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Abstract
5

A midbit function on � binary inputs x1, . . . , x� outputs the middle bit in the binary representation of x1 + · · · + x�. We consider
the problem of Probably Approximately Correct (PAC) learning embedded midbit functions, where the set S ⊂ {x1, . . . , xn} of7
relevant variables on which the midbit depends is unknown to the learner.

To motivate this problem, we first point out that a result of Green et al. implies that a polynomial time learning algorithm for the9
class of embedded midbit functions would immediately yield a fairly efficient (quasipolynomial time) (PAC) learning algorithm for
the entire complexity class ACC. We then give two different subexponential learning algorithms, each of which learns embedded11
midbit functions under any probability distribution in 2

√
n log n time. Finally, we give a polynomial time algorithm for learning

embedded midbit functions under the uniform distribution.13
© 2005 Published by Elsevier B.V.

Keywords: PAC learning; Embedded midbit functions15

1. Introduction

A central goal of computational learning theory is to understand the computational complexity of learning various17
classes of Boolean functions. While much research has been devoted to learning syntactic classes such as decision trees,
DNF formulas, and constant depth circuits, researchers have also considered various “semantically defined” classes19
as well. A natural and important class of this sort is the class of embedded symmetric functions which was studied by
Blum et al. [5]. (Recall that a Boolean function is symmetric if its value depends only on the number of input bits which21
are set to 1.) An embedded symmetric function is a Boolean function which depends only on some subset of its input
variables and is a symmetric function on this subset, i.e., it is a symmetric function whose domain is “embedded” in a23
larger domain containing irrelevant variables.

In this paper we give a detailed PAC (Probably Approximately Correct) learning analysis of an interesting and natural25
family of embedded symmetric functions, which we call embedded midbit functions. An embedded midbit function is
defined by a subset i1, . . . , is of variables from {1, . . . , n}. The value of this embedded midbit function on an input27
x ∈ {0, 1}n is the value of the middle bit in the binary representation of xi1 + xi2 + · · · + xis . As described below, we
show that the class of embedded midbit functions has many interesting properties from a PAC learning perspective.29
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1.1. Our results1

We first give a hardness result (Theorem 4) for learning embedded midbit functions in the standard PAC model of
learning from random examples drawn from an arbitrary probability distribution. Using Green et al.’s characterization3
of the complexity class ACC [9], we observe that if there is a PAC learning algorithm for the class of embedded
midbit functions which runs in polynomial time (or even quasipolynomial time), then the class ACC of constant-depth,5
polynomial-size circuits of unbounded fanin AND/OR/MODm gates can also be PAC learned in quasipolynomial time.
This would be a major breakthrough since, as described in Section 3, the fastest PAC learning algorithms to date for7
even very restricted subclasses of ACC require much more than quasipolynomial time. This hardness result strengthens
an earlier hardness result of Blum et al. for embedded symmetric functions, and establishes an interesting connection9
between learning the “semantic” class of embedded midbit functions and learning rich syntactic classes. (We emphasize
that this hardness result is independent of the hypothesis representation which the learning algorithm uses.)11

While Theorem 4 implies that it may be difficult to learn embedded midbit functions efficiently under an arbitrary
distribution, this does not mean that PAC learning algorithms for embedded midbit functions must require exponential13
time. In Section 4, we give two different subexponential time PAC learning algorithms, each of which can learn
embedded midbit functions over n variables in time nO(

√
n).15

Finally, by means of a careful analysis of the correlation of single variables and pairs of variables with embedded
midbit functions, we show in Section 5 that embedded midbit functions can be learned in polynomial time under17
the uniform distribution. Embedded midbit functions thus give a simple and natural concept class which seems to
exhibit a large gap between the complexity of learning in the uniform distribution PAC model and the general (arbitrary19
distribution) PAC model.

2. Preliminaries21

Throughout this paper S denotes a subset of the variables {x1, . . . , xn} and s denotes |S|. All logarithms are base 2.

