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Abstrat

We onsider a model of learning Boolean funtions from examples generated

by a uniform random walk on f0; 1g

n

. We give a polynomial time algorithm for

learning deision trees and DNF formulas in this model. This is the �rst eÆient

algorithm for learning these lasses in a natural passive learning model where the

learner has no inuene over the hoie of examples used for learning.

1 Introdution

1.1 Motivation

One of the most notorious open questions in omputational learning theory is whether

it is possible to eÆiently learn Boolean formulas in disjuntive normal form, or DNF,

from random examples. This question was �rst posed by Valiant [36℄ in his seminal

paper whih formalized the Probably Approximately Corret (PAC) model of learning

from independent random examples, and has remained stubbornly open ever sine. DNF

formulas ahieve an attrative balane between expressiveness and larity: any Boolean

�
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funtion an be represented by a suÆiently large DNF, yet DNF formulas are easily

understood by humans and seem to be a natural form of knowledge representation.

Provably orret and eÆient algorithms for learning DNF from random examples

would be a powerful tool for the design of learning systems, and over the past two

deades many researhers have sought suh algorithms. Despite this intensive e�ort, the

fastest algorithms to date for learning polynomial size DNF formulas in Valiant's original

PAC model of learning (where the learner reeives independent examples drawn from an

arbitrary probability distribution over f0; 1g

n

) run in time 2

~

O(n

1=3

)

[26℄. Even if we only

onsider learning under the uniform distribution, the fastest known algorithms for learn-

ing polynomial size DNF from independent uniform examples run in time n

O(log n)

[37℄.

Sine learning DNF formulas from random examples seems to be hard, researhers

have onsidered alternate models whih give more power to the learning algorithm. The

most popular of these is the model of learning from membership queries; in this model

the learner has aess to a blak-box orale for the funtion to be learned and thus

an determine the value of the funtion on any inputs of its hoie. Several polynomial

time algorithms have been given for learning in this enhaned model. Kushilevitz and

Mansour [28℄ gave a polynomial time membership query algorithm whih an learn any

polynomial size deision tree under the uniform distribution (i.e., the error of the �nal

hypothesis is measured with respet to the uniform distribution on f0; 1g

n

). Building on

the work of [28℄, Jakson [20℄ gave a polynomial time algorithm for learning polynomial

size DNF formulas under the uniform distribution using membership queries.

While learning from membership queries is interesting in its own right, it represents

a signi�ant departure from traditional \passive" models of learning (suh as the PAC

model) in whih the learning algorithm has no ontrol over the data whih it reeives; the

assumption that a learning algorithm an atively make queries is a strong one whih may

limit the usefulness of membership query learning algorithms. Thus an important goal

is to design eÆient algorithms for learning DNF formulas in natural \passive" learn-

ing models. Towards this end, researhers have onsidered several alternatives to the

standard uniform distribution PAC model of learning from independent uniform random

examples. Bshouty and Jakson [9℄ de�ned a model where the learner an aess a uni-

form quantum superposition of all labelled examples, and showed that DNF formulas an

be eÆiently learned in this framework. More reently Bshouty and Feldman [2℄ showed

that DNF an be eÆiently learned in a model alled SQ-D

�

, whih is intermediate in

power between standard uniform distribution learning and uniform distribution learning

with membership queries; in this model the learner is allowed to make statistial queries

about the target funtion under produt distributions of the learner's hoosing. While

Bshouty and Feldman showed that this model is stritly weaker than the membership

query model, it is still an \ative" learning model sine the learner selets the various

distributions whih will be used.

1.2 Our results: learning from random walks

We onsider a natural variant of the standard uniform distribution PAC learning model,

alled the (Uniform) Random Walk model. In this model the learner's examples are not

generated independently, but are produed sequentially aording to a random walk on
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the Boolean hyperube (we give a preise de�nition of the model in Setion 2.1). Suh

learning models have been previously studied [1, 15, 3℄ but no strong learning results

were known. In ontrast, we prove that DNF formulas are eÆiently learnable in this

model. Our main theorem is the following:

Theorem 1 The lass of s-term DNF formulas on n variables an be learned in the

Random Walk model to auray � and on�dene 1� Æ in time poly(n; s; 1=�; log(1=Æ)).

(We note that another lass of funtions whih has been widely studied in learning theory

is the lass of Boolean deision trees [8, 13, 28℄. Sine any deision tree of size s an be

expressed as an s-term DNF, all of our results for learning DNF formulas immediately

imply orresponding results for learning deision trees.) Our results give the �rst eÆient

algorithm for learning expressive lasses of Boolean funtions in a natural passive model

of learning from random examples only.

We also introdue another learning model whih we all the Noise Sensitivity model.

We prove that DNF formulas an be eÆiently learned in the Noise Sensitivity model as

well. Sine the Random Walk model an simulate the Noise Sensitivity model but the

onverse does not seem to be true, the Noise Sensitivity model is the weakest model in

whih we an learn DNF eÆiently.

