
Martingale Boosting∗

Philip M. Long
Google

Mountain View, CA
plong@google.com

Rocco A. Servedio†

Columbia University
New York, NY

rocco@cs.columbia.edu

September 12, 2008

Abstract

Martingale boosting is a simple and easily understood technique with a simple and easily under-
stood analysis. A slight variant of the approach provably achieves optimal accuracy in the presence of
misclassification noise.

1 Introduction

Boosting [15, 8] has been an overwhelming practical success. In many applied domains, the best known
algorithms use boosting. Nevertheless, some time ago, sensitivity to noise was identified as a weakness of
the standard boosting techniques [7, 11, 5].

Heuristics have been proposed to combat this [14, 13]. The heuristics are based on an implicit view
that noisy examples tend to be borderline cases: they penalize noisy examples roughly in proportion to how
much they deviate from the norm. This view has been seen to be useful, but there are applications in which
many examples are not borderline.

Some boosting algorithms have been shown to be provably noise-tolerant [16, 2, 3, 9, 10]. As in clas-
sification in general, the main approaches to theory for noise-tolerant boosting can be divided into agnos-
tic/malicious and independent models. In the agnostic/malicious case, essentially nothing is assumed about
the noise, except a limit on its rate. This may appear to be more realistic than the alternative in which the
labels are assumed to be flipped independently of the sample.However, analysis of agnostic or malicious
noise models is by necessity focused on the worst case; typically, in this case, noisy examples are the most
extreme elements of the opposite class. Sources involving independent misclassification resemble applied
problems more than this. Thus, analysis of learning with independent misclassification noise may be the
most effective way to use theory to guide the design of boosting algorithms that are robust to noisy data
other than borderline cases.

1.1 Our contribution This paper is about an approach that we callmartingale boosting. We concentrate
on the problem of predicting binary classifications, say 0 and 1. As in many earlier boosting algorithms,
learning proceeds incrementally in stages. In each stage, examples are partitioned into bins, and a separate
base classifier is chosen for each bin. An example is assigneda bin by counting the number of 1 predictions
made by the appropriate base classifiers from earlier rounds.

∗This is a full version which contains some proofs omitted from the conference version because of space.
†Supported in part by NSF CAREER award CCF-0347282

1

The analysis is very simple: it proceeds by thinking of an object to be classified as taking a random walk
on the number of base classifiers that predict 1. If the error rates are balanced between false positives and
false negatives and are slightly better than random guessing, it is easy to see that, after a few rounds, it is
overwhelmingly likely that more than half the steps are in the correct direction: such examples are classified
correctly by the boosted classifier.

In some cases, one can promote balanced error rates directly; for example, if decision stumps are used
as base classifiers, one can easily adjust the threshold to balance the error rates on the training data. We also
show that it is possible toforcea standard weak learner to produce a classifier with balancederror rates in
the cases that we need.

Martingale boosting facilitates noise tolerance by the fact that the probability of reaching a given bin
depends on thepredictionsmade by the earlier base classifiers, and not on the label of anexample. (In
particular, it does not depend on the number that are corrector incorrect, as does Boost-by-Majority [6].)
The most technical aspect of the paper is to show that the reweighting to force balanced errors can be done
while preserving noise-tolerance. Ideas from earlier workby Kalai and Servedio [10] are useful there.

Because it is a simple and easily understood technique that generates highly noise-tolerant algorithms,
ideas from martingale boosting appear likely to be practically useful.

1.2 Organization Section 3 gives a high-level description of the architecture of our boosting algorithm
and compares it with the three previous boosting algorithmswhich seem most closely related, namely the
Boost-by-Majority algorithm of Freund [6], the branching program booster of Mansour and McAllester [12]
and the noise-tolerant booster of Kalai and Servedio [10].

In Section 4 we consider a learning scenario in which the weaklearning algorithm is assumed to satisfy
a somewhat stronger guarantee than the usual weak learning assumption: the base classifier produced by
the weak learner is assumed to achieve accuracy significantly greater than1/2 on both positive and negative
examples. Working in this scenario lets us highlight the main idea of our new boosting method; we give
a very simple proof in Section 4 that our algorithm successfully boosts such a weak learner to arbitrary
accuracy.

In Section 5, we show how a slight modification of the algorithm from Section 4 can be used to boost
a standard weak learning algorithm, which only meets the usual weak learning criterion, to arbitrarily high
accuracy. We discuss computational issues and give an implementation of this algorithm in a framework
where the learner has access to an example oracleEX(c,D) in Section 6.

In Section 7, we show how the algorithm of Section 5 can be usedto boost a random classification noise
tolerant weak learning algorithm to achieve final accuracy1 − ǫ, whereǫ is any value greater than the noise
rateη. The modification described in this section is similar to thatof Kalai and Servedio [10] who showed
how the boosting algorithm of McAllester and Mansour could be modified to achieve tolerance to random
classification noise.

2 Preliminaries

Given a target conceptc : X → {0, 1} and a distributionD overX, we writeD+ to denote the distribution
D restricted to the positive examples{x ∈ X : c(x) = 1}. Thus, for any eventS ⊆ {x ∈ X : c(x) = 1}
we havePrD+[x ∈ S] = PrD[x ∈ S]/PrD[c(x) = 1]. Similarly, we writeD− to denoteD restricted to the
negative examples{x ∈ X : c(x) = 0}.

2

.....

.....

.....

.....

.....

v0,0

v0,1 v1,1

v0,2 v1,2 v2,2

v0,3 v1,3 v2,3 v3,3

v0,T v1,T v2,T v3,T vT−3,T vT−2,T vT−1,T vT,T

︷ ︸︸ ︷ ︷ ︸︸ ︷output 0 output 1

Figure 1: The branching program produced by the boosting algorithm. Each nodevi,t is labeled with a
0/1-valued functionhi,t; left edges correspond to 0 and right edges to 1.

3 High-level structure of the boosting algorithm

The boosting algorithm works in a series ofT stages. The hypothesis of the boosting algorithm is a layered
branching program withT + 1 layers in a grid graph structure, where layert hast + 1 nodes (see Figure 1);
we refer to thei-th node from the left in layert asvi,t, wherei ranges from 0 tot. For0 ≤ t ≤ T − 1, each
nodevi,t in layert has two outgoing edges, one left edge (which is labeled with a0) to nodevi,t+1 and one
right edge (labeled with a 1) to nodevi+1,t+1. Nodesvi,T in layerT have no outgoing edges.

Before staget of the boosting algorithm begins, each node at levels0, . . . , t − 1 has been labeled with
a 0/1-valued hypothesis function. We writehi,j to denote the hypothesis function that labels nodevi,j.
In the t-th stage, hypothesis functions are assigned to each of thet + 1 nodesv0,t throughvt,t at levelt.
Given an examplex ∈ X in staget, the branching program routes the example by evaluatingh0,1 on x
and then sending the example on the outgoing edge whose labelis h0,1(x), i.e. sending it to nodevh0,1(x),1.
The example is routed through successive levels in this way until it reaches levelt; more precisely, when
examplex reaches some nodevi,j in level j, it is routed from there via the outgoing edge whose label is
hi,j(x) to the nodevi+hi,j(x),j+1. In this fashion the examplex eventually reaches the nodevℓ,t after being
evaluated ont hypotheses, whereℓ is the number of theset hypotheses which evaluated to 1 onx.

Thus, in thet-th stage of boosting, given an initial distributionD over examplesx, the hypotheses
that have been assigned to nodes at levels0, . . . , t − 1 of the branching program inducet + 1 different
distributionsD0,t, . . . ,Dt,t corresponding to thet + 1 nodesv0,t, . . . , vt,t in layert (a random drawx from
distributionDi,t is a draw fromD conditioned onx reachingvi,t). In the following sections, we will
carefully specify just how the hypothesesh0,t, . . . , ht,t are generated to label the nodesv0,t, . . . , vt,t in the
t-th stage of boosting; as we will see in Section 5, for the boosting algorithms that work in the standard
model, it isnot the case thathi,t is obtained simply by running the weak learner on distribution Di,t and
using the resulting hypothesis ashi,t.