Definition 1. For S �= ∅ the embedded midbit function MS : {0, 1}n → {0, 1} is defined as MS(x) = the value of the23
�log(s)/2	th bit in the binary representation of

∑
S xi , where we consider the least significant bit to be the 0th bit. (We

take M∅(x) to be identically 0.) The class Cmid of embedded midbit functions is Cmid = {MS}S⊆{x1,...,xn}.25

We write Csym to denote the class of all embedded symmetric functions on {0, 1}n as described in Section 1; note
that Cmid ⊂ Csym.27

Definition 2. Given an embedded midbit function MS(x), let fs : {0, 1, . . . , s} → {0, 1} be the unique function such
that MS(x) = fs(

∑
S xi) for all x ∈ {0, 1}n. We say that fs is the basis function of MS(x) and we refer to the (s +1)-bit29

string fs(0)fs(1) · · · fs(s) as the pattern of fs .

If fs is the basis function for MS then the pattern for fs is a concatenation of strings of the form 0k(s)1k(s), where31
k(s) = 2�log(s)/2	 and the concatenation is truncated to be of length precisely s + 1. It is easy to see that

√
s/2 <

k(s)�√
s.33

A function f is quasipolynomial if f (n) = 2(log n)O(1)
. We write [a mod b] to denote the unique real number r ∈ [0, b)

such that a = kb + r for some integer k.35

2.1. The learning model

We work in the standard PAC learning model [17] and the uniform distribution variant of the PAC model. Let C be a37
class of Boolean functions over {0, 1}n. In the PAC model, a learning algorithm has access to a random example oracle
EX(c, D) which when invoked provides, in one time step, a labeled example 〈x, c(x)〉 ∈ {0, 1}n × {0, 1} where x is39
drawn from the distribution D over {0, 1}n. An algorithm A is a PAC learning algorithm for class C if the following
holds: for all c ∈ C and all distributions D over {0, 1}n, if A is given as input �, � > 0 and A is given access to EX(c, D),41
then with probability at least 1−� the output of A is a hypothesis h : {0, 1}n → {0, 1} such that Prx∈D[c(x) �= h(x)]��.



UNCORRECTED P
ROOF

TCS5793
ARTICLE IN PRESS

R.A. Servedio / Theoretical Computer Science ( ) – 3

(Strictly speaking, the output of A is some particular representation of h such as a Boolean circuit.) Algorithm A is said1
to run in time t if (i) the worst case running time of A (over all choices of c ∈ C and all distributions D) is at most t ,
and (ii) for every output h of A and all x ∈ {0, 1}n, h(x) can be evaluated in time t .3

If A satisfies the above definition only for some fixed distribution D (such as the uniform distribution on {0, 1}n),
then we say that A is a PAC learning algorithm for C under distribution D.

5

3. Hardness of learning embedded midbit functions

In this section we show that learning embedded midbit functions is almost as difficult as learning a rich syntactic7
class which contains decision trees, DNF formulas, and constant depth circuits.

3.1. Background: hardness of learning Csym9

We first describe a result of Blum et al. which gives some evidence that the broader class Csym of embedded symmetric
functions may be hard to PAC learn in polynomial time. Let Clog denote the class of Boolean functions on n bits which11
have at most log n relevant variables. Note that like Csym, the class Clog has the property that learning is no more
difficult than finding relevant variables—in either case, once the set of relevant variables has been identified, learning13
is simply a matter of observing and filling in at most n “table entries” which define the function (these entries are
the bits of the pattern for a function from Csym, and are the values of the function on all 2log n inputs for a function15
from Clog).

Building on this intuition, Blum et al. gave a polynomial time prediction-preserving reduction from Clog to Csym,17
thus showing that if Csym can be PAC learned in polynomial time then Clog can also be PAC learned in polynomial
time. Since no polynomial time learning algorithm is yet known for Clog, this gives some evidence that Csym may not19
be learnable in polynomial time.

3.2. Hardness of learning Cmid21

The class ACC was introduced by Barrington [2] and since been studied by many researchers, e.g. [1,3,4,9,12,18,19].
ACC consists of languages recognized by a family of constant-depth polynomial-size circuits with NOT gates and23
unbounded fanin AND, OR and MODm gates, where m is fixed for each circuit family. In the context of learning theory,
ACC is quite an expressive class, containing as it does polynomial size decision trees, polynomial size DNF formulas,25
and the well-studied class AC0 of constant-depth polynomial-size AND/OR/NOT circuits.

Building on work of Beigel and Tarui [4], Green et al. [9] have given the following characterization of ACC:27

Theorem 3. For each L ∈ ACC there is a depth-2 circuit which recognizes L∩{0, 1}n and has the following structure:
the top-level gate computes a midbit function of its inputs, and the bottom level consists of 2(log n)O(1)

AND gates each29
of fanin (log n)O(1).

