TCS5793 MODC+

ED: Rajani Devi PAGN: Wittal – SCAN: nil

ARTICLE IN PRESS

ELSEVIER

Available online at www.sciencedirect.com

Theoretical Computer Science

Theoretical Computer Science III (IIII) III-III

www.elsevier.com/locate/tcs

On learning embedded midbit functions $\stackrel{\leftrightarrow}{\sim}$

Rocco A. Servedio*

Department of Computer Science, Columbia University, New York, NY 10027, USA

5 Abstract

1

3

A midbit function on ℓ binary inputs x_1, \ldots, x_ℓ outputs the middle bit in the binary representation of $x_1 + \cdots + x_\ell$. We consider the problem of Probably Approximately Correct (PAC) learning *embedded* midbit functions, where the set $S \subset \{x_1, \ldots, x_n\}$ of relevant variables on which the midbit depends is unknown to the learner.

9 To motivate this problem, we first point out that a result of Green et al. implies that a polynomial time learning algorithm for the class of embedded midbit functions would immediately yield a fairly efficient (quasipolynomial time) (PAC) learning algorithm for

11 the entire complexity class ACC. We then give two different subexponential learning algorithms, each of which learns embedded midbit functions under any probability distribution in $2\sqrt{n} \log n$ time. Finally, we give a polynomial time algorithm for learning

embedded midbit functions under the uniform distribution.
 © 2005 Published by Elsevier B.V.

15 Keywords: PAC learning; Embedded midbit functions

1. Introduction

- 17 A central goal of computational learning theory is to understand the computational complexity of learning various classes of Boolean functions. While much research has been devoted to learning syntactic classes such as decision trees,
- 19 DNF formulas, and constant depth circuits, researchers have also considered various "semantically defined" classes as well. A natural and important class of this sort is the class of *embedded symmetric functions* which was studied by
- 21 Blum et al. [5]. (Recall that a Boolean function is symmetric if its value depends only on the number of input bits which are set to 1.) An embedded symmetric function is a Boolean function which depends only on some subset of its input
- 23 variables and is a symmetric function on this subset, i.e., it is a symmetric function whose domain is "embedded" in a larger domain containing irrelevant variables.
- 25 In this paper we give a detailed PAC (Probably Approximately Correct) learning analysis of an interesting and natural family of embedded symmetric functions, which we call *embedded midbit functions*. An embedded midbit function is
- 27 defined by a subset i_1, \ldots, i_s of variables from $\{1, \ldots, n\}$. The value of this embedded midbit function on an input $x \in \{0, 1\}^n$ is the value of the middle bit in the binary representation of $x_{i_1} + x_{i_2} + \cdots + x_{i_s}$. As described below, we

29 show that the class of embedded midbit functions has many interesting properties from a PAC learning perspective.

* Tel.: +1 212 939 7065; fax: +1 212 666 0140.

E-mail address: rocco@cs.columbia.edu

URL: http://www.cs.columbia.edu/rocco.

 $0304\mathchar`-3975\mathchar`-see$ front matter @ 2005 Published by Elsevier B.V. doi:10.1016/j.tcs.2005.10.013

 $[\]stackrel{\star}{}$ This research was performed while the author was at Harvard University and was supported by a National Science Foundation Mathematical Sciences Postdoctoral Research Fellowship and by NSF Grant CCR-98-77049.

2

ARTICLE IN PRESS

R.A. Servedio / Theoretical Computer Science III (IIII) III-III

TCS5793

1 1.1. Our results

We first give a hardness result (Theorem 4) for learning embedded midbit functions in the standard PAC model of learning from random examples drawn from an arbitrary probability distribution. Using Green et al.'s characterization of the complexity class ACC [9], we observe that if there is a PAC learning algorithm for the class of embedded midbit functions which runs in polynomial time (or even quasipolynomial time), then the class ACC of constant-depth, polynomial-size circuits of unbounded fanin AND/OR/MOD_m gates can also be PAC learned in quasipolynomial time.

- 7 This would be a major breakthrough since, as described in Section 3, the fastest PAC learning algorithms to date for even very restricted subclasses of ACC require much more than quasipolynomial time. This hardness result strengthens
- 9 an earlier hardness result of Blum et al. for embedded symmetric functions, and establishes an interesting connection between learning the "semantic" class of embedded midbit functions and learning rich syntactic classes. (We emphasize
- 11 that this hardness result is independent of the hypothesis representation which the learning algorithm uses.) While Theorem 4 implies that it may be difficult to learn embedded midbit functions efficiently under an arbitrary
- 13 distribution, this does not mean that PAC learning algorithms for embedded midbit functions must require exponential time. In Section 4, we give two different subexponential time PAC learning algorithms, each of which can learn
- 15 embedded midbit functions over *n* variables in time $n^{O(\sqrt{n})}$. Finally, by means of a careful analysis of the correlation of single variables and pairs of variables with embedded
- 17 midbit functions, we show in Section 5 that embedded midbit functions can be learned in polynomial time under the uniform distribution. Embedded midbit functions thus give a simple and natural concept class which seems to
- 19 exhibit a large gap between the complexity of learning in the uniform distribution PAC model and the general (arbitrary distribution) PAC model.

21 2. Preliminaries

Throughout this paper S denotes a subset of the variables $\{x_1, \ldots, x_n\}$ and s denotes |S|. All logarithms are base 2.

