
Computational sample complexity and attribute-e�cient learning

Rocco A. Servedio

�

October 1, 1998

Abstract

Two fundamental measures of the e�ciency of a learning algorithm are its running time

and the number of examples it requires (its sample complexity). The importance of polynomial

time has long been acknowledged in learning theory, while recent work on attribute-e�ciency

has focused attention on algorithms which can learn from few examples. In this paper we

demonstrate that even for simple concept classes, an inherent tradeo� can exist between running

time and sample complexity. In our �rst construction, we present a concept class of 1-decision

lists and prove that while a computationally unbounded learner can learn the class from O(1)

examples, under a standard cryptographic assumption any polynomial-time learner requires

almost �(n) examples. Using a di�erent construction, we present a concept class of k-decision

lists which exhibits a similar but stronger gap in sample complexity. These results strengthen the

results of Decatur, Goldreich and Ron [9] on distribution-free computational sample complexity

and come within a logarithmic factor of the largest possible gap for concept classes of k-decision

lists. Finally, we construct a concept class of decision lists which can be learned attribute-

e�ciently and can be learned in polynomial time but cannot be learned attribute-e�ciently in

polynomial time. This is the �rst result which shows that attribute-e�cient learning can be

computationally hard. The main tools we use are one-way permutations, error-correcting codes

and pseudorandom generators.

�

ESL 102, Division of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138. Phone: (617)

495-3311. Fax: (617) 495-9837. rocco@deas.harvard.edu



1 Introduction

A broad research goal in computational learning theory is to discover fast (i.e. polynomial-time)

learning algorithms for various concept classes. Another broal goal is to discover algorithms which

can learn from few examples. This paper studies how these two goals can sometimes be mutually

exclusive.

In Valiant's Probably Approximately Correct (PAC) model of concept learning [28], the sample

complexity of a concept class C is the minimum number of labelled examples which any successful

learning algorithm for C must require. Information-theoretic lower bounds on sample complexity

were given by Ehrenfeucht et. al. in [10], where it was shown that any algorithm which learns a

concept class of Vapnik-Chervonenkis dimension d must use 
(d=�) examples. Similar bounds were

subsequently established in [18] for a generalization of the PAC model to learning probabilistic

concepts. However, these results do not address the question of how many examples a polynomial-

time learning algorithm must require. (Of course, since drawing an example takes unit time, a

polynomial-time learning algorithm can require at most polynomially many examples.)

The �rst indication that polynomial-time learning might be computationally hard for the un-

restricted class of polynomial-size boolean circuits was given by Valiant in his original paper [28].

Kearns and Valiant [19] subsequently established the existence of concept classes which are hard

for any polynomial-time learner but are learnable from polynomially many examples by a computa-

tionally unbounded algorithm; their results were re�ned and extended by Kharitonov [16]. Decatur,

Goldreich and Ron [9] were the �rst to study concept classes in which polynomial-time learning is

doable but requires more examples than learning using a computationally unbounded algorithm.

In the standard PAC model they showed that if one-way functions exist, then given any polyno-

mial p(n) � n; a concept class C of polynomial-size circuits exists for which any polynomial-time

learning algorithm requires �(p(n)=�) examples, whereas a computationally unbounded learning

algorithm for C requires O(n=�) examples.

The �rst contribution of this paper is to strengthen the results of Decatur et. al. by establishing

stronger gaps of this sort and showing that they can hold even for concept classes whose concepts

are extremely simple; we do this via two constructions. Our �rst construction yields a concept

class whose concepts are 1-decision lists and which has the following property: a computationally

unbounded learner can learn the class from O(1=�) examples, but under a standard cryptographic

assumption any polynomial-time learner requires almost �(n=�) examples. This construction uses

error-correcting codes and requires only very basic cryptography (the notion of a one-way func-

tion). Our second construction makes more extensive use of cryptographic machinery to prove the

following result: for any k � 1 there is a concept class of k-decision lists which a computationally

unbounded algorithm can learn from O(1=�) examples, but under a widely held cryptographic as-

sumption a polynomial-time learner requires �(n

k

=�) examples. This is within a logarithmic factor

of the largest possible gap for concept classes of k-decision lists.

Our last main result concerns attribute-e�ciency. Loosely speaking, a concept class C is said

to be attribute-e�ciently learnable if there is a learning algorithm for C which requires only

poly(size(c); logn)=� examples to learn any concept c 2 C over n variables (we give a precise

de�nition in Section 5). Attribute-e�cient learning algorithms are particularly useful when the

target concept depends on few variables but n; the total number of variables, is large. Results

of Haussler [15] and Littlestone [21] yield attribute-e�cient learning algorithms for k-CNF and

k-DNF formulae; more recent results on attribute-e�ciency can be found in [4, 7, 27]. Blum [2]

and Valiant [29] have each posed the question of whether there exists a polynomial-time attribute-

e�cient learning algorithm for the concept class of 1-decision lists of length k: Such an algorithm

would require poly(k; logn)=� examples and would be a useful tool in machine learning.

