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Abstract

We show that the class of monotone 2O(
√

log n)-term DNF formulae can be PAC
learned in polynomial time under the uniform distribution from random examples
only. This is an exponential improvement over the best previous polynomial-time
algorithms in this model, which could learn monotone o(log2

n)-term DNF. We also
show that various classes of small constant-depth circuits which compute monotone
functions are PAC learnable in polynomial time under the uniform distribution. All
of our results extend to learning under any constant-bounded product distribution.
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1 Introduction

A disjunctive normal form formula, or DNF, is a disjunction of conjunctions of Boolean
literals. The size of a DNF is the number of conjunctions (also known as terms) which it
contains. In a seminal 1984 paper [25] Valiant introduced the distribution-free model of
Probably Approximately Correct (PAC) learning from random examples and posed the
question of whether polynomial-size DNF are PAC learnable in polynomial time. Over
the past twenty years the DNF learning problem has been widely viewed as one of the
most important – and challenging – open questions in computational learning theory.
This paper substantially improves the best previous results for a well-studied restricted
version of the DNF learning problem.

1.1 Previous Work

The lack of progress on Valiant’s original question – are polynomial-size DNF learnable
from random examples drawn from an arbitrary distribution in polynomial time? – has
led many researchers to study restricted versions of the DNF learning problem. The open
question which motivates our work is whether polynomial-size monotone DNF formulas
are learnable in polynomial time under the uniform distribution on {0, 1}n. This is an
intriguing question since, as described below, efficient algorithms are known for several
related problems.

It is known that if membership queries are allowed, then Angluin’s exact learning
algorithm [2] for monotone DNF yields an efficient algorithm for PAC learning polynomial
size monotone DNF under any probability distribution. On the other hand, if membership
queries are not allowed then a simple reduction shows that PAC learning monotone DNF
under any distribution is as hard as PAC learning arbitrary DNF [17]. This equivalence
is not preserved for distribution-specific learning, though, and thus it is possible that
monotone DNF are efficiently learnable under the uniform distribution while general
DNF are not.

Verbeurgt [26] gave an algorithm which can learn polynomial-size DNF (including
monotone DNF) under the uniform distribution in time nlog n. In the model of weak
learning, Kearns et al. [18] showed that the class of all monotone Boolean functions
(including monotone polynomial-size DNF) can be weakly learned under the uniform
distribution in polynomial time. However, since weak and strong learnability are not
necessarily equivalent under specific distributions, this latter result does not imply that
monotone DNF are efficiently learnable under the uniform distribution.

A natural approach which several researchers have pursued is to try to learn monotone
DNF with a limited number of terms under the uniform distribution. It has long been
known [25] that DNF formulas with a constant number of terms can be PAC learned in
polynomial time under arbitrary distributions. More recently Sakai and Maruoka [24]
gave a polynomial-time algorithm for learning monotone O(logn)-term DNF under the
uniform distribution. In [8] Bshouty gave a polynomial-time uniform-distribution algo-
rithm for learning a class which includes monotone O(log n)-term DNF. Later Bshouty
and Tamon [10] gave a polynomial-time algorithm for learning (under any constant-
bounded product distribution) a class which includes monotone O(log2 n/(log log n)3)-
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term DNF.

1.2 Our Results

We give an algorithm for learning monotone DNF under the uniform distribution. If
the desired accuracy level ε is any constant independent of n (the number of variables),
then the algorithm learns 2O(

√
log n)-term monotone DNF over n variables in poly(n) time.

The algorithm thus does not quite meet the usual definition of strong learning (which
requires that any ε = 1/poly(n) be achievable in poly(n) time), but meets a much stronger
condition than that of weak learning (which only requires accuracy 1/2−1/poly(n)). We
note that the algorithm of [10] for learning monotone DNF with O((log n)2/(log log n)3)
terms also requires that ε be constant in order to achieve poly(n) runtime. Ours is the
first polynomial time algorithm which uses only random examples and successfully learns
monotone DNF with more than a polylogarithmic number of terms to high accuracy. We
also show that essentially the same algorithm learns various classes of small constant-
depth circuits which compute monotone functions. All of our results extend to learning
under any constant-bounded product distribution.

Our algorithm combines ideas from Linial et al.’s influential paper [21] on learning
AC0 functions using the Fourier transform and Bshouty and Tamon’s paper [10] on learn-
ing monotone functions using the Fourier transform. By analyzing the Fourier transform
of AC0 functions, Linial et al. showed that almost all of the Fourier “power spectrum”
of any AC0 function is contained in “low” Fourier coefficients, i.e. coefficients which
correspond to small subsets of variables. Their learning algorithm estimates each low
Fourier coefficient by sampling and constructs an approximation to f using these esti-
mated Fourier coefficients. If c is the size bound for low Fourier coefficients, then since
there are

(
n
c

)
Fourier coefficients corresponding to subsets of c variables the algorithm

requires roughly nc time steps. Linial et al. showed that for AC0 circuits c is essentially
poly(log n); this result was later sharpened for DNF formulae by Mansour [22].

Our algorithm extends this approach in the following way: Let C ⊂ AC0 be a class
of Boolean functions which we would like to learn. Suppose that C has the following
properties:

1. For every f ∈ C there is a set Sf of “important” variables such that almost all
of the power spectrum of f is contained in Fourier coefficients corresponding to
subsets of Sf .

2. There is an efficient algorithm which identifies the set Sf from random examples.
(Such an algorithm, which we give in Section 3.1, is implicit in [10] and requires
only that f be monotone.)