23 Definition 1. For S ≠ Ø the embedded midbit function M_S: {0, 1}ⁿ → {0, 1} is defined as M_S(x) = the value of the log(s)/2 th bit in the binary representation of ∑_S x_i, where we consider the least significant bit to be the 0th bit. (We take M_Ø(x) to be identically 0.) The class C_{mid} of embedded midbit functions is C_{mid} = {M_S}_{S⊆{x1,...,xn}}.

We write C_{sym} to denote the class of all embedded symmetric functions on $\{0, 1\}^n$ as described in Section 1; note that $C_{\text{mid}} \subset C_{\text{sym}}$.

Definition 2. Given an embedded midbit function $M_S(x)$, let $f_s : \{0, 1, ..., s\} \rightarrow \{0, 1\}$ be the unique function such that $M_S(x) = f_s(\sum_S x_i)$ for all $x \in \{0, 1\}^n$. We say that f_s is the *basis function* of $M_S(x)$ and we refer to the (s+1)-bit string $f_s(0) f_s(1) \cdots f_s(s)$ as the *pattern* of f_s .

- 31 If f_s is the basis function for M_s then the pattern for f_s is a concatenation of strings of the form $0^{k(s)}1^{k(s)}$, where
- $k(s) = 2^{\lfloor \log(s)/2 \rfloor}$ and the concatenation is truncated to be of length precisely s + 1. It is easy to see that $\sqrt{s}/2 < 33 \quad k(s) \leq \sqrt{s}$.

A function f is quasipolynomial if $f(n) = 2^{(\log n)^{O(1)}}$. We write $[a \mod b]$ to denote the unique real number $r \in [0, b)$ such that a = kb + r for some integer k.

2.1. The learning model

- We work in the standard PAC learning model [17] and the uniform distribution variant of the PAC model. Let *C* be a class of Boolean functions over $\{0, 1\}^n$. In the PAC model, a learning algorithm has access to a random example oracle
- 39 EX(c, D) which when invoked provides, in one time step, a labeled example $\langle x, c(x) \rangle \in \{0, 1\}^n \times \{0, 1\}$ where x is drawn from the distribution D over $\{0, 1\}^n$. An algorithm A is a PAC learning algorithm for class C if the following
- 41 holds: for all $c \in C$ and all distributions \mathcal{D} over $\{0, 1\}^n$, if A is given as input ε , $\delta > 0$ and A is given access to $EX(c, \mathcal{D})$, then with probability at least $1 - \delta$ the output of A is a hypothesis $h : \{0, 1\}^n \to \{0, 1\}$ such that $\Pr_{x \in \mathcal{D}}[c(x) \neq h(x)] \leq \varepsilon$.

TCS5793 ARTICLE IN PRESS

R.A. Servedio / Theoretical Computer Science III (IIII) III-III

- 1 (Strictly speaking, the output of A is some particular representation of h such as a Boolean circuit.) Algorithm A is said to run in time t if (i) the worst case running time of A (over all choices of $c \in C$ and all distributions \mathcal{D}) is at most t, and (ii) for every output h of A and all $x \in \{0, 1\}^n$, h(x) can be evaluated in time t. 3
- If A satisfies the above definition only for some fixed distribution \mathcal{D} (such as the uniform distribution on $\{0, 1\}^n$), 5 then we say that A is a PAC learning algorithm for C under distribution \mathcal{D} .

3. Hardness of learning embedded midbit functions

7 In this section we show that learning embedded midbit functions is almost as difficult as learning a rich syntactic class which contains decision trees, DNF formulas, and constant depth circuits.

9 3.1. Background: hardness of learning C_{sym}

We first describe a result of Blum et al. which gives some evidence that the broader class C_{sym} of embedded symmetric 11 functions may be hard to PAC learn in polynomial time. Let C_{log} denote the class of Boolean functions on *n* bits which have at most log n relevant variables. Note that like C_{sym} , the class C_{log} has the property that learning is no more

- 13 difficult than finding relevant variables—in either case, once the set of relevant variables has been identified, learning is simply a matter of observing and filling in at most n "table entries" which define the function (these entries are
- 15 the bits of the pattern for a function from C_{sym} , and are the values of the function on all $2^{\log n}$ inputs for a function from C_{\log}).
- Building on this intuition, Blum et al. gave a polynomial time prediction-preserving reduction from C_{log} to C_{sym} , 17 thus showing that if C_{sym} can be PAC learned in polynomial time then C_{log} can also be PAC learned in polynomial
- 19 time. Since no polynomial time learning algorithm is yet known for C_{log} , this gives some evidence that C_{sym} may not be learnable in polynomial time.
- 21 3.2. Hardness of learning $C_{\rm mid}$

The class ACC was introduced by Barrington [2] and since been studied by many researchers, e.g. [1,3,4,9,12,18,19]. 23 ACC consists of languages recognized by a family of constant-depth polynomial-size circuits with NOT gates and unbounded fanin AND, OR and MOD_m gates, where m is fixed for each circuit family. In the context of learning theory,

- 25 ACC is quite an expressive class, containing as it does polynomial size decision trees, polynomial size DNF formulas, and the well-studied class AC^0 of constant-depth polynomial-size AND/OR/NOT circuits.
- Building on work of Beigel and Tarui [4], Green et al. [9] have given the following characterization of ACC: 27

Theorem 3. For each $L \in ACC$ there is a depth-2 circuit which recognizes $L \cap \{0, 1\}^n$ and has the following structure: the top-level gate computes a midbit function of its inputs, and the bottom level consists of $2^{(\log n)^{O(1)}}$ AND gates each 29 of fanin $(\log n)^{O(1)}$.