1.3 Previous Work

Variants of PAC learning in whih the examples are not i.i.d., but rather are generated

aording to a stohasti proess, were �rst studied by Aldous and Vazirani [1℄. Despite

being quite natural, these models have not been studied as intensively as other variants

of PAC learning. Gamarnik [15℄ studied learning under stohasti proesses but foused

mainly on sample omplexity and generalization error and did not give algorithms for

learning spei� onept lasses. Bartlett, Fisher, and H�o�gen [3℄ introdued the Ran-

dom Walk model whih we onsider, whih is arguably the simplest and most natural

model of learning under a stohasti proess. Bartlett et al. gave learning algorithms

in the Random Walk model for some simple onept lasses, namely Boolean threshold

funtions in whih eah weight is 0 or 1, parities of two monotone onjuntions, and DNF

formulas with two terms.

2 Preliminaries

Throughout this paper TRUE and FALSE will be denoted by �1 and +1 respetively, so

the n-dimensional Boolean hyperube is f+1;�1g

n

. Sine we will be dealing with random

walks, we will refer to two di�erent ways of altering a bit in a bit string. Flipping a bit

x

i

2 f+1;�1g shall mean replaing x

i

with �x

i

; updating the bit x

i

shall mean replaing

x

i

with a uniformly random bit (equivalently, ipping it with probability

1

2

).
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2.1 Learning models

Our learning models are based on the widely-studied uniform-distribution version of

Valiant's \Probably Approximately Corret" (PAC) model [36℄ (see e.g. [4, 6, 7, 12, 10,

18, 17, 20, 21, 23, 24, 25, 29, 30, 33, 34, 35, 37, 38℄ and the referenes therein).

In uniform-distribution PAC learning, a learning problem is identi�ed with a onept

lass C = [

n�1

C

n

, whih is simply a olletion of Boolean funtions, eah f 2 C

n

being a

funtion f+1;�1g

n

! f+1;�1g. The goal of a learning algorithm A for C is to identify

an unknown target funtion f 2 C by using random examples from this funtion only.

Algorithm A takes as input an auray parameter � and a on�dene parameter Æ; it

also has aess to an example orale EX(f) for the target funtion. Eah time it is

queried, EX(f) generates a point x 2 f+1;�1g

n

and provides the learning algorithm

with a labelled example hx; f(x)i. The output of A is a hypothesis h, whih is a Boolean

funtion h : f+1;�1g

n

! f+1;�1g (in the form of, say, a iruit). The hypothesis h

is said to be �-lose to f if Pr[h(x) = f(x)℄ � 1 � � for x drawn from the uniform

distribution. We say that A is a learning algorithm for C if for all f 2 C, when A is run

with example orale EX(f), with probability at least 1� Æ it outputs a hypothesis whih

is �-lose to f . Here the probability is over the random examples A reeives from the

orale, and also over any internal randomness of A:

The measure of A's eÆieny is its running time; this inludes both the time whih

A takes to onstrut its hypothesis h and the time required to evaluate h on an input

x 2 f+1;�1g

n

: In general we onsider A's running time as a funtion of n, �

�1

, log(1=Æ),

and a size parameter s for the onept lass. For the lass of DNF formulas, s is the

number of terms in the DNF; for the lass of deision trees, s is the number of nodes in

the tree.

Sine uniform-distribution PAC learning seems to be diÆult, relaxed models have

also been onsidered. One ommon relaxation is to allow the learner to make membership

queries. In the membership query model the learner has aess to a membership orale

MEM(f) whih, on input x 2 f+1;�1g

n

; returns the value f(x): This learly gives the

learner quite a bit of power, and departs from the traditional passive nature of learning

from random examples.

We onsider a di�erent natural relaxation of the uniform-distribution PAC learning

model, whih we all the (Uniform) Random Walk model. The RandomWalk model uses

an orale RW(f) whih does not produe i.i.d. examples. Instead, the �rst point whih

RW(f) provides to the learning algorithm is uniformly random; sueeding points are

given by a uniform random walk on the hyperube f+1;�1g

n

. That is, if the tth example

given to the learner is hx; f(x)i, then the (t + 1)st example will be hx

0

; f(x

0

)i, where x

0

is hosen by ipping a uniformly hosen random bit of x. Note that the Random Walk

model is a passive model of learning; the learner sees only randomly generated examples

and has no ontrol over the data used for learning.

For ompleteness we remind the reader that an s-term DNF formula is an s-way

OR of ANDs of Boolean literals. A deision tree is a rooted binary tree whih is full

(eah internal node has 0 or 2 hildren) and whih has eah internal node labelled with

a variable from x

1

; : : : ; x

n

and eah leaf labelled with a bit from f+1;�1g: Suh a tree

represents a Boolean funtion in the obvious way.
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2.2 Fourier analysis

Fourier analysis of Boolean funtions is a useful tool in uniform distribution learning.

From this perspetive Boolean funtions are viewed as real-valued funtions f : f+1;�1g

n

!

