4s

in magnitude.

As in the previous subsetion, these two laims show that

we may take h = �(d

9

) to obtain sgn(det(A

0

(u;v)

)) = ��; so

they suÆe to prove the lemma.

Studying detA

0

(u;v)

is slightly more omplex than studying

detA beause its rows and olumns no longer have the same

names; the rows of A

0

(u;v)

are named (0; 0), (1; 0), (0; 1),

(2; 0), : : : , (u; v), : : : , (0; d), whereas the olumns are named

(0; 0), (1; 0), (0; 1), (2; 0), : : : , (0

0

; 0

0

), : : : , (0; d). To deal

with this, we will let S

0

denote the permutation group on

the D row indies of A

0

(u;v)

, and we will view (u; v) as (0

0

; 0

0

)

whenever it is the \output" of a permutation. To be preise,

let � be a mapping whih maps (i; j) to (i; j) for eah (i; j) 6=

(u; v), and maps (u; v) to (0

0

; 0

0

). Then our determinant

equation beomes:

detA

0

(u;v)

=

X

�2S

sgn(�)

Y

(i;j)

A[(i; j); �(�(i; j))℄: (5)

We may write t(�) =

P

(i;j)

(i; j) � �(�(i; j)); so we have

Q

(i;j)

A[(i; j); �(�(i; j))℄ = �h

t(�)

.

As before we will alulate t(�) by onsidering the y-

le deomposition of � and omputing the penalty di�er-

ene from T = d(d + 1)

2

(d + 2)=6 for eah yle. Sine

now the \identity" permutation does not exist, the permu-

tations maximizing t(�) may not ahieve T ; indeed, sine

(u; v) 6= (0

0

; 0

0

) it is the ase that maximizing permutations

will not ahieve t(�) = T: Let us now �nd the new high-

est value for t(�). The yle deomposition of � ontains a

unique yle (whih may be a 1-yle) ontaining (u; v); and

perhaps other yles whih do not ontain (u; v): For the y-

les not ontaining (u; v), � does not enter into the piture

in alulating t(�

0

); hene Equation (4) still holds and we

onlude that any � with maximal t(�) has no nontrivial

yles involving (u; v). Thus, in order to �nd all maximiz-

ing �'s, it is suÆient to determine whih yles ontaining

(u; v) give the smallest penalty.

Let �

�

be a yle ontaining (u; v); say �

�

=

((u; v) (i

1

; j

1

) (i

2

; j

2

) � � � (i

m

; j

m

)), so aording to our on-

ventions �

�

maps (u; v) to (i

1

; j

1

);maps (i

r

; j

r

) to (i

r+1

; j

r+1

)

for 1 � r � m � 1; and maps (i

m

; j

m

) to �(u; v) = (0

0

; 0

0

):

Write (i

0

; j

0

) = (u; v). Then akin to Equation (4) we have:

m

X

r=0

(i

r

; j

r

) � (i

r

; j

r

)�

m

X

r=0

(i

r

; j

r

) � �(�

�

(i

r

; j

r

))

=

m

X

r=0

(i

r

; j

r

) � (i

r

; j

r

)�

m

X

r=0

(i

r

; j

r

) � (i

r+1 mod m+1

; j

r+1 mod m+1

) + i

r

u+ j

r

v

=

1

2

  

m

X

r=1

(i

r

� i

r�1

)

2

+ (j

r

� j

r�1

)

2

!

+(u� i

r

)

2

+ (v � j

r

)

2

�

+ i

r

u+ j

r

v (as in (4))

=

1

2

  

m

X

r=1

(i

r

� i

r�1

)

2

+ (j

r

� j

r�1

)

2

!

