
Learning funtions of k relevant variables

Elhanan Mossel

Mirosoft Researh

mossel�mirosoft.om

Ryan O'Donnell

�

MIT Department of Mathematis

odonnell�theory.ls.mit.edu

Roo A. Servedio

y

Department of Computer Siene

Columbia University

roo�deas.harvard.edu

Abstrat

We onsider a fundamental problem in omputational learning theory: learning an

arbitrary Boolean funtion that depends on an unknown set of k out of n Boolean vari-

ables. We give an algorithm for learning suh funtions from uniform random examples

that runs in time roughly (n

k

)

!

!+1

; where ! < 2:376 is the matrix multipliation ex-

ponent. We thus obtain the �rst polynomial fator improvement on the naive n

k

time

bound whih an be ahieved via exhaustive searh. Our algorithm and analysis exploit

new strutural properties of Boolean funtions.

�

Supported by NSF grant 99-12342.

y

Supported by an NSF Mathematial Sienes Postdotoral Researh Fellowship and by NSF grant CCR-

98-77049. This researh was performed while the third author was at Harvard University.

1 Introdution

1.1 Bakground and motivation

One of the most important and hallenging issues in mahine learning is how to learn eÆ-

iently and e�etively in the presene of irrelevant information. Many real-world learning

problems an be modeled in the following way: we are given a set of labeled data points

and we wish to �nd some hypothesis whih aurately predits the label of eah data point.

An often enountered situation in this framework is that eah data point ontains a large

amount of information (i.e., eah data point is a high dimensional vetor of attribute values

over a �xed large set of attributes), but only a small unknown portion of this information is

relevant to the label of the data point (i.e., the label is determined by a funtion whih only

depends on a few of the attributes). For example, in a omputational biology senario eah

data point may orrespond to a long DNA sequene, and the label may be some property

whih depends only on a small unknown ative part of this sequene.

In this paper we onsider the following learning problem whih Blum [4℄ and Blum

and Langley [5℄ proposed as a lean formulation of learning in the presene of irrelevant

information: Let f be an unknown Boolean funtion over an n-bit domain whih depends

only on an unknown subset of k � n variables. Suh a funtion is alled a funtion with k

relevant variables; following [9℄ we all suh a funtion a k-junta. Given a data set of labeled

examples hx; f(x)i; where the points x are independently and uniformly hosen random n-bit

strings, an the funtion f be learned by a omputationally eÆient algorithm? (We give a

preise desription of what it means to \learn f" in Setion 2.) Note that a naive brute fore

searh over all possible subsets of k relevant variables an be performed in time roughly n

k

;

we would like to have an algorithm whih runs faster than this.

We believe that the problem of eÆiently learning k-juntas is the single most important

open question in uniform distribution learning. In addition to being natural and elegant,

learning juntas is at the heart of the most notorious open problems in uniform distribution

learning, namely learning DNF formulas and deision trees of superonstant size. Sine

every k-junta an be expressed as a deision tree or DNF formula of size 2

k

; it is lear

that eÆient algorithms for learning 2

k

-size deision trees or DNFs would also be eÆient

algorithms for learning k-juntas. But in fat more is true: obtaining eÆient algorithms for

learning !(1)-juntas woud immediately yield improved algorithms for learning deision trees

and DNFs. Spei�ally, any size-k deision tree is also a k-junta, and any k-term DNF is

�-indistinguishable (under the uniform distribution) from a k log(k=�)-junta. Thus, learning

!(1)-size deision trees or !(1)-term DNFs in polynomial time is equivalent to learning

!(1)-juntas in polynomial time.

We note that learning from uniform random examples seems to be the model in whih this

problem has the right amount of diÆulty. As desribed in Setion 5, allowing the learner to

make membership queries makes the problem too easy, while restriting the learner to the

statistial query model makes the problem provably hard.

1

1.2 Our results

We give the �rst learning algorithm for the problem of learning k-juntas whih ahieves a

polynomial fator improvement over brute fore exhaustive searh. Under the uniform dis-

tribution, our algorithm exatly learns an unknown k-junta with on�dene 1 � Æ in time

n

!

!+1

k

�poly(2

k

; n; log(1=Æ)), where ! is the exponent in the time bound for matrix multiplia-

tion. Sine Coppersmith and Winograd [8℄ have shown that ! < 2:376, our algorithm runs in

time roughly N

:704

where N � n

k

is the running time of a naive brute fore approah. Note

that even if a naive �(n

3

) time matrix multipliation algorithm is used, our algorithm runs

in time roughly N

3=4

and thus still improves over a brute-fore approah. Our algorithm and

analysis exploit new strutural properties of Boolean funtions whih may be of independent

interest.

We note that sine this learning problem was �rst posed by Blum in 1994, little progress

has been made. The �rst improvement over the trivial n

k

time bound of whih we are aware

is a reent algorithm due to A. Kalai and Mansour [13℄ whih runs in time roughly n

k�
(k

1=4

)

.

Mansour [19℄ later improved this to n

k�
(k

1=2

)

. (In reent work Fisher et al. have studied

the problem of testing k-juntas [9℄, but the learning and testing problems seem to require

di�erent tehniques.)