R whih happen to have range f+1;�1g: (For our analysis we will also onsider non-

Boolean funtions on f+1;�1g

n

whih do not map to f+1;�1g:)

For a set S � [n℄, let �

S

: f+1;�1g

n

! f+1;�1g be the parity funtion �

S

(x) =

Q

i2S

x

i

. We sometimes write x

S

for �

S

(x). Sine E[�

;

℄ = 1, E[�

S

℄ = 0 for S 6= ;, and

�

S

�

T

= �

S�T

(where � denotes symmetri di�erene), the set of funtions f�

S

g

S�[n℄

is an orthonormal basis for the vetor spae of funtions f+1;�1g

n

! R. We all

^

f(S) = E[f(x)�

S

(x)℄ the S Fourier oeÆient of f and f =

P

S�[n℄

^

f(S)�

S

the Fourier

expansion of f . By a small abuse of language, we all

^

f(S) a Fourier oeÆient of degree

jSj.

We will onsider various norms of f . We write jjf jj

p

to denote E[jf(x)j

p

℄

1=p

for p � 1,

and we write jjf jj

1

to denote max

x2f+1;�1g

n

jf(x)j. Parseval's well known identity says

that jjf jj

2

=

P

S�[n℄

^

f(S)

2

. Note that Boolean funtions f : f+1;�1g

n

! f+1;�1g have

jjf jj

p

= 1 for all p.

Finally, we will often need to estimate the value of a bounded random variable to

within some additive auray. Standard tail bounds (see e.g. Chapter 4 of [31℄) imply

that if X is a random variable suh that jXj <  and � > 0, then with O(

2

log(1=Æ)=�

2

)

independent draws from X we an estimate E[X℄ to within �� with probability at least

1� Æ:

3 The Random Walk model

In this setion we make some straightforward but useful observations about how the

Random Walk model ompares with other learning models.

We �rst observe that having aess to membership queries is at least as powerful as

having examples generated from a random walk. In fat, one an show that uniform-

distribution learning with membership queries is stritly easier than learning in the Ran-

dom Walk model, under a standard ryptographi assumption (see Appendix A for the

proof):

Proposition 2 If one-way funtions exist then there is a onept lass C whih is learn-

able in polynomial time under the uniform distribution with membership queries, but is

not learnable in polynomial time in the Random Walk model.

We next desribe a slight variation on the Random Walk orale RW(f) whih is of

equivalent power. We all this variant the updating Random Walk orale. In the updating

Random Walk orale, the �rst example given to the learner is again uniformly random,

but eah sueeding example is given by updating the previous one, and announing the

bit updated. That is, if the tth example given to the learner is hx; f(x)i, then for the

(t + 1)'st example, the updating orale piks i 2 [n℄ uniformly at random, forms x

0

by

updating the ith bit of x, and tells the learner hi; x

0

; f(x

0

)i. Note that with probability

1

2

we have x = x

0

and the learner gains no new information.
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It is easy to see that the usual Random Walk orale and the updating orale are of

equivalent power. The updating orale an trivially simulate the usual orale with only

onstant fator slowdown (more preisely, simulating a single step of the usual orale takes

at most t steps of the updating orale with probability 1� 2

�t

). The reverse simulation

is also easy. Given aess to the original Random Walk orale, to simulate the updating

orale the learner �rst tosses a fair oin. On heads, it draws a new example from the

standard Random Walk orale, noting whih input bit was ipped. On tails, it hooses

a random bit position i and pretends that the updating orale announed that the ith

bit was updated but did not hange. We will pass freely between these two versions of

the Random Walk orale; RW(f) will denote the original Random Walk orale unless

otherwise spei�ed.

Finally, we note that learning under RandomWalks is at least as easy as PAC learning

under the uniform distribution. To see this we need only note that a learner with aess

to the RandomWalk orale RW(f) an simulate aess to i.i.d. uniform examples. This is

beause the updating random walk on the hyperube mixes rapidly; if a learner disards

O(n logn) suessive examples from the updating orale, then the next example will be

uniformly random and independent of all previous examples.

1

4 The Bounded Sieve

In this setion we desribe tools previously used to learn deision trees and DNF, and

identify those whih we will use for learning under Random Walks.

Kushilevitz and Mansour [28℄ �rst gave a polynomial time membership query algo-

rithm for learning deision trees under the uniform distribution. Their algorithm uses

a subroutine (often alled KM), based on the list-deoding algorithm of Goldreih and

Levin [16℄, whih �nds and estimates all \large" Fourier oeÆients of the target funtion

using membership queries. Subsequently Jakson [20℄ extended the KM algorithm and

ombined it with the hypothesis boosting algorithm of Freund [14℄ to give the Harmoni

Sieve algorithm, whih uses membership queries to learn DNF under the uniform dis-

tribution in polynomial time. Bshouty and Feldman [2℄ later observed that a ertain

algorithmi variant of KM, whih they alled the Bounded Sieve, is all that is neessary

for Jakson's algorithm to work.

We now de�ne the Bounded Sieve. Performing the Bounded Sieve essentially entails

�nding all large, low-degree Fourier oeÆients:

De�nition 3 Let f : f+1;�1g

n

! R be a real-valued Boolean funtion. An algorithm A

with some form of orale aess to f is said to perform the Bounded Sieve if, given input

parameters � > 0, F > kfk

1

; ` 2 [n℄, and Æ > 0, algorithm A runs in time t(n; F; �; `; Æ)

and with probability at least 1 � Æ it outputs a list of subsets of [n℄ suh that every set

S � [n℄ satisfying jSj � ` and

^

f(S)

2

� � appears in the list.