Once allT stages of boosting have been performed, the resulting branching program routes any example
x to some nodevℓ,T at levelT ; observe thatℓ is the number of hypotheses that evaluated to 1 out of the
T hypotheses that were evaluated onx. The final classifier computed by the branching program is simple:
given an examplex to classify, if the final nodevℓ,T thatx reaches hasℓ ≥ T/2 then the output is 1, and

3

otherwise the output is 0.

3.1 Relation to previous boosting algorithmsReaders who are familiar with Freund’s paper on the
Boost-by-Majority algorithm [6] may experience a sense of déjà vu on looking at Figure 1, since a very
similar figure appears in [6]. Indeed, both our current boosting scheme and the Boost-by-Majority algo-
rithm can be viewed as routing an example through a branchingprogram which has the graph structure
shown in Figure 1, and both boosters work by ultimately predicting 1 or 0 according to whether the majority
of T weak hypotheses evaluate to 1 or 0. However, we emphasize that there is a very significant difference
between our boosting approach and that of [6]. In Boost-by-Majority, in staget the weak learning algorithm
is only invoked once, using a single distributionDt that reweights each examples according to which node
vi,t at levelt it arrives at. Thus, in Boost-by-Majority there are onlyT weak hypotheses that are ever gener-
ated in the course of boosting, and each nodev0,t, . . . , vt,t is labeled with the same weak hypothesisht; the
final output is a majority vote over theseT hypothesesh1, . . . , hT . In contrast, our algorithm invokes the
weak learnert + 1 separate times in staget, once for each of thet + 1 distinct distributionsD0,t, . . . ,Dt,t

corresponding to the nodesv0,t, v1,t, . . . , vt,t. (We remind the reader again that as we will see in Section 5,
the hypothesishi,t is not obtained simply by running the weak learner onDi,t and taking the resulting hy-
pothesis to behi,t.) A total of T (T + 1)/2 weak hypotheses are constructed, and any single examplex only
encountersT of these hypotheses in its path through the branching program.

As we will see, our algorithm has a very simple proof of correctness which seems quite different from
the Boost-by-Majority proof. Moreover, the fact that our algorithm constructs a different hypothesishi,t

for each nodevi,t seems to play an important role in enabling our boosting algorithm to tolerate random
classification noise. We will show in Section 7 that a slight variant of our boosting algorithm can learn to
any accuracy rate1 − ǫ < 1 − η in the presence of random classification noise at rateη; no such guarantee
is given for Boost-by-Majority or any variant of it that we are aware of in the literature, and we were unable
to prove such a guarantee for Boost-by-Majority. It is an interesting question for future work to determine
whether Boost-by-Majority actually has (close to) this level of noise tolerance.

Another related algorithm is the “boosting by branching programs” algorithm of Mansour and McAllester
[12], which we refer to as the MM algorithm. Kalai and Servedio [10] modified the MM algorithm to obtain
a boosting algorithm which is robust in the presence of random classification noise.

Like the Mansour/McAllester boosting algorithm, our booster works by building a branching program.
Also, as mentioned earlier, our modification and analysis ofthis paper’s boosting algorithm to achieve
random classification noise tolerance will follow the approach of Kalai & Servedio. However, there are
significant differences between our boosting algorithm andthis earlier work. The algorithm and analysis
of [12] and [10] are based on the notion of “purity gain;” a node v is split into two descendents if each of
the two labels 0 and 1 is achieved by a nonnegligible fractionof the examples that reachv, and two nodes
v andw are merged if the ratio of positive to negative examples within v is similar to the ratio withinw.
Nodes that are pure (for someb ∈ {0, 1} almost all examples that reachv are labeled withb) are “frozen”
(i.e. not split any more) and assigned the labelb. In contrast, in our new algorithm the label of a given
terminal node in the branching program depends not on the majority vote label of examples that reach that
node, but on the majority vote label of the hypotheses that are evaluated on the path to the node. In the
analysis of our algorithm, progress is measured not in termsof purity gain achieved by splitting a node, but
rather by the amount of “drift” in the right direction that a node imparts to the examples that reach it. (We
will see, though, that notions of purity do play a role for efficiency reasons in the example oracle model
implementation of the algorithm that we describe in Section6.)

We note also that the algorithms and analyses of [12, 10] gavelittle insight into the structure of the

4

branching programs that they create. In contrast, our algorithm yields a well-structured and easily intelligible
branching program as shown in Figure 1.

4 Boosting a two-sided weak learner

Let c : X → {0, 1} be the target function that we are trying to learn to high accuracy with respect to
distributionD overX. Throughout this section the distributionsD+ andD− are defined with respect toc.

Definition 1. A hypothesish : X → {0, 1} is said to havetwo-sided advantageγ with respect toD if it
satisfies bothPrx∈D+ [h(x) = 1] ≥ 1

2 + γ andPrx∈D−[h(x) = 0] ≥ 1
2 + γ.

Thus such a hypothesis performs noticeably better than random guessing both on positive examples and
on negative examples. In this section we will assume that we have access to atwo-sided weak learnerthat,
when invoked on target conceptc and distributionD, outputs a hypothesis with two-sided advantage.

In the next section, we will perform an analysis using the usual assumption of having just a standard
weak learner. That analysis can be viewed as reducing that problem to the two-side model studied here.
However, results in the two-sided model are arguably interesting in their own right for the following reason.
In practice, boosting algorithms are often applied in conjunction with “decision stumps”, classifiers that
base their predictions on whether individual variables areabove or below thresholds. For such classifiers,
the threshold can be adjusted so that the training error is balanced between positive and negative examples,
with a modest increase in the overall error rate; this promotes finding base classifiers with reasonably small
error on both kinds of examples, as is required by the definition in the two-sided model.

We now show how the general boosting framework of Section 3 can be used to boost a two-sided weak
learner to high accuracy. This is done very simply: in staget, at each nodevi,t we just run the two-sided
weak learner on examples drawn fromDi,t (recall that this is the distribution obtained by filteringD to
accept only those examples that reach nodevi,t), and use the resulting hypothesis, which has two-sided
advantage with respect toDi,t, as the hypothesis functionhi,t labeling nodevi,t. We refer to this boosting
scheme asBasic MartiBoost.

The idea of the analysis is extremely simple. Leth denote the final branching program thatBasic
Martiboost constructs. We will see that a random examplex drawn fromD+ (i.e. a random positive
example) is routed throughh according to a random walk that is biased toward the right, and a random
examplex drawn fromD− is routed throughh according to a random walk that is biased toward the left.
Sinceh classifies examplex according to whetherx reaches a final nodevℓ,T with ℓ ≥ T/2 or ℓ < T/2,
this will imply thath has high accuracy on both random positive examples and random negative examples.

So consider a random positive examplex (i.e. x is distributed according toD+). For any nodevi,t,
conditioned onx reaching nodevi,t we have thatx is distributed according to(Di,t)

+. Consequently, by
the definition of two-sided advantage we have thatx goes from nodevi,t to nodevi+1,t+1 with probability
at least1/2 + γ, sox does indeed follow a random walk biased to the right. Similarly, for any nodevi,t a
random negative example that reaches nodevi,t will proceed to nodevi,t+1 with probability at least1/2+γ,
and thus random negative examples follow a random walk biased to the left. Now standard bounds on
random walks are easily seen to imply that ifT = O(log 1/ǫ

γ2), then the probability that a random positive
examplex ends up at a nodevℓ,T with ℓ < T/2 is at mostǫ. The same is true for random negative examples,
and thush has overall accuracy at least1 − ǫ with respect toD.