1.3 Organization

In Setion 2 we formally de�ne the learning problem and give some bakground on polyno-

mial representations of Boolean funtions. In Setion 3 we present the learning algorithms

whih allow us to redue the learning problem to some questions about representing Boolean

funtions as polynomials. In Setion 4 we prove the neessary new strutural properties

of Boolean funtions and thus obtain our learning result. Finally, in Setion 5 we use the

developed mahinery to analyze several variants of the juntas problem.

2 Preliminaries

The learning model we onsider is a uniform distribution version of Valiant's Probably Ap-

proximately Corret (PAC) model [22℄ whih has been studied by many researhers, e.g.,

[7, 11, 12, 15, 16, 18, 23, 24℄. In this model a onept lass C is a olletion [

n�1

C

n

of

Boolean funtions, where eah 2 C

n

is a funtion on n bits. Let f 2 C

n

be an unknown

target funtion. A learning algorithmA for C takes as input an auray parameter 0 < � < 1

and a on�dene parameter 0 < Æ < 1: During its exeution A has aess to an example or-

ale EX(f) whih, when queried, generates a random labeled example hx; f(x)i where x is

drawn uniformly from f0; 1g

n

. A outputs a hypothesis h whih is a Boolean funtion over

f0; 1g

n

; the error of this hypothesis is de�ned to be error(h; f) = Pr[h(x) 6= f(x)℄. (Here

and in the remainder of the paper, unless otherwise indiated all probabilities are taken over

x hosen uniformly at random from f0; 1g

n

.) We say that A is a uniform-distribution PAC

learning algorithm for C if the following ondition holds: for every f 2 C and every �; Æ;

with probability at least 1� Æ algorithm A outputs a hypothesis h whih has error(h; f) � �.

For the purposes of this paper the auray parameter � will always be 0, so our goal is to

exatly identify the unknown funtion.

2

A Boolean funtion f : f0; 1g

n

! f0; 1g is said to depend on the ith variable if there exist

inputs x; y 2 f0; 1g

n

whih di�er only in the ith oordinate and whih have f(x) 6= f(y).

Equivalently, we say that suh a variable is relevant to f . If the funtion f has at most

k relevant variables then we all f a k-junta. The onept lass we onsider in this paper

is the set of k-juntas over n variables, i.e., C

n

= ff : f0; 1g

n

! f0; 1g s.t. f is a k-juntag.

Equivalently, eah funtion f 2 C

n

is de�ned by a subset R = fi

1

; : : : ; i

k

0

g � f1; : : : ; ng of

k

0

� k relevant variables and a truth table of 2

k

0

bits orresponding to all possible settings

of these variables.

We are most interested in the ase where k is O(logn) or even a large onstant value.

For suh k the number of possible sets of relevant variables is n

(1�o(1))k

. Hene the naive

learning algorithm whih performs an exhaustive searh over all possible subsets of relevant

variables will take time n

(1�o(1))k

.

2.1 Representing Boolean funtions as polynomials

A Boolean funtion g on n bits is a mapping fF;Tg

n

! fF;Tg. There are many possible

ways to represent g as a multilinear polynomial. Sine our analysis will use several di�erent

representations, we give a general de�nition whih enompasses all of the ases we will need:

De�nition 1 Let F be a �eld and let f; t 2 f�1; 0; 1g be distint elements of F: We say that

a multilinear polynomial p hF; f; ti-represents g if p : F

n

! F has the following properties:

� for all inputs in ff; tg

n

, p outputs a value in ff; tg; and,

� p and g indue the same mapping when F and T are identi�ed with f and t in the

input and output.

Note that sine f

2

; t

2

2 f0; 1g; the assumption that p is multilinear is without loss of gener-

ality. It is well known that the hF; f; ti-representation of g always exists and is unique; for

ompleteness we give a simple proof below.

Proposition 2 For any given hF; f; ti, every Boolean funtion g has a unique multilinear

hF; f; ti-representation.

Proof: The ondition that p is a multilinear polynomial whih represents g is equivalent

to a system of 2

n

linear equations in 2

n

unknowns, where the unknowns are the oeÆients

on the 2

n

multilinear monomials. Let A

n

denote the 2

n

� 2

n

matrix arising from this linear

system, so the olumns of A

n

orrespond to monomials and the rows orrespond to truth

assignments. It suÆes to prove that A

n

has full rank; we now prove this by indution.

In the ase n = 1 we have A

1

=

�

1 f

1 t

�

whih has full rank over any �eld sine f 6= t. In

the general ase, one an rearrange the rows and olumns of A

n

to get A

n

=

�

A

n�1

fA

n�1

A

n�1

tA

n�1

�

,

where the olumns on the left orrespond to monomials not ontaining x

n

and the others

orrespond to monomials ontaining x

n

. By performing elementary row operations on this

matrix, one an get

�

(f � t)A

n�1

0

0 A

n�1

�

. Sine f 6= t and A

n�1

has full rank by indution,

this has full rank. 2

3

The �elds we will onsider in this paper are the two-element �eld F

2

and the �eld R

of real numbers. In F

2

we will represent bits by f = 0, t = 1, and in R we will usually

represent bits by f = 1, t = �1.

De�nition 3 Given a Boolean funtion g on n bits:

� We write g

F

2

for the multilinear polynomial whih hF

2

; 0; 1i-represents g, and we say

that g

F

2

F

2

-represents g. Note that g

F

2

an be viewed as a parity of ANDs sine F

2

multipliation orresponds to AND and F

2

addition orresponds to parity.