We can learn an unknown function f from such a class C by first identifying the set
Sf , then estimating the low Fourier coefficients which correspond to small subsets of Sf

and using these estimates to construct an approximation to f. To see why this works,
note that since f is in AC0 almost all of the power spectrum of f is in the low Fourier
coefficients; moreover, property (1) implies that almost all of the power spectrum of f
is in the Fourier coefficients which correspond to subsets of Sf . Consequently it must be
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the case that almost all of the power spectrum of f is in low Fourier coefficients which
correspond to subsets of Sf . Thus in our setting we need only estimate the

(|Sf |
c

)
Fourier

coefficients which correspond to “small” subsets of variables in Sf . If |Sf | � n then this
is much more efficient than estimating all

(
n
c

)
low Fourier coefficients.

In Section 2 we formally define the learning model and give some necessary facts about
Fourier analysis over the Boolean cube. In Section 3 we give our learning algorithm for
the uniform distribution, and in Section 4 we describe how the algorithm can be modified
to work under any constant-bounded product distribution.

2 Preliminaries

We write [n] to denote the set {1, . . . , n} and use capital letters for subsets of [n]. We
write |A| to denote the number of elements in A. Barred lowercase letters denote bit-
strings, i.e. x = (x1, . . . , xn) ∈ {0, 1}n. In this paper Boolean circuits are composed
of AND/OR/NOT gates where AND and OR gates have unbounded fanin and nega-
tions occur only on inputs unless otherwise indicated. We view Boolean functions on
n variables as real valued functions which map {0, 1}n to {−1, 1}. A Boolean function
f : {0, 1}n → {−1, 1} is monotone if changing the value of an input bit from 0 to 1 never
causes the value of f to change from 1 to −1.

If D is a distribution and f is a Boolean function on {0, 1}n, then as in [10, 13] we say
that the influence of xi on f with respect to D is the probability that f(x) differs from
f(y), where y is x with the i-th bit flipped and x is drawn from D. For ease of notation let
fi,0 denote the function obtained from f by fixing xi to 0 and let fi,1 be defined similarly.
We thus have

ID,i(f) = Pr
D

[fi,0(x) 6= fi,1(x)] =
1

2
ED[|fi,1 − fi,0|].

For monotone f this can be further simplified to

ID,i(f) =
1

2
ED[fi,1 − fi,0] =

1

2
(ED[fi,1] − ED[fi,0]) . (1)

We frequently use Chernoff bounds on sums of independent random variables [12]:

Theorem 1 Let x1, . . . , xm be independent identically distributed random variables with
E[xi] = p, |xi| 6 B, and let sm = x1 + · · ·+ xm. Then

m >
2B2

ε2
ln

2

δ
implies that Pr

[∣∣∣sm

m
− p

∣∣∣ > ε
]

6 δ.

2.1 The Learning Model

Our learning model is a distribution-specific version of Valiant’s Probably Approximately
Correct (PAC) model [25] which has been studied by many researchers, e.g. [4, 6, 9, 10,
11, 13, 15, 19, 20, 21, 22, 26]. Let C be a class of Boolean functions over {0, 1}n, let D
be a probability distribution over {0, 1}n, and let f ∈ C be an unknown target function.
A learning algorithm A for C takes as input an accuracy parameter 0 < ε < 1 and
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a confidence parameter 0 < δ < 1. During its execution the algorithm has access to
an example oracle EX(f,D) which, when queried, generates a random labeled example
〈x, f(x)〉 where x is drawn according to D. The learning algorithm outputs a hypothesis
h which is a Boolean function over {0, 1}n; the error of this hypothesis is defined to be
error(h, f) = PrD[h(x) 6= f(x)]. We say that A learns C under D if for every f ∈ C and
0 < ε, δ < 1, with probability at least 1 − δ algorithm A outputs a hypothesis h which
has error(h, f) 6 ε.

2.2 The Discrete Fourier Transform

Let U denote the uniform distribution over {0, 1}n. The set of all real valued functions
on {0, 1}n may be viewed as a 2n-dimensional vector space with inner product defined as

〈f, g〉 = 2−n
∑

x∈{0,1}n

f(x)g(x) = EU [fg]

and norm defined as ‖f‖ =
√

〈f, f〉. Given any subset A ⊆ [n], the Fourier basis function
χA : {0, 1}n → {−1, 1} is defined by χA(x) = (−1)|A∩X|, where X is the subset of [n]
defined by i ∈ X iff xi = 1. It is well known that the 2n basis functions χA form an
orthonormal basis for the vector space of real valued functions on {0, 1}n; we refer to
this basis as the χ basis. In particular, any function f can be uniquely expressed as
f(x) =

∑
A f̂(A)χA(x), where the values f̂(A) are known as the Fourier coefficients of f

with respect to the χ basis. Since the functions χA form an orthonormal basis, the value
of f̂(A) is 〈f, χA〉; also, by linearity we have that f(x) + g(x) =

∑
A(f̂(A) + ĝ(A))χA(x).

Another easy consequence of orthonormality is Parseval’s identity

EU [f 2] = ‖f‖2 =
∑

A⊆[n]

f̂(A)2.

If f is a Boolean function then this value is exactly 1. Finally, for any Boolean function
f and real-valued function g we have [10, 21]

Pr
U

[f 6= sign(g)] 6 EU [(f − g)2] (2)

where sign(z) takes value 1 if z > 0 and takes value −1 if z < 0.

