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Abstract. We consider two well-studied problems regarding attribute
efficient learning: learning decision lists and learning parity functions.
First, we give an algorithm for learning decision lists of length k over
n variables using 90(k!/%) log n examples and time nO® ") This is the
first algorithm for learning decision lists that has both subexponential
sample complexity and subexponential running time in the relevant pa-
rameters. Our approach is based on a new construction of low degree,
low weight polynomial threshold functions for decision lists. For a wide
range of parameters our construction matches a lower bound due to
Beigel for decision lists and gives an essentially optimal tradeoff between
polynomial threshold function degree and weight.

Second, we give an algorithm for learning an unknown parity function
on k out of n variables using O(n'~'/*) examples in poly(n) time. For
k = o(logn) this yields the first polynomial time algorithm for learning
parity on a superconstant number of variables with sublinear sample
complexity. We also give a simple algorithm for learning an unknown
size-k parity using O(klogn) examples in n*/2 time, which improves on
the naive n* time bound of exhaustive search.

1 Introduction

An important goal in machine learning theory is to design attribute efficient
algorithms for learning various classes of Boolean functions. A class C of Boolean
functions over n variables z1,...,x, is said to be attribute-efficiently learnable
if there is a poly(n) time algorithm which can learn any function f € C using
a number of examples which is polynomial in the “size” (description length)
of the function f to be learned, rather than in n, the number of features in
the domain over which learning takes place. (Note that the running time of
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the learning algorithm must in general be at least n since each example is an
n-bit vector.) Thus an attribute efficient learning algorithm for e.g. the class of
Boolean conjunctions must be able to learn any Boolean conjunction of k literals
over x1,...,Z, using poly(k,logn) examples, since klogn bits are required to
specify such a conjunction.

A longstanding open problem in machine learning, posed first by Blum in
1990 [4, 5, 7, 8] and again by Valiant in 1998 [32], is whether or not there exist
attribute efficient algorithms for learning decision lists, which are essentially
nested “if-then-else” statements (we give a precise definition in Section 2). One
motivation for considering the problem comes from the infinite attribute model
introduced in [4]. Blum et al. [7] showed that for many concept classes (including
decision lists) attribute efficient learnability in the standard n-attribute model is
equivalent to learnability in the infinite attribute model. Since simple classes such
as disjunctions and conjunctions are attribute efficiently learnable (and hence
learnable in the infinite attribute model), this motivated Blum [4] to ask whether
the richer class of decision lists is thus learnable as well. Several researchers
[5, 8, 10, 25, 28] have since considered this problem; we summarize this previous
work in Section 1.2. More recently, Valiant [32] relates the problem of learning
decision lists attribute efficiently to questions about human learning abilities.

Another outstanding challenge in machine learning is to determine whether
there exist attribute efficient algorithms for learning parity functions. The par-
ity function on a set of 0/1-valued variables z;,,...,x;, takes value +1 or —1
depending on whether x;, + --- + x;, is even or odd. As with decision lists, a
simple PAC learning algorithm is known for the class of parity functions but no
attribute efficient algorithm is known.

1.1 Our Results

We give the first learning algorithm for decision lists that is subexponential in
both sample complexity (in the relevant parameters k and logn) and running
time (in the relevant parameter k). Our results demonstrate for the first time that
it is possible to simultaneously avoid the “worst case” in both sample complexity
and running time, and thus suggest that it may perhaps be possible to learn
decision lists attribute efficiently. Our main learning result for decision lists is:

Theorem 1. There is an algorithm which learns length-k decision lists over
{0,1}™ with mistake bound 20:"*) logn and time nO*"™),

This bound improves on the sample complexity of Littlestone’s well-known Win-
now algorithm [20] for all k and improves on its runtime as well for k = 2(log®/? n);
see Section 1.2.

We prove Theorem 1 in two parts; first we generalize the Winnow algorithm
for learning linear threshold functions to learn polynomial threshold functions
(PTFs). In recent work on learning DNF formulas [18], intersections of halfs-
paces [17], and Boolean formulas of superconstant depth [26], PTF's of degree d
have been learned in time n°(% by using polynomial time linear programming



algorithms such as the Ellipsoid algorithm (see e.g. [18]). In contrast, since we
want to achieve low sample complexity as well as an n°(@ runtime, we use a
generalization of the Winnow algorithm to learn PTFs. This generalization has
sample complexity and running time bounds which depend on the degree and
the total magnitude of the integer coefficients (i.e. the weight) of the PTF:

Theorem 2. Let C be a class of Boolean functions over {0, 1}™ with the property
that each f € C has a PTF of degree at most d and weight at most W. Then
there is an online learning algorithm for C which runs in n? time per exzample
and has mistake bound O(W? - d -logn).