� We write g

R

for the multilinear polynomial whih hR;+1;�1i-represents g, and we

say that g

R

R-represents g. Note that g

R

is preisely the \Fourier representation" of

g. As is standard, we write ĝ(S) for the oeÆient of x

S

in g

R

, where x

S

denotes the

monomial

Q

i2S

x

i

. We all ĝ(S) the \S Fourier oeÆient of g."

As an example, if g = PARITY

n

then we have g

F

2

= x

1

+x

2

+� � �+x

n

and g

R

= x

1

x

2

� � �x

n

.

Note that there is a huge di�erene in the degrees of these two polynomial representations;

we will be very interested in the degree of Boolean funtions under various representations.

We observe that for a given �eld this degree is independent of the exat hoie of f; t: This

is beause we an pass bak and forth between any two suh hoies by nononstant linear

transformations on the inputs and outputs, and under suh transformations the monomials

of highest degree an never vanish. Thus we an make the following de�nition:

De�nition 4 deg

F

(g) is de�ned to be deg(p) where p is any hF; f; ti-representation of g.

Hene we have deg

F

2

(PARITY

n

) = 1 and deg

R

(PARITY

n

) = n. In general deg

F

2

(g) �

deg

R

(g):

Fat 5 For any Boolean funtion g, deg

F

2

(g) � deg

R

(g).

Proof: Let p be the hR; 0; 1i-representation of g and let g

F

2

be the F

2

-representation of g.

We have

p(x) =

X

z2f0;1g

n

"

p(z)

Y

i:z

i

=1

x

i

!

Y

i:z

i

=0

(1� x

i

)

!#

:

This polynomial learly has integer oeÆients; g

F

2

is obtained by reduing the oeÆients

of p mod 2, and this operation an only derease degree. 2

3 Learning tools

In this setion we give the learning algorithms we will use for solving the junta problem. We

�rst show that it suÆes to give a learning algorithm whih an identify a single relevant

variable. We then give two learning algorithms that look for relevant variables. Our algo-

rithm for learning k-juntas will end up trying both algorithms and we shall prove in Setion

4 that at least one of them always works.

Throughout this setion, f will denote a k-junta on n bits, R will denote the set of

variables on whih f depends, k

0

will denote jRj (so 0 � k

0

� k), and f

0

will denote the

funtion fF;Tg

k

0

! fF;Tg given by restriting f to R.

4

3.1 Finding a single relevant variable is enough

Proposition 6 Suppose that A is an algorithm running in time n

�

� poly(2

k

; n; log(1=Æ))

whih an identify at least one variable relevant to f with on�dene 1 � Æ (assuming f

is nononstant). Then there is an algorithm for exatly learning f whih runs in time

n

�

� poly(2

k

; n; log(1=Æ)):

Proof: First note that if f is nononstant then for uniform random inputs eah output value

ours with frequeny at least 1=2

k

: Hene we an deide whether or not f is a onstant

funtion with on�dene 1� Æ in time in time poly(2

k

; n; log(1=Æ)):

Next, suppose � is any restrition �xing at most k bits. We laim that we an run any

learning algorithm on f j

�

with a slowdown of at most poly(2

k

). To do so, we only need to

transform the example orale for f into one for f j

�

; this is easily done by rejeting all samples

hx; f(x)i for whih x does not agree with �. Sine � �xes at most k bits, the probability

that a random x agrees with � is at least 2

�k

. Hene with probability 1 � Æ we an get M

samples for f j

�

by taking M � poly(2

k

) log(M=Æ) samples from the orale for f .

We now show how to identify all the variables R on whih f depends in the requisite

amount of time. By indution, suppose we have identi�ed some relevant variables R

0

� R.

For eah of the 2

jR

0

j

possible restritions � whih �x the bits in R

0

, onsider the funtion

f j

�

. Sine f j

�

is also a k-junta, A an identify some variables relevant to f j

�

(or else we an

hek that f j

�

is onstant). By running A (with the slowdown desribed above) for eah

possible �, we will identify new variables to add into R

0

. We repeatedly add new variables

to R

0

, testing all restritions on these variables, until all of the restrited subfuntions are

onstant. It is lear that at this point we will have identi�ed all variables relevant to f .

Note that R

0

grows by at least one variable at eah stage, and so we will never run A

more than k2

k

times. Further, we an get on�dene 1 � Æ=k2

k

for eah run | even after

the rejetion-sampling slowdown | in time n

�

� poly(2

k

; n; log(1=Æ)). Hene we an identify

R in time n

�

� poly(2

k

; n; log(1=Æ)) with on�dene 1� Æ.

Finally, one R is identi�ed it is easy to learn f exatly. Simply draw poly(2

k

; log(1=Æ))

samples; with probability 1� Æ we will see every possible bit setting for R so we an build

f 's truth table and output this as our hypothesis. 2

3.2 The Fourier-based learning algorithm

We desribe a simple Fourier-based algorithm for trying to identify a variable relevant to

f . The algorithm is based on the \Low Degree" learning algorithm of Linial, Mansour, and

Nisan [16℄ (see also [17℄). As with the Low Degree algorithm, our Fourier-based algorithm

tries to learn the unknown funtion f by estimating all of f 's Fourier oeÆients

^

f(S) with

1 � jSj � �. Unlike the Low Degree algorithm, our algorithm an stop as soon as it �nds a

nonzero oeÆient, sine all variables in the assoiated monomial must be relevant to f .