1

Stritly speaking, the example will only be very nearly independent and uniformly random; more

preisely we have that with probability 1�Æ the example is independently and uniformly random, where

Æ goes to 0 exponentially fast (i.e. we alloate some portion of the on�dene parameter Æ for this).

Throughout this paper all onsiderations involving Æ are standard and we will frequently omit tedious

details involving them for larity.

6



Bshouty and Feldman impliitly observe that the following results follow from Kushilevitz-

Mansour [28℄ and Jakson [20℄:

Theorem 4 Let A be an algorithm performing the Bounded Sieve whih runs in time

t(n; jjf jj

1

; �; `; Æ). Then:

� [28℄ there is a poly(n; 1=�; log(1=Æ)) � t(n; 1; �=8s; log(8s=�); Æ) time algorithm whih

(�; Æ)-learns n-variable, size-s deision trees using A as a blak box and aess to

independent uniform random examples for f ; and

� [20℄ for T = poly(n; s; 1=�; log(1=Æ)), there is a T �t(n; poly(1=�); 1=(2s+1); log(s=poly(�)); Æ=T )

time algorithm whih (�; Æ)-learns n-variable, s-term DNF formulas using A as a

blak box and independent uniform random examples.

We will show that the Bounded Sieve an be performed under the Random Walk

model in time poly(n; jjf jj

1

; 1=�; 2

`

; log(1=Æ)). From this we get Theorem 1: s-term

DNF an be learned in the Random Walk model in time poly(n; s; 1=�; log(1=Æ)).

5 The Bounded Sieve via Noise Sensitivity estimates

The KM algorithm works by estimating ertain sums of squares of the Fourier oeÆients

of the target funtion. We show that the Bounded Sieve an be performed in the required

time bound given aess to ertain weighted sums of squares of Fourier oeÆients.

De�nition 5 Given f : f+1;�1g

n

! R, I � [n℄, and � 2 (0; 1) a onstant, de�ne:

T

(I)

�

(f) =

X

S�I

�

jSj

^

f(S)

2

: (1)

When f and � are lear from ontext, we write simply T (I).

Note that T (I) is monotone dereasing in I in the sense that I � J implies T (I) � T (J).

Weighted sums of squares as in (1) frequently arise in the study of the noise sensitivity

of Boolean funtions, see e.g. [5, 32℄. In partiular, the noise sensitivity of f at

1

2

�

1

2

�,

denoted NS

1

2

�

1

2

�

(f); equals 1� 2T

(;)

�

(f) [11, 5, 32℄.

We show that if T

(I)

�

(f) an be estimated eÆiently then the Bounded Sieve an be

performed eÆiently. To prove this we �rst need a lemma whih bounds the sum of

T

(I)

�

(f) over all sets I of some �xed size:

Lemma 6 For any f : f+1;�1g

n

! R, 0 � j � n, and � 2 (0; 1), we have

P

jIj=j

T

(I)

�

(f) �

jjf jj

2

1

�

j

(1� �)

�j�1

.
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Proof: We have:

X

jIj=j

T

(I)

�

(f) =

X

jIj=j

X

S�I

�

jSj

^

f(S)

2

=

X

jSj�j

�

jSj

j

�

�

jSj

^

f(S)

2

�

X

jSj�j

^

f(S)

2

1

X

t=j

�

t

j

�

�

t

� jjf jj

2

2

�

�1

�

�

1� �

�

j+1

� jjf jj

2

1

�

j

(1� �)

�j�1

;

where the seond inequality follows from Parseval's identity and standard generating

funtion identities and the fat that � 2 (0; 1): 2

We now show how to perform the Bounded Sieve given the ability to estimate T

(I)

�

(f)

for any �xed � 2 (0; 1):

Theorem 7 Fix � 2 (0; 1): Let B be an algorithm with some form of orale aess to f

whih runs in time u(n; �; jIj; kfk

1

; ; Æ) and, with probability 1� Æ, outputs an estimate

of T

(I)

�

(f) aurate to within �. Then there is an algorithm using blak-box aess to B

and independent uniform random examples from f whih performs the Bounded Sieve in

time U � log(1=Æ)u(n; �; `; kfk

1

; �

`

�=3; Æ=U), where U = poly(n; jjf jj

1

; 1=�; (1� �)

�`

).

Proof: Consider the direted graph on all subsets of [n℄ in whih there is an edge from

I to J if I � J and jJ n Ij = 1. The nodes I are divided into n + 1 layers aording

to the value of jIj. Our Bounded Sieve algorithm for f performs a breadth-�rst searh

on this graph, starting at the node I = ;. For eah ative node in the searh, the

algorithm estimates T (I) to within ��

`

�=3 and estimates

^

f(I)

2

to within ��=2. The

�rst estimate uses algorithm B, takes time u(n; �; jIj; kfk

1

; �

`

�=3; Æ=M); and yields an

estimate with the desired additive auray with probability at least 1�Æ=M (we speify

M later). The seond estimate is performed via empirial sampling using independent

uniform random examples from f , takes time log(Æ=M) � poly(n; jjf jj

1

; 1=�); and yields

an aurate estimate with probability 1� Æ=M as well. (For the rest of the analysis, we

assume that all estimates are in fat obtained to within the desired auray; we disuss

the probability of failure at the end of the proof.) If the estimate of

^

f(I)

2

has magnitude

at least �=2 then the algorithm adds I to the list of f 's large Fourier oeÆients. Thus

if

^

f(I)

2

� � then I will ertainly be added to the list.