This reduces the decision list learning problem to a problem of representing
decision lists with PTFs of low weight and low degree. To this end we prove:

Theorem 3. Let L be a decision list of length k. Then L is computed by a
polynomial threshold function of degree O(kl/g) and weight 20k,

Theorem 1 follows directly from Theorems 2 and 3. We emphasize that The-
orem 3 does not follow from previous results [18] on representing DNF formulas

as PTFs; the PTF counstruction from [18] in fact has exponentially larger weight

50.1/3 ~
(220(k " rather than 20(’“1/3)) than the construction in this paper.

Our PTF construction is essentially optimal in the tradeoff between degree
and weight which it achieves. In 1994 Beigel [3] gave a lower bound showing
that any degree d PTF for a certain decision list must have weight 2(*/ @) For
d = n'/3, Beigel’s lower bound implies that our construction in Theorem 3 is
essentially best possible.

For parity functions, we give an O(n?) time algorithm which can PAC learn
an unknown parity on k variables out of n using O(n'~'/*) examples. To our
knowledge this is the first algorithm for learning parity on a superconstant num-
ber of variables with sublinear sample complexity. Our algorithm works by
finding a “low weight” solution to a system of m linear equations (correspond-
ing to a set of m examples). We prove that with high probability we can find
a solution of weight O(nlfl/k) irrespective of m. Thus by taking m to be only
slightly larger than n'~'/* standard arguments show that our solution is a good
hypothesis.

We also describe a simple algorithm, due to Dan Spielman, for learning an
unknown parity on k variables using O(k logn) examples and O(n*/2) time. This
gives a square root runtime improvement over a naive O(nk) exhaustive search.

1.2 Previous Results

In previous work several algorithms with different performance bounds (runtime
and sample complexity) have been given for learning length-k decision lists.

— Rivest [27] gave the first algorithm for learning decision lists in Valiant’s
PAC model of learning from random examples. Littlestone [5] later gave an
analogue of Rivest’s algorithm in the online learning model. The algorithm
can learn any decision list of length k in O(kn?) time using O(kn) examples.



— A brute-force approach is to maintain the set of all length-k decision lists
which are consistent with the examples seen so far, and to predict at each
stage using majority vote over the surviving hypotheses. This “halving al-
gorithm” (proposed in various forms in [1, 2, 23]) can learn decision lists of
length & using only O(klogn) examples, but the running time is nO®),

— Several researchers [5, 32] have observed that Winnow can learn length-k
decision lists from 2°() logn examples in time 2°*)nlogn. This follows
from the fact that any decision list of length k can be expressed as a linear
threshold function with integer coefficients of magnitude 2°*).

— Finally, several researchers have considered the special case of learning a
length-k decision list in which the output bits of the list have at most D
alternations. Valiant [32] and Nevo and El-Yaniv [25] have given refined
analyses of Winnow’s performance for this case (see also Dhagat and Heller-
stein [10]). However, for the general case where D can be as large as k, these
results do not improve on the standard Winnow analysis described above.

Note that all of these earlier algorithms have an exponential dependence on the
relevant parameter(s) (k and logn for sample complexity, &k for running time)
for either the running time or the sample complexity.

Little previous work has been published on learning parity functions attribute
efficiently in the PAC model. The standard PAC learning algorithm for parity
(based on solving a system of linear equations) is due to Helmbold et al. [15];
however this algorithm is not attribute efficient since it uses §2(n) examples
regardless of k. Several authors have considered learning parity attribute effi-
ciently in a model where the learner is allowed to make membership queries.
Attribute efficient learning is easier in this framework since membership queries
can help identify relevant variables. Blum et al. [7] give a randomized polynomial
time membership-query algorithm for learning parity on k variables using only
O(klogn) examples, and these results were later refined by Uehara et al. [31].