In more detail, we have the following theorem:

Theorem 1. Let γ0, γ1, . . . , γT−1 be any sequence of values between0 and 1/2. For each valuet =
0, . . . , T−1, suppose that each of thet+1 invocations of the weak learner on distributionsDi,t (with0 ≤ i ≤

5

t) yields a hypothesishi,t which has two-sided advantageγt with respect toDi,t. Then the final output hy-

pothesish thatBasic Martiboostcomputes will satisfyPrx∈D[h(x) 6= c(x)] ≤ exp
(
−(
∑T−1

t=0 γt)
2/(2T)

)
.

Proof. As sketched above, we will begin by bounding the error rate onpositive examples (a nearly identical
proof will work for the negative examples).

For t = 0, . . . , T we define the integer-valued random variableXt as follows: given a draw ofx from
D+, let i denote the index of the nodevi,t thatx reaches at levelt of the branching program. The value of
Xt is i.

Fix 1 ≤ t ≤ T and let us consider the conditional random variable(Xt|Xt−1). Conditioned onXt−1

taking any particular value (i.e. onx reaching any particular nodevi,t−1), we have thatx is distributed
according to(Di,t−1)

+, and thus we have

E[Xt|Xt−1] = Xt−1 + Pr
x∈(Di,t−1)+

[hi,t−1(x) = 1] ≥ Xt−1 +
1

2
+ γt−1, (1)

where the inequality follows from the two-sided advantage of hi,t−1.
Now for t = 0, . . . , T define the random variableYt asYt = Xt −

∑t−1
i=0(

1
2 + γi) (soY0 = X0 = 0.)

Since each possible value ofYt−1 corresponds to a unique value ofXt−1 and vice versa, conditioning on
the value ofYt−1 is the equivalent conditioning on the value ofXt−1. Using inequality (1) we obtain

E[Yt|Yt−1] = E

[
Xt −

t−1∑

i=0

(
1

2
+ γi)|Yt−1

]
= E[Xt|Yt−1] −

t−1∑

i=0

(
1

2
+ γi)

≥ Xt−1 +
1

2
+ γt−1 −

t−1∑

i=0

(
1

2
+ γi) = Xt−1 −

t−2∑

i=0

(
1

2
+ γi) = Yt−1,

so the sequence of random variablesY0, . . . , YT is a sub-martingale. We have

|Yt − Yt−1| = |Xt − Xt−1 − (
1

2
+ γt−1)| ≤ 1,

so by Azuma’s inequality for sub-martingales (Theorem 7 in Appendix A) we getPr[YT ≤ −λ] ≤
exp(−λ2/(2T)). We takeλ =

∑T−1
t=0 γt, and observe thatPr[YT ≤ −λ] = Pr[XT ≤ T/2] = Prx∈D+[h(x) =

0] for the final hypothesish. Thus, we indeed have that the error rate on positive examples is at most

exp
(
−

(
PT−1

t=0
γt)2

2T

)
. The same argument shows thatPrx∈D− [h(x) = 1] ≤ exp

(
−

(
PT

t=1
γt)2

2T

)
, and we are

done.

Note that if we haveγt ≥ γ for all t, then Theorem 1 gives the familiar boundPrx∈D[h(x) 6= c(x)] ≤

exp(−γ2T
2). We further observe that if all theγt values are small and equal to the same valueγ, then we

can replace the 1 in the upper bound on|Yt −Yt−1| with a value close to1/2; and this gives a final bound in
which the constant in the exponent is close to 2 (rather than the current value of1/2), which is optimal.

5 Boosting a standard weak learner

We recall the usual definition of a weak learner.

Definition 2. Given a target functionc : X → {0, 1} and a distributionD, a hypothesish : X → {0, 1} is
said to haveadvantageγ with respect toD if it satisfiesPrx∈D[h(x) = c(x)] ≥ 1

2 + γ.

6

c(x) = 1 c(x) = 0

h(x) = 1 p q

h(x) = 0 1/2 − p 1/2 − q

c(x) = 1 c(x) = 0

h(x) = 1, ĥ(x) = 1 p
2r

q
2r

h(x) = 1, ĥ(x) = 0 p(1 − 1
2r) q(1 − 1

2r)

h(x) = 0, ĥ(x) = 1 0 0

h(x) = 0, ĥ(x) = 0 1
2 − p 1

2 − q

Table 1: Each table entry gives the probability of the corresponding event under the balanced distribution
D.

In this section we will assume that we have access to a standard weak learning algorithm which, when
invoked on target conceptc and distributionD, outputs a hypothesish which has advantageγ with respect
to D. This is the usual assumption that is made in the study of boosting, and is clearly less demanding
than the two-sided weak learner we considered in the previous section. We will show how theBasic
Martiboost algorithm of the previous section can be modified to boost a standard weak learner to high
accuracy.

For clarity of exposition, throughout this section we will consider an abstract version of the boosting
algorithm in which all desired probabilities can be obtained exactly (i.e. we do not consider issues of
sampling error, etc. here). We will deal carefully with these issues when we describe an example oracle
model implementation of the algorithm in Section 6.

5.1 Definitions and an easy lemmaLet c : X → {0, 1} be a target concept. We say that a distributionD
overX is balancedif D puts equal weight on positive and negative examples, i.e.Prx∈D[c(x) = 0] = 1

2 .

Given an arbitrary distributionD (not necessarily balanced), we writêD to denote the balanced version ofD
which is an equal average ofD+ andD−; i.e. for anyS ⊆ X we havePr bD[S] = 1

2 PrD+[S] + 1
2 PrD−[S].

Given a distributionD overX and a hypothesish : X → {0, 1}, we definêh, the balanced version ofh,
to be the (probabilistic) version ofh described below; the key property ofĥ is that it outputs0 and 1 equally
often underD. Let b ∈ {0, 1} be the value thath evaluates to more often, and letr = Prx∈D[h(x) = b]
(so1/2 ≤ r ≤ 1). Given an inputx ∈ X, to evaluatêh on x we toss a biased coin which comes up heads
with probability 1

2r . If we get heads we outputh(x), and if we get tails we output1 − b. This ensures that

Prx∈D[ĥ(x) = b] = Pr[coin is heads& h(x) = b] = 1
2r · r = 1

2 .
The following simple lemma shows that if we have a weak hypothesish that has advantageγ relative to

a balanced distributionD, then the balanced hypothesisĥ has advantage at leastγ/2 relative toD.

Lemma 1. If D is a balanced distribution andPrD[h(x) = c(x)] ≥ 1
2 +γ thenPrD[ĥ(x) = c(x)] ≥ 1

2 + γ
2 .

Proof. We may assume without loss of generality thatPrD[h(x) = 1] = r ≥ 1
2 , i.e. thatb = 1 in the above

discussion. If we letp denotePrD[h(x) = 1 & c(x) = 1] andq denotePrD[h(x) = 1 & c(x) = 0], so
p + q = r, then the probabilities for all four possible values ofh andc are given in the left side of Table 1.
From the definition of̂h it is straightforward to verify that the probabilities of all eight combinations of
values forh, ĥ and c are as given in the right side of Table 1. We thus have thatPrD[ĥ(x) = c(x)] =
p
2r + q

(
1 − 1

2r

)
+ 1

2 − q = 1
2 + p−q

2r . By assumption we havePrD[h(x) = c(x)] ≥ 1
2 + γ, so from the left

side of Table 1 we havep − q ≥ γ. The claim follows sincer ≤ 1.

7

hi,t(x) = 0 hi,t(x) = 1

c(x) = 0 p 1/2 − p

c(x) = 1 1/2 − p p

Table 2: Each table entry gives the probability of the corresponding event under the balanced distribution
D̂i,t.