Using this characterization we obtain the following hardness result for learning Cmid:31

Theorem 4. If Cmid can be PAC learned in polynomial (or even quasipolynomial) time, then ACC can be PAC learned
in quasipolynomial time.33

Proof. Let f : {0, 1}n → {0, 1} be the target ACC function. Let q(n) = 2(log n)O(1)
be an upper bound on the number of

AND gates on the bottom level of the Green et al. representation for f , and let �(n) = (log n)O(1) be an upper bound on35
the fanin of each bottom level AND gate. Given an instance x ∈ {0, 1}n we generate a new instance x′ ∈ {0, 1}m where
m = 2(log n)O(1)

by listing q(n) copies of each AND of at most �(n) variables from x1, . . . , xn. Theorem 3 implies that37
there is an embedded midbit function f ′ on m bits such that f (x) = f ′(x′) for all x ∈ {0, 1}n. By assumption we can
PAC learn this function f ′ in 2(log m)O(1) = 2(log n)O(1)

time, so the theorem is proved. �39

We note that while our reduction only establishes quasipolynomial time learnability for ACC from learnability of
Cmid, whereas the Blum reduction would establish polynomial time learnability of Clog, the class ACC is likely to be41
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much harder to learn than Clog. While Clog can be PAC learned in nlog n time by doing an exhaustive search for the1
set of log n relevant variables, no learning algorithm for ACC is known which runs in subexponential time. In fact, no
such algorithm is known even for the subclass of polynomial-size, depth 3 AND/OR/NOT circuits; to date the most3
expressive subclass of ACC which is known to be PAC learnable in subexponential time is the class of polynomial-size
AND/OR/NOT circuits of depth 2, which has recently been shown by Klivans and Servedio [11] to be PAC learnable5

in time 2Õ(n1/3).

4. Learning embedded midbit functions in nO(
√

n) time7

The results of Section 3 suggest that the class of embedded midbit functions may not be PAC learnable in quasipoly-
nomial time. However, we will show that it is possible to learn this class substantially faster than a naive exponential9
time algorithm. In this section, we describe two different algorithms each of which PAC learns Cmid in time nO(

√
n).

4.1. An algorithm based on learning linear threshold functions11

Our first approach is a variant of an algorithm given by Blum et al. in [5, Section 5.2].

Definition 5. Let f : {0, 1}n → {0, 1} be a Boolean function and p(x1, . . . , xn) a real-valued polynomial. We say that13
p(x) sign-represents f (x) if for all x ∈ {0, 1}n, p(x)�0 iff f (x) = 1.

Claim 1. Let MS be an embedded midbit function. Then there is a polynomial pS(x1, . . . , xn) of degree O(
√

n) which15
sign-represents MS(x).

Proof. Let fs be the basis function for MS . Since k(s) = �(
√

s), the number of “flip” positions in the pattern of17
fs where fs(i) �= fs(i + 1) is O(

√
s). Since the pattern for fs has O(

√
s) flips, there is some polynomial P(X) of

degree O(
√

s) which is nonnegative on precisely those i ∈ {0, 1, . . . , s} which have fs(i) = 1. This implies that19
pS(x1, . . . , xn) = P(

∑
S xi) sign-represents MS(x). Since the degree of pS is O(

√
s) and s�n the claim is proved.

�21

Consider the expanded feature space consisting of all monotone conjunctions of at most O(
√

n) variables. (Note

that this feature space contains
∑O(

√
n)

i=1 ni = nO(
√

n) features.) Claim 1 implies that MS(x) is equivalent to some23
linear threshold function over this space. Thus, we can use known polynomial time PAC learning algorithms for linear
threshold functions [6] over this expanded feature space to learn embedded midbit functions in nO(

√
n) time.25

We note that one can show that the sign-representing polynomial pS(x1, . . . , xn) described in Claim 1 can be taken
without loss of generality to have integer coefficients of total magnitude nO(

√
n). This implies that simple algorithms27

such as Winnow or Perceptron can be used to learn in nO(
√

n) time (instead of the more sophisticated algorithm of
[6] which is based on polynomial time linear programming). We also note that in [13] Minsky and Papert used a29
symmetrization technique to give a lower bound on the degree of any polynomial which sign-represents the parity
function. The same technique can be used to show that the O(

√
n) degree bound of Claim 1 is optimal for embedded31

midbit functions.