The breadth-�rst searh proeeds to the neighbors of I only if jIj < ` and the estimate

of T (I) is at least 2�

`

�=3. The proof is omplete given two laims: �rst, we laim the

algorithm �nds all Fourier oeÆients

^

f(S) with

^

f(S)

2

� � and jSj � `; and seond, we

laim the algorithm ends its searh after visiting at most n � poly(jjf jj

1

; 1=�; (1� �)

�`

)

sets I.
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For the �rst laim, note that if jSj � ` and

^

f(S)

2

� �, then this Fourier oeÆient

ontributes at least �

`

� to the value of T (I) for all I � S. Thus by the monotoniity of

T , the searh will proeed all the way to S.

For the seond laim, note that by Lemma 6, the number of \ative nodes" at layer

j in the breadth-�rst searh an be at most:

jjf jj

2

1

�

j

(1� �)

�j�1

�

j

�=3

= 3jjf jj

2

1

�

�1

(1� �)

�j�1

:

Sine j is never more than `, the total number of ative nodes that the breadth-�rst searh

an ever enounter in any single layer is at most 3jjf jj

2

1

�

�1

(1��)

�(`+1)

= poly(jjf jj

1

; 1=�; (1�

�)

�`

). Sine the total number of nodes whih are enountered at layer (j + 1) is at most

n times the total number of ative nodes enountered at layer j, the seond laim is

established.

Finally, we note that at mostM = U estimates are required in total by the algorithm,

and thus the overall failure probability is at most 1�M � (Æ=M) = 1� Æ: 2

By ombining Theorems 4 and 7, we get:

Corollary 8 If there is an algorithm B with some form of orale aess to f : f+1;�1g

n

!

R whih, for some � 2 (0; 1), an with probability 1� Æ estimate T

(I)

�

(f) to within � in

time poly(n; jjf jj

1

; 1=; [�(1 � �)℄

�jIj

; Æ), then s-term DNF on n-variables an be (�; Æ)-

learned using blak-box aess to B and independent uniform random examples from the

DNF in time poly(n; s



0

; �

�

0

; log(1=Æ)), where 

0

= � log(�(1� �)).

6 Estimating T

(I)

�

(f) via Random Walks

To omplete the proof of Theorem 1, we need to show how to estimate T

(I)

�

(f) as in

Corollary 8 for some onstant � 2 (0; 1) under the Random Walk model. This is done

in the following theorem:

Theorem 9 Let f : f+1;�1g

n

! R, let I � [n℄, and let � 2 (0; 1). Then there is an

algorithm using aess to the Random Walk orale RW(f) whih with probability 1�Æ es-

timates T

(I)

�

(f) to within � in time poly(n; jjf jj

1

; 1=; log(1=Æ); log(1=�);maxf1; (1=��

1)

�jIj

g).

Proof: Let � = ln(1=�), let � = �n=2, and let M be a Poisson distributed random

value with mean �; i.e., M is hosen to be m 2 Z

�0

with probability p

m

=

e

��

�

m

m!

. Note

that M = O(�) = O(log(1=�)n) with very high probability. Let x be a uniform random

string in f+1;�1g

n

, and let y be obtained by taking a random walk from x of length

exatly M . Let T be a random subset of I hosen by seleting eah index in I to be in

T independently with probability

1

1+�

. We laim that:

E

T

E

M;x;y

[(�1)

jInT j

x

T

y

T

f(x)f(y)℄ = (1=�� 1)

jIj

X

S�I

�

jSj

^

f(S)

2

= (1=�� 1)

jIj

T

(I)

�

(f): (2)

9



Note that we an generate the pairs (x; y) and their labels f(x); f(y) using the Ran-

dom Walk orale for f . Sine j(�1)

jInT j

x

T

y

T

f(x)f(y)j � jjf jj

2

1

, by standard empirial

averaging we an estimate T

(I)

�

to within �(1=�� 1)

�jIj

in the laimed time bound.

We now prove Equation (2). We begin by analyzing the quantity E

M;x;y

[x

U

y

V

℄ where

U; V � [n℄:

Suppose �rst that U 6= V ; in partiular, suppose that i 2 V nU . Then for eah way of

hoosingM;x; y, there is a orresponding way to hoose M;x; y whih di�ers only in that

x and y eah have the ith bit ipped. Sine x is hosen uniformly, these two outomes

learly have the same probability. But sine i 2 V nU , the values of x

U

y

V

are opposite in

these two outomes. Pairing up all outomes in this way, we have that E

M;x;y

[x

U

y

V

℄ = 0.

A similar argument holds when U n V 6= ;.