In Section 2 we give necessary background. In Section 3 we show how to
reduce the decision list learning problem to a problem of finding suitable PTF
representations of decision lists (Theorem 2). In Section 4 we give our PTF con-
struction for decision lists (Theorem 3). In Section 5 we discuss the connection
between Theorem 3 and Beigel’s ODDMAXBIT lower bound. In Section 6 we
give our results on learning parity functions, and we conclude in Section 7.

2 Preliminaries

Attribute efficient learning has been chiefly studied in the on-line mistake-bound
model of concept learning which was introduced in [20, 22]. In this model learning
proceeds in a series of trials, where in each trial the learner is given an unlabelled
boolean example z € {0,1}" and must predict the value f(z) of the unknown
target function f. After each prediction the learner is given the true value of f(x)
and can update its hypothesis before the next trial begins. The mistake bound of
a learning algorithm on a target concept c is the worst-case number of mistakes



that the algorithm makes over all (possibly infinite) sequences of examples, and
the mistake bound of a learning algorithm on a concept class (class of Boolean
functions) C' is the worst-case mistake bound across all functions f € C. The
running time of a learning algorithm A for a concept class C is defined as the
product of the mistake bound of A on C' times the maximum running time
required by A to evaluate its hypothesis and update its hypothesis in any trial.

Our main interests are the classes of decision lists and parity functions. A
decision list L of length k£ over the Boolean variables x4, ..., z, is represented
by a list of k pairs and a bit (£1,b1), (¢2,b2), ..., (L, bk), bg+1 where each ¢; is a
literal and each b; is either —1 or 1. Given any x € {0,1}", the value of L(x)
is b; if 7 is the smallest index such that ¢; is made true by x; if no ¢; is true
then L(z) = br41. A parity function of length & is defined by a set of variables
S C {x1,...,2,} such that |S| = k. The parity function xg(z) takes value 1
(—1) on inputs which set an even (odd) number of variables in S to 1.

Given a concept class C over {0,1}" and a Boolean function f € C, let size(f)
denote the description length of f under some reasonable encoding scheme. We
say that a learning algorithm A for C' in the mistake-bound model is attribute-
efficient if the mistake bound of A on any concept f € C is polynomial in
size(f). In particular, the description length of a length k decision list (parity) is
O(klogn), and thus we would ideally like to have poly(n)-time algorithms which
learn decision lists (parities) of length k with a mistake bound of poly(k,logn).

(We note here that attribute efficiency has also been studied in other learn-
ing models, namely Valiant’s Probably Approximately Correct (PAC) model
of learning from random examples. Standard conversion techniques are known
[1, 14, 21] which can be used to transform any mistake bound algorithm into a
PAC learning algorithm. These transformations essentially preserve the running
time of the mistake bound algorithm, and the sample size required by the PAC
algorithm is essentially the mistake bound. Thus, positive results for mistake
bound learning, such as those we give for decision lists in this paper, directly
yield corresponding positive results for the PAC model.)

Finally, our results for decision lists are achieved by a careful analysis of poly-
nomial threshold functions. Let f be a Boolean function f : {0,1}" — {-1,1}
and let p be a polynomial in n variables with integer coefficients. Let d denote
the degree of p and let W denote the sum of the absolute values of p’s integer
coefficients. If the sign of p(z) equals f(x) for every z € {0,1}", then we say
that p is a polynomial threshold function (PTF) of degree d and weight W for f.

3 Expanded-Winnow: Learning Polynomial Threshold
Functions

Littlestone [20] introduced the online Winnow algorithm and showed that it can
attribute efficiently learn Boolean conjunctions, disjunctions, and low weight
linear threshold functions. Throughout its execution Winnow maintains a linear
threshold function as its hypothesis; at the heart of the algorithm is an update
rule which makes a multiplicative update to each coefficient of the hypothesis



each time a mistake is made. Since its introduction Winnow has been intensively

studied from both applied and theoretical standpoints (see e.g. [6, 12, 16, 29]).
The following theorem (which, as noted in [32], is implicit in Littlestone’s

analysis in [20]) gives a mistake bound for Winnow for linear threshold functions:

Theorem 4. Let f(z) be the linear threshold function sign(};_, wiz; —0) over
inputs x € {0,1}" where § and wy,...,w, are integers. Let W = D1 |w;]|.
Then Winnow learns f(x) with mistake bound O(W?logn), and uses n time
steps per example.