3 Learning under Uniform Distributions

3.1 Identifying Relevant Variables

The following lemma, which is implicit in [10], gives an efficient algorithm for identifying
the important variables of a monotone Boolean function. We refer to this algorithm as
FindVariables.
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Lemma 2 Let f : {0, 1}n → {−1, 1} be a monotone Boolean function. There is an
algorithm which has access to EX(f,U), runs in poly(n, 1/ε, log 1/δ) time steps for all
ε, δ > 0, and with probability at least 1 − δ outputs a set Sf ⊆ [n] such that

i ∈ Sf implies
∑

A:i∈A

f̂(A)2
> ε/2 and i /∈ Sf implies

∑

A:i∈A

f̂(A)2
6 ε.

Proof: Kahn et al. ([16] Section 3) have shown that

IU ,i(f) =
∑

A:i∈A

f̂(A)2. (3)

To prove the lemma it thus suffices to show that IU ,i(f) can be estimated to within
accuracy ε/4 with high probability. By Equation (1) from Section 2 this can be done by
estimating EU [fi,1] and EU [fi,0]. Two applications of Chernoff bounds finish the proof:
the first is to verify that with high probability a large sample drawn from EX(f,U)
contains many labeled examples which have xi = 1 and many which have xi = 0, and
the second is to verify that a collection of many labeled examples with xi = b with high
probability yields an accurate estimate of EU [fi,b].

3.2 The Learning Algorithm

Our learning algorithm, which we call LearnMonotone, is given below:

• Use FindVariables to identify a set Sf of important variables.

• Draw m labeled examples 〈x1, f(x1)〉, . . . , 〈xm, f(xm)〉 from EX(f,U). For every
A ⊆ Sf with |A| 6 c set αA = 1

m

∑m
i=1 f(xi)χA(xi). For every A such that |A| > c

or A 6⊆ Sf set αA = 0.

• Output the hypothesis sign(g(x)), where g(x) =
∑

A αAχA(x).

The algorithm thus estimates f̂(A) for A ⊆ Sf , |A| 6 c by sampling and constructs a
hypothesis using these approximate Fourier coefficients. The values of m and c and the
parameter settings for ε and δ in FindVariables are specified below.

3.3 Learning Monotone 2O(
√

log n)-term DNF

Let f : {0, 1}n → {−1, 1} be a monotone t-term DNF. The proof that algorithm
LearnMonotone learns f uses a DNF called f1 to show that FindVariables identifies
a small set of variables Sf and uses another DNF called f2 to show that f can be ap-
proximated by approximating Fourier coefficients which correspond to small subsets of
Sf .

Let f1 be the DNF which is obtained from f by removing every term which contains
more than log 32tn

ε
variables. (This term size bound is chosen so that we will ultimately

end up with an ε/4 on the right side of inequality (7) below.) Since there are at most
t such terms each of which is satisfied by a random example with probability less than
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ε/32tn, we have PrU [f(x) 6= f1(x)] < ε
32n

(this type of argument was first used by
Verbeurgt [26]). Let R ⊆ [n] be the set of variables which f1 depends on; it is clear that
|R| 6 t log 32tn

ε
. Moreover, since IU ,i(f1) = 0 for i /∈ R, equation (3) from Section 3.1

implies that f̂1(A) = 0 for A 6⊆ R.
Since f and f1 are Boolean functions, f − f1 is either 0 or 2, so EU [(f − f1)

2] =
4 PrU [f 6= f1] < ε/8n. By Parseval’s identity we have

EU [(f − f1)
2] =

∑

A

(f̂(A) − f̂1(A))2

=
∑

A⊆R

(f̂(A) − f̂1(A))2 +
∑

A6⊆R

(f̂(A) − f̂1(A))2

=
∑

A⊆R

(f̂(A) − f̂1(A))2 +
∑

A6⊆R

(f̂(A))2

< ε/8n.

Thus
∑

A6⊆R f̂(A)2 < ε
8n

, and consequently we have

i /∈ R implies
∑

A:i∈A

f̂(A)2 <
ε

8n
. (4)

We set the parameters of FindVariables so that with high probability

i ∈ Sf implies
∑

A:i∈A

f̂(A)2
> ε/8n (5)

i /∈ Sf implies
∑

A:i∈A

f̂(A)2
6 ε/4n. (6)

Inequalities (4) and (5) imply that Sf ⊆ R, so |Sf | 6 t log 32tn
ε

. Furthermore, since A 6⊆ Sf

implies i ∈ A for some i /∈ Sf , inequality (6) implies

∑

A6⊆Sf

f̂(A)2
6 ε/4. (7)

The following lemma is due to Mansour ([22] Lemma 3.2):

Lemma 3 (Mansour) Let f be a DNF with terms of size at most d. Then for all ε > 0

∑

|A|>20d log(2/ε)

f̂(A)2
6 ε/2.