It remains to onsider E

M;x;y

[x

U

y

U

℄ =

P

m�0

p

m

E

x;y

[(xy)

U

j M = m℄, where xy

denotes the bitwise produt of x and y: If we let 1

i

denote the random variable whih is 1

if the ith step of the random walk is in U , and 0 otherwise, we have E

x;y

[(xy)

U

jM = m℄ =

E[

Q

m

i=1

(�1)

1

i

℄ =

Q

m

i=1

E[(�1)

1

i

℄ = (1 � 2jU j=n)

m

. Thus E

M;x;y

[x

U

y

U

℄ =

P

m�0

p

m

(1 �

2jU j=n)

m

= exp(��) � exp(�(1� 2jU j=n)) = exp(�(�2jU j=n)) = �

jU j

.

Now we an analyze Equation (2):

E

T

E

M;x;y

[(�1)

jInT j

x

T

y

T

f(x)f(y)℄

=E

T

2

4

(�1)

jInT j

X

U;V�[n℄

^

f(U)

^

f(V )E

M;x;y

[x

T�U

y

T�V

℄

3

5

=

X

U�[n℄

^

f(U)

2

E

T

[(�1)

jInT j

E

M;x;y

[x

T�U

y

T�U

℄℄

=

X

U�[n℄

^

f(U)

2

E

T

[(�1)

jInT j

�

jT�U j

℄

=

X

U�[n℄

^

f(U)

2

�

jU j

E

T

2

4

 

Y

j2I\U

�(��)

�1

j

!

�

0

�

Y

j2InU

�(��)

1

j

1

A

3

5

;

where for j 2 I, 1

j

is the indiator variable for j 2 T . Note that E[�(��)

�1

j

℄ =

�

�1

1+�

+

��

1+�

= (1=�� 1) whereas E[�(��)

1

j

℄ =

�

1+�

+

��

1+�

= 0. Thus

E

T

E

M;x;y

[(�1)

jInT j

x

T

y

T

f(x)f(y)℄ = (1=�� 1)

jIj

X

U�I

�

jU j

^

f(U)

2

as laimed. 2

7 Learning DNF in the Noise Sensitivity model

Sine we an learn DNF in polynomial time in the Random Walk model, it is natural to

ask: What is the weakest model in whih we an learn DNF eÆiently (with respet to

the uniform distribution)? Toward this end, we now introdue a new passive model of

learning from random examples, the Noise Sensitivity model.

10



For eah value of � 2 [0; 1℄ the �-Noise Sensitivity example orale NS-EX

�

(f) is de-

�ned as follows. At eah invoation, NS-EX

�

(f) independently selets a uniform input

x 2 f+1;�1g

n

, forms y by ipping eah bit of x independently with probability

1

2

�

1

2

�,

and outputs the tuple hx; f(x); y; f(y)i. We note that this orale is equivalent to an

\updating" �-Noise Sensitivity orale whih outputs hx; f(x); y; f(y); Si where x is inde-

pendent and uniform over f+1;�1g

n

; y is formed by updating eah bit of x independently

with probability 1� �, and S � [n℄ is the set of indies of x whih were updated to yield

y: This is beause the extra information S an be simulated from aess to the usual

NS-EX

�

(f) orale: upon reeiving hx; f(x); y; f(y)i from NS-EX

�

(f), the learner on-

struts S by inluding eah bit position in whih x and y di�er with probability 1, and

inluding eah other bit position independently with probability

1��

1+�

. A straightforward

alulation shows that this gives the right distribution.

7.1 Comparison to other models

Let us onsider the di�erent learning models obtained by varying �. The ases � = 0

and � = 1 are trivially equivalent to the usual PAC model of learning under the uniform

distribution. For values � 2 (0; 1), learning with NS-EX

�

(f) is learly at least as easy

as learning under the uniform distribution. For di�erent onstants � 6= �

0

2 (0; 1) it

seems that the �- and �

0

-Noise Sensitivity models may be of inomparable strength. We

will show that DNF an be eÆiently learned in the �-Noise Sensitivity model for any

onstant � 2 (0; 1); and thus learning in eah of these models seems to be stritly easier

than learning under the usual uniform distribution PAC model.

We now show that eah �-Noise Sensitivity model is a weakening of the RandomWalk

model:

Proposition 10 For any � 2 [0; 1℄, any �-Noise Sensitivity learning algorithm an be

simulated in the Random Walk model with only a multipliative O(n logn) slowdown in

running time.

Proof: Fix � 2 [0; 1℄. We show how to simulate the orale NS-EX

�

using the Ran-

dom Walk model's updating orale. To get an example hx; f(x); y; f(y)i, we �rst draw

O(n logn) examples from the updating orale to get to a uniformly random point x; this

point and its label f(x) will be the �rst part of our NS-EX

�

example. We now need to

generate a point y whih is formed from x by updating eah bit with probability 1� �.