Using this characterization we obtain the following hardness result for learning C_{mid} : 31

Theorem 4. If C_{mid} can be PAC learned in polynomial (or even quasipolynomial) time, then ACC can be PAC learned 33 in quasipolynomial time.

Proof. Let $f: \{0, 1\}^n \to \{0, 1\}$ be the target ACC function. Let $q(n) = 2^{(\log n)^{O(1)}}$ be an upper bound on the number of AND gates on the bottom level of the Green et al. representation for f, and let $\ell(n) = (\log n)^{O(1)}$ be an upper bound on 35 the fanin of each bottom level AND gate. Given an instance $x \in \{0, 1\}^n$ we generate a new instance $x' \in \{0, 1\}^m$ where

- $m = 2^{(\log n)^{O(1)}}$ by listing q(n) copies of each AND of at most $\ell(n)$ variables from x_1, \ldots, x_n . Theorem 3 implies that 37 there is an embedded midbit function f' on m bits such that f(x) = f'(x') for all $x \in \{0, 1\}^n$. By assumption we can PAC learn this function f' in $2^{(\log m)^{O(1)}} = 2^{(\log n)^{O(1)}}$ time, so the theorem is proved. \Box
- 39

We note that while our reduction only establishes quasipolynomial time learnability for ACC from learnability of 41 C_{mid} , whereas the Blum reduction would establish polynomial time learnability of C_{log} , the class ACC is likely to be

ARTICLE IN PRESS

4

R.A. Servedio / Theoretical Computer Science III (IIII) III-III

- 1 much harder to learn than C_{\log} . While C_{\log} can be PAC learned in $n^{\log n}$ time by doing an exhaustive search for the set of log *n* relevant variables, no learning algorithm for *ACC* is known which runs in subexponential time. In fact, no
- 3 such algorithm is known even for the subclass of polynomial-size, depth 3 AND/OR/NOT circuits; to date the most expressive subclass of *ACC* which is known to be PAC learnable in subexponential time is the class of polynomial-size
- 5 AND/OR/NOT circuits of depth 2, which has recently been shown by Klivans and Servedio [11] to be PAC learnable in time $2^{\tilde{O}(n^{1/3})}$.

7 4. Learning embedded midbit functions in $n^{O(\sqrt{n})}$ time

The results of Section 3 suggest that the class of embedded midbit functions may not be PAC learnable in quasipolynomial time. However, we will show that it is possible to learn this class substantially faster than a naive exponential time algorithm. In this section, we describe two different algorithms each of which PAC learns C_{mid} in time $n^{O(\sqrt{n})}$.

11 4.1. An algorithm based on learning linear threshold functions

Our first approach is a variant of an algorithm given by Blum et al. in [5, Section 5.2].

- 13 **Definition 5.** Let $f : \{0, 1\}^n \to \{0, 1\}$ be a Boolean function and $p(x_1, \ldots, x_n)$ a real-valued polynomial. We say that p(x) sign-represents f(x) if for all $x \in \{0, 1\}^n$, $p(x) \ge 0$ iff f(x) = 1.
- 15 **Claim 1.** Let M_S be an embedded midbit function. Then there is a polynomial $p_S(x_1, ..., x_n)$ of degree $O(\sqrt{n})$ which sign-represents $M_S(x)$.

17 **Proof.** Let f_s be the basis function for M_s . Since $k(s) = \Omega(\sqrt{s})$, the number of "flip" positions in the pattern of f_s where $f_s(i) \neq f_s(i+1)$ is $O(\sqrt{s})$. Since the pattern for f_s has $O(\sqrt{s})$ flips, there is some polynomial P(X) of degree $O(\sqrt{s})$ which is nonnegative on precisely those $i \in \{0, 1, ..., s\}$ which have $f_s(i) = 1$. This implies that

 $p_S(x_1, ..., x_n) = P(\sum_S x_i)$ sign-represents $M_S(x)$. Since the degree of p_S is $O(\sqrt{s})$ and $s \le n$ the claim is proved.

Consider the expanded feature space consisting of all monotone conjunctions of at most O(√n) variables. (Note
 that this feature space contains ∑_{i=1}^{O(√n)} nⁱ = n^{O(√n)} features.) Claim 1 implies that M_S(x) is equivalent to some linear threshold function over this space. Thus, we can use known polynomial time PAC learning algorithms for linear
 threshold functions [6] over this expanded feature space to learn embedded midbit functions in n^{O(√n)} time.

We note that one can show that the sign-representing polynomial $p_S(x_1, \ldots, x_n)$ described in Claim 1 can be taken without loss of generality to have integer coefficients of total magnitude $n^{O(\sqrt{n})}$. This implies that simple algorithms

such as Winnow or Perceptron can be used to learn in $n^{O(\sqrt{n})}$ time (instead of the more sophisticated algorithm of

29 [6] which is based on polynomial time linear programming). We also note that in [13] Minsky and Papert used a symmetrization technique to give a lower bound on the degree of any polynomial which sign-represents the parity

31 function. The same technique can be used to show that the $O(\sqrt{n})$ degree bound of Claim 1 is optimal for embedded midbit functions.