We �rst show how to ompute the exat value of any desired Fourier oeÆient:

Proposition 7 We an exatly alulate any Fourier oeÆient

^

f(S) with on�dene 1� Æ

in time poly(2

k

; n; log(1=Æ)).

Proof: We view bits as being �1, as in the R-representation. After multilinear redution we

see that the polynomial x

S

f

R

(x) has

^

f(S) as its onstant oeÆient. Sine E[x

T

℄ = 0 for all

5

nonempty subsets T , linearity of expetation lets us onlude that E[x

S

f

R

(x)℄ =

^

f(S). We

an learly ompute the value of x

S

f

R

(x) in linear time given a labeled example hx; f(x)i: By

standard Cherno� bounds, poly(2

k

; log(1=Æ)) independent samples of the�1 random variable

x

S

f

R

(x) are suÆient for omputing the expetation to within�1=2

k+1

with on�dene 1�Æ.

Sine f and f

0

have the same Fourier expansion and f

0

is a funtion on at most k variables,

^

f(S) must be of the form a=2

k

for some integer a 2 [�2

k

; 2

k

℄. Hene by rounding the

empirial expetation to the nearest integer multiple of 1=2

k

we will get the exat value of

^

f(S) with on�dene 1� Æ. 2

The next proposition says that if f

0

has a nonzero Fourier oeÆient of small (but

nonzero) degree, then we an eÆiently identify some variables relevant to f .

Proposition 8 If

^

f

0

(S) 6= 0 for some S with 1 � jSj � �, then we an identify at least one

relevant variable for f with on�dene 1� Æ in time n

�

� poly(2

k

; n; log(1=Æ)).

Proof: We use Proposition 7 to ompute eah Fourier oeÆient

^

f(S), 1 � jSj � �,

with on�dene 1 � Æ=n

�

. Sine there are at most n

�

possible sets S, with on�dene

1 � Æ we will obtain the exat values of all the desired Fourier oeÆients in time at most

n

�

� poly(2

k

; n; log(1=Æ)): Sine f and f

0

have the same Fourier oeÆients, we will �nd an

S with

^

f(S) 6= 0. It is easy to see that every variable in S must be relevant to f ; for if f is

does not depend on x

i

then

^

f(S) = E[x

S

f

R

(x)℄ = E[x

i

℄E[x

S�i

f

R

(x)℄ = 0 � E[x

S�i

f

R

(x)℄ = 0:

2

3.3 The F

2

-based learning algorithm

In this subsetion we show that if f

0

is a low-degree polynomial over F

2

, then in fat we an

learn f

0

exatly. Here we view True and False as 1 and 0 respetively.

Reall the following well-known result from omputational learning theory [10℄:

Theorem 9 Let g : f0; 1g

N

! f0; 1g be a parity funtion on an unknown subset of the N

Boolean variables x

1

; : : : ; x

N

: There is a learning algorithm B whih, given aess to labeled

examples hx; g(x)i drawn from any probability distribution D on f0; 1g

N

; outputs a hypothesis

h (whih is a parity of some subset of x

1

; : : : ; x

N

) suh that with probability 1 � Æ we have

Pr

x2D

[h(x) 6= g(x)℄ � �: Algorithm B runs in time O((

N

�

+

log 1=Æ

�

)

!

) where ! < 2:376 is the

exponent for matrix multipliation.

The idea behind Theorem 9 is simple: sine g is a parity funtion, eah labeled example

hx; g(x)i orresponds to a linear equation over F

2

where the ith unknown orresponds to

whether x

i

is present in g: Algorithm B draws O(

N

�

+

log 1=Æ

�

) examples and solves the resulting

system of linear equations to �nd some parity over x

1

; : : : ; x

N

whih is onsistent with all of

the examples. Well-known results in PAC learning theory [6℄ imply that suh a onsistent

parity will satisfy the (�; Æ) riterion.

Now suppose deg

F

2

(f

0

) = � � k. Then f

0

is a F

2

-linear ombination (i.e., a parity) over

the set of monomials (onjuntions) in x

1

; : : : ; x

n

of degree up to �. This lets us learn f

0

in

time roughly n

!�

:

6

Proposition 10 If deg

F

2

(f

0

) = �, then we an learn f exatly in time n

!�

�poly(2

k

; n; log(1=Æ))

with on�dene 1� Æ. (Hene we an ertainly identify a variable on whih f depends.)

Proof: Consider the expanded variable spae onsisting of all monomials over x

1

; : : : ; x

n

of degree at most �. There are at most N = n

�

variables in this spae. Run algorithm B

from Theorem 9 on this variable spae, with � set to 2

�(k+1)

. That is, given an example

hx; f(x)i, translate it to the example h(x

S

)

jSj��

; f(x)i, and run B using this new example

orale. Simulating a draw from this new orale takes time N �poly(n), so onstruting all the

neessary examples for B takes time N

2

� poly(2

k

; n; log(1=Æ)). Solving the resulting system

of equations takes time N

!