This is equivalent to drawing a value u � Bin(n; 1 � �) and updating a random subset

of preisely u of x's bits. Aordingly, in our simulation we randomly hoose an integer

0 � u � n aording to Bin(n; 1 � �). We then repeatedly draw examples from the

Random Walk updating orale until u distint bit positions have been updated. The

resulting point is distributed as if a random subset of u bit positions had been updated

(note that updating an input position more than one has no extra e�et). Therefore,

if we all this point y and output hx; f(x); y; f(y)i, then the simulation of NS-EX

�

is

orret. (Note that even if u is as large as n, it only takes O(n logn) samples to get a

string in whih all u = n distint bit positions of x have been updated.) 2

11



7.2 Learning DNF under NS-EX

�

Having shown that the Noise Sensitivity models are no stronger than the Random Walk

model, we now show that for any onstant � 2 (0; 1), DNF an be learned eÆiently

under NS-EX

�

.

Theorem 11 Let � 2 (0; 1), let f : f+1;�1g

n

! R, and let I � [n℄. There is an

algorithm using aess to NS-EX

�

(f) whih with probability 1 � Æ estimates T

(I)

�

(f) to

within � in time poly(n; jjf jj

1

; 1=; (1� �)

�jIj

; 2

jIj

; log(1=Æ)).

Proof: Given � and I, onsider the joint probability distribution D

(I)

�

de�ned over pairs

of strings (x; y) 2 (f+1;�1g

n

)

2

as follows: First x is piked uniformly at random; then y

is formed by updating eah bit of x in I with probability 1 and updating eah bit of x not

in I with probability 1��. We laim that aess to pairs from this distribution and their

values under f an be simulated by aess to NS-EX

�

(f), with slowdown poly((1��)

�jIj

).

This simulation is done simply by alling the updating version of the NS-EX

�

(f) orale

repeatedly until it returns a tuple hx; f(x); y; f(y); Si whih has I � S: The pair (x; y)

thus generated is indeed drawn preisely from D

(I)

�

, and the overhead of the simulation

is poly((1� �)

�jIj

) with high probability.

De�ne T

0

(I) to be E

(x;y) D

(I)

�

[f(x)f(y)℄. Sine aess to NS-EX

�

(f) lets us obtain

pairs from D

(I)

�

and their values under f , we an estimate T

0

(I) to within �� with

probability 1� Æ

0

by empirial averaging in time poly(n; jjf jj

1

; 1=�; (1��)

�jIj

; log(1=Æ

0

)).

We now observe that the quantity T

0

(I) is very losely related to T (I); in partiular,

an argument very similar to the one used in the proof of Theorem 9 gives the following

laim (the proof is in Appendix B):

Claim 12 T

0

(I) =

P

S\I=;

�

jSj

^

f(S)

2

.

Let us now de�ne T

00

(I) = T

0

(;) � T

0

(I); this is also a quantity we an esti-

mate to within �� in time poly(n; jjf jj

1

; 1=�; (1 � �)

�jIj

; log(1=Æ

0

)). We have T

00

(I) =

P

S\I 6=;

�

jSj

^

f(S)

2

. Thus if we estimate T

00

(J) for all J � I, it is straightforward to esti-

mate T (I) =

P

S�I

�

jSj

^

f(S)

2

using inlusion-exlusion. Sine there are only 2

jIj

subsets

J of I; we an take � = =2

jIj

and Æ

0

= Æ=2

jIj

and thus estimate T (I) to within � with

probability 1� Æ in time poly(n; jjf jj

1

; 1=; (1� �)

�jIj

; 2

jIj

; log(1=Æ)), as laimed. 2

Note: We lose by observing that for any onstant � 2 (0; 1) the �-Noise Sensitivity

model is similar to a \partially observable Random Walk" model in whih examples

are generated as in the usual Random Walk senario but the learner is only allowed to

observe the loation of the random walk one every C � n steps for some onstant C > 0

(depending on �). Using tehniques similar to the above, it an be shown that DNF

are eÆiently learnable in suh a partially observable Random Walk model; we omit the

details.
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8 Disussion

8.1 Noise tolerane

We observe that our algorithms an tolerate any rate � <

1

2

of random lassi�ation

noise in the labelling of examples. More preisely, suppose that in eah labelled example

reeived by the learner the orret label f(x) is orrupted (ipped) with probability �

and this possibly noisy label is instead presented to the learner. A standard analysis

(see e.g. Chapter 5 of [22℄) shows that our algorithms will still sueed, at the ost of a

poly(

1

1�2�

) fator slowdown in running time (the number of samples we must use in order

to estimate T (I) to within the desired auray will inrease by this fator).

8.2 Lower bounds on sample size

Our algorithm uses a random walk sample of size poly(n; s) to learn deision trees or

DNF of size s. We observe here that any Random Walk algorithm for these lasses must

have a polynomial sample size dependene on both n and s (the proof is in Appendix C):

Claim 13 Learning the lass of DNF expressions of size s (or deision trees of size s)

in the Random Walk model requires sample size 
(

sn

log s

):

This is in ontrast with the membership query model in whih poly(s; logn) queries are

suÆient for a polynomial time algorithm to learn s-term DNF or size-s deision trees

under the uniform distribution [10℄.