4.2. An algorithm based on learning parities33

We have seen that any embedded midbit function is equivalent to some linear threshold function over the feature
space of all O(

√
n)-size monotone conjunctions. We now show that any embedded midbit function is equivalent to35

some parity over this feature space as well.

Lemma 6. Let r, ��0. Then
(

r
2�

)
is even if and only if37

[r mod 2�+1] ∈ {0, 1, . . . , 2� − 1}.
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Proof. By induction on �. The base case � = 0 is trivial; we suppose that the claim holds for � = 0, . . . , i − 1 for1
some i�1. For the induction step we use the fact [8, Exercise 5.61] that(

r

m

)
≡
( �r/p	

�m/p	
)( [r mod p]

[m mod p]
)

(mod p)3

for all primes p and all r, m�0. Taking p = 2 and m = 2i , since i�1 we have(
r

2i

)
≡
(�r/2	

2i−1

)([r mod 2]
0

)
≡
(�r/2	

2i−1

)
(mod 2).5

By the induction hypothesis we have that this is 0 if and only if [�r/2	 mod 2i] ∈ {0, 1, . . . , 2i−1 − 1}, which holds if
and only if [r mod 2i+1] ∈ {0, 1, . . . , 2i − 1}. �7

Claim 2. Let MS be an embedded midbit function. Then MS(x) is equivalent to some parity of monotone conjunctions
each of which contains at most O(

√
n) variables.9

Proof. Let ⊕ denote the parity function. We have

MS(x) = 0 ⇐⇒ �log(s)/2	th bit of
∑
S

xi is 0

⇐⇒
[∑

S

xi mod 2�log(s)/2	+1
]

∈ {0, 1, . . . , 2�log(s)/2	 − 1}

⇐⇒
( ∑

S

xi

2�log(s)/2	

)
=
(∑

S

xi

k(s)

)
is even

⇐⇒ ⊕
A⊆S,|A|=k(s)

(∧
i∈A

xi

)
= 0.

The third step is by Lemma 6 and the last step is because for any x exactly
(∑

S
xi

k(s)

)
of the conjunctions11

{∧i∈A xi}A⊆S,|A|=k(s) take value 1. Since k(s) = O(
√

n) the claim is proved. �

As in the discussion following Claim 1, Claim 2 implies that we can use known PAC learning algorithms for parity13
[7,10] over an expanded feature space to learn embedded midbit functions in nO(

√
n) time.

5. A polynomial time algorithm for learning embedded midbits under the uniform distribution15

In [5] Blum et al. posed as an open problem the question of whether embedded symmetric concepts can be learned
under the uniform distribution in polynomial time. In this section, we show that embedded midbit functions can be17
PAC learned under the uniform distribution in polynomial time. This is in strong contrast to the results of Section 3
which indicate that embedded midbit functions probably cannot be PAC learned (in even quasipolynomial time) under19
arbitrary probability distributions.

Throughout this section, we let t (s) denote �s/k(s)	.21

5.1. First approach: testing single variables

To learn MS it is sufficient to identify the set S ⊆ {x1, . . . , xn} of relevant variables. A natural first approach is to23
test the correlation of each individual variable with MS(x); clearly variables not in S will have zero correlation, and
one might hope that variables in S will have nonzero correlation. However, this hope is incorrect as shown by Lemma25
8 below.

For 1� i�n define pi = Pr[MS(x) = 1|xi = 1] − Pr[MS(x) = 1]. The following fact is easily verified:27

Fact 3. If i /∈ S then pi = 0.
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Lemma 7. If i ∈ S then1

pi = 1

2s

t (s)∑
�=1

(−1)�−1
(

s − 1

�k(s) − 1

)
. (1)

Proof. Since the distribution on examples is uniform over {0, 1}n, the probability that exactly � of the s relevant
variables are 1 is exactly

(
s
�

)
/2s . Hence we have3

pi = 1

2s−1

∑
�:fs(�)=1

(
s − 1

� − 1

)
− 1

2s

∑
�:fs(�)=1

(
s

�

)
.

Using the identity5 (
s

�

)
=
(

s − 1

� − 1

)
+
(

s − 1

�

)
,

we find that7

pi = 1

2s

∑
fs(�)=1

((
s − 1

� − 1

)
−
(

s − 1

�

))
.