� poly(2

k

; n; log(1=Æ)). Hene the total time for the algorithm is

n

!�

� poly(2

k

; n; log(1=Æ)) as laimed.

We now argue that B's output hypothesis is preisely the F

2

-representation of f: Let D

be the distribution over the expanded variable spae indued by the uniform distribution

on x

1

; : : : ; x

n

. Sine f

0

(equivalently f) is a parity over the expanded variable spae, the

output of B will be a parity hypothesis h over the expanded variable spae whih satis�es

Pr

x2D

[h(x) 6= f(x)℄ � 2

�(k+1)

. View both f and h as F

2

-polynomials of degree � over the

original variables x

1

; : : : ; x

n

.

If f and h are not idential, then f + h 6� 0 and we have Pr[f(x) 6= h(x)℄ = Pr[f(x) +

h(x) 6= 0℄: Now sine deg

F

2

(f + h) � � and f + h is not identially 0, the polynomial f + h

must be nonzero on at least a 2

��

� 2

�k

fration of the points in (F

2

)

n

. (This is a slightly

nonstandard form of the Shwartz-Zippel Lemma; see [21℄ for an expliit proof.) But this

ontradits the fat that Pr

x2D

[h(x) 6= f(x)℄ � 2

�(k+1)

. 2

4 Learning juntas via new strutural properties of Boolean

funtions

With our learning tools in hand we are ready to give the algorithm for learning k-juntas.

The basi idea is to show that every Boolean funtion f

0

must either have a nonzero Fourier

oeÆient of \not too large" positive degree, or must be a polynomial over F

2

of \not too

large" degree. Then by Propositions 8 and 10, in either ase we an �nd a relevant variable

for f

0

without performing a full-edged exhaustive searh.

The Fourier learning algorithm desribed earlier fails only on funtions whose low-degree

Fourier oeÆients are all zero (exept for possibly the onstant oeÆient; if this is nonzero

the Fourier algorithm an still fail). Let us make a de�nition for suh funtions:

De�nition 11 Suppose that g satis�es ĝ(S) = 0 for all 1 � jSj < t. If ĝ(;) is also 0 then

we say that g is strongly balaned up to size t. If ĝ(;) is nonzero we say that g is strongly

biased up to size t.

These de�nitions were essentially �rst made by Bernasoni in [3℄. The justi�ation of

the terminology is this: if g is strongly balaned up to size t, then it is easy to show that

every subfuntion of g obtained by �xing 0 � ` � t � 1 bits is balaned (i.e. is true with

probability exatly 1=2). Similarly, if g is strongly biased up to size t then it is easy to show

that every suh subfuntion has the same bias as g itself.

We now show that strongly balaned funtions have low F

2

-degree:

7

Theorem 12 Let g =2 fPARITY

n

;:PARITY

n

g be a Boolean funtion on n bits whih is

strongly balaned up to size t. Then deg

F

2

(g) � n� t.

Proof: Given suh a g, let h = g�PARITY

n

. Then h

R

= g

R

�x

1

x

2

� � �x

n

. By assumption, g

R

has zero oeÆient on all monomials x

S

with jSj < t. By multilinear redution (x

2

i

= 1) we

see that h

R

has zero oeÆient on all monomials x

S

with jSj > n�t. Hene deg

R

(h) � n�t,

so by Fat 5, deg

F

2

(h) � n � t. But sine g = h � PARITY

n

, the F

2

-representation of g

is simply g

F

2

(x) = h

F

2

(x) + x

1

+ � � � + x

n

. Adding a degree 1 polynomial to h

F

2

does not

inrease degree (sine g is neither PARITY

n

nor its negation, h is not a onstant funtion

and hene deg

F

2

(h) � 1), and onsequently deg

F

2

(g) � n� t. 2

The bound n� t in Theorem 12 is best possible. To see this, onsider the funtion

g(x) = (x

1

^ � � � ^ x

n�t

)� x

n�t+1

� � � � � x

n

:

This funtion has F

2

-representation g

F

2

(x) = x

1

� � �x

n�t

+x

n�t+1

+� � �+x

n

so deg

F

2

(g) = n�t.

Moreover, g is balaned and every subfuntion of g �xing fewer than t bits is also balaned,

sine to make g unbalaned one must restrit all of x

n�t+1

; : : : ; x

n

.

It remains to deal with strongly biased funtions. Our next theorem shows that no

Boolean funtion an be strongly biased up to too large a size:

Theorem 13 If g is a Boolean funtion on n bits whih is strongly biased up to size t, then

t �

2

3

n:

Proof: Let g

R

(x) =

P

S

S

x

S

be the R-representation of g. Sine g is strongly biased up

to size t we have 0 < j

;

j < 1 and

S

= 0 for all 0 < jSj < t. As in Theorem 12, we let

h = g � PARITY

n

so h

R

(x) =

;

x

1

x

2

� � �x

n

+

P

jSj�n�t

0

S

x

S

, where

0

S

=

[n℄nS

.