We will use a generalization of the Winnow algorithm, which we call Expanded-
Winnow, to learn polynomial threshold functions of degree at most d. Our gen-
eralization introduces Zle (}) new variables (one for each monomial of degree
up to d) and runs Winnow to learn a linear threshold function over these new
variables. More precisely, in each trial we convert the n-bit received example
x = (z1,...,%,) into a Z'Z:l (%) bit expanded example (where the bits in the
expanded example correspond to monomials over z1,...,z,), and we give the
expanded example to Winnow. Thus the hypothesis which Winnow maintains
— a linear threshold function over the space of expanded features — is a poly-
nomial threshold function of degree d over the original n variables z1,...,zy.
Theorem 2, which follows directly from Theorem 4, summarizes the performance
of Expanded-Winnow:

Theorem 2 Let C be a class of Boolean functions over {0,1}™ with the prop-
erty that each f € C has a polynomial threshold function of degree at most d
and weight at most W. Then Expanded-Winnow algorithm runs in n? time per
example and has mistake bound O(W? - d -logn) for C.

Theorem 2 shows that the degree of a polynomial threshold function strongly
affects Expanded-Winnow’s running time, and the weight of a polynomial thresh-
old function strongly affects its sample complexity.

4 Constructing PTFs for Decision Lists

In previous constructions of polynomial threshold functions for computational
learning theory applications [18, 17, 26] the sole goal has been to minimize
the degree of the polynomials regardless of the size of the coefficients. As one
example, the construction of [18] of O(n'/3) degree PTFs for DNF formulae
yields polynomials whose coefficients can be doubly exponential in the degree. In
contrast, we must now construct PTFs that have low degree and low weight.

We give two constructions of PTF's for decision lists, each of which has rela-
tively low degree and relatively low weight. We then combine these to achieve
an optimal construction with improved bounds on both degree and weight.

4.1 Outer Construction

Let L be a decision list of length k over variables x1,...,z;. We first give a
simple construction of a degree h, weight %2(’“/ h+h) PTF for L which is based



on breaking the list L into sublists. We call this construction the “outer con-
struction” since we will ultimately combine this construction with a different
construction for the “inner” sublists.

We begin by showing that L can be expressed as a threshold of modified
decision lists which we now define. The set B}, of modified decision lists is defined
as follows: each function in By is a decision list (¢1,b1), (¢2,b2),..., (¢n,br),0
where each ¢; is some literal over z1,...,z, and each b; € {—1,1}. Thus the
only difference between a modified decision list f € B, and a normal decision
list of length h is that the final output value is 0 rather than by € {—1,+1}.

Without loss of generality we may suppose that the list L is (z1,b1), ..., (g, bg), bkt 1.
We break L sequentially into k/h blocks each of length h. Let f; € By, be the
modified decision list which corresponds to the i-th block of L, i.e. f; is the
list (‘T(i—l)h-i-l R b(i—l)h+1)7 ceey (I(i-i-l)ha b(i+l)h)7 0. Intuitively f; computes the ith
block of L and equals 0 only if we “fall of the edge” of the ith block. We then
have the following straightforward claim:

Claim. The decision list L is eqivalent to

k/h
sign Z2k/h*i+1fi(ar) + brt1 | - (1)

=1

Proof. Given an input = # 0¥ let r = (i — 1)h + ¢ be the first index such that ..
is satisfied. It is easy to see that f;(z) = 0 for j < ¢ and hence the value in (1)

is 2k/h—it1p 4 Zf h.+1 2k/h=iF1f.(x) + bgy1, the sign of which is easily seen

=17

to be b,.. Finally if x = 0F then the argument to (1) is bg41. O

Note: It is easily seen that we can replace the 2 in formula (1) by a 3; this will
prove useful later.

As an aside, note that Claim 4.1 can already be used to obtain a tradeoff
between running time and sample complexity for learning decision lists. The
class By, contains at most (4n)" functions. Thus as in Section 3 it is possible
to run the Winnow algorithm using the functions in B}, as the base features for
Winnow. (So for each example = which it receives, the algorithm would first
compute the value of f(z) for each f € By, and would then use this vector
of (f(x))ren, values as the example point for Winnow.) A direct analogue of
Theorem 2 now implies that Expanded-Winnow (run over this expanded feature
space of functions from B},) can be used to learn Ly in time nOh20(k/h) with
mistake bound 20 /M plogn.