33 4.2. An algorithm based on learning parities

We have seen that any embedded midbit function is equivalent to some linear threshold function over the feature space of all $O(\sqrt{n})$ -size monotone conjunctions. We now show that any embedded midbit function is equivalent to some parity over this feature space as well.

37 **Lemma 6.** Let $r, \ell \ge 0$. Then $\binom{r}{2\ell}$ is even if and only if

$$[r \mod 2^{\ell+1}] \in \{0, 1, \dots, 2^{\ell} - 1\}.$$

ARTICLE IN PRESS

R.A. Servedio / Theoretical Computer Science III (IIII) III-III

1 **Proof.** By induction on ℓ . The base case $\ell = 0$ is trivial; we suppose that the claim holds for $\ell = 0, ..., i - 1$ for some $i \ge 1$. For the induction step we use the fact [8, Exercise 5.61] that

3
$$\binom{r}{m} \equiv \binom{\lfloor r/p \rfloor}{\lfloor m/p \rfloor} \binom{\lfloor r \mod p \rfloor}{\lfloor m \mod p \rfloor} \pmod{p}$$

for all primes p and all r, $m \ge 0$. Taking p = 2 and $m = 2^i$, since $i \ge 1$ we have

5
$$\binom{r}{2^i} \equiv \binom{\lfloor r/2 \rfloor}{2^{i-1}} \binom{\lfloor r \mod 2 \rfloor}{0} \equiv \binom{\lfloor r/2 \rfloor}{2^{i-1}} \pmod{2}.$$

By the induction hypothesis we have that this is 0 if and only if $\lfloor \frac{r}{2} \rfloor \mod 2^i \in \{0, 1, \dots, 2^{i-1} - 1\}$, which holds if and only if $[r \mod 2^{i+1}] \in \{0, 1, \dots, 2^i - 1\}$. \Box

Claim 2. Let M_S be an embedded midbit function. Then $M_S(x)$ is equivalent to some parity of monotone conjunctions 9 each of which contains at most $O(\sqrt{n})$ variables.

Proof. Let \oplus denote the parity function. We have

$$M_{S}(x) = 0 \iff \lfloor \log(s)/2 \rfloor \text{th bit of } \sum_{S} x_{i} \text{ is } 0$$

$$\iff \left[\sum_{S} x_{i} \mod 2^{\lfloor \log(s)/2 \rfloor + 1} \right] \in \{0, 1, \dots, 2^{\lfloor \log(s)/2 \rfloor} - 1\}$$

$$\iff \left(\sum_{S} x_{i} \atop 2^{\lfloor \log(s)/2 \rfloor} \right) = \left(\sum_{S} x_{i} \atop k(s) \right) \text{ is even}$$

$$\iff \bigoplus_{A \subseteq S, |A| = k(s)} \left(\bigwedge_{i \in A} x_{i} \right) = 0.$$

- 11 The third step is by Lemma 6 and the last step is because for any x exactly $\binom{\sum_{s} x_i}{k(s)}$ of the conjunctions $\{\bigwedge_{i \in A} x_i\}_{A \subseteq S, |A| = k(s)}$ take value 1. Since $k(s) = O(\sqrt{n})$ the claim is proved. \Box
- As in the discussion following Claim 1, Claim 2 implies that we can use known PAC learning algorithms for parity [7,10] over an expanded feature space to learn embedded midbit functions in $n^{O(\sqrt{n})}$ time.

15 5. A polynomial time algorithm for learning embedded midbits under the uniform distribution

In [5] Blum et al. posed as an open problem the question of whether embedded symmetric concepts can be learned under the uniform distribution in polynomial time. In this section, we show that embedded midbit functions can be

- PAC learned under the uniform distribution in polynomial time. This is in strong contrast to the results of Section 3 which indicate that embedded midbit functions probably cannot be PAC learned (in even quasipolynomial time) under arbitrary probability distributions.
- 21 Throughout this section, we let t(s) denote $\lfloor s/k(s) \rfloor$.

5.1. First approach: testing single variables

- 23 To learn M_S it is sufficient to identify the set $S \subseteq \{x_1, \ldots, x_n\}$ of relevant variables. A natural first approach is to test the correlation of each individual variable with $M_S(x)$; clearly variables not in S will have zero correlation, and
- 25 one might hope that variables in *S* will have nonzero correlation. However, this hope is incorrect as shown by Lemma 8 below.
- For $1 \le i \le n$ define $p_i = \Pr[M_S(x) = 1 | x_i = 1] \Pr[M_S(x) = 1]$. The following fact is easily verified:

Fact 3. If $i \notin S$ then $p_i = 0$.

5

ARTICLE IN PRESS

R.A. Servedio / Theoretical Computer Science III (IIII) III-III

1 Lemma 7. If $i \in S$ then

$$p_i = \frac{1}{2^s} \sum_{\ell=1}^{t(s)} (-1)^{\ell-1} \binom{s-1}{\ell k(s) - 1}.$$
(1)

Proof. Since the distribution on examples is uniform over $\{0, 1\}^n$, the probability that exactly ℓ of the *s* relevant 3 variables are 1 is exactly $\binom{s}{\ell}/2^s$. Hence we have

$$p_i = \frac{1}{2^{s-1}} \sum_{\ell: f_s(\ell) = 1} {\binom{s-1}{\ell-1}} - \frac{1}{2^s} \sum_{\ell: f_s(\ell) = 1} {\binom{s}{\ell}}.$$

5 Using the identity

$$\binom{s}{\ell} = \binom{s-1}{\ell-1} + \binom{s-1}{\ell},$$

7 we find that

$$p_i = \frac{1}{2^s} \sum_{f_s(\ell)=1} \left(\binom{s-1}{\ell-1} - \binom{s-1}{\ell} \right).$$

9 Cancelling terms where possible we obtain (1). \Box

Lemma 8. There are embedded midbit functions $M_S(x)$ with S a proper subset of $\{x_1, \ldots, x_n\}$ such that $p_i = 0$ for all $1 \le i \le n$.