Let h

0

: f+1;�1g

n

! f1+

;

; 1�

;

;�1+

;

;�1�

;

g be the real-valued funtion given by

h

0

(x) = h

R

(x)�

;

x

1

x

2

� � �x

n

; note that deg(h

0

) � n� t: Furthermore, for x 2 f+1;�1g

n

we

have h

0

(x) 2 f1 +

;

; 1�

;

g i� h

R

(x) = +1; and h

0

(x) 2 f�1 +

;

;�1�

;

g i� h

R

(x) = �1:

Sine 0 < j

;

j < 1 we have that f1+

;

; 1�

;

g and f�1+

;

;�1�

;

g are disjoint two-element

sets.

Let p : R ! R be the degree 3 polynomial whih maps 1 +

;

and 1 �

;

to +1 and

�1�

;

and �1+

;

to �1. Now onsider the polynomial p Æh

0

. By onstrution p Æh

0

maps

f+1;�1g

n

! f+1;�1g, and p Æ h

0

R-represents h. But the R-representation of h is unique,

so after multilinear redution p Æ h

0

must be idential to h

R

. Sine

;

6= 0; we know that

deg

R

(h) is exatly n. Sine p has degree exatly 3 and deg(h

0

) � n � t, we onlude that

3(n� t) � n, so t �

2

3

n. 2

O. Regev [20℄ ommuniated to us an alternate proof of Theorem 13 whih we inlude

here with his permission:

Proof: (Regev) Let g

R

(x) be as in the previous proof. Let U be any set of maximal size

suh that

U

6= 0; sine g is nononstant and strongly biased up to size t we have jU j � t.

Consider expanding g

R

(x)

2

= (

P

S

S

x

S

)(

P

T

T

x

T

); there will be a nonzero oeÆient on

the ross-term x

;

x

U

. But g

R

(x)

2

must be identially 1 after multilinear redution, sine g

R

8

takes on only the values �1. Thus the nonzero oeÆient on x

U

must be anelled in the

expansion. But if t >

2

3

n then

T

= 0 for all 1 � jT j �

2

3

n, and so all nonzero ross-terms not

involving the onstant term

;

will be on terms x

V

with V <

2

3

n. (Any two sets S; T � [n℄

with jSj; jT j >

2

3

n must interset in more than

1

3

n elements, and sine x

2

i

= 1 for eah

variable x

i

; the monomial obtained by multiplying x

S

and x

T

will have degree less than

2

3

n.)

This ontradits the fat that the x

U

term must be anelled. 2

The bound

2

3

n in Theorem 13 is best possible. To see this, let n = 3m and onsider the

funtion

f(x

1

; : : : ; x

n

) =

2m

M

i=1

x

i

!

^

n

M

i=m+1

x

i

!

:

It is easy to see that this funtion is unbalaned, and also that its bias annot hange under

any restrition of fewer than 2m bits (to hange the bias, one must set bits 1 : : : 2m or

m+ 1 : : : 3m or 1 : : :m; 2m + 1 : : : 3m).

We an now prove our main theorem:

Theorem 14 The lass of k-juntas over n bits an be exatly learned under the uniform

distribution with on�dene 1� Æ in time n

!

!+1

k

� poly(2

k

; n; log(1=Æ)).

Proof: Let f be a k-junta on n bits and f

0

be the funtion on at most k bits given by

restriting f to its relevant variables. Let t =

!

!+1

k >

2

3

k. If f

0

is strongly balaned up

to size t then by Theorem 12 f

0

is an F

2

-polynomial of degree at most k � t = k=(! + 1).

By Proposition 10 f an be learned in time (n

k=(!+1)

)

!

� poly(2

k

; n; log(1=Æ)). On the other

hand, suppose f

0

is not strongly balaned up to size t: By Theorem 13, f

0

annot be strongly

biased up to size t, sine t >

2

3

k. Hene f

0

has a nonzero Fourier oeÆient of degree less

than t and greater than 0. So by Proposition 8, some relevant variable for f an be identi�ed

in time n

t

� poly(2

k

; n; log(1=Æ)).

In either ase, we an identify some relevant variable for f in time n

!

!+1

k

�poly(2

k

; n; log(1=Æ)).

Proposition 6 ompletes the proof. 2

5 Variants of the junta learning problem

We an use the ideas developed thus far to analyze some variants and speial ases of the

juntas learning problem.

5.1 Some easier speial ases

For various sublasses of k-juntas, the learning problem is more easily solved.

Monotone juntas: It is easy to verify that if f

0

is a monotone funtion, then

^

f

0

(fig) > 0

for every relevant variable x

i

: (Use the fat that

^

f

0

(fig) = E[x

i

f

0

(x)℄ = Pr[f(x) = x

i

℄ �

Pr[f(x) 6= x

i

℄:) Hene monotone juntas an be learned in time poly(2

k

; n; log(1=Æ)) using the

Fourier learning algorithm of Proposition 8.

9

Random juntas: As observed in [5℄, almost every k-junta on n variables an be learned

in time poly(2

k

; n; log(1=Æ)). To see this, observe that if a funtion f

0

on k bits is hosen

uniformly at random, then for every S we have

^

f

0

(S) = 0 only if exatly half of all inputs

have f

0

(x) = x

S

: This ours with probability

�

2

k

2

k�1

�

=2

2

k

= O(1)=2

k=2

. Consequently, with

overwhelming probability in terms of k | at least 1 � O(k)=2

k=2

| a random funtion on

k variables will have every Fourier oeÆient of degree 1 nonzero, and hene we an learn

using Proposition 8.