5.2 Boosting a standard weak learner withMartiBoost Our algorithm for boosting a standard weak
learner, which we callMartiBoost, works as follows. In staget, at each nodevi,t we run the weak
learning algorithm on the balanced version̂Di,t of the distributionDi,t; let gi,t denote the hypothesis that the
weak learner returns. The hypothesishi,t that is used to labelvi,t is hi,t = ĝi,t, namelygi,t balanced with
respect to the balanced distribution̂Di,t.

The following lemma plays a key role in our proof of correctness:

Lemma 2. We havePr(x∈Di,t)+ [hi,t(x) = 1] ≥ 1
2 + γ

2 andPr(x∈Di,t)− [hi,t(x) = 0] ≥ 1
2 + γ

2 .

Proof. Since the original hypothesisgi,t that the weak learner returns when invoked witĥDi,t has accuracy
at least12 + γ with respect toD̂i,t, by Lemma 1 we have that the balanced hypothesishi,t has accuracy

at least12 + γ
2 with respect toD̂i,t. Let p denotePr dDi,t

[hi,t(x) = c(x) = 0]. SinceD̂i,t is a balanced

distribution andhi,t is a balanced hypothesis, it is easy to see that all four tableentries must be as given in
Table 2, and thusPr dDi,t

[hi,t(x) = c(x)] = 2p ≥ 1
2 + γ

2 , i.e. p ≥ 1
4 + γ

4 . But sinceD̂i,t is an equal mixture

of (Di,t)
+ and(Di,t)

−, this implies thatPrx∈(Di,t)+ [hi,t(x) = 1] ≥ (1
4 + γ

4)/1
2 = 1

2 + γ
2 . We similarly have

thatPrx∈(Di,t)− [hi,t(x) = 0] ≥ 1
2 + γ

2 , and the lemma is proved.

With this lemma in hand it is easy to prove correctness ofMartiBoost:

Theorem 2. Let γ0, γ1, . . . , γT−1 be any sequence of values between0 and 1/2. For each valuet =

0, . . . , T − 1, suppose that each of thet + 1 invocations of the weak learner on distributionŝDi,t (with 0 ≤

i ≤ t−1) yields a hypothesisgi,t which has advantageγt with respect tôDi,t. Then the final branching pro-

gram hypothesish thatMartiBoost constructs will satisfyPrx∈D[h(x) 6= c(x)] ≤ exp
(
−

(
PT

t=1
γt)2

8T

)
.

Proof. The proof is almost identical to the proof of Theorem 1. We define sequences of random variables
X1, . . . ,XT andY0, . . . , YT as before; the only difference is that (i) now we haveE[Xt] ≥ 1

2 + γt

2 (by
Lemma 2) rather thanE[Xt] ≥

1
2 + γt as in the earlier proof, and (ii) the randomness is now taken over

both the draw ofx from D+ and over the internal randomness of each hypothesishi,t at each node in the
branching program. This loss of a factor of2 from (i) in the advantage accounts for the different constant
(worse by a factor of 4) in the exponent of the bound.

6 Complexity issues: implementation ofMartiBoost that works with an example oracle

Thus far we have described and analyzed an abstract version of MartiBoostwithout specifying how the
weak learner is actually run on the distribution̂Di,t at each node. One approach is to run the boosting
algorithm on a fixed sample. In this case all relevant probabilities can be maintained explicitly in a look-up
table, and then Theorem 2 bounds the training set accuracy oftheMartiBoost final hypothesis over this
fixed sample.

8

In this section we describe and analyze an implementation ofthe algorithm in which the weak learner
runs given access to an example oracleEX(c,D). As we will see, this version of the algorithm requires
some changes for the sake of efficiency; in particular we will“freeze” the execution of the algorithm at
nodesvi,t where it is too expensive to simulatêDi,t. We give an analysis of the time and sample complexity
of the resulting algorithm which shows that it is computationally efficient and can achieve a high accuracy
final hypothesis. Note that the accuracy in this case is measured with respect to the underlying distribution
generating the data (and future test data).

6.1 The model We define weak learning in the example oracleEX(c,D) framework as follows:

Definition 3. Given a target functionc : X → {0, 1}, an algorithmA is said to be aweak learning
algorithm with advantageγ if it satisfies the following property: for anyδ > 0 and any distributionD over
X, if A is givenδ and access toEX(c,D) then algorithmA outputs a hypothesish : X → {0, 1} which
with probability at least1 − δ satisfiesPrx∈D[h(x) = c(x)] ≥ 1

2 + γ.

We letmA(δ) denote the running time of algorithmA, where we charge one time step per invocation of
the oracleEX(c,D). Thus, if we must run algorithmA using a simulated oracleEX(c,D′) but we only
have access toEX(c,D), the runtime will be at mostmA(δ) times the amount of time it takes to simulate a
draw fromEX(c,D′) givenEX(c,D).

6.2 An idealized version of the oracle algorithmWe now describe the version ofMartiBoost de-
signed to work with a sampling oracle in more detail; we call this algorithmSampling Martiboost, or
SMartiBoost. While this algorithm is intended to work with random examples, to keep the focus clear on
the main ideas, let us continue for a while to assume that all required probabilities can be computed exactly.
In Section 6.3 we will show that the analysis still holds if probabilities are estimated using a polynomial-size
sample.

For convenience, we will user to denote all of the random bits used by all the hypotheseshi,t. It is
convenient to think ofr as an infinite sequence of random bits that is determined before the algorithm starts
and then read off one at a time as needed by the algorithm (though the algorithm will use only polynomially
many of them).

In staget of SMartiBoost, all nodes at levelst′ < t have been labeled and the algorithm is labeling
nodesv0,t, . . . , vt,t. Let pi,t denotePrx∈D,r[x reachesvi,t]. For eachb ∈ {0, 1}, let pb

i,t denotePrx∈D,r[x

reachesvi,t and the label ofx is b], sopi,t = p0
i,t + p1

i,t. In staget, SMartiBoost does the following for
each nodevi,t:

1. If minb∈{0,1} pb
i,t < ǫ

T (T+1) , then the algorithm “freezes” nodevi,t by labeling it with the bit(1 − b)
and making it a terminal node with no outgoing edges (so any examplex which reachesvi,t will be
assigned label(1 − b) by the branching program hypothesis).

2. Otherwise, we haveminb∈{0,1} pb
i,t ≥

ǫ
T (T+1) . In this caseSMartiBoostworks just likeMartiBoost:

it runs the weak learning algorithm on the balanced version̂Di,t of Di,t to obtain a hypothesisgi,t,
and it labelsvi,t with hi,t = ĝi,t, which isgi,t balanced with respect tôDi,t.

The idea is that each node which is “frozen” in step (1) above contributes at most ǫ
T (T+1) to the error of

the final branching program hypothesis; since there are at most T (T + 1)/2 many nodes in the branching
program, the total error induced by all frozen nodes is at most ǫ

2 . On the other hand, for any nodevi,t which
satisfies condition (2) and is not frozen, the expected number of draws fromEX(c,D) that are required to

9

simulate a draw fromEX(c, D̂i,t) is O(T 2

ǫ), and thus we can indeed run the weak learner efficiently on the
desired distributions. (We discuss computational efficiency in more detail in the next subsection where we
take sampling issues into account.)

The following theorem establishes correctness ofSMartiBoost:

Theorem 3. Let T = 8 ln(2/ǫ)
γ2 . Suppose that each time it is invoked on some distribution̂Di,t, the weak

learner outputs a hypothesis that has advantageγ with respect tôDi,t. Then the final branching program
hypothesish thatSMartiBoost constructs will satisfyPrx∈D[h(x) 6= c(x)] ≤ ǫ.