One approach at this point is to use Mansour’s lemma to approximate f by approximating
the Fourier coefficients of all subsets of Sf which are smaller than 20d log(2/ε), where
d = log 32tn

ε
is the maximum size of any term in f1. However, this approach does not give

a good overall running time because d is too large. Instead we consider another DNF
with smaller terms than f1 which also closely approximates f. By using this stronger
bound on term size in Mansour’s lemma we get a better final result.
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More precisely, let f2 be the DNF obtained from f by removing every term which
contains at least log 32t

ε
variables. Let c = 20 log 32t

ε
log 8

ε
. Mansour’s lemma implies that

∑

|A|>c

f̂2(A)2
6 ε/8. (8)

Moreover, we have PrU [f 6= f2] 6 ε/32 and hence

4 Pr
U

[f 6= f2] = EU [(f − f2)
2] =

∑

A

(f̂(A) − f̂2(A))2
6 ε/8. (9)

Let αA and g(x) be as defined in LearnMonotone. Using inequality (2) from Section 2.2,
we have

Pr[sign(g) 6= f ] 6 EU [(g − f)2] =
∑

A

(αA − f̂(A))2 = X + Y + Z,

where

X =
∑

|A|6c,A6⊆Sf

(αA − f̂(A))2,

Y =
∑

|A|>c

(αA − f̂(A))2,

Z =
∑

|A|6c,A⊆Sf

(αA − f̂(A))2.

To bound X, we observe that αA = 0 for A 6⊆ Sf , so by (7) we have

X =
∑

|A|6c,A6⊆Sf

f̂(A)2
6

∑

A6⊆Sf

f̂(A)2
6 ε/4.

To bound Y, we note that αA = 0 for |A| > c and hence Y =
∑

|A|>c f̂(A)2. Since

f̂(A)2 6 2(f̂(A) − f̂2(A))2 + 2f̂2(A)2, we have

Y 6 2
∑

|A|>c

(f̂(A) − f̂2(A))2 + 2
∑

|A|>c

f̂2(A)2

6 2
∑

A

(f̂(A) − f̂2(A))2 + ε/4

6 ε/2

by inequalities (8) and (9) respectively.
It remains to bound Z =

∑
|A|6c,A⊆Sf

(αA−f̂ (A))2. As in Linial et al. [21] this sum can

be made less than ε/4 by taking m sufficiently large so that with high probability each
estimate αA differs from the true value f̂(A) by at most

√
ε/(4|Sf |c). A straightforward

Chernoff bound argument shows that taking m = poly(|Sf |c, 1/ε, log(1/δ)) suffices.
Thus, we have X + Y + Z 6 ε. Recalling our bounds on |Sf | and c, we have proved:
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Theorem 4 Under the uniform distribution, for any ε, δ > 0, the algorithm LearnMonotone

can be used to learn t-term monotone DNF in time polynomial in n, (t log tn
ε
)log t

ε
log 1

ε and
log(1/δ).

Taking t = 2O(
√

log n) we obtain the following corollary:

Corollary 5 For any constant ε algorithm LearnMonotone learns 2O(
√

log n)-term mono-
tone DNF in poly(n, log(1/δ)) time under the uniform distribution.

As noted earlier, Bshouty and Tamon’s algorithm [10] for learning monotone DNF
with O((log n)2/(log log n)3) terms also requires that ε be constant in order to achieve
poly(n) runtime.

3.4 Learning Small Constant-Depth Monotone Circuits

3.4.1 Circuits with Few Relevant Variables

Let C be the class of depth d, size M circuits which compute monotone functions on r out
of n variables. An analysis similar to that of the last section (but simpler since we do not
need to introduce auxiliary functions f1 and f2) shows that algorithm LearnMonotone

can be used to learn C in time polynomial in n, r(log(M/ε))d
and log(1/δ). As in the

last section the FindVariables procedure is used to identify the “important” relevant
variables, of which there are now at most r. Instead of using Mansour’s lemma, we use
the main lemma of Linial et al. [21] to bound the total weight of high-order Fourier
coefficients for constant-depth circuits:

Lemma 6 (Linial et al.) Let f be a Boolean function computed by a circuit of depth d
and size M and let c be any integer. Then

∑

|A|>c

f̂(A)2
6 2M2−c1/d/20.

More precisely, fix f ∈ C and let R ⊆ [n], |R| 6 r be the variables which f depends
on. Clearly i /∈ R implies that IU ,i(f) = 0. We may run FindVariables with parameter
settings such that

i ∈ Sf implies
∑

A:i∈A

f̂(A)2
> ε/8n

i /∈ Sf implies
∑

A:i∈A

f̂(A)2
6 ε/4n.

Consequently we have that Sf ⊆ R so |Sf | 6 r.
The proof that LearnMonotone learns C is similar to the proof of Section 3.3 but

simpler. From the second equation above we get that

∑

A6⊆Sf

f̂(A)2
6 ε/4
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which is an analogue to equation (7). As before we get that

Pr[sign(g) 6= f ] 6 X + Y + Z

with

X =
∑

|A|6c,A6⊆Sf

(αA − f̂(A))2, Y =
∑

|A|>c

(αA − f̂(A))2, Z =
∑

|A|6c,A⊆Sf

(αA − f̂(A))2.

The bound X 6 ε/4 follows from the analogue to (7). The bound Y =
∑

|A|>c f̂(A)2 6

ε/2 follows from the lemma of Linial et al. with a suitable choice of c as described below.
The bound Z 6 ε/4 follows by sampling to estimate each Fourier coefficient to high accu-
racy with high confidence. More precisely, there are at most rc coefficients so we estimate
each to accuracy

√
ε/4rc to obtain Z 6 ε/4. Thus taking m to be poly(rc/ε, log(1/δ)) is

sufficient.
So all in all, the running time of the algorithm is poly(n, 1/ε, rc, log(1/δ)) and the

algorithm succeeds in learning provided that 2M2−c1/d/20 6 ε/2 i.e. provided that c >

(20 log(4M/ε))d. Choosing c appropriately, we have the following theorem:

Theorem 7 Fix d > 1 and let Cd,M,r be the class of depth d, size M circuits which
compute monotone functions on r out of n variables. Under the uniform distribution,
for any ε, δ > 0, algorithm LearnMonotone learns class Cd,M,r in time polynomial in n,

r(log(M/ε))d
and log(1/δ).