Symmetri juntas: A symmetri k-junta is a junta whose value depends only on how

many of its k relevant variables are set to 1. We an learn any symmetri k-junta in time

n

2

3

k

�poly(2

k

; n; log(1=Æ)); whih somewhat improves on our bound for arbitrary k-juntas. To

prove this, we show that every symmetri funtion f

0

on k variables, other than parity and

its negation, has a nonzero Fourier oeÆient

^

f

0

(S) for 1 � jSj <

2

3

k. Hene we an identify

at least one relevant variable in time n

2

3

k

� poly(2

k

; n; log(1=Æ)) using Proposition 8, and we

an use the algorithm of Proposition 6 sine the lass of symmetri funtions is losed under

subfuntions.

To prove this laim about the Fourier oeÆients of symmetri funtions, �rst note that

if f

0

is not balaned then by Theorem 13 it must have a nonzero Fourier oeÆient of positive

degree less than

2

3

k. Otherwise, if f

0

is balaned and is neither parity nor its negation, then

g := f

0

�PARITY

k

is a symmetri nononstant funtion and deg

R

(g) < k; this last fat follows

beause the x

1

x

2

� � �x

k

oeÆient of g is the onstant oeÆient of f

0

, and f

0

is balaned.

By a result of von zur Gathen and Rohe [25℄, every nononstant symmetri funtion g on

k variables has deg

R

(g) � k �O(k

:548

). Hene ĝ(S) 6= 0 for some k �O(k

:548

) � jSj < k, so

^

f

0

([n℄ n S) 6= 0 and 1 � j[k℄ n Sj � O(k

:548

) �

2

3

k.

In [25℄ von zur Gathen and Rohe onjeture that every nononstant symmetri Boolean

funtion f

0

on k variables has deg

R

(f) � k � O(1): We note that if a somewhat stronger

onjeture were true | that every nononstant symmetri funtion (other than parity) has

a nonzero Fourier oeÆient of degree d for some k � O(1) � d � k � 1 | then using

the above approah we ould learn symmetri juntas in poly(2

k

; n; log(1=Æ)) time. (The von

zur Gathen/Rohe onjeture does not appear to suÆe sine f

0

ould oneivably have a

nonzero Fourier oeÆient of degree k and yet have no nonzero Fourier oeÆients of degree

k � O(1).)

5.2 Other learning models

Blum and Langley observed [5℄ that if the learning algorithm is allowed to make membership

queries for the value of the target junta at points of its hoie, then any k-junta an be

learned in time poly(2

k

; n; log(1=Æ). By drawing random examples, the learner will either

determine that the funtion is onstant or it will obtain two inputs x and y with f(x) 6= f(y):

In the latter ase the learner then selets a path in the Hamming ube between x and y and

queries f on all points in the path. The learner will thus �nd two neighboring points z and

z

0

on whih f has di�erent values, so the oordinate in whih z and z

0

di�er is relevant. The

learner then reurses as in Proposition 6.

While membership queries make the problem of learning juntas easy, asting the problem

in the more restritive statistial query learning model of Kearns (see [14℄ for bakground

10

on this model) makes the problem provably hard. The lass of k-juntas over n variables

ontains at least

�

n

k

�

distint parity funtions, and for any two distint parity funtions

x

S

6= x

T

we have that E[x

S

x

T

℄ = 0: Consequently, an information-theoreti lower bound of

Bshouty and Feldman [2℄ (a re�nement of an earlier bound in [1℄) implies that any statistial

query algorithm for learning k-juntas under the uniform distribution must have q=�

2

�

�

n

k

�

;

where q is the number of statistial queries whih the algorithm makes and � 2 (0; 1) is the

additive error tolerane required for eah query. Thus, as noted earlier, the PAC model of

learning from random examples seems to be the right framework for the juntas problem.

We lose by observing that if the uniform distribution is replaed by a produt measure

in whih Pr[x

i

= T℄ = p

i

, then for almost every hoie of (p

1

; : : : ; p

n

) 2 [0; 1℄

n

, k-juntas

are learnable in time poly(2

k

; n; log(1=Æ)). In partiular, we laim that for every produt

distribution exept for a set of measure zero in [0; 1℄

n

, every k-junta f has nonzero orrelation

with every variable on whih it depends, and onsequently a straightforward variant of

the Fourier-based learning algorithm will identify all relevant variables in the laimed time

bound. This is a onsequene of the following easily veri�ed fat:

Fat 15 If f

0

is neither a single variable nor its negation and f

0

depends on x

i

; then

E

p

1

;:::;p

n

[f

0

(x)x

i

℄; when viewed formally as a multivariable polynomial in p

1

; : : : ; p

n

, is a non-

onstant polynomial.

Consequently, the set of points (p

1

; : : : ; p

n

) 2 [0; 1℄

n

on whih this polynomial takes value 0

has measure 0. The union of all suh sets for all (�nitely many) hoies of i and f

0

still has

measure 0, and the laim is proved.

6 Conlusion

A major goal for future researh is to give an algorithm whih runs in polynomial time for

k = logn or even k = !(1). We hope that further study of the strutural properties of

Boolean funtions will lead to suh an algorithm. Right now, the bottlenek preventing an

improved runtime for our algorithm is the ase of strongly balaned juntas. A. Kalai has

asked the following question:

Question: Is it true that for any Boolean funtion f on k bits whih is strongly balaned up to

size

2

3

k, there is a restrition �xing at most

2

3

k bits under whih f beomes a parity funtion?