8.3 Questions for further work

An interesting question for further work is whether a broader lass of Boolean funtions

than polynomial size DNF an be shown to be eÆiently learnable in the Random Walks

model. Jakson's uniform distribution membership query algorithm for learning DNF

an in fat learn any polynomial-weight threshold-of-parity iruit (sometimes alled a

TOP) in polynomial time. Sine any s-term DNF on n variables an be expressed as a

TOP of weight O(ns

2

) [20, 27℄, this lass properly inludes the lass of polynomial size

DNF (the inlusion is proper sine DNF formulas require exponential size to ompute

the parity funtion). A diret appliation of our approah to majority of parity does not

seem to work sine the parity funtions an be as large as �(n): It would be interesting

to devise a stronger algorithm whih an eÆiently learn an arbitrary polynomial weight

majority of parities using random walks.
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A Proof of Proposition 2

Proof: It is well known that the existene of one-way funtions implies the existene

of pseudorandom funtion families [19℄. Let ff

s

: f+1;�1g

n

! f+1;�1gg

s2f+1;�1g

n

be

any pseudorandom funtion family. For s 2 f+1;�1g

n

let g

s

: f+1;�1g

n

! f+1;�1g be

de�ned by:

g

s

(x) =

(

s

i

if x = e

i

for some i 2 [n℄,

f

s

(x) otherwise.

(Here e

i

denotes the string (�1; : : : ;�1;+1;�1; : : : ;�1), with the +1 in the ith position.)

We will show that the onept lass C = fg

s

g

s2f+1;�1g

n

has the desired properties.

It is easy to see that any g

s

2 C an be learned exatly in polynomial time if mem-

bership queries are allowed. The algorithm simply queries e

1

; : : : ; e

n

to learn all bits

s

1

; : : : ; s

n

of s and outputs a representation of g

s

: On the other hand, a random walk

whih proeeds for only poly(n) steps will with probability 1� 2

�
(n)

miss all the points

e

i

. A straightforward argument shows that onditioned on missing all these points, it is

impossible to learn g

s

in polynomial time. (To see this, note that an algorithm whih has

orale aess to a pseudorandom funtion f

s

an easily simulate a random walk whih

misses all e

i

: Thus if it were possible to learn g

s

in polynomial time from a random walk
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onditioned on missing all e

i

; it would be possible to learn the lass ff

s

g given orale a-

ess to f

s

. But this is easily seen to ontradit the de�nition of a pseudorandom funtion

family.) 2

B Proof of Claim 12

By de�nition we have that

T

0

(I) = E

(x;y) D

(I)

�

[f(x)f(y)℄

=

X

U�[n℄;V�[n℄

^

f(U)

^

f(V )E

(x;y) D

(I)

�

[x

U

y

V

℄:

We will show that any (U; V ) with U 6= V ontributes zero to the above sum. Suppose

�rst that there is some i 2 (U n I) suh that i =2 V (the orresponding ase with U and

V swithed is similar). As in the proof of Theorem 9, for eah way of drawing (x; y)

from D

(I)

�

there is a orresponding way to draw (x; y) whih di�ers only in that x and

y eah have the ith bit ipped. Sine x is hosen uniformly, these two outomes have

the same probability; but sine i 2 U n V the values of x
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are opposite in these two

outomes. Pairing up these all outomes in this way, we have that E
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for suh (U; V ): Now suppose that there is some i 2 (U \ I) suh that i =2 V (again the

orresponding ase with U and V swithed is similar). It is easy to see that for eah

outome of (x; y) from D

(I)

�

there is a orresponding way to draw (x; y) whih di�ers only

in the value of x

i

: These two outomes have the same probability and the values of x
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are opposite in these two outomes, so we have that E
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well.

We thus have that
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Now observe that for any i 2 I; the values x

i

and y

i

are independent uniform �1 random

variables. It follows that E
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℄ = 0 if i 2 U; and thus we have
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To prove the laim it remains only to show that E

(x;y) D
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for any U with

U \ I = ;: This follows immediately on observing that for eah i 2 U; the values x

i

y

i

are

independent �1 random variables with expeted value �: 2

C Proof of Claim 13

We suppose that the target funtion is seleted uniformly at random from the set of

all 2

s

Boolean funtions whih depend only on bits x

1

; : : : ; x

log s

: (Note that eah suh
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funtion has a DNF of size s and a deision tree of size s). We will show that with very

high probability a random walk of fewer than

sn

24 log s

steps will realize at most s=4 of

the s possible settings for the �rst log s variables. Sine the target funtion is randomly

seleted as desribed, any hypothesis has expeted error (over the hoie of the random

target) exatly 1=2 on all unseen settings. Thus onditioned on at most s=4 of the settings

having been seen, with very high probability the hypothesis has error at least 1=3 on the

unseen settings (whih have probability weight at least 3=4), so the overall error rate is

at least 1=4:

Thus it suÆes to prove the following fat: a random walk of

sn

24 log s

steps on f0; 1g

n

will with probability at least :99 realize at most s=4 settings of the �rst log s bits. But

this is easily seen: the expeted number of times that suh a walk ips one of the �rst

log s bits is s=24, so a standard Cherno� bound (see e.g. Exerise 4.1 of [31℄) implies

that suh a walk ips at least s=4 bits with probability at most 2

�s=4

; whih is less than

0:01 for s � 28:
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