However, it will be more useful for us to obtain a PTF for L. We can do this
from Claim 4.1 as follows:

Theorem 5. Let L be a decision list of length k. For any h < k we have that L
is computed by a polynomial threshold function of degree h and weight 4 -2F/h+h.

Proof. Consider the first modified decision list fi = (£1,b1), (€2,b2), ..., (r,bp),0
in the expression (1). For ¢ a literal let £ denote x if £ is an unnegated variable



2 and let ¢ denote 1 — z if if £ is a negated variable Z. We have that for all
x €{0,1}", fi(x) is computed exactly by the polynomial

f1 (:v) = glbl + (1 —gl)ggbg-i- (1 —gl)(l —22)631734— R (1 —171) cee (1 _gh—l)ghbh'

This polynomial has degree h and has weight at most 2"*!. Summing these
polynomial representations for fi,..., fy/n as in (1) we see that the resulting

PTF given by (1) has degree h and weight at most 28/#+1.2h+1 — 4.0k/h+h

Specializing to the case h = vk we obtain:

Corollary 1. Let L be a decision list of length k. Then L is computed by a
polynomial threshold function of degree k'/? and weight 4 - 92k"/?,

We close this section by observing that an intermediate result of [18] can be
used to give an alternate proof of Corollary 1 with slightly weaker parameters;
however our later proofs require the construction given in this section.

4.2 Inner Approximator

In this section we construct low degree, low weight polynomials which approxi-
mate (in the Lo, norm) the modified decision lists from the previous subsection.
Moreover, the polynomials we construct are exactly correct on inputs which “fall
off the end”:

Theorem 6. Let f € By, be a modified decision list of length h (without loss
of generality we may assume that f is (x1,b1),...,(2n,br),0). Then there is a
degree 2v/hlog h polynomial p such that

— for every input x € {0, 1}" we have |p(x) — f(z)| < 1/h.
- P07 = F07) =0

Proof. As in the proof of Theorem 5 we have that
f(x) =bix1 + bg(l — xl)l'g —+ -4 bh(l — .1'1) cee (1 — mh_l)xh.

We will construct a lower (roughly \/E) degree polynomial which closely approx-
imates f. Let T; denote (1 — 1) ...(1 — x;_1)x;, so we can rewrite f as

f(CC) = blTl + b2T2 + -4 thh-

‘We approximate each T; separately as follows: set A;(z) = h —i+ z; +
E;;ll(l — z;). Note that for z € {0,1}", we have T;(z) = 1 iff A;(z) = h and
Ti(x) =0iff 0 < A;(x) < h — 1. Now define the polynomial

Qi(z) = q(Ai(z)/h)  where  q(y) = Ca(y (1+1/h)).

As in [18], here Cy(x) is the dth Chebyshev polynomial of the first kind (a
univariate polynomial of degree d) with d set to [v/h]. We will need the following
facts about Chebyshev polynomials [9]:



— |Ca(z)] <1 for |z| <1 with Cy4(1) = 1;
— C(z) > d? for x > 1 with /(1) = d>.
— The coefficients of C; are integers each of whose magnitude is at most 2¢.

These first two facts imply that ¢(1) > 2 but |¢(y)| < 1 for y € [0,1 — +]. We

thus have that Q;(z) = ¢(1) > 2 if T;(xz) = 1 and |Q;(z)| < 1 if Ty(x) = 0.
2logh

Now define P;(z) = (%éfﬂ) . This polynomial is easily seen to be a good

approximator for T: if x € {0,1}" is such that T;(x) = 1 then P;(z) = 1, and if

x € {0,1}" is such that T;(z) = 0 then |P;(z)| < (%)QIOgh < 5.

Now define R(x) = Zle b;P;(z) and p(z) = R(x) — R(0"). Tt is clear
that p(0") = 0. We will show that for every input 0" # x € {0,1}" we have
|p(z) — f(z)| < 1/h. Fix some such z; let i be the first index such that x; = 1.
As shown above we have P;(x) = 1. Moreover, by inspection of T;(z) we have
that T;(z) = 0 for all j # 4, and hence |P;(z)| < 7%. Consequently the value of
R(z) must lie in [b; — 2= b; + 2=1]. Since f(z) = b; we have that p(z) is an Lo
approximator for f(x) as desired.