Cancelling terms where possible we obtain (1). �9

Lemma 8. There are embedded midbit functions MS(x) with S a proper subset of {x1, . . . , xn} such that pi = 0 for
all 1� i�n.11

Proof. By Fact 3 for i /∈ S we have pi = 0. Suppose that t (s) is even and t (s)k(s) − 1 = s − 1 − (k(s) − 1). Then
the expression for pi given in (1) is exactly 0 since the positive and negative binomial coefficients ±( s−1

�k(s)−1

)
and13

∓( s−1
(t (s)−�+1)k(s)−1

)
cancel each other out (e.g. take s = 27, k(s) = 4, t (s) = 6). �

Thus the correlation of individual variables with MS(x) need not provide information about membership in S.15
However, we will show that by testing correlations of pairs of variables with MS(x) we can efficiently determine
whether or not a given variable belongs to S.17

5.2. Second approach: testing pairs of variables

For 1� i, j �n, i �= j let pi,j = Pr[MS(x) = 1|xi = xj = 1] − Pr[MS(x) = 1|xj = 1]. Similar to Fact 3 we have19

Fact 4. If i /∈ S then pi,j = 0.

Lemma 9. If i ∈ S and j ∈ S then21

pi,j = 1

2s−1

t (s)∑
�=1

(−1)�−1
(

s − 2

�k(s) − 2

)
. (2)

Proof. We have23

pi,j = 1

2s−2

∑
�:fs(�)=1

(
s − 2

� − 2

)
− 1

2s−1

∑
�:fs(�)=1

(
s − 1

� − 1

)
.

Rearranging the sum as in Lemma 7 proves the lemma. �25

It is easy to construct an example similar to that of Lemma 8 in which pi,j = 0 even though i ∈ S and j ∈ S.
Thus, there are examples for which looking only at single variables fails, and there are examples for which looking27
only at pairs of variables fails. However, we show below that a strategy of looking both at single variables and at pairs
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Input: variable xi ∈{x1,..., xn}

Output: either "xi ∈S" or "xi ∉S" correct with probability 1−
1. let T be a sample of m = O(n2 log

2. let pi be an empirical estimate of pi obtained from T
3. for all j ∈{1,..., n} − {i}
4.      let pi, j be an empirical estimate of pi, j obtained from T

5. if pi >

6.      then output "i ∈ S"

7.      else output "i ∈ S"

n
�

n
�

) labeled examples 〈x, MS(x)〉
∧

∧

∧ 1
2000n

1
2000n

∧or pi,j > for some j ∈{1,..., n} − {i}

Fig. 1. An algorithm to determine whether xi is relevant for MS(x).

of variables cannot fail. More precisely, our algorithm is based on the fact (Theorem 10 below) that quantities (1) and1
(2) cannot both be extremely close to 0:

Theorem 10. Let k be even and
√

s/2 < k�√
s. Let3

A = 1

2s

∑
�

(−1)�−1
(

s − 1

�k − 1

)
and B = 1

2s−1

∑
�

(−1)�−1
(

s − 2

�k − 2

)
.

Then max{|A|, |B|}�1/1000s.5

The proof of Theorem 10 is somewhat involved and is deferred to Section 5.3.
With Theorem 10 in hand we can prove our main positive learning result for Cmid.7

Theorem 11. The class of embedded midbit functions is learnable under the uniform distribution in polynomial time.

Proof. Since there are fewer than n3 midbit functions MS(x) which have s�3 we can test each of these for consistency9
with a polynomial size random sample in polynomial time, and thus we can learn in polynomial time if s�3. We,
henceforth, assume that s�4 and thus that k(s)�2 is even.11

We show that the algorithm in Fig. 1 correctly determines whether or not xi ∈ S with probability 1 − (�/n). By
running this algorithm n times on variables x1, . . . , xn we can identify the set S and thus learn MS correctly with13
probability 1 − �.

Case 1: xi /∈ S. In this case by Facts 3 and 4 we have pi = pi,j = 0. Using standard Chernoff bounds it is easily15
verified that taking m = O(n2 log(n/�)), each of the n empirical estimates p̂i , p̂i,j will satisfy |p̂i | < 1/2000n and
|p̂i,j | < 1/2000n with probability 1 − (�/n2). Thus in this case the algorithm outputs “xi /∈ S” with probability at17
least 1 − (�/n).