Proof. By Fact 3 for $i \notin S$ we have $p_i = 0$. Suppose that t(s) is even and t(s)k(s) - 1 = s - 1 - (k(s) - 1). Then the expression for p_i given in (1) is exactly 0 since the positive and negative binomial coefficients $\pm \binom{s-1}{\ell k(s)-1}$ and $\mp \binom{s-1}{(t(s)-\ell+1)k(s)-1}$ cancel each other out (e.g. take s = 27, k(s) = 4, t(s) = 6). \Box

15 Thus the correlation of individual variables with $M_S(x)$ need not provide information about membership in *S*. However, we will show that by testing correlations of *pairs* of variables with $M_S(x)$ we can efficiently determine 17 whether or not a given variable belongs to *S*.

5.2. Second approach: testing pairs of variables

19 For
$$1 \le i, j \le n, i \ne j$$
 let $p_{i,j} = \Pr[M_S(x) = 1 | x_i = x_j = 1] - \Pr[M_S(x) = 1 | x_j = 1]$. Similar to Fact 3 we have

Fact 4. If $i \notin S$ then $p_{i,j} = 0$.

21 **Lemma 9.** If $i \in S$ and $j \in S$ then

$$p_{i,j} = \frac{1}{2^{s-1}} \sum_{\ell=1}^{t(s)} (-1)^{\ell-1} \binom{s-2}{\ell k(s) - 2}.$$
(2)

23 **Proof.** We have

$$p_{i,j} = \frac{1}{2^{s-2}} \sum_{\ell: f_s(\ell) = 1} {\binom{s-2}{\ell-2}} - \frac{1}{2^{s-1}} \sum_{\ell: f_s(\ell) = 1} {\binom{s-1}{\ell-1}}.$$

25 Rearranging the sum as in Lemma 7 proves the lemma. \Box

It is easy to construct an example similar to that of Lemma 8 in which $p_{i,j} = 0$ even though $i \in S$ and $j \in S$. 27 Thus, there are examples for which looking only at single variables fails, and there are examples for which looking only at pairs of variables fails. However, we show below that a strategy of looking *both* at single variables *and* at pairs

6

TCS5793 ARTICLE IN PRESS

R.A. Servedio / Theoretical Computer Science III (IIII) III-III

Input: variable $x_i \in \{x_1, ..., x_n\}$ **Output:** either " $x_i \in S$ " or " $x_i \notin S$ " correct with probability $1 - \frac{\delta}{n}$ 1. let *T* be a sample of $m = O(n^2 \log \frac{n}{\delta})$ labeled examples $\langle x, M_S(x) \rangle$ 2. let \hat{p}_i be an empirical estimate of p_i obtained from *T* 3. for all $j \in \{1, ..., n\} - \{i\}$ 4. let $\hat{p}_{i,j}$ be an empirical estimate of $p_{i,j}$ obtained from *T* 5. if $|\hat{p}_i| > \frac{1}{2000n}$ or $|\hat{p}_{i,j}| > \frac{1}{2000n}$ for some $j \in \{1, ..., n\} - \{i\}$ 6. then output " $i \in S$ " 7. else output " $i \in S$ "

Fig. 1. An algorithm to determine whether x_i is relevant for $M_S(x)$.

- 1 of variables cannot fail. More precisely, our algorithm is based on the fact (Theorem 10 below) that quantities (1) and (2) cannot both be extremely close to 0:
- 3 **Theorem 10.** Let k be even and $\sqrt{s}/2 < k \leq \sqrt{s}$. Let

$$A = \frac{1}{2^{s}} \sum_{\ell} (-1)^{\ell-1} {\binom{s-1}{\ell k - 1}} \quad and \quad B = \frac{1}{2^{s-1}} \sum_{\ell} (-1)^{\ell-1} {\binom{s-2}{\ell k - 2}}.$$

5 Then $\max\{|A|, |B|\} \ge 1/1000s$.

The proof of Theorem 10 is somewhat involved and is deferred to Section 5.3.

7 With Theorem 10 in hand we can prove our main positive learning result for C_{mid} .

Theorem 11. The class of embedded midbit functions is learnable under the uniform distribution in polynomial time.

9 **Proof.** Since there are fewer than n^3 midbit functions $M_S(x)$ which have $s \le 3$ we can test each of these for consistency with a polynomial size random sample in polynomial time, and thus we can learn in polynomial time if $s \le 3$. We,

11 henceforth, assume that $s \ge 4$ and thus that $k(s) \ge 2$ is even.