+ i

2

m

+ j

2

m

+ u

2

+ v

2

�

: (6)

The geometri interpretation of the quantity on the right-

hand side of Equation (6) is that it is half the sum of the

squares of the path segments on the losed path from (u; v)

to (i

1

; j

1

) to (i

2

; j

2

) to � � � to (i

m

; j

m

) to (0; 0) to (u; v). It

is immediate that in a yle minimizing this quantity, there

should be no path step whih has either x or y displaement

greater than 1 in magnitude (aside from the step from (0; 0)

to (u; v) whih is fored). Consequently, the permutations

� whih maximize t(�) are preisely those yles �

�

suh

that (1) i

r+1

� i

r

2 f�1; 0g and j

r+1

� j

r

2 f�1; 0g for

0 � r < m, and (2) i

m

; j

m

2 f0; 1g: It is easy to see that

eah suh maximizing permutation has t(�) = T

(u;v)

= T �

1

2

(u+ v + u

2

+ v

2

).

Proof of Claim 22: Now we an ompute the oeÆient

of h

T

(u;v)

in detA

0

(u;v)

. Given a permutation � maximiz-

ing t(�), let �(�) denote the sign of �'s ontribution to



the determinant omputation of Equation (5), i.e. �(�) =

sgn(�)

Q

(i;j)

sgn(A[(i; j); �(�(i; j))℄). Then the leading oef-

�ient of detA

0

(u;v)

is just the sum of �(�) over all maximiz-

ing �.

Let � = ((u; v) (i

1

; j

1

) (i

2

; j

2

) � � � (i

m

; j

m

)) be a maximiz-

ing permutation; as before we write (i

0

; j

0

) = (u; v). By the

de�nition of � as the produt of the signs of A's diagonal

elements, we get that ��(�) is equal to sgn(�) times:

 

m�1

Y

r=0

sgn(A[(i

r

; j

r

); (i

r

; j

r

)℄)sgn(A[(i

r

; j

r

); (i

r+1

; j

r+1

)℄)

!

� sgn(A[(i

m

; j

m

); (i

m

; j

m

)℄)sgn(A[(i

m

; j

m

); (0

0

; 0

0

)℄):

We laim that for eah 0 � r � m� 1 we have:

sgn(A[(i

r

; j

r

); (i

r

; j

r

)℄)sgn(A[(i

r

; j

r

); (i

r+1

; j

r+1

)℄) = �1;

independent of (i

r

; j

r

). For from Equation (1) we know that:

sgn(A[(i

r

; j

r

); (i

r

; j

r

)℄)sgn(A[(i

r

; j

r

); (i

r+1

; j

r+1

)℄)

= exp

�1

(i

r

(j

r

+ 1) + j

r

(i

r

+ 1) + i

r

j

r

)

� exp

�1

(i

r+1

(j

r

+ 1) + j

r+1

(i

r

+ 1) + i

r+1

j

r+1

)

= exp

�1

(i

r

j

r

+ i

r+1

j

r

+ i

r

j

r+1

+ i

r+1

j

r+1

+i

r

+ i

r+1

+ j

r

+ j

r+1

)

= exp

�1

((i

r

+ i

r+1

+ 1)(j

r

+ j

r+1

+ 1)� 1);

whih is always �1 as laimed, beause (i

r

; j

r

)�(i

r+1

; j

r+1

) 2

f(1; 0); (0; 1); (1; 1)g.

Thus we have:

��(�) = sgn(�)(�1)

m

sgn(A[(i

m

; j

m

); (i

m

; j

m

)℄)

� sgn(A[(i

m

; j

m

); (0

0

; 0

0

)℄)

= +sgn(A[(i

m

; j

m

); (i

m

; j

m

)℄)sgn(A[(i

m

; j

m

); (0

0

; 0

0

)℄) (�);

beause � is a yle of lengthm+1. If (i

m

; j

m

) = (1; 1) then

(�) = �1; otherwise, (�) = +1. Hene we onlude that

�(�) = � if (i

m

; j

m

) = (1; 1) and �(�) = �� if (i

m

; j

m

) 2

f(0; 0); (1; 0); (0; 1)g. For eah maximizing yle � of length

m+ 1 with (i

m

; j

m

) 6= (0; 0); there is a orresponding max-

imizing yle �

0

of length m + 2 obtained by appending

(i

m+1

; j

m+1

) = (0; 0) to �: Thus we have �(�) + �(�

0

) =

0 when (i

m

; j

m

) = (1; 1) and �(�) + �(�

0

) = �2� when

(i

m

; j

m

) = (1; 0) or (0; 1). In onlusion, the leading term

in detA

0

(u;v)

is exatly �2�Ch

T

(u;v)