Proof. Given an unlabeled instancex ∈ X and a particular settingr of the random bits for each of the
(randomized) hypotheseshi,t labeling nodes of the branching program, we say that(x, r) freezes at node
vi,t if the path through the branching program thatx takes under randomnessr causes it to terminate at a
nodevi,t with t < T (i.e. at a nodevi,t which was frozen bySMartiBoost). We have

Pr[h(x) 6= c(x)] = Pr[h(x) 6= c(x) & (x, r) freezes] + Pr[h(x) 6= c(x) & (x, r) does not freeze]

≤
ǫ

2
+ Pr[h(x) 6= c(x) & (x, r) does not freeze].

where the probabilities, as in the proof of Theorem 2, are taken over the draw ofx fromD and the choice of
r.

It remains to show thatPr[h(x) 6= c(x) & (x, r) does not freeze] ≤ ǫ
2 . As before, we first will show that

Prx∈D+ [h(x) 6= c(x) & (x, r) does not freeze] is at mostǫ2 ; the negative examples can be handled similarly.
To show thatPrx∈D+ [h(x) 6= c(x) & (x, r) does not freeze] ≤ ǫ

2 , we consider a slightly different
random process than in the proof of Theorem 2. Fort = 0, . . . , T we now define integer-valued random
variablesX ′

t as follows. Given a draw ofx from D+ and a random choice ofr,

• If (x, r) does not freeze at any nodevj,t′ with t′ < t, thenX ′
t takes valuei, wherei denotes the index

of the nodevi,t thatx reaches under randomessr at levelt of the branching program;

• If (x, r) freezes at some nodevj,t′ with t′ < t, then letk be the sum oft − t′ many independent 0/1
coin tosses each of which comes up 1 with probability1

2 + γ
2 . The value ofX ′

t is j + k.

(This part of the proof is reminiscent of [3].) It is clear that

E[X ′
t |X

′
t−1 & (x, r) freezes at some nodevj,t′ with t′ < t] = X ′

t−1 +
1

2
+

γ

2
.

On the other hand, if(x, r) does not freeze at any such node, then conditioned onx reaching any particular
nodevi,t−1 under randomnessr we have thatx is distributed according to(Di,t−1)

+. It follows from
Lemma 2 that

E[X ′
t |X

′
t−1 & (x, r) freezes at no nodevj,t′ with t′ ≤ t] ≥ X ′

t−1 +
1

2
+

γ

2
,

and thus overall we haveE[X ′
t|X

′
t−1] ≥

1
2 + γ

2 .
Now similar to the proof of Theorem 1, fort = 0, . . . , T let the random variableY ′

t be defined asY ′
t =

X ′
t− t(1

2 +γ). As in the earlier proof we have thatY0, . . . , YT is a sub-martingale with bounded differences,

so Azuma’s inequality for sub-martingales givesPr [Y ′
T ≤ −γT/2] ≤ exp

(
−γ2T

8

)
. Now recall that if

(x, r) never freezes, then the predictionh(x) is determined by the majority of the values ofhi,t(x) obtained
from hypotheseshi,t encountered in its path through the branching program. Thus, in the particular case of
positive examples,Prx∈D+,r[h(x) 6= c(x) & (x, r) does not freeze] ≤ Pr [X ′

T ≤ T/2] = Pr[Y ′
t ≤ −γT/2].

Applying the inequality from above, bounding negative examples similarly, and recalling our choice ofT,
we have thatPr[h(x) 6= c(x) & (x, r) does not freeze] ≤ ǫ

2 and the theorem is proved.

10

6.3 Dealing with sampling error In this section we remove the assumptions that we know all required
probabilities exactly, by showing that sufficiently accurate estimates of them can be obtained efficiently. We
do not belabor details since sampling error analyses such asthe one we now present are quite standard.

Consider some nodevi,t. While we cannot determine precisely whetherpb
i,t is greater than ǫ

T (T+1) or
not, standard multiplicative Chernoff bounds show that we can compare it up to a constant multiple which
is good enough for our purposes:

Fact 3. WithO(
T 2 log 1

δ

ǫ) many draws toEX(c,D), we can obtain an estimatẽpb
i,t of pb

i,t which satisfies the
following:

• If pb
i,t < ǫ

2T (T+1) , then with probability1 − δ, we have that̃pb
i,t is at most 3ǫ

4T (T+1) ; and

• If pb
i,t > ǫ

T (T+1) , then with probability1 − δ, we have that̃pb
i,t is at least 3ǫ

4T (T+1) .

ThusSMartiBoostwill actually decide whether or not to freeze a nodevi,t by checking whether̃pb
i,t

exceeds 3ǫ
4T (T+1) . If minb∈{0,1} pb

i,t is not too small then we can efficiently simulate draws fromEX(c, D̂i,t)

(by tossing a coin to decide whetherEX(c, D̂i,t) will give a positive or negative example, and then drawing
from EX(c,D) until it gives an example with the correct label which reaches vi,t):

Fact 4. If minb∈{0,1} pb
i,t ≥

ǫ
2T (T+1) , then given access toEX(c,D) we can with probability1− δ perfectly

simulate a draw fromEX(c, D̂i,t) by making at mostO(
T 2 log 1

δ

ǫ) many draws fromEX(c,D).

Once we have run the weak learning algorithm withEX(c, D̂i,t) and it has given us its hypothesisgi,t,
we need to constructhi,t, the balanced version of this hypothesis with respect tôDi,t. In order to do this
perfectly as in Section 5.1, we would need the exact value ofr = Pr

x∈dDi,t
[gi,t(x) = b] ≥ 1

2 . While this
exact value is not available to us, the following straightforward generalization of Lemma 1 shows that an
approximate value is good enough for our needs:

Lemma 5. Letr′ ∈ [0, 1] be any value such that|r − r′| ≤ γ
4 wherer is as described above. Leth′

i,t denote
the “balanced” hypothesis obtained fromgi,t as in Section 5.1 but usingr′ instead ofr. If PrdDi,t

[gi,t(x) =

c(x)] ≥ 1
2 + γ, thenPrdDi,t

[h′
i,t(x) = c(x)] ≥ 1

2 + γ
4 .

Standard bounds on sampling show that we can obtain an estimate r′ of r which is accurate to within an
additive±γ

4 with probability 1 − δ by making at mostO(log(1/δ)
γ2) many draws fromEX(c, D̂i,t). Putting

all the pieces together, we have the following theorem whichshows thatSMartiBoost is correct and
efficient (we useÕ notation to hide polylogarithmic factors, and ignore the dependences onδ – which are
everywhere polylogarithmic – throughout for the sake of readability):

Theorem 4. Let T = Θ(log(1/ǫ)
γ2). If A is a weak learning algorithm that requiressA many examples to

construct aγ-advantage hypothesis, thenSMartiBoost makesO(sA) · Õ(1
ǫ) · poly(1

γ) many calls to
EX(c,D) and with probability1 − δ outputs a final hypothesish that satisfiesPrx∈D[h(x) 6= c(x)] ≤ ǫ.

Proof. A straightforward union bound over all failure probabilities (for each call of the weak learning al-
gorithm and for each sampling-based estimate), together with Theorem 3, establishes correctness. For the
sample complexity bound, consider a single step of the algorithm when it is processing some nodevi,t. Es-
timatingpb

i,t takesÕ(T 2

ǫ) many draws by Fact 3, and then running the weak learner withEX(c, D̂i,t) takes

11

Õ(sAT 2

ǫ) many draws fromEX(c,D) by Fact 4. Estimatingr atvi,t to “balance” the hypothesisgi,t that the

weak learner returns takes̃O(1
γ2) many draws fromEX(c, D̂i,t), i.e. Õ(T 2

γ2ǫ
) many draws fromEX(c,D).

Thus, dealing with a single nodevi,t takesÕ(sAT 2

ǫ + T 2

γ2ǫ) many draws fromEX(c,D). Since there are

O(T 2) many nodes in the branching program andT = O(log 1/ǫ
γ2) we obtain the claimed bound.