Finally, it is straightforward to verify that p(x) has the claimed degree. O

Strictly speaking we cannot discuss the weight of the polynomial p since its
coefficients are rational numbers but not integers. However, by multiplying p
by a suitable integer (clearing denominators) we obtain an integer polynomial
with essentially the same properties. Using the third fact about Chebyshev poly-
nomials from our proof above, we have that ¢(1) is a rational number Nj/No
where N7, Ny are each integers of magnitude ROWR)  Each Qi(x)fori=1,...,h
can be written as an integer polynomial (of weight ho(‘/ﬁ)) divided by hV™.
Thus each P;(z) can be written as P;(z)/(hV"N;)218" where P;(z) is an inte-
ger polynomial of weight hO(VR1o8h) Tt follows that p(z) equals p(x)/C, where
C is an integer which is at most 90(h'/*10g h) 4nq p is a polynomial with integer
coeflicients and weight 90(h*/*10g” ) We thus have

Corollary 2. Let f € By be a modified decision list of length h. Then there is
an integer polynomial p(x) of degree 2v/hlogh and weight 20(h/2108% ) gnd an
integer C' = 902108 h) gy that

— for every input x € {0,1}" we have |p(x) — Cf(x)| < C/h.
~ 0% = F(0") =0

The fact that p(0") is exactly 0 will be important in the next subsection
when we combine the inner approximator with the outer construction.
4.3 Composing the Constructions

In this section we combine the two constructions from the previous subsections
to obtain our main polynomial threshold construction:



Theorem 7. Let L be a decision list of length k. Then for any h < k, L is

computed by a polynomial threshold function of degree O(hY/?logh) and weight
9O(k/h+h'/?log® h)

Proof. We suppose without loss of generality that L is the decision list (z1,b1), . ..
(g, br), bg+1. We begin with the outer construction: from the note following
Claim 4.1 we have that
k/h
L(x) = sign Z3k/h Ffi(x) + brga

where C is the value from Corollary 2 and each f; is a modified decision list of
length h computing the restriction of L to its ith block as defined in Subsection
4.1. Now we use the inner approximator to replace each C'f; above by p;, the
approximating polynomial from Corollary 2, i.e. consider sign(H (z)) where

k/h

H(z) =Y (3"""p,(z)) + Chips.

i=1
We will show that sign(H (x)) is a PTF which computes L correctly and has the
desired degree and weight.

Fix any x € {0, 1}*. If 2 = 0% then by Corollary 2 each p;(z) is 0 so H(z) =
Cbyy1 has the right sign. Now suppose that 7 = (i — 1)h + ¢ is the first index
such that x,, = 1. By Corollary 2, we have that

— 3k/h=itlp (z) = 0 for § < i;

— 3k/h=it1y(2) differs from 3k/h=i+1 0, by at most C3F/h—it1 -k

— The magmtude of each value 3¥/"=7+1p;(z) is at most C3*/h—i+1

Jj >

Combining these bounds, the value of H(x) differs from 3%/7~*+1Cb, by at most

gk/h—it1 . i,
O(T <1+h) (37~ + 3 ~--+3]+1)

& + ) for

which is easily seen to be less than C3%/"~**1 in magnitude. Thus the sign of
H(x) equals b,, and consequently sign(H(z)) is a valid polynomial threshold
representation for L(z). Finally, our degree and weight bounds from Corollary
2 imply that the degree of H(z) is O(h'/?logh) and the weight of H(z) is
90(k/h)+0(h'/*108* 1) " and the theorem is proved. O

Taking h = k2/3/1og*® k in the above theorem we obtain our main result on
representing decision lists as polynomial threshold functions:

Theorem 3 Let L be a decision list of length k. Then L is computed by a poly-
nomial threshold function of degree k'/3 1og1/3 k and weight 20 (k! * 10"/ k)

Theorem 3 immediately implies that Expanded-Winnow can learn decision

lists of length k using 20(k'/?) logn examples and time nO®),



4.4 Application to Learning Decision Trees

In 1989 Ehrenfeucht and Haussler [11] gave an a time n©(°8%) algorithm for
learning decision trees of size s over n variables. Their algorithm uses n©{°8#)
examples, and they asked if the sample complexity could be reduced to poly(n, s).
We can apply our techniques here to give an algorithm using 20(s'%) logn ex-
amples, if we are willing to spend nOG"") time:

Theorem 8. Let D be a decision tree of size s over n variables. Then D can be

learned with mistake bound 20("*) logn in time nOG),

The proof is omitted because of space limitations in these proceedings.