, where C is the number

of paths from (u; v) to (1; 0) plus the number of paths from

(u; v) to (0; 1), where eah path uses steps (�1; 0), (0;�1),

and (�1;�1). (Suh paths are known as Delannoy paths,

and the number of suh paths between a pair of points is a

Delannoy number; hene C is a sum of two Delannoy num-

bers.) Sine (u; v) 6= (0; 0) we have C � 1; and the laim is

proved.

Proof of Claim 23: We must upper-bound the magnitude

of the lower-order terms in detA

0

(u;v)

. We do this as in the

analysis of detA by upper-bounding the number of permu-

tations � with t(�) = T

(u;v)

� s. To eah � 2 S

0

we will

assoiate a maximizing permutation �

�

(i.e., one for whih

t(�

�

) = T

(u;v)

), and a \deviation desription." We will show

that the longer the deviation desription, the smaller t(�) is

ompared to t(�

�

). Thus the number of permutations � with

t(�) lose to T

(u;v)

will be upper-bounded by the number of

optimal permutations times the number of short deviation

desriptions.

Let � be an arbitrary permutation in S

0

and write � as

the produt of a yle �

0

involving (u; v), and some other

yles �

1

; : : : ; �

s

. The maximizing permutation �

�

we asso-

iate with � will depend only on �

0

. View �

0

geometrially

as a path from (u; v) to �

�1

0

(u; v). Call a path \optimal" if

it only uses steps (�1; 0), (0;�1), and (�1;�1), so in parti-

ular every maximizing permutation ontains one nontrivial

yle ontaining (u; v) whose orresponding path is optimal.

We will split �

0

up into its optimal and nonoptimal seg-

ments. Spei�ally, a

i

; b

i

; 

i

; d

i

; : : : ; a

r

; b

r

; 

r

; d

r

are de�ned

as follows: �

0

proeeds optimally from (u; v) to (a

1

; b

1

), at

whih point it takes a nonoptimal step. Let (

1

; d

1

) be the

�rst point it proeeds to subsequently with the property that



1

� a

1

, d

1

� b

1

. Then �

0

proeeds optimally from (

1

; d

1

)

to (a

2

; b

2

), at whih point it makes a nonoptimal step. Let

(

2

; d

2

) be the �rst point it proeeds to subsequently with



2

� a

2

, d

2

� b

2

: Continuing in this fashion, let (a

r

; b

r

)

be the last point reahed in the last optimal segment of �

0

;

�

0

may optionally go on and reah �

�1

0

(u; v) We will let

the maximizing permutation �

�

assoiated with � be any

optimal path that agrees with �

0

on all steps from (u; v)

to (a

1

; b

1

), all steps from (

1

; d

1

) to (a

2

; b

2

), : : : ; all steps

from (

r�1

; d

r�1

) to (a

r

; b

r

), and then ends by proeeding

optimally to (0; 0):

The deviation desription of � will simply be a list of all

of the yles �

1

; : : : ; �

s

not ontaining (u; v); along with a

desription of �

0

's deviation from �

�

: This deviation onsists

of the path from (a

1

; b

1

) to (

1

; d

1

), from (a

2

; b

2

) to (

2

; d

2

),

et., possibly ending with some path from (a

r

; b

r

) to a point

not in f0; 1g

2

. Note that � an be reovered from �

�

and

the deviation desription.