7 A noise-tolerant version ofSMartiBoost

In this section we show how theSMartiBoost algorithm can be modified to withstand random classifica-
tion noise. We follow the approach of Kalai & Servedio [10], who showed how the MM branching program
boosting algorithm of Mansour and McAllester can be modifiedto withstand random classification noise.

Given a distributionD and a value0 < η < 1
2 , a noisy example oracleis an oracleEX(c,D, η) that

works as follows: each timeEX(c,D, η) is invoked, it returns a labeled example(x, b) ∈ X×{0, 1} where
x ∈ X is drawn from distributionD andb is independently chosen to bec(x) with probability 1 − η and
1 − c(x) with probabilityη.

Recall the definition of noise-tolerant weak learning:

Definition 4. Given a target functionc : X → {0, 1}, an algorithmA is said to be anoise-tolerant weak
learning algorithm with advantageγ if it satisfies the following property: for anyδ > 0 and any distribution
D over X, if A is givenδ and access to a noisy example oracleEX(c,D, η) where0 ≤ η < 1

2 , thenA
runs in time poly(1

1−2η , 1
δ) and with probability at least1 − δ A outputs a poly(1

δ , 1
γ , 1

1−2η)-time evaluable

hypothesish such thatPrx∈D[h(x) = c(x)] ≥ 1
2 + γ.

Ideally, we would like a boosting algorithm that can convertany noise-tolerant weak learning algorithm
into a noise-tolerant strong learning algorithm that can achieve any arbitrarily low error rateǫ > 0. However,
Kalai and Servedio showed that in general it is not possible to boost the error rateǫ down below the noise rate
η.1 They showed that a modification of the MM boosting algorithm,which they called the MMM (Modified
Mansour-McAllester) algorithm, can achieve any error rateǫ = η + τ in time polynomial in1

τ and the other
relevant parameters. We now show that a modification ofSMartiBoost has the same property.

Throughout this section we assume that the value ofη, the random classification noise rate, is known
in advance to the boosting algorithm. As described in [10] this assumption can be removed via a standard
approach of guessing different values for the noise rate andusing the best outcome.

For ease of presentation, in Section 7.1 we give the noise-tolerant martingale boosting algorithm under
the assumption that all required probabilities are obtained exactly. In Section 7.2 we deal with issues of
estimating these probabilities via sampling and bound the sample complexity of the algorithm.

7.1 Boosting a noise-tolerant weak learnerRoughly speaking, the reason whySMartiBoost can be
easily modified to withstand random classification noise is because in each staget of boosting the labelb
of a labeled example(x, b) plays only a limited role in the reweighting that the exampleexperiences. Since
this role is limited, it is possible for us to efficiently simulate the distributions that the weak learner requires
at each stage of boosting and thus for the overall boosting process to succeed.

More precisely, as a labeled example(x, b) proceeds through levels0, . . . , t−1 of the branching program
in staget, the path it takes is completely independent ofb. Thus, given a sourceEX(c,D, η) of noisy

1They showed that if cryptographic one-way functions exist,then there is no efficient “black-box” boosting algorithm that can
always achieve a final error rateǫ < η. A black-box boosting algorithm is a boosting algorithm that can run the weak learning
algorithm in a black-box fashion but cannot “inspect the code” of the weak learner. All known boosting algorithms are black-box
boosters. See [10] for more discussion.

12

examples, the distribution of examples that arrive at a particular nodevi,t is preciselyEX(c,Di,t, η). Once
a labeled example(x, b) arrives at some nodevi,t, though, it is clear that the labelb must be consulted in the
“rebalancing” of the distributionDi,t to obtain distribution̂Di,t. More precisely, the labeled examples that
reach nodevi,t are distributed according toEX(c,Di,t, η), but in order to useSMartiBoostwith a noise-
tolerant weak learner we must simulate thebalanceddistributionD̂i,t corrupted with random classification
noise, i.e.EX(c, D̂i,t, η

′). (As we show below, it turns out thatη′ need not necessarily be the same asη; it is
okay to have a higher noise rateη′ for the balanced oracle as long asη′ is not too close to12 .) The following
lemma from [10] shows that it is possible to do this:

Lemma 6. [Lemma 7 of [10]] Letτ > 0 be any value satisfyingη + τ
2 < 1

2 . Suppose we have access to
EX(c,D, η). Letρ denotePrx∈D[c(x) = 1]. Suppose thatη+ τ

2 ≤ ρ ≤ 1
2 (the case whereη+ τ

2 ≤ 1−ρ ≤ 1
2

is completely analogous). Consider the following rejection sampling procedure: given a draw(x, b) from
EX(c,D, η),

• if b = 0 then with probabilitypr = 1−2ρ
1−ρ−η reject (x, b), and with probability1 − pr = ρ−η

1−ρ−η set
b′ = b and accept(x, b′);

• if b = 1 then setb′ to 1 − b with probabilitypf = (1−2ρ)η(1−η)
(1−ρ−η)(ρ+η−2ρη) (and setb′ to b with probability

1 − pf), and accept(x, b′).

Given a draw fromEX(c,D, η), with probabilityprej := (1−2ρ)(ρη+(1−ρ)(1−η))
1−ρ−η this procedure rejects, and

with probability 1 − prej = 2(1−2η)(1−ρ)ρ
1−ρ−η the procedure accepts. Moreover, if the procedure accepts,then

the(x, b′) that it accepts is distributed according toEX(c, D̂, η′) whereη′ = 1
2 − ρ−η

2(ρ+η−2ρη) .

So the noise-tolerant version ofSMartiBoost, which we callNoise-Tolerant SMartiBoost,
works in the following way. As in Section 6.2 letpi,t denotePrx∈D,r[x reachesvi,t]. For b = 0, 1 let
qb
i,t denoteqb

i,t = Prx∈D,r[c(x) = b | x reachesvi,t] = Prx∈Di,t,r[c(x) = b], so q0
i,t + q1

i,t = 1. The
boosting algorithm (which takes as input a parameterτ > 0, whereη + τ is the desired final accuracy of the
hypothesis; we assume WLOG thatη + τ < 1

2) proceeds in staget as follows: at each nodevi,t,

1. If pi,t < 2τ
3T (T+1) , then the algorithm “freezes” nodevi,t by labeling it with an arbitrary bit and making

it a terminal node with no outgoing edges.

2. Otherwise, ifminb∈{0,1} qb
i,t < η + τ

3 , then the algorithm “freezes” nodevi,t by labeling it with the
bit (1 − b) and making it a terminal node with no outgoing edges.

3. Otherwise the algorithm runs the noise-tolerant weak learner usingEX(c, D̂i,t, η
′) as described in

Lemma 6 to obtain a hypothesisgi,t. The balanced version of this hypothesis (balanced with respect
to D̂i,t), which we callhi,t, is used to label nodevi,t.

Theorem 5. Let T = 8 ln(3/τ)
γ2 . Suppose that each time it is invoked with some oracleEX(c, D̂i,t, η

′),

the weak learner outputs a hypothesisgi,t that satisfiesPr
x∈dDi,t

[gi,t(x) = c(x)] ≥ 1
2 + γ. Then the

final branching program hypothesish that Noise-Tolerant SMartiBoost constructs will satisfy
Prx∈D[h(x) 6= c(x)] ≤ η + τ.

13

Proof. As in the proof of Theorem 3, given an unlabeled instancex ∈ X and a particular settingr of the
random bits for each of the (randomized) hypotheseshi,t labeling nodes of the branching program, we say
that (x, r) freezes at nodevi,t if the path through the branching program thatx takes under randomnessr
causes it to terminate at a nodevi,t with t < T (i.e. at a nodevi,t which was frozen byNoise-Tolerant
SMartiBoost). We say that a nodevi,t is negligibleif pi,t < 2τ

3T (T+1) . We have

Pr[h(x) 6= c(x)] = Pr[h(x) 6= c(x) & (x, r) does not freeze] +

Pr[h(x) 6= c(x) & (x, r) freezes at a negligible node] +

Pr[h(x) 6= c(x) & (x, r) freezes at a non-negligible node].