3.4.2 Learning Small Constant-Depth Monotone Circuits

In this section we strengthen Theorem 7 by removing the restriction that the circuits
being learned have only r relevant variables. The key idea which enables this is that any
AND (respectively OR) gate with many literals as inputs will almost always take value
0 (respectively 1), so ignoring all such gates will not incur much error.

Specifically, let F be a Boolean circuit of depth d and size M which computes a
monotone function. By De Morgan’s laws, without loss of generality we may suppose
that F contains only AND and NOT gates. (Recall that monotone functions can be
computed by circuits which contain NOT gates; here we are allowing NOT gates to be
located anywhere in the circuit, not just at the inputs.) Let F ′ be the circuit obtained
from F by replacing each AND gate which has more than ` distinct literals among its
inputs with the constant 0 (the value of ` will be specified later). For any such AND
gate, this changes its output (for a uniformly random setting of the input variables)
with probability at most 2−`, so we have that Pr[F (x) 6= F ′(x)] 6 M2−` for uniform
random x. Consequently, given a sample of t labeled examples of F, we have that F ′ is
consistent with the sample with probability at least 1 − tM2−`. Since F ′ has at most
r ≡ M` relevant variables, by Theorem 7 we have that if LearnMonotone is run on a
uniform sample of t =poly(n, (M`)(log(M/ε))d

, log 1/δ) examples labeled according to F ′,
then with probability at least 1 − δ/2 the hypothesis h which it outputs will satisfy
Pr[h(x) 6= F ′(x)] 6 ε/2.

Thus, the necessary conditions on ` are as follows:
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• ` > log(2M/ε): this ensures that Pr[F (x) 6= F ′(x)] 6 ε/2, so an ε/2-approximator
h for F ′ will be an ε-approximator for F as desired.

• ` > 1 + log(2Mt/δ): this ensures that the sample used for learning is consistent
with F ′ with probability at least 1 − δ/2.

• t =poly(n, (M`)(log(M/ε))d
, log 1/δ): this ensures that LearnMonotone has enough

examples to learn successfully.

Taking ` = O((log(Mn/δε))d+1) satisfies all of these conditions. We thus have the
following theorem:

Theorem 8 Fix d > 1 and let Cd,M be the class of depth d, size M circuits which compute
monotone functions on n variables. Under the uniform distribution, for any ε, δ > 0, algo-
rithm LearnMonotone learns class Cd,M in time polynomial in (M(log(Mn/δε))d+1)(log(M/ε))d

and n.

One interesting corollary is the following:

Corollary 9 Fix d > 1 and let Cd be the class of depth d, size 2O((log n)1/(d+1)) circuits
which compute monotone functions. Then for any constant ε, δ algorithm LearnMonotone

learns class Cd in poly(n) time.

While this class Cd is rather limited from the perspective of Boolean circuit com-
plexity, from a learning theory perspective it is fairly rich. We note that Cd strictly
includes the class of depth d, size 2O((log n)1/(d+1)) monotone circuits (i.e. circuits of the
stated size and depth which contain only AND and OR gates). This follows from results
of Okol’nishnikova [23] and Ajtai and Gurevich [1] (see also [7] Section 3.6) which show
that there are monotone functions which can be computed by AC0 circuits but are not
computable by AC0 circuits which have no negations.

4 Product Distributions

A product distribution over {0, 1}n is characterized by parameters µ1, . . . , µn where µi =
Pr[xi = 1]. Such a distribution D assigns values independently to each variable, so for
a ∈ {0, 1}n we have D(a) =

(∏
ai=1 µi

) (∏
ai=0(1 − µi)

)
. The uniform distribution is a

product distribution with each µi = 1/2. The standard deviation of xi under a product
distribution is σi =

√
µi(1 − µi). A product distribution D is constant-bounded if there is

some constant c ∈ (0, 1) independent of n such that µi ∈ [c, 1− c] for all i = 1, . . . , n. We
let β denote maxi=1,...,n(1/µi, 1/(1− µi)). Throughout the rest of this paper D denotes a
product distribution.

Given a product distribution D we define a new inner product over the vector space
of real valued functions on {0, 1}n as

〈f, g〉D =
∑

x∈{0,1}n

D(x)f(x)g(x) = ED[fg]

11



and a corresponding norm ‖f‖D =
√
〈f, f〉D. We refer to this norm as the D-norm. For

i = 1, . . . , n let zi = (xi − µi)/σi. Given A ⊆ [n], let φA be defined as φA(x) =
∏

i∈A zi.
As noted by Bahadur [5] and Furst et al. [11], the 2n functions φA form an orthonormal
basis for the vector space of real valued functions on {0, 1}n with respect to the D-norm,
i.e. 〈φA, φB〉D is 1 if A = B and is 0 otherwise. We refer to this basis as the φ basis. The
following fact is useful:

Fact 10 (Bahadur; Furst et. al) The φ basis is the basis which would be obtained by
Gram-Schmidt orthonormalization (with respect to the D-norm) of the χ basis performed
in order of increasing |A|.