1



We take a step toward answering Blum and Valiant's question by providing the �rst proof that

attribute-e�cient learning can be computationally hard. We do this by exhibiting a concept class

of decision lists which can be learned in polynomial time and can be learned by a computation-

ally unbounded attribute-e�cient learning algorithm but cannot (under a plausible cryptographic

assumption) be learned in polynomial time by any attribute-e�cient learning algorithm.

A common paradigm for concepts and examples is used throughout this paper. In each of the

concept classes which we consider, each concept is associated with a secret key; it is easy to exactly

identify the target concept if this key is known. Also, in each of our constructions examples come

in two types, which we call useful and useless. Useful examples each contain an encrypted version

of the secret key as well as a small amount of unencrypted information about the target concept.

Useless examples all have label 0 and contain no information about the target concept.

Our constructions are based on the following simple idea: a computationally unbounded learning

algorithm can decrypt the secret key and hence can learn the target concept from a single useful

example. Consequently, such a learning algorithm requires few examples. On the other hand, a

polynomial-time learner cannot decrypt the secret key; instead, it can only use the small amount of

unencrypted information in each useful example. Hence a polynomial-time learner will need many

useful examples in order to acquire a signi�cant amount of information about the target concept.

The remainder of the paper is structured as follows. Section 2 contains preliminary de�nitions

which we use throughout the paper. In Section 3 we exhibit a concept class of 1-decision lists which

has a substantial gap between its information-theoretic and computational sample complexities.

Section 4 contains analogous results (obtained using a di�erent construction) for a concept class of

k-decision lists. In Section 5 we show that attribute-e�cient learning of polynomial-time learnable

concept classes can be computationally hard. Section 6 concludes with some open problems.

2 Preliminaries

In the boolean PAC learning model, a concept c is a boolean function and a concept class C is a

collection of boolean functions. The learner has access to an example oracle EX(c;D

n

) which, on

each call, takes one time step and outputs a labelled boolean example hx; c(x)i where x is drawn

from the distribution D

n

over f0; 1g

n

: An algorithm L is said to be a PAC learning algorithm for

concept class C if the following condition holds: for every distribution D

n

; for every c 2 C and for

every 0 < �; � < 1; if L is given access to EX(c;D

n

) then with probability at least 1� �; algorithm

L outputs a hypothesis h such that the probability that h(x) 6= c(x) is less than � for x drawn

according to D

n

: See [20] for a thorough discussion of PAC learning.

The following de�nitions are from [9]: The distribution free information theoretic sample com-

plexity of a concept class C; denoted IT SC(C;n; �); is the minimum sample size (as a function of

n and �) needed for PAC learning the class C with accuracy � and con�dence � = 9=10; where no

computational limitations exist on the learning algorithms which may be used. The distribution

free computational sample complexity of a concept class C; denoted CSC(C;n; �); is the minimum

sample size (as a function of n and �) needed for PAC learning the class C with accuracy � and

con�dence � = 9=10; where the learning algorithm must operate in polynomial (in n and 1=�) time.

A k-decision list of length ` over the boolean variables x

1

; : : : ; x

n

is a boolean function L which

is represented by a list of ` pairs (m

1

; b

1

); (m

2

; b

2

); : : : ; (m

`

; b

`

); where each m

i

is a conjunction of

at most k literals over x

1

; : : : ; x

n

and each b

i

is either 0 or 1. Given any x 2 f0; 1g

n

; the value of

L(x) is b

i

if i is the smallest index such that m

i

is satis�ed; if no m

i

is satis�ed then L(x) = 0:

We write x � y to denote the concatenation of binary strings x; y and jxj to denote the length

of x: A function f : f0; 1g

�

! f0; 1g

�

is length-preserving if jf(x)j = jxj for all x:

2



A one-way function is a function f which can be evaluated in polynomial time but cannot be

inverted on a non-negligible (i.e. inverse polynomial) fraction of its inputs by any probabilistic

polynomial-time algorithm. The discrete log, the RSA function, and squaring quadratic residues

modulo Blum integers are all length-preserving permutations which are widely believed to be one-

way.

3 A construction using error-correcting codes

In this section we prove the following:

Theorem 1 Let 0 < � < 1 be any constant. If length-preserving one-way permutations exist, then

there is a concept class C

�

which has IT SC(C

�

;n; �) = O(1=�) and 
(n

1��

=�) = CSC(C

�

;n; �) =

O(n=�); where each concept in C

�

over f0; 1g

n

is a 1-decision list.