Case 2: xi ∈ S. Since s�4 there is some xj �= xi such that xj ∈ S. Lemmas 7 and 9 and Theorem 10 imply that19
the true value of at least one of |pi |, |pi,j | will be at least 1/1000s�1/1000n. As before, for m as above each of the n
empirical estimates p̂i , p̂i,j will differ from its true value by less than 1/2000n with probability 1 − (�/n2). Thus in21
this case the algorithm outputs “xi ∈ S” with probability at least 1 − (�/n). �

5.3. Proof of Theorem 1023

The following lemma gives a useful expression for sums in the form of (1) and (2).

Lemma 12. Let r, j, k > 0 with k even. Then25 ∑
�

(−1)�−1
(

r

�k − j

)

= −2

k

( ∑
�=1,3,5,...,k−1

(
2 cos

��

2k

)r

cos

(
(r + 2j)��

2k

))
. (3)
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Proof. We reexpress the left side as1

∑
�

(
r

�(2k) + (k − j)

)
−∑

�

(
r

�(2k) − j

)
. (4)

The following well-known identity (see e.g. [15,16]) is due to Ramus [14]:3

∑
�

(
r

�k − j

)
= 1

k

k∑
�=1

(
2 cos

��

k

)r

cos

(
(r + 2j)��

k

)
.

Applying this identity to (4) we obtain5

1

2k

[
2k∑

�=1

(
2 cos

��

2k

)r

cos

(
(r − 2k + 2j)��

2k

)
−

2k∑
�=1

(
2 cos

��

2k

)r

cos

(
(r + 2j)��

2k

)]
.

Since even terms cancel out in the two sums above, we obtain7

−1

k

( ∑
�=1,3,...,2k−1

(
2 cos

��

2k

)r

cos

(
(r + 2j)��

2k

))
. (5)

Consider the term of this sum obtained when � = 2k − h for some odd value h9 (
2 cos

(2k − h)�

2k

)r

cos

(
(r + 2j)(2k − h)�

2k

)

= (−1)r+(r+2j)

(
2 cos

−h�

2k

)r

cos

(
(r + 2j)(−h)�

2k

)

=
(

2 cos
h�

2k

)r

cos

(
(r + 2j)h�

2k

)
.

This equals the term obtained when � = h. Since k = 2m is even we have that (5) equals the right side of (3). �

The following two technical lemmas will help us analyze the right-hand side of Eq. (3). No attempt has been made11
to optimize constants in the bounds.

Lemma 13. Let r, k be such that k�4 is even and k2 − 2�r < 4k2 − 1. Then13
(i) for � = 1, 3, . . . , k − 3 we have 0 < (cos((� + 2)�/2k))r < (cos(��/2k))r /16,

(ii) (cos(�/2k))r �1/200.15

Proof. By considering the Taylor series of cos x one can show that 1−(x2/2)� cos x�1−(x2/3) for all x ∈ [0, �/2].
Part (i): since 0 < ��/2k < (� + 2)�/2k < �/2, we have17

cos
(� + 2)�

2k
= cos

��

2k
cos

�

k
− sin

��

2k
sin

�

k
<

(
1 − �2

3k2

)
cos

��

2k
,

and hence19 (
cos

(� + 2)�

2k

)r

�
(

1 − �2

3k2

)r (
cos

��

2k

)r

�
(

1 − �2

3k2

)k2−2 (
cos

��

2k

)r

� e−�2/3

(1 − �2/(3k2))2
·
(

cos
��

2k

)r

� 1

16
·
(

cos
��

2k

)r

.

Here the third inequality uses (1 − (1/x))x �e−1 and the fourth inequality uses k�4.
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Part (ii): we have1

(
cos

�

2k

)r

>
(

cos
�

2k

)4k2

>

(
1 − �2

8k2

)4k2

.

This is an increasing function of k so for k�4 the value is at least
(
1 − (�2/128)

)64 �1/200. �3

Lemma 14. For all real x and all odd ��3, we have | cos(�x)|��| cos x|.

Proof. Fix ��3. Let y = (�/2) − x so �| cos x| = �| sin y| and5

| cos(�x)| =
∣∣∣∣cos

��

2
cos(�y) − sin

��

2
sin(�y)

∣∣∣∣ = | sin(�y)|

(note that we have used the fact that � is odd). Thus, we must show that | sin(�y)|��| sin y|. This is clearly true if7
| sin y|�1/�; otherwise we may suppose that 0�y < sin−1 1/� (the other cases are entirely similar) so 0��y��/2.
Now sin(�y)�� sin y follows from the concavity of sin y on [0, �/2] and the fact that the derivative of sin y is 1 at9
y = 0. �

Using these tools we can now prove Theorem 10.11

Theorem 10. Let k be even and
√

s/2 < k�√
s. Let

A = 1

2s

∑
�

(−1)�−1
(

s − 1

�k − 1

)
and B = 1

2s−1

∑
�

(−1)�−1
(

s − 2

�k − 2

)
.