5 Lower Bounds for Decision Lists

Here we observe that our construction from Theorem 7 is essentially optimal in
terms of the tradeoff it achieves between polynomial threshold function degree
and weight.

In [3], Beigel constructs an oracle separating PP from PNP. At the heart of
his construction is a proof that any low degree PTF for a particular decision list,
called the ODDMAXBIT,, function, must have large weights:

Definition 1. The ODDMAXBIT,, function on input x = x1,...,x, € {0,1}"
equals (—1)% where i is the index of the first nonzero bit in x.

It is clear that the ODDMAXBIT,, function is equivalent to a decision list
(w1, 1), (22,1), (w3, —1),..., (2, (—=1)"), (=1)"*! of length n. The main tech-
nical theorem which Beigel proves in [3] states that any polynomial threshold
function of degree d computing ODDMAXBIT,, must have weight 2"/ ),

Theorem 9. Let p be a degree d IZTF with integer coefficients which computes
ODDMAXBIT,,. Then w = 29%"/%) ywhere w is the weight of p.

(As stated in [3] the bound is actually w > %29(”/”52) where s is the number of
nonzero coefficients in p. Since s < w this implies the result as stated above.)
A lower bound of 29(") on the weight of any linear threshold function (d = 1)
for ODDMAXBIT,, has long been known [24]; Beigel’s proof generalizes this
lower bound to all d = O(n'/?). A matching upper bound of 2°(™ on weight for
d = 1 has also long been known [24]. Our Theorem 7 gives an upper bound which
matches Beigel’s lower bound (up to logarithmic factors) for all d = O(n'/?):

Observation 10 For any d = O(nl/?’) there is a polynomial threshold function
of degree d and weight 20(n/d*) hich computes ODDMAXBIT,,.

Proof. Set d = h'/?log h in Theorem 7. The weight bound given by Theorem 7
n lo

g2 ~
is 2074108 d) which is O(n/d?) for d = O(n'/3). 0




Note that since the ODDMAXBIT,, function has a polynomial size DNF,
Beigel’s lower bound gives a polynomial size DNF f such that any degree O(n!/3)
polynomial threshold function for f must have weight 292(n'"*)  This suggests
that the Expanded-Winnow algorithm cannot learn polynomial size DNF in
200" time from 27" examples for any € > 0, and thus suggests that im-
proving the sample complexity of the DNF learning algorithm from [18] while

maintaining its 920(n'/%) running time may be difficult.

6 Learning Parity Functions

6.1 A Polynomial Time Algorithm

Recall that the standard algorithm for learning parity functions works by viewing
a set of m labelled examples as a set of m linear equations over GF(2). Gaussian
elimination is used to solve the system and thus find a consistent parity. Even
though there exists a solution of weight at most k (since the target parity is of size
k), Gaussian elimination applied to a system of m equations in n variables over
GF(2) may yield a solution of weight as large as min(m,n). Thus this standard
algorithm and analysis give an O(n) sample complexity bound for learning a
parity of length at most k.

We now describe a simple poly(n)-time algorithm for PAC learning an un-
known size-k parity using O~(n171/ *) examples. As far as we know this is the
first improvement on the standard algorithm and analysis described above.

Theorem 11. The class of all parity functions on at most k variables is PAC
learnable in O(n*) time using O(n'~"*logn) examples. The hypothesis output
by the learning algorithm is a parity function on O(n'=/*) variables.

Proof. Tf k = £2(logn) then the standard algorithm suffices to prove the claimed
bound. We thus assume that k£ = o(logn).
Let H be the set of all parity functions of size at most n'~'/*. Note that

|H| < """ so log |H| < n'~1'/*logn. Consider the following algorithm:

1. Choose m = 1/e(log|H| + log(1/0)) examples. Express each example as a
linear equation over n variables mod 2 as described above.