Since(x, r) reaches a given negligible nodevi,t with probability at most 2τ
3T (T+1) and there are at most

T (T + 1)/2 many negligible nodes,Pr[h(x) 6= c(x)& (x, r) freezes at a negligible node] is at mostτ3 .
ConsequentlyPr[h(x) 6= c(x)] is at mostτ3 + Pr[h(x) 6= c(x) & (x, r) does not freeze] plus

∑

i,t : vi,t is non-negligible

Pr[h(x) 6= c(x)| (x, r) freezes atvi,t] · Pr[(x, r) freezes atvi,t]. (2)

SincePr[h(x) 6= c(x) | (x, r) freezes atvi,t] equalsPrx∈Di,t,r[h(x) 6= c(x)], by the fact that the algorithm
freezesvi,t if minb∈{0,1} qb

i,t < η + τ
3 (case (2) above), we have that (2) is at mostη + τ

3 . Thus

Pr[h(x) 6= c(x)] ≤ Pr[h(x) 6= c(x) & (x, r) does not freeze] + η +
2τ

3
.

so it remains to show thatPr[h(x) 6= c(x) & (x, r) does not freeze] is at mostτ
3 . The proof of this is

identical to the proof thatPr[h(x) 6= c(x) & (x, r) does not freeze] ≤ ǫ
2 in the proof of Theorem 3 but now

with τ
3 in place of ǫ

2 .

7.2 Complexity issues for implementation ofNoise-Tolerant SMartiBoost In this section we
remove the assumptions that we know all required probabilities exactly, by showing that sufficiently accu-
rate estimates of them can be obtained efficiently via a polynomial amount of sampling. (For simplicity,
throughout the discussion we continue to assume that we knowthe exact value ofη as mentioned at the start
of Section 7.)

A direct analogue of Fact 3 shows thatO(T 2 log 1/δ
τ) many draws toEX(c,D, η) suffice to give an

estimatẽpi,t of pi,t = Prx∈D,r[x reachesvi,t] such that

• If pi,t < τ
3T (T+1) , then with probability1 − δ, we have that̃pi,t is at most τ

2T (T+1) ; and

• If pi,t > 2τ
3T (T+1) , then with probability1 − δ, we have that̃pi,t is at least τ

2T (T+1) .

ThusNoise-Tolerant SMartiBoostwill decide whether or not to freeze a nodevi,t on the grounds
of its being negligible (case (1)) by checking whetherp̃i,t exceeds τ

2T (T+1) .
For case (2), ifpi,t is not too small then we can efficiently simulate draws fromEX(c,Di,t, η), and thus

can estimateqb
i,t efficiently:

Fact 7. If pi,t ≥
τ

3T (T+1) , thenO(T 2 log 1/δ
τ3(1−2η)2

) draws fromEX(c,D, η) suffice to give an estimatẽqb
i,t of qb

i,t

such that

• If qb
i,t < η + τ

6 , then with probability1 − δ, we have that̃qi,t is at mostη + τ
4 ; and

14

• If pb
i,t > η + τ

3 , then with probability1 − δ, we have that̃qi,t is at mostη + τ
4 .

Proof. It is easy to see that

qb
i,t = Pr

x∈Di,t

[c(x) = b] =
Pr(x,y)∈EX(c,Di,t,η)[y = b] − η

1 − 2η
.

Thus in order to estimateqb
i,t to within an additiveΘ(τ), we must estimatePr(x,y)∈EX(c,Di,t,η)[y = b] to

within an additiveΘ(τ(1 − 2η)). This requiresΘ(1
τ2(1−2η)2) many draws fromEX(c,Di,t, η), and since

pi,t = Ω(τ
T 2), there is an overhead ofΘ(T 2

τ) to simulate each draw fromEX(c,Di,t, η) usingEX(c,D, η).

Now we consider case (3), which requires us to use the rejection sampling procedure of Lemma 6. We
first note that if the exact value ofρ = Prx∈Di,t

[c(x) = 1] were available, then the probabilityprej of

rejecting would not be too high (so it would indeed be possible to efficiently simulateEX(c, D̂i,t, η
′)):

Claim 8. The rejection probabilityprej := (1−2ρ)(ρη+(1−ρ)(1−η))
1−ρ−η from Lemma 6 satisfiesprej ≤ 1−(η+ τ

2).

Proof. Recall thatη + τ
2 ≤ ρ ≤ 1

2 . ¿From this it is straightforward to verify that we have

η +
τ

2
≤ 2(η +

τ

2
)(1 − η −

τ

2
) ≤ 2ρ(1 − ρ) ≤

2ρ(1 − ρ)(1 − 2η)

1 − ρ − η
.

The claim follows sinceprej = (1−2ρ)(ρη+(1−ρ)(1−η))
1−ρ−η equals1 − 2ρ(1−ρ)(1−2η)

1−ρ−η .

This claim implies that givenEX(c,Di,t, η), if ρ were known exactly then we could sample from
EX(c, D̂i,t, η

′) with a slowdown of at most 1
η+τ/2 < 2

τ . Moreover, if the exact value ofρ were available,

then the noise rateη′ would not be too close to12 (so it would be possible to efficiently run the weak learner
usingEX(c,Di,t, η)). This is because (as shown in Lemma 7 of [10]) the noise rateη′ from Lemma 6
satisfiesη′ = 1

2 − ρ−η
2(ρ+η−2ρη) ≤ 1

2 − τ
4 . Since the weak learner runs in time poly(1

1−2η′ ,
1
δ) when invoked

onEX(c, D̂i,t, η
′), the runtime for each invocation of the weak learner would be bounded by poly(1

τ , 1
δ).

So if the exact value ofρ = Prx∈Di,t
[c(x) = 1] were available, then usingEX(c,D, η) we could

simulateEX(c, D̂i,t, η
′) and run the weak learner at a given nodevi,t in poly(T

τ , 1
δ) time overall (there is an

O(T
τ2) factor because of the overhead to simulateEX(c,Di,t, η) from EX(c,D, η)). But of course, we do

not have the exact value of the probabilityρ that Lemma 6 requires; instead we must use an estimateρ′ of ρ
that we obtain by sampling. Sinceρ′ is not exactlyp, the oracle we simulate may not be exactly balanced,
and it may have slightly different noise rates for positive and negative examples; but as we now show, the
deviation fromEX(c, D̂i,t, η

′) can be made so small that the weak learner is unaffected.
It is easy to see thatρ = ρ̃−η

1−2η whereρ̃ equalsPr(x,b)∈EX(c,Di,t,η)[b = 1]. Thus we can estimateρ to
within an additive±ξ by estimatingρ̃ from EX(c,Di,t, η) to within an additive±ξ(1 − 2η). As above, we

can obtain such an estimate ofρ̃ (with probability1−δ) by making at mostO(T 2 log 1/δ
τξ2(1−2η)2

) many draws from

EX(c,D, η).
Thus, we may assume that we have an approximationρ′ that is within an additive±ξ of ρ. We now use

the following lemma (the proof is a routine but tedious erroranalysis applied to the proof of Lemma 7 of
[10]):

15

Lemma 9. Consider the rejection sampling procedure defined in Lemma 6but withρ′ used in place ofρ in
the definition ofpr andpf . Given anyν > 0, there is a valueξ = 1

poly(1/τ,1/ν) such that if|ρ′ − ρ| ≤ ξ, then

(i) this procedure rejects with probability at most1− (η+ τ
4) (and thus the rejection sampling procedure

incurs a slowdown of at most4τ);
(ii) if the procedure accepts, then the(x, b) that it accepts is distributed according to(1

2−ρ)EX(c, (Di,t)
+, η+)+

(1
2 + ρ)EX(c, (Di,t)

−, η−) where|ρ| is at mostν andη+, η− each differ fromη′ by at most an additive±ν.