Now let us ompute t(�

�

)� t(�). This di�erene is equal

to (T � t(�)) � (T � t(�

�

)), and Equations (4) and (6) tell

us how to ompute these quantities. By Equation (4), t(�)

pays an extra penalty over t(�

�

) for eah of its yles not

involving (u; v), �

1

; : : : ; �

s

. As in the analysis of detA we

know that suh a yle of length m inurs a penalty of at

least bm=2. Equation (6) allows us to ompare the penalties

against T that eah of t(�

�

) and t(�) pays. Every time

�

0

deviates from �

�

it pays an extra penalty of at least

1. Indeed, just as in the analysis of extraneous yles, a

deviation path from (a

i

; b

i

) to (

i

; d

i

) whih touhesm nodes

must inur an extra penalty of at least bm=2. This holds

also for a �nal deviation path whih does not end up in

f0; 1g

2

, sine it must pay for half the squared distane from

the origin of its endpoint. Both �

�

and �

0

pay equally for

the �nal

1

2

(k

2

+ `

2

) term.

In onlusion, if the total length of the yles and devia-

tion paths in �'s deviation desription is m then (T�t(�))�

(T � t(�

�

)) is at least bm=2; i.e., t(�) � T

(u;v)

� bm=2.

Hene as in the analysis of detA we an get an upper bound

of (D + 2)

4s

�#fnumber of maximizing �

0

g for the number

of permutations � with t(�) = T

(u;v)

� s. But note that

the leading oeÆient in detA

0

(u;v)

has magnitude 2C, and

2C is at least half the number of maximizing permutations

�

0

. To see this, reall that C ounts the number of optimal

paths from (u; v) to either (1; 0) or (0; 1), and eah maxi-

mizing permutation orresponds to an optimal path to one

of (0; 0); (0; 1); (1; 0); (1; 1): The number of optimal paths to

(1; 1) is at most C (eah suh path an be extended to a path

ending in (1; 0) or (0; 1)), and hene the number of optimal

paths to (0; 0) is at most 2C (sine the next to last point

on any suh path is either (1; 0); (0; 1) or (1; 1)): It follows



that the magnitude of the sum of all lower-order terms in

detA

0

(u;v)

is at most

P

T

(u;v)

s=1

4C(D + 2)

4s

h

T

(u;v)

�s

; and the

laim is proved.

6. CONJECTURES AND FUTURE WORK
Many questions remain for further researh on the polyno-

mial threshold degree of Boolean funtions. We believe the

new tehniques introdued in this paper will lead to the so-

lution of some of them. Below we give some open problems

and onjetures whih we hope will spur further researh.

� Can lower bounds of 
(n

1=3+�

) for some � > 0 be

proved for onstant depth iruits of depth 3 or greater?

In partiular, let f be the funtion omputed by the

following depth-3 read-one formula: the top gate is

an AND of fan-in n

1=5

, the middle gates are ORs of

fan-in n

2=5

, and the bottom gates are ANDs of fan-

in n

2=5

. We onjeture that f requires PTF degree


(n

2=5

); and believe that this may be provable via our

lower bound tehniques. (Krause and Pudlak [15℄ have

given lower bounds on the number of nonzero oeÆ-

ients in any polynomial threshold funtion for this

iruit, but as mentioned earlier their results do not

imply new degree lower bounds.)

� Does every Boolean formula of size s have a polynomial

threshold funtion of degree O(

p

s) independent of its

depth? This is the best possible upper bound sine

parity on

p

s variables is omputed by a formula of

size s and depth O(log s).

One partiular funtion that seems diÆult is the fol-

lowing: Let B be an integer and onsider the funtion

g(x

1

; : : : ; x

B

; y

1

; : : : ; y

B

) = (OR(x

1

; : : : ; x

B

)) OR

(AND(y

1

; : : : ; y

B

)). Let f be the Boolean formula

given by a tree of opies of g. Let f be on n to-

tal variables and let B = log n, so that f has depth

�(log n= log log n). We do not know how to show that

this funtion has PTF degree O(

p

n).

� Can our 
(

log n

log log n

) lower bound for the AND of two

majorities be strengthened to 
(log n)? We onjeture

that 
(log n) is the true lower bound and that hene

the Beigel et al. onstrution is optimal.
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