13

Then max{|A|, |B|}�1/1000s.

Proof. By Lemma 12 we have15

A = −1

k

( ∑
�=1,3,...,k−1

(
cos

��

2k

)s−1

cos

(
(s + 1)��

2k

))
, (6)

and17

B = −1

k

( ∑
�=1,3,...,k−1

(
cos

��

2k

)s−2

cos

(
(s + 2)��

2k

))
. (7)

First the easy case: if k = 2 then 4�s�15 and A = (−1/2)(cos(�/4))s−1 cos ((s + 1)�/4), B = (−1/2)19
(cos(�/4))s−2 cos ((s + 2)�/4). Since either |cos ((s + 1)�/4)| or |cos ((s + 2)�/4)| must be

√
2/2 we have

max{|A|, |B|}�1/2(s/2+1 which is easily seen to be at least 1/1000s for 4�s�15.21
Now suppose k�4. For � = 3, . . . , k − 1 we have∣∣∣∣∣

(
cos

��

2k

)s−1

cos

(
(s + 1)��

2k

)∣∣∣∣∣ � (cos(�/2k))s−1

4�−1
·
∣∣∣∣cos

(
(s + 1)��

2k

)∣∣∣∣
�
∣∣∣∣ �

4�−1
·
(

cos
�

2k

)s−1
cos

(
(s + 1)�

2k

)∣∣∣∣ ,
where the first inequality is by repeated application of part (i) of Lemma 13 and the second is by Lemma 14. We thus23
have

∑
�=3,5,...,k−1

∣∣∣∣∣
(

cos
��

2k

)s−1

cos

(
(s + 1)��

2k

)∣∣∣∣∣
�

∑
�=3,5,...,k−1

∣∣∣∣ �

4�−1
·
(

cos
�

2k

)s−1
cos

(
(s + 1)�

2k

)∣∣∣∣
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<

∣∣∣∣(cos
�

2k

)s−1
cos

(
(s + 1)�

2k

)∣∣∣∣ · ∞∑
�=3

�

4�−1

= 5

18
·
∣∣∣∣(cos

�

2k

)s−1
cos

(
(s + 1)�

2k

)∣∣∣∣ .
Thus the � = 1 term in sum (6) dominates the sum and we have1

|A| � 13

18
· 1

k

∣∣∣∣(cos
�

2k

)s−1
cos

(
(s + 1)�

2k

)∣∣∣∣
� 13

3600k
·
∣∣∣∣cos

(
(s + 1)�

2k

)∣∣∣∣
by part (ii) of Lemma 13. An identical analysis for B shows that

|B| � 13

3600k
·
∣∣∣∣cos

(
(s + 2)�

2k

)∣∣∣∣3

as well.
We now observe that5

max

{∣∣∣∣cos
(s + 1)�

2k

∣∣∣∣ ,
∣∣∣∣cos

(s + 2)�

2k

∣∣∣∣
}

� cos
(�

2
− �

4k

)
= sin

�

4k
.

Using Taylor series this is easily seen to be at least �/8k. Hence we have7

max{|A|, |B|}� 13

3600k
· �

8k
>

1

1000k2
� 1

1000s

and the theorem is proved. �9

6. Conclusion

Several interesting open problems suggest themselves for future work. One goal is to improve on the n
√

n running11
time bound for PAC learning embedded midbit functions under arbitrary distributions. Another goal is to extend the
uniform distribution algorithm for learning embedded midbit functions to an algorithm which can succeed under13
any product distribution. Finally, a more ambitious question is whether the reduction of Section 3 can be exploited
to provide nontrivial learning algorithms for ACC. More specifically, the reduction of Section 3 implicitly defines a15
specific nonuniform distribution which is such that if embedded midbit functions can be learned under this distribution in
quasipolynomial time, then any function in ACC can be learned in quasipolynomial time under the uniform distribution.17
Does this approach offer any new insights for designing uniform distribution learning algorithms for ACC?
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