It is easy to check that since|ρ|, |η′ − η+| and |η′ − η−| are all at mostν, the total variation distance
between(1

2 − ρ)EX(c, (Di,t)
+, η+) + (1

2 + ρ)EX(c, (Di,t)
−, η−) andEX(c, D̂i,t, η

′) is at most4ν. Since
the weak learner makes at most poly(1

τ , 1
δ′) draws to the example oracle to achieve confidence1 − δ′ that it

outputs a satisfactory weak hypothesis when run onEX(c, D̂i,t, η
′), if we chooseν = δ

poly(1/τ,1/δ′) then we

have confidence1−δ that its behavior when run with(1
2−ρ)EX(c, (Di,t)

+, η+)+(1
2+ρ)EX(c, (Di,t)

−, η−)

will be indistinguishable from its behavior when run withEX(c, D̂i,t, η
′). This in turn implies that we may

takeξ =poly(1
τ , 1

δ), and thus that the overall runtime for each invocation of theweak learner to getgi,t is at
most poly(T, 1

τ , 1
δ). (Recall thatτ < 1

2 − η so a poly(1
τ) factor subsumes a poly(1

1−2η) factor.)
Finally, as in Section 6.3, we must balance the hypothesisgi,t to obtain the hypothesishi,t that will

actually be used at nodevi,t. As in that earlier section, we can only approximately balance the hypothesis
but this is sufficient by an analysis similar to that of the previous section. So all in all, we have that in
case (3) ofNoise-Tolerant SMartiBoost, the time (and number of calls toEX(c,D, η) required
is poly(T, 1

γ , 1
τ , 1

δ) =poly(1
γ , 1

τ , 1
δ).

Putting all the pieces together, we have the following theorem which establishes correctness and effi-
ciency of the sampling-based version ofNoise-Tolerant SMartiBoost:

Theorem 6. Given anyτ such thatη + τ < 1
2 , let T = Θ(log(1/τ)

γ2). If A is a noise-tolerant weak learning

algorithm with advantageγ, thenNoise-Tolerant SMartiBoostmakes poly(1
γ , 1

τ , 1
δ) many calls to

EX(c,D, η) and with probability1 − δ outputs a final hypothesish that satisfiesPrx∈D[h(x) 6= c(x)] ≤
η + τ.

8 Conclusion

We are working on implementing the algorithm and evaluatingits performance and noise tolerance on real
world data.

References

[1] N. Alon, J. Spencer, and P. Erdos.The Probabilistic Method. Wiley-Interscience, New York, 1992.

[2] Shai Ben-David, Philip M. Long, and Yishay Mansour. Agnostic boosting. InProceedings of the 14th
Annual Conference on Computational Learning Theory, pages 507–516, 2001.

[3] N. Bshouty and D. Gavinsky. On boosting with optimal poly-bounded distributions.Journal of Ma-
chine Learning Research, 3:483–506, 2002.

[4] F. Chung and L. Lu. Concentration inequalities and martingale inequalities.Internet Mathematics,
3(1):79–127, 2006.

[5] T.G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision
trees: bagging, boosting, and randomization.Machine Learning, 40(2):139–158, 2000.

16

[6] Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation,
121(2):256–285, 1995.

[7] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. InProceedings of the Thir-
teenth International Conference on Machine Learning, pages 148–156, 1996.

[8] Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application
to boosting.Journal of Computer and System Sciences, 55(1):119–139, 1997.

[9] Dmitry Gavinsky. Optimally-smooth adaptive boosting and application to agnostic learning.Journal
of Machine Learning Research, 4:101–117, 2003.

[10] A. Kalai and R. Servedio. Boosting in the presence of noise. InProceedings of the 35th Annual
Symposium on Theory of Computing (STOC), pages 196–205, 2003.

[11] R. Maclin and D. Opitz. An empirical evaluation of bagging and boosting. InAAAI/IAAI, pages
546–551, 1997.

[12] Y. Mansour and D. McAllester. Boosting using branchingprograms.Journal of Computer and System
Sciences, 64(1):103–112, 2002.

[13] Llew Mason, Peter L. Bartlett, and Jonathan Baxter. Improved generalization through explicit opti-
mization of margins.Machine Learning, 38(3):243–255, 2000.

[14] G. R atsch, T. Onoda, and K.-R. M uller. Soft margins for AdaBoost.Machine Learning, 42(3):287–
320, 2001.

[15] R. Schapire. The strength of weak learnability.Machine Learning, 5(2):197–227, 1990.

[16] R. Servedio. Smooth boosting and learning with malicious noise.Journal of Machine Learning Re-
search, 4:633–648, 2003. Preliminary version inProc. COLT’01.

A Sub-Martingales and Azuma’s Inequality for Sub-Martingales

A sub-martingaleis a sequenceX0, . . . ,XT of random variables with finite means such that for1 ≤ i ≤ T ,
we haveE[Xi|Xi−1] ≥ Xi−1. (This is the definition given in [1]; the definition in [4] is stronger in that it
requiresE[Xi|X1, . . . ,Xi−1] = Xi−1.)

The following theorem is well known, but for completeness wegive a proof since we could not find
precisely this statement in the literature. The proof is nearly identical to the proof of Theorem 5.2 (Azuma’s
inequality for regular martingales) given in [4].

Theorem 7. [Azuma’s Inequality for Sub-Martingales] Let0 = X0, . . . ,XT be a sub-martingale which has
bounded differences, i.e.

|Xi − Xi−1| ≤ ci for eachi = 1, . . . , T .

Then for anyλ > 0 we have

Pr[XT ≤ −λ] ≤ exp

(
−

λ2

2
∑T

i=1 c2
i

)
.

17

Proof. As in [4], for any fixedθ and|x| ≤ c we have

eθx ≤
1

2c
(eθc − e−θc)x +

1

2
(eθc + e−θc).

For i = 1, . . . , T let Yi = Xi − Xi−1, so|Yi| ≤ ci andE[Yi|Xi−1] ≥ 0. Then forθ < 0 we have

E[eθYi |Xi−1] ≤ E

[
1

2ci
(eθci − e−θci)Yi +

1

2
(eθci + e−θci)

∣∣Xi−1

]

=
1

2ci
(eθci − e−θci)E[Yi|Xi−1] +

1

2
(eθci + e−θci)

≤
1

2
(eθci + e−θci)

≤ eθ2c2i /2

where the last line uses the inequalitycosh(x) ≤ ex2/2, valid for all x > 0.
Since

E[eθYi |Xi−1] = E[eθ(Xi−Xi−1)|Xi−1] = E[eθXi |Xi−1]e
−θXi−1 ,

we have
E[eθXi |Xi−1] ≤ eθ2c2i /2 · eθXi−1 .

So inductively, we have

E[eθXT] = E[E[eθXT |XT−1]]

≤ eθ2c2
T

/2
E[eθXT−1]

...

≤

(
T∏

i=1

eθ2c2i /2

)
E[eθX0]

= e
1

2
θ2

PT
i=1

c2i .

Consequently forθ < 0 we have

Pr[XT ≤ −λ] = Pr[eθXT ≥ e−θλ]

≤ eθλ
E[eθXT]

≤ eθλ+ 1

2
θ2

PT
i=1

c2i .

Chooseθ = − λPT
i=1

c2i
to minimize this expression, and we have

Pr[XT ≤ −λ] ≤ exp

(
−

λ2

2
∑T

i=1 c2
i

)
.

18