By the orthonormality of the φ basis, any real function on {0, 1}n can be uniquely ex-
pressed as f(x) =

∑
A f̃(A)φA(x) where f̃(A) = 〈f, φA〉D is the Fourier coefficient of A

with respect to the φ basis. Note that we write f̃(A) for the φ basis Fourier coefficient
and f̂(A) for the χ basis Fourier coefficient. Also by orthonormality we have Parseval’s
identity

ED[f 2] = ‖f‖2
D =

∑

A⊆[n]

f̃(A)2

which is 1 for Boolean f. Finally, for Boolean f and real-valued g we have ([11] Lemma
10)

Pr
D

[f 6= sign(g)] 6 ED[(f − g)2]. (10)

Furst et al. [11] analyzed the φ basis Fourier spectrum of AC0 functions and gave
product distribution analogues of Linial et al.’s results on learning AC0 circuits under
the uniform distribution. In Section 4.1 we sharpen and extend some results from [11],
and in Section 5 we use these sharpened results together with techniques from [11] to
obtain product distribution analogues of our algorithms from Section 3.

4.1 Some φ Basis Fourier Lemmas

A random restriction ρp,D is a mapping from {x1, . . . , xn} to {0, 1, ∗} which is chosen
randomly in the following way: each xi is mapped to ∗ with probability p, to 1 with
probability (1 − p)µi, and to 0 with probability (1 − p)(1 − µi). Given a restriction
ρp,D and a Boolean function f, we write fdρ to represent the function f(ρp,D(x)) whose
variables are those xi which are mapped to ∗ and whose other xi are instantiated as 0 or
1 according to ρp,D. Note that once ρp,D has been chosen, fdρ is a specific deterministic
function; the randomness stems entirely from the choice of ρp,D as described above.

The following variant of H̊astad’s well known switching lemma [14] follows directly
from the argument in Section 4 of [3]:

Lemma 11 Let D be a product distribution with parameters µi and β as defined above,
let f be a CNF formula where each clause has at most t literals, and let ρp,D be a random
restriction. Then with probability at least 1−(4βpt)s over the choice of ρp,D we have that:

12



1. the function fdρ can be expressed as a DNF formula where each term has at most
s literals;

2. the terms of such a DNF all accept disjoint sets of inputs.

The following corollary is a product distribution analogue of ([21] Corollary 1):

Corollary 12 Let D be a product distribution with parameters µi and β, let f be a CNF
formula where each clause has at most t literals, and let ρp,D be a random restriction.

Then with probability at least 1 − (4βpt)s we have that f̃dρ(A) = 0 for all |A| > s.

Proof: Linial et al. [21] show (in the proof of Corollary 1 in their paper) that if fdρ
satisfies properties (1) and (2) of Lemma 11 then f̂dρ(A) = 0 for all |A| > s. Hence such
a fdρ is in the space spanned by {χA : |A| 6 s}. By Fact 10 and the nature of Gram-
Schmidt orthonormalization, this is the same space which is spanned by {φA : |A| 6 s},
and the corollary follows.

Corollary 12 is a sharpened version of a similar lemma, implicit in [11], which states

that under the same conditions with probability at least 1−(5βpt/2)s we have f̃dρ(A) = 0
for all |A| > s2. Armed with the sharper Corollary 12, the proofs of Lemmas 7, 8 and 9
from [11] now directly yield

Lemma 13 For any Boolean function f, for any integer c,
∑

|A|>c

f̃(A)2
6 2 Pr

ρp,D

[f̃dρ(A) 6= 0 for some |A| > cp/2].

Boolean duality implies that the conclusion of Corollary 12 also holds if f is a DNF
with each term of length at most t. Taking p = 1/8βt and s = log 4

ε
in this DNF version

of Corollary 12 and c = 16βt log 4
ε

in Lemma 13, we obtain the following analogue of
Mansour’s lemma (Lemma 3) for the φ basis:

Lemma 14 Let f be a DNF with terms of size at most t. Then for all ε > 0
∑

|A|>16βt log(4/ε)

f̃(A)2
6 ε/2.

We will also need an analogue of the Linial et al. lemma (Lemma 6) for the φ basis.
As in Lemma 2 of [21], by successively applying Lemma 11 and the DNF version of the
lemma to the lowest levels of a circuit and then applying Corollary 12 we obtain the
following:

Lemma 15 Let D be a product distribution with parameters µi and β, let f be a Boolean
function computed by a circuit of size M and depth d, and let ρp,D be a random restriction.
If

p =
1

22β(8βs)d−1

then we have that
Pr[f̃dρ = 0 for some |A| > s] 6 M2−s.
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Proof sketch: Our proof closely follows the proof of Lemma 2 in [21]. We view the
restriction ρ as being obtained by first performing a random restriction in which Pr[∗] =
1/22β, and then d − 1 consecutive restrictions each with Pr[∗] = 1/(8βs).

After the first restriction, each original bottom-level gate has fanin greater than s
with probability at most 2−s. To see this, observe that under the first restriction each
literal is set to ∗ with probability p′ = 1/22β and is set to 0 (1) with probability at
least (1− p′)/β. Now set r = sβ/(1− p′) and consider separately each bottom-level gate
depending on how its fanin compares to r:

1. For any gate with fanin at least r, the probability that the gate is not eliminated
(that no literal is set to 0 for an AND, set to 1 for an OR) is at most (1− 1−p′

β
)r 6

e−s < 2−s.