If the answer were yes, then it would be straightforward to give a learning algorithm for

k-juntas running in time n

2

3

k

. (Of ourse, another way to get suh an algorithm would be to

give a quadrati algorithm for matrix multipliation!)

Finally, we lose by observing that there are still several important generalizations of the

k-junta problem for whih no algorithm with running time better than n

(1�o(1))k

is known.

Can we learn juntas under any �xed nonuniform produt distribution? Can we learn ternary

juntas (i.e. funtions on f0; 1; 2g

n

with k relevant variables) under uniform? There are many

diretions for future work.

11

7 Aknowledgements

We would like to thank Adam Kalai and Yishay Mansour for helpful disussions and for

telling us about [13, 19℄. We also thank Oded Regev for allowing us to inlude his proof of

Theorem 13.

Referenes

[1℄ A. Blum, M. Furst, J. Jakson, M. Kearns, Y. Mansour, and S. Rudih. Weakly learning

DNF and haraterizing statistial query learning using Fourier analysis, in \Pro. 26th

Ann. Symp. on Theory of Computing" (1994), 253-262.

[2℄ N. Bshouty andV. Feldman. On using extended statistial queries to avoid membership

queries. Journal of Mahine Learning Researh, 2:359{395, 2002.

[3℄ A. Bernasoni. On a hierarhy of boolean funtions hard to ompute in onstant depth.

Disrete Mathematis & Theoretial Computer Siene, 4(2):279{290, 2001.

[4℄ A. Blum. Relevant examples and relevant features: Thoughts from omputational learn-

ing theory. In AAAI Fall Symposium on `Relevane', pages 18-22, 1994.

[5℄ A. Blum and P. Langley. Seletion of relevant features and examples in mahine learning.

Arti�ial Intelligene, 97(1-2):245{271, 1997.

[6℄ A. Blumer, A. Ehrenfeuht, D. Haussler, and M. Warmuth. Oam's razor. Information

Proessing Letters, 24:377{380, 1987.

[7℄ N. Bshouty, J. Jakson, and C. Tamon. More eÆient PAC learning of DNF with mem-

bership queries under the uniform distribution. In Proeedings of the Twelfth Annual

Conferene on Computational Learning Theory, pages 286{295, 1999.

[8℄ D. Coppersmith and S. Winograd. Matrix multipliation via arithmeti progressions.

In Proeedings of the Nineteenth Symposium on Theory of Computing, pages 1{6, 1987.

[9℄ E. Fisher, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky. Testing juntas. In

Proeedings of the 43rd IEEE Symposium on Foundations of Computer Siene, pages

103{112, 2002.

[10℄ D. Helmbold, R. Sloan, and M. Warmuth. Learning integer latties. SIAM Journal on

Computing, 21(2):240{266., 1992.

[11℄ J. Jakson. An eÆient membership-query algorithm for learning DNF with respet to

the uniform distribution. Journal of Computer and System Sienes, 55:414{440, 1997.

[12℄ J. Jakson, A. Klivans, and R. Servedio. Learnability beyond AC

0

. In Proeedings of

the 34th ACM Symposium on Theory of Computing, pages 776{784, 2002.

[13℄ A. Kalai and Y. Mansour. Personal ommuniation, 2001.

12

[14℄ M. Kearns. EÆient noise-tolerant learning from statistial queries. Journal of the

ACM, 45(6):983{1006, 1998.

[15℄ L. Kuera, A. Marhetti-Spaamela, and M. Protassi. On learning monotone DNF

formulae under uniform distributions. Information and Computation, 110:84{95, 1994.

[16℄ N. Linial, Y. Mansour, and N. Nisan. Constant depth iruits, Fourier transform and

learnability. Journal of the ACM, 40(3):607{620, 1993.

[17℄ Y. Mansour. Learning Boolean funtions via the Fourier transform, in \Theoretial

Advane in Neural Computational and Learning," V.P. Royhodhury, K.Y. Siu and A.

Orlitsky, eds., pages 391{424, 1994.

[18℄ Y. Mansour. An O(n

log log n

) learning algorithm for DNF under the uniform distribution.

Journal of Computer and System Sienes, 50:543{550, 1995.

[19℄ Y. Mansour. Personal ommuniation, 2001.

[20℄ O. Regev. Personal ommuniation, 2003.

[21℄ S. Rudih. Problem set 6 model solutions. Available at

http://www-2.s.mu.edu/~rudih/omplexity/handouts/Probsets/Probset6/.

[22℄ L. Valiant. A theory of the learnable. Communiations of the ACM, 27(11):1134{1142,

1984.

[23℄ K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time.

In Proeedings of the Third Annual Workshop on Computational Learning Theory, pages

314{326, 1990.

[24℄ K. Verbeurgt. Learning sub-lasses of monotone DNF on the uniform distribution. In

Proeedings of the Ninth Conferene on Algorithmi Learning Theory, pages 385{399,

1998.

[25℄ J. von zur Gathen and J. Rohe. Polynomials with two values. Combinatoria,

17(3):345{362, 1997.

13