- We show that the algorithm in Fig. 1 correctly determines whether or not $x_i \in S$ with probability $1 (\delta/n)$. By running this algorithm *n* times on variables x_1, \ldots, x_n we can identify the set *S* and thus learn M_S correctly with probability $1 - \delta$.
- 15 *Case* 1: $x_i \notin S$. In this case by Facts 3 and 4 we have $p_i = p_{i,j} = 0$. Using standard Chernoff bounds it is easily verified that taking $m = O(n^2 \log(n/\delta))$, each of the *n* empirical estimates \hat{p}_i , $\hat{p}_{i,j}$ will satisfy $|\hat{p}_i| < 1/2000n$ and
- 17 $|\hat{p}_{i,j}| < 1/2000n$ with probability $1 (\delta/n^2)$. Thus in this case the algorithm outputs " $x_i \notin S$ " with probability at least $1 (\delta/n)$.
- 19 *Case* 2: $x_i \in S$. Since $s \ge 4$ there is some $x_j \ne x_i$ such that $x_j \in S$. Lemmas 7 and 9 and Theorem 10 imply that the true value of at least one of $|p_i|$, $|p_{i,j}|$ will be at least $1/1000s \ge 1/1000n$. As before, for *m* as above each of the *n*
- 21 empirical estimates \hat{p}_i , $\hat{p}_{i,j}$ will differ from its true value by less than 1/2000n with probability $1 (\delta/n^2)$. Thus in this case the algorithm outputs " $x_i \in S$ " with probability at least $1 (\delta/n)$. \Box
- 23 5.3. Proof of Theorem 10

The following lemma gives a useful expression for sums in the form of (1) and (2).

Lemma 12. Let r, j, k > 0 with k even. Then

$$\sum_{\ell} (-1)^{\ell-1} \binom{r}{\ell k - j} = \frac{-2}{k} \left(\sum_{\ell=1,3,5,\dots,k-1} \left(2 \cos \frac{\ell \pi}{2k} \right)^r \cos \left(\frac{(r+2j)\ell \pi}{2k} \right) \right).$$
(3)

ARTICLE IN PRESS

R.A. Servedio / Theoretical Computer Science III (IIII) III-III

1 **Proof.** We reexpress the left side as

$$\sum_{\ell} \binom{r}{\ell(2k) + (k-j)} - \sum_{\ell} \binom{r}{\ell(2k) - j}.$$
(4)

3 The following well-known identity (see e.g. [15,16]) is due to Ramus [14]:

$$\sum_{\ell} \binom{r}{\ell k - j} = \frac{1}{k} \sum_{\ell=1}^{k} \left(2 \cos \frac{\ell \pi}{k} \right)^r \cos \left(\frac{(r+2j)\ell \pi}{k} \right).$$

5 Applying this identity to (4) we obtain

$$\frac{1}{2k} \left[\sum_{\ell=1}^{2k} \left(2 \cos \frac{\ell\pi}{2k} \right)^r \cos \left(\frac{(r-2k+2j)\ell\pi}{2k} \right) - \sum_{\ell=1}^{2k} \left(2 \cos \frac{\ell\pi}{2k} \right)^r \cos \left(\frac{(r+2j)\ell\pi}{2k} \right) \right]$$

7 Since even terms cancel out in the two sums above, we obtain

$$\frac{-1}{k} \left(\sum_{\ell=1,3,\dots,2k-1} \left(2 \cos \frac{\ell \pi}{2k} \right)^r \cos \left(\frac{(r+2j)\ell \pi}{2k} \right) \right).$$
(5)

9 Consider the term of this sum obtained when $\ell = 2k - h$ for some odd value h

$$\begin{pmatrix} 2\cos\frac{(2k-h)\pi}{2k} \end{pmatrix}^r \cos\left(\frac{(r+2j)(2k-h)\pi}{2k}\right)$$

= $(-1)^{r+(r+2j)} \left(2\cos\frac{-h\pi}{2k}\right)^r \cos\left(\frac{(r+2j)(-h)\pi}{2k}\right)$
= $\left(2\cos\frac{h\pi}{2k}\right)^r \cos\left(\frac{(r+2j)h\pi}{2k}\right).$

This equals the term obtained when $\ell = h$. Since k = 2m is even we have that (5) equals the right side of (3).

- 11 The following two technical lemmas will help us analyze the right-hand side of Eq. (3). No attempt has been made to optimize constants in the bounds.
- 13 **Lemma 13.** Let r, k be such that $k \ge 4$ is even and $k^2 2 \le r < 4k^2 1$. Then (i) for $\ell = 1, 3, ..., k - 3$ we have $0 < (\cos((\ell + 2)\pi/2k))^r < (\cos(\ell\pi/2k))^r / 16$,
- 15 (ii) $(\cos(\pi/2k))^r \ge 1/200$.

Proof. By considering the Taylor series of $\cos x$ one can show that $1 - (x^2/2) \le \cos x \le 1 - (x^2/3)$ for all $x \in [0, \pi/2]$. *Part* (i): since $0 < \ell \pi/2k < (\ell + 2)\pi/2k < \pi/2$, we have

$$\cos\frac{(\ell+2)\pi}{2k} = \cos\frac{\ell\pi}{2k}\cos\frac{\pi}{k} - \sin\frac{\ell\pi}{2k}\sin\frac{\pi}{k} < \left(1 - \frac{\pi^2}{3k^2}\right)\cos\frac{\ell\pi}{2k}$$

19 and hence

$$\left(\cos\frac{(\ell+2)\pi}{2k}\right)^r \leqslant \left(1-\frac{\pi^2}{3k^2}\right)^r \left(\cos\frac{\ell\pi}{2k}\right)^r$$
$$\leqslant \left(1-\frac{\pi^2}{3k^2}\right)^{k^2-2} \left(\cos\frac{\ell\pi}{2k}\right)^r$$
$$\leqslant \frac{e^{-\pi^2/3}}{(1-\pi^2/(3k^2))^2} \cdot \left(\cos\frac{\ell\pi}{2k}\right)^r$$
$$\leqslant \frac{1}{16} \cdot \left(\cos\frac{\ell\pi}{2k}\right)^r.$$

Here the third inequality uses $(1 - (1/x))^x \leq e^{-1}$ and the fourth inequality uses $k \geq 4$.