2. Randomly choose a set of n —n!~1/* variables and assign them the value 0.

3. Use Gaussian elimination to attempt to solve the resulting system of equa-
tions on the remaining n'~1/* variables. If the system has a solution, output
the corresponding parity (of size at most nt=1 *) as the hypothesis. If the
system has no solution, output “FAIL.”

If the simplified system of equations has a solution, then by a standard Oc-
cam’s Razor argument this solution is a good hypothesis. We will show that the
simplified system has a solution with probability £2(1/n). The theorem follows
by repeating steps 2 and 3 of the above algorithm until a solution is found (an
expected O(n) repetitions will suffice).



Let V be the set of k relevant variables on which the unknown parity function
depends. It is easy to see that as long as no variable in V is assigned a 0, the
resulting simplified system of equations will have a solution. Let £ = n'~/. The
probability that in Step 2 the n—¢ variables chosen do not include any variables in
1% 11 exactly (Z:]z) /(’}) which equals (?:Il:) /(}). Expanding binomial coefficients
we have

(?::)iﬁé—k+i> —k\* e\ (1-2 ;
(761) _i:1n_k+i n—k) —\n 1_%

[ - 0 2

which proves the theorem. a

6.2 An O(n*/2) Time Attribute Efficient Algorithm

Dan Spielman [30] has observed that it is possible to improve on the n* time
bound of a naive search algorithm for learning parity using klogn examples:

Theorem 12 (Spielman). The class of all size-k parity functions is PAC
learnable in O(n*/?) time from O(klogn) exzamples, using size-k parities as the
hypothesis class.

Proof. By Occam’s Razor we need only show that given a set of m = O(klogn)
labelled examples, a consistent size-k parity can be found in O(nk/ 2) time.

Given a labelled example (z1,...,z,;y) we will view y as an (n + 1)st at-
tribute 2,,41. Thus our task is to find a set of (k + 1) attributes z;,,...,x;_,,
one of which must be z,41, which sum to 0 in every example in the sample.

Let (z';91), ... (2™; ym) be the labelled examples in our sample. Given a sub-
set S of variables, let vs denote the length-m binary vector (xs(x!),..., xs(z™))
obtained by computing the parity function xs on each example in our sample.

We construct two lists, each containing (k%) vectors of length m. The first
list contains all the vectors vg where S ranges over all k/2-element subsets of
{x1,...,2,}. The second list contains all the vectors vgyys,,,} Where S again
ranges over all k/2-element subsets of {z1,...,2,}.

After sorting these two lists of vectors, which takes O(n*/?) time, we scan
through them in parallel in time linear in the length of the lists and find a pair
of vectors vg, from the first list and vg,u{s,,,} from the second list which are
the same. (Note that any decomposition of the target parity into two subsets Sy
and Sy of k/2 variables each will give such a pair). The set S; U Sy is then a
consistent parity of size k. a

7 Future Work

An obvious goal for future work is to improve our algorithmic results for learn-
ing decision lists. As a first step, one might attempt to extend the tradeoffs



/2 .
k7 time from

we achieve: is it possible to learn decision lists of length k in n
poly(k,logn) examples?

Another goal is to extend our results for decision lists to broader concept
classes. In particular, it would be interesting to obtain analogues of our algorith-
mic results for learning general linear threshold functions (independent of their
weight). We note here that Goldmann et al. [13] have given a linear threshold

function over {—1,1}" for which any polynomial threshold function must have

weight 292(n'?) regardless of its degree. Moreover Krause and Pudlak [19] have
shown that any Boolean function which has a polynomial threshold function over
{0,1}™ of weight w has a polynomial threshold function over {—1,1}" of weight
n2w*. These results imply that representational results akin to Theorem 3 for
general linear threshold functions must be quantitatively weaker than Theorem
3; in particular, there is a linear threshold function over {0,1}" with k nonzero
coefficients for which any polynomial threshold function, regardless of degree,
must have weight 22012,

For parity functions many questions remain as well: can we learn parity
functions on k = O(logn) variables in polynomial time using a sublinear number
of examples? Can we learn size-k parities in polynomial time using fewer than
n'~1/* examples? Can we learn size-k parities from O(k logn) examples in time

O~(nk/ 3)? Progress on any of these fronts would be quite interesting.
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