2. For any gate with fanin at most r, the probability that at least s input literals are
assigned a ∗ is at most

(
r
s

)
p′s < 2rp′s = 2βs/(1−p′)p′s. This is at most 2−s provided

that 2β/(1−p′)p′ 6 1/2 which is easily verified from the definition of p′.

Now we apply d − 2 more restrictions, each with Pr[∗] = 1/(8βs). As in [21] we use
Lemma 11 after each restriction to convert the lower two levels of the circuit from CNF
to DNF (or vice versa), preserving by our choice of p the property that each clause (term)
has size at most s, and incurring a failure probability of at most 2−s for each gate.

After these d − 2 stages, what remains is a CNF (or DNF) with clauses (terms) of
size at most s. We apply the last restriction with p = 1/(8βs), and Corollary 12 implies
that the failure probability at this stage is also at most 2−s. Thus, as in [21], with overall

probability at least 1−M2−s we have that f̃dρ(A) = 0 for all |A| > s, and the lemma is
proved.

With Lemma 15 in hand we can prove the following sharper version of the main
lemma from [11]:

Lemma 16 Let f be a Boolean function computed by a circuit of depth d and size M
and let c be any integer. Then

∑

|A|>c

f̃(A)2
6 2M2−(c/22β+1(8β)d−1)

1/d

< 2M2−c1/d/2(2β+1)/d(8β).

Proof: The proof closely follows the proof of Lemma 9 in [11]. From Lemma 13 we have
that ∑

|A|>c

f̃(A)2
6 2 Pr

ρp,D

[f̃dρ(A) 6= 0 for some |A| > cp/2]. (11)

Let p and s satisfy p = 1/22β(8βs)d−1 and s = cp/2. Lemma 15 now implies that
Equation (11) is at most 2M2−s. Straightforward algebraic manipulations show that

s =
(
c/22β+1(8β)d−1

)1/d
and the lemma is proved.

The version of Lemma 16 given in [11] has 1/(d+2) instead of 1/d in the exponent of c.
This new tighter bound enables us to give stronger guarantees on our learning algorithm’s
performance under product distributions than we could have obtained by simply using
the lemma from [11].
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5 Learning under Product Distributions

5.1 Identifying Relevant Variables

We have the following analogue to Lemma 2 for product distributions:

Lemma 17 Let f : {0, 1}n → {−1, 1} be a monotone Boolean function. There is an
algorithm which has access to EX(f,D), runs in poly(n, β, 1/ε, log 1/δ) time steps for all
ε, δ > 0, and with probability at least 1 − δ outputs a set Sf ⊆ [n] such that

i ∈ Sf implies
∑

A:i∈A

f̃(A)2
> ε/2 and i /∈ Sf implies

∑

A:i∈A

f̃(A)2
6 ε.

Proof: We show that for each i, with probability 1− δ/n the value
∑

A:i∈A f̃(A)2 can be
estimated to within an additive ε/4 in poly(n, β, 1/ε, log 1/δ) time steps. By Lemma 4.1 of
[10] we have that

∑
A:i∈A f̃(A)2 = 4σ2

i ID,i(f) for any Boolean function f and any product
distribution D. Now observe that if a = bc and 0 6 b, c 6 1 and −τ 6 τ1, τ2 6 τ 6 1,
then we have

|(b + τ1)(c + τ2) − a| = |bc + bτ2 + cτ1 + τ1τ2 − a| 6 (b + c)τ + τ 2
6 3τ.

Consequently, since 0 6 ID,i(f) 6 1 and 0 6 4σ2
i 6 1, in order to estimate

∑
A:i∈A f̃(A)2 =

4σ2
i ID,i(f) to within an additive ε/4 it is sufficient to estimate each of ID,i(f) and 4σ2

i to
within an additive ε/12.

First we consider ID,i(f). Recalling that ID,i(f) = 1
2
(ED[fi,1]−ED[fi,0]), it is sufficient

to estimate each of these expectations to within an additive ε/12. A standard application
of Chernoff bounds shows that poly(1/ε, log 1

δ′
) random examples with xi = 1 are required

to estimate ED[fi,1] to within ε/12 with confidence 1 − δ′. Since a random example
drawn from EX(f,D) has xi = 1 with probability at least 1/β, another application
of Chernoff bounds shows that with probability 1 − δ′, at most poly(1/β, log 1

δ′
) draws

from EX(f,D) are required to obtain a random example with xi = 1. Combining these
bounds we can estimate ED[fi,1] to within an additive ε/12 with confidence 1− δ

4n
in time

poly(n, β, 1/ε, log 1
δ
). The same is easily seen to hold for estimating ED[fi,1]. Thus we can

estimate ID,i(f) to within an additive ε/12 in time poly(n, β, 1/ε, log 1
δ
) with confidence

1 − δ
2n

.
Now we show that σ2

i can be efficiently estimated to within an additive ε/48. Chernoff
bounds imply that by sampling we can obtain an estimate µ̃i of µi which is accurate to
within an additive error of ±τ with probability 1 − δ

2n
in poly(1/τ, log 1/δ) time. We

use each estimated value µ̃i to compute an estimate σ̃i =
√

µ̃i(1 − µ̃i) of σi. One can
straightforwardly verify that σ̃i differs from the true value σi by at most

√
τ , and thus

σ̃2
i differs from the true value σ2

i by at most τ. Thus it suffices to take τ = ε/48, and the
required estimate of σ2

i can be obtained in poly(n, 1/ε, log 1
δ
) time.