8

1 Part (ii): we have

$$\left(\cos\frac{\pi}{2k}\right)^r > \left(\cos\frac{\pi}{2k}\right)^{4k^2} > \left(1 - \frac{\pi^2}{8k^2}\right)^{4k^2}$$

3 This is an increasing function of k so for $k \ge 4$ the value is at least $(1 - (\pi^2/128))^{64} \ge 1/200$. \Box

Lemma 14. For all real x and all odd $\ell \ge 3$, we have $|\cos(\ell x)| \le \ell |\cos x|$.

5 **Proof.** Fix $\ell \ge 3$. Let $y = (\pi/2) - x$ so $\ell |\cos x| = \ell |\sin y|$ and

$$|\cos(\ell x)| = \left|\cos\frac{\ell\pi}{2}\,\cos(\ell y) - \sin\frac{\ell\pi}{2}\,\sin(\ell y)\right| = |\sin(\ell y)|$$

- 7 (note that we have used the fact that ℓ is odd). Thus, we must show that |sin(ℓy)|≤ℓ|sin y|. This is clearly true if |sin y|≥1/ℓ; otherwise we may suppose that 0≤y < sin⁻¹ 1/ℓ (the other cases are entirely similar) so 0≤ℓy≤π/2.
 9 Now sin(ℓy)≤ℓ sin y follows from the concavity of sin y on [0, π/2] and the fact that the derivative of sin y is 1 at
- 9 Now $\sin(\ell y) \leq \ell \sin y$ follows from the concavity of $\sin y$ on $[0, \pi/2]$ and the fact that the derivative of $\sin y$ is 1 at y = 0. \Box
- 11 Using these tools we can now prove Theorem 10.

Theorem 10. Let k be even and $\sqrt{s}/2 < k \leq \sqrt{s}$. Let

$$A = \frac{1}{2^{s}} \sum_{\ell} (-1)^{\ell-1} {\binom{s-1}{\ell k-1}} \quad and \quad B = \frac{1}{2^{s-1}} \sum_{\ell} (-1)^{\ell-1} {\binom{s-2}{\ell k-2}}.$$

Then max{|A|, |B|} $\ge 1/1000s$.

15 **Proof.** By Lemma 12 we have

$$A = \frac{-1}{k} \left(\sum_{\ell=1,3,\dots,k-1} \left(\cos \frac{\ell \pi}{2k} \right)^{s-1} \cos \left(\frac{(s+1)\ell \pi}{2k} \right) \right),\tag{6}$$

17 and

13

$$B = \frac{-1}{k} \left(\sum_{\ell=1,3,\dots,k-1} \left(\cos \frac{\ell \pi}{2k} \right)^{s-2} \cos \left(\frac{(s+2)\ell \pi}{2k} \right) \right).$$
(7)

19 First the easy case: if k = 2 then $4 \le s \le 15$ and $A = (-1/2)(\cos(\pi/4))^{s-1}\cos((s+1)\pi/4)$, $B = (-1/2)(\cos(\pi/4))^{s-2}\cos((s+2)\pi/4)$. Since either $|\cos((s+1)\pi/4)|$ or $|\cos((s+2)\pi/4)|$ must be $\sqrt{2}/2$ we have 21 $\max\{|A|, |B|\} \ge 1/2^{(s/2+1)}$ which is easily seen to be at least 1/1000s for $4 \le s \le 15$.

Now suppose $k \ge 4$. For $\ell = 3, ..., k - 1$ we have

$$\left| \left(\cos \frac{\ell \pi}{2k} \right)^{s-1} \cos \left(\frac{(s+1)\ell \pi}{2k} \right) \right| \leq \frac{\left(\cos(\pi/2k) \right)^{s-1}}{4^{\ell-1}} \cdot \left| \cos \left(\frac{(s+1)\ell \pi}{2k} \right) \right|$$
$$\leq \left| \frac{\ell}{4^{\ell-1}} \cdot \left(\cos \frac{\pi}{2k} \right)^{s-1} \cos \left(\frac{(s+1)\pi}{2k} \right) \right|,$$

23 where the first inequality is by repeated application of part (i) of Lemma 13 and the second is by Lemma 14. We thus have

$$\sum_{\ell=3,5,\dots,k-1} \left| \left(\cos \frac{\ell \pi}{2k} \right)^{s-1} \cos \left(\frac{(s+1)\ell \pi}{2k} \right) \right|$$

$$\leq \sum_{\ell=3,5,\dots,k-1} \left| \frac{\ell}{4^{\ell-1}} \cdot \left(\cos \frac{\pi}{2k} \right)^{s-1} \cos \left(\frac{(s+1)\pi}{2k} \right) \right|$$

ARTICLE IN PRESS

10

$$< \left| \left(\cos \frac{\pi}{2k} \right)^{s-1} \cos \left(\frac{(s+1)\pi}{2k} \right) \right| \cdot \sum_{\ell=3}^{\infty} \frac{\ell}{4^{\ell-1}}$$
$$= \frac{5}{18} \cdot \left| \left(\cos \frac{\pi}{2k} \right)^{s-1} \cos \left(\frac{(s+1)\pi}{2k} \right) \right|.$$

1 Thus the $\ell = 1$ term in sum (6) dominates the sum and we have

$$A| \ge \frac{13}{18} \cdot \frac{1}{k} \left| \left(\cos \frac{\pi}{2k} \right)^{s-1} \cos \left(\frac{(s+1)\pi}{2k} \right) \right|$$
$$\ge \frac{13}{3600k} \cdot \left| \cos \left(\frac{(s+1)\pi}{2k} \right) \right|$$

by part (ii) of Lemma 13. An identical analysis for B shows that

$$|B| \ge \frac{13}{3600k} \cdot \left| \cos\left(\frac{(s+2)\pi}{2k}\right) \right|$$

as well.

3

5 We now observe that

$$\max\left\{ \left| \cos \frac{(s+1)\pi}{2k} \right|, \left| \cos \frac{(s+2)\pi}{2k} \right| \right\} \ge \cos \left(\frac{\pi}{2} - \frac{\pi}{4k} \right) = \sin \frac{\pi}{4k}$$

7 Using Taylor series this is easily seen to be at least $\pi/8k$. Hence we have

$$\max\{|A|, |B|\} \ge \frac{13}{3600k} \cdot \frac{\pi}{8k} > \frac{1}{1000k^2} \ge \frac{1}{1000s}$$

9 and the theorem is proved. \Box

6. Conclusion

- 11 Several interesting open problems suggest themselves for future work. One goal is to improve on the $n^{\sqrt{n}}$ running time bound for PAC learning embedded midbit functions under arbitrary distributions. Another goal is to extend the
- 13 uniform distribution algorithm for learning embedded midbit functions to an algorithm which can succeed under any product distribution. Finally, a more ambitious question is whether the reduction of Section 3 can be exploited
- 15 to provide nontrivial learning algorithms for *ACC*. More specifically, the reduction of Section 3 implicitly defines a specific nonuniform distribution which is such that if embedded midbit functions can be learned under this distribution in
- 17 quasipolynomial time, then any function in *ACC* can be learned in quasipolynomial time under the uniform distribution. Does this approach offer any new insights for designing uniform distribution learning algorithms for *ACC*?

19 References

- [1] E. Allender, U. Hertrampf, Depth reduction for circuits of unbounded fan-in, Inform. Comput. 112 (2) (1994) 217–238.
- 21 [2] D. Barrington, Bounded-width polynomial-size branching programs recognize exactly those languages in *NC*¹, J. Comput. System Sci. 38 (1) (1989) 150–164.
- [3] D. Barrington, D. Therien, Finite monoids and the fine structure of NC¹, J. Assoc. Comput. Math. 35 (4) (1988) 941–952.
- [4] R. Beigel, J. Tarui, On ACC, Comput. Complexity 4 (1994) 350–366.
- 25 [5] A. Blum, P. Chalasani, J. Jackson, On learning embedded symmetric concepts, in: Proc. Sixth Annu. Conf. on Computational Learning Theory, 1993, pp. 337–346.
- 27 [6] A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth, Learnability and the Vapnik–Chervonenkis dimension, J. Assoc. Comput. Math. 36 (4) (1989) 929–965.
- 29 [7] P. Fischer, H.U. Simon, On learning ring-sum expansions, SIAM J. Comput. 21 (1) (1992) 181–192.
 - [8] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1994.
- 31 [9] F. Green, J. Kobler, K. Regan, T. Schwentick, J. Toran, The power of the middle bit of a #P function, J. Comput. System Sci. 50 (3) (1998) 456–467.
- 33 [10] D. Helmbold, R. Sloan, M. Warmuth, Learning integer lattices, SIAM J. Comput. 21 (2) (1992) 240–266.
 - [11] A. Klivans, R. Servedio, Learning DNF in time $2^{\tilde{O}(n^{1/3})}$, in: Proc. Thirty-Third Annu. Symp. on Theory of Computing, 2001, pp. 258–265.

ARTICLE IN PRESS R.A. Servedio / Theoretical Computer Science III (IIII) III-III

TCS5793

- 1 [12] P. McKenzie, D. Therien, Automata theory meets circuit complexity, in: Proc. Internat. Colloq. on Automata, Languages and Programming, 1989, pp. 589–602.
- 3 [13] M. Minsky, S. Papert, Perceptrons: An Introduction to Computational Geometry, MIT Press, Cambridge, MA, 1968.
- [14] C. Ramus, Solution générale d'un problème d'analyse combinatoire, J. Reine Angew. Math. 11 (1834) 353–355.
- 5 [15] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
- [16] J. Riordan, Combinatorial Identities, Wiley, New York, 1968.
- 7 [17] L. Valiant, A theory of the learnable, Comm. ACM 27 (11) (1984) 1134–1142.
- [18] A. Yao, Separating the polynomial time hierarchy by oracles, in: Proc. Twenty-Sixth Annu. Symp. on Foundations of Computer Science, 1985,
 pp. 1–10.
 - [19] A. Yao, On ACC and threshold circuits, in: Proc. Thirty-First Annu. Symp. on Foundations of Computer Science, 1990, pp. 619–627.

UNCORRECTED PROOF