We refer to the algorithm of Lemma 17 as FindVariables2.
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5.2 The Learning Algorithm

We would like to modify LearnMonotone so that it uses the φ basis rather than the χ
basis. However, as in [11] the algorithm does not know the exact values of µi so it cannot
use exactly the φ basis; instead it approximates each µi by a sample value µ′

i and uses
the resulting basis, which we call the φ′ basis. In more detail, the algorithm is as follows:

• Use FindVariables2 to identify a set Sf of important variables.

• Draw m labeled examples 〈x1, f(x1)〉, . . . , 〈xm, f(xm)〉 from EX(f,D). Compute
µ′

i = 1
m

∑m
j=1 xj

i for 1 6 i 6 n. Define z′i = (xi−µ′
i)/

√
µ′

i(1 − µ′
i) and φ′

A =
∏

i∈A z′i.

• For every A ⊆ Sf with |A| 6 c set α′
A = 1

m

∑m
j=1 f(xj)φ′

A(xj). If |α′
A| > 1 set α′

A =
sign(α′

A). For every A such that |A| > c or A 6⊆ Sf set α′
A = 0.

• Output the hypothesis sign(g(x)), where g(x) =
∑

A α′
AχA(x).

We call this algorithm LearnMonotone2. As in [11] we note that setting α′
A to ±1 if

|α′
A| > 1 can only bring the estimated value closer to the true value of f̃(A).

5.3 Learning Monotone 2O(
√

log n)-term DNF under Product Dis-

tributions

For the most part only minor changes to the analysis of Section 3.3 are required. Since
a term of size greater than d is satisfied by a random example from D with probability
less than (β−1

β
)d, we now take log β

β−1

32tn
ε

= Θ(β log tn
ε
) as the term size bound for f1.

Proceeding as in Section 3.3 we obtain |Sf | = O(βt log tn
ε
). We similarly set a term size

bound of Θ(β log t
ε
) for f2. We use the φ basis Parseval identity and inequality (10) in

place of the χ basis identity and inequality (2) respectively. Lemma 14 provides the
required analogue of Mansour’s lemma for product distributions; using the new term size
bound on f2 we obtain c = Θ(β2 log t

ε
log 1

ε
).

The one new ingredient in the analysis of LearnMonotone2 comes in bounding the
quantity Z =

∑
|A|6c,A⊆Sf

(α′
A − f̃(A))2. In addition to the sampling error which would

be present even if µ′
i were exactly µi, we must also deal with error due to the fact

that α′
A is an estimate of the φ′ basis coefficient rather than the φ basis coefficient

f̃(A). An analysis entirely similar to that of Section 5.2 of [11] shows that taking m =
poly(c, |Sf |c, βc, 1/ε, log(1/δ)) suffices. We thus have

Theorem 18 Under any product distribution D, for any ε, δ > 0, algorithm LearnMonotone2

can be used to learn t-term monotone DNF in time polynomial in n, (βt log tn
ε
)β2 log t

ε
log 1

ε ,
and log(1/δ).

Since a constant-bounded product distribution D has β = Θ(1), we obtain

Corollary 19 For any constant ε and any constant-bounded product distribution D, al-
gorithm LearnMonotone2 learns 2O(

√
log n)-term monotone DNF in poly(n, log(1/δ)) time.
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5.4 Learning Small Constant-Depth Monotone Circuits under
Product Distributions

Let f be a monotone function computed by a size M , depth d Boolean circuit with r
relevant variables An analysis similar to that of Section 3.4.1 but using Lemma 16 in
place of Lemma 6 shows that it is sufficient for us to take c > 22β+1(8β log(4M/ε))d. We
obtain

Theorem 20 Fix d > 1 and let Cd,M,r be the class of depth d, size M circuits which
compute monotone functions on r out of n variables. Under any constant-bounded product
distribution D, for any ε, δ > 0, algorithm LearnMonotone2 learns class Cd,M,r in time

polynomial in n, (M(log(Mn/δε))d+1)(log(M/ε))d
and log 1/δ.

The argument from Section 3.4.2 can be used here as well to show that we do not
need to put an a priori upper bound on the number of relevant variables. We obtain:

Theorem 21 Fix d > 1 and let Cd,M be the class of depth d, size M circuits which com-
pute monotone functions on n variables. Under any constant-bounded product distribution
D, for any ε, δ > 0, algorithm LearnMonotone2 learns class Cd,M in time polynomial in

n and (M(log(Mn/δε))d+1)(log(M/ε))d
.

Corollary 22 Fix d > 1 and let Cd be the class of depth d, size 2O((log n)1/(d+1)) circuits
which compute monotone functions. Then for any constant ε, δ and any constant-bounded
product distribution D, algorithm LearnMonotone2 learns class Cd in poly(n) time.

Thus all of our uniform distribution learning results generalize to learning under any
constant-bounded product distribution.

6 Open Questions

There are several natural questions for further work. Can the 2
√

log n term bound of
our algorithm be improved to 2(log n)1−α

for any α > 0? Can an algorithm be obtained
which runs in polynomial time for ε = o(1) or even for ε = 1/poly(n)? These would
be interesting steps toward the more ambitious goal of developing a polynomial time
algorithm for learning poly(n)-term monotone DNF under the uniform distribution.

We close by noting that in the non-monotone case much less is known; in particular, it
would be a breakthrough result to give a polynomial time algorithm for learning arbitrary
t(n)-term DNF under the uniform distribution, from random examples only, for any
t(n) = ω(1).
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