3.1 Error-correcting codes

We need some basic terminology from the theory of error-correcting codes. As in [25, 26] we say

that a binary code of block length ` and rate r

`

is a code in which codewords are ` bits long, where r

`

`

positions are \message bits" that can be �lled with any combination of 0's and 1's and the remaining

(1� r

`

)` positions have their contents determined by the message bits. Let A

`

: f0; 1g

r

`

`

! f0; 1g

`

be a binary code of block length ` and rate r

`

; for x 2 f0; 1g

r

`

`

; the j-th bit of the `-bit string A

`

(x)

is denoted by A

`

(x)

j

:

We say that the code A

`

has minimum relative distance �

`

if any pair of distinct codewords

fA

`

(x); A

`

(y)g has Hamming distance at least �

`

`: For �

`

< �

`

=2; we say that an algorithm D is an

�

`

-decoding algorithm for A

`

if, when D is given a string z 2 f0; 1g

`

which has Hamming distance

at most �

`

` from some codeword A

`

(x); the algorithm D outputs x:

The papers [25, 26] each contain versions of the following important theorem:

Theorem 2 [Sipser, Spielman] There exists a polynomial-time-constructible family fA

i

g

1

i=1

of

binary error-correcting codes which has the following properties:

� lim

i!1

r

i

> 0, lim

i!1

�

i

> 0 and lim

i!1

�

i

> 0;

� For each `; there is an �

`

-decoding algorithm for A

`

which runs in time poly(`):

Recall that in the PAC framework, a learning algorithm succeeds if it can construct a hypothesis

which �-approximates the target concept. In the construction which we use to prove Theorem 1,

such a hypothesis will yield a string z which is close to a codeword A

`

(x): By the polynomial-time

decoding algorithm of Theorem 2, the ability to �nd an accurate hypothesis in polynomial time

would thus imply the ability to �nd x in polynomial time. However, we will show that this is

impossible (under a cryptographic assumption) if few examples have been seen.

3.2 The concept class C

�

Before giving a formal description of the concept class C

�

; we mention that in this concept class

the secret key for each concept is composed of many small subkeys, each of which is encrypted

separately. The reason is that each useful example will contain a small amount of unencrypted

information about exactly one of the subkeys. Hence, unless many useful examples have been seen,

there will exist subkeys about which no unencrypted information has been revealed.

3



Figure 1: A useful example hx;A

`

(v

i

)

j

i: Part (a) depicts the mq-bit pre�x of x; since x is useful this must

be f(v

1

) � � � � � f(v

q

): Part (b) depicts the q`-bit su�x x

mq+1

: : : x

n

; where the bit x

mq+(r�1)`+c

is in row r

and column c for 1 � r � q, 1 � c � `: As shown in (b), the values of i and j are determined by the location

of the �rst 1 in the q`-bit su�x.

f(v

1

)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f(v

q

)

| {z }

m bits

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

q

(a)

column

j

0 0 0 � � � � � � 0 0 0

0 0 0 � � � � � � 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 � � � 0 0 0 1 1 0 1 � � � 1 1 0row i

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 0 1 � � � � � � 0 1 1

| {z }

` bits

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

q

(b)

Now we describe the concept class C

�

: Let f be a �xed length-preserving one-way permutation

and let fA

i

g

1

i=1

be a �xed family of error-correcting codes with the properties stated in Theorem

2. For any m � 1; de�ne the set D

m

� f0; 1g

m

to be D

m

= f

�1

(f0; 1g

m

); and let q = dm

1��

�

e:

The set (D

m

)

q

is the set of secret keys; each secret key v = (v

1

; : : : ; v

q

) 2 (D

m

)

q

is composed of q

subkeys each of which is m bits long. The class C

�

has a concept c

v

for each secret key v:

Let n = mq + q`; where ` is the smallest integer satisfying r

`

` � m; we now describe a concept

c

v

over f0; 1g

n

: If c

v

is the target concept, then an example x 2 f0; 1g

n

is said to be useful

if x

1

� � �x

mq

= f(v

1

) � � � � � f(v

q

) and is useless otherwise. Given an example x 2 f0; 1g

n

; let

i 2 f1; : : : ; qg; j 2 f1; : : : ; `g be such that x

mq+(i�1)`+j

is the �rst bit of x

mq+1

� � �x

mq+q`

whose

value is 1. (If x

mq+1

= � � � = x

mq+q`

= 0 then i = j = 0:) Figure 1 illustrates the structure of a

useful example. The concept c

v

is de�ned as follows:

� c

v

(x) = 0 if x is useless,

� c

v

(x) = A

`

(v

i

)

j

; the j-th bit of A

`

(v

i

); if x is useful and i; j � 1: If x is useful and i = j = 0

then c

v

(x) = 0:

3.3 Proof of Theorem 1

First we establish that c

v

is a 1-decision list. For each 1 � k � mq; let `

k

denote the literal x

k

if

the k-th bit of f(v

1

) � � � � � f(v

q

) is 1; and let `

k

denote x

k

otherwise. Then the following is seen to

be a 1-decision list which computes c

v

:

(`

1

; 0); : : : ; (`

mq

; 0); (x

mq+1

; A

`

(v

1

)

1

); : : : ; (x

mq+(i�1)`+j

; A

`

(v

i

)

j

); : : : ; (x

mq+q`

; A

`

(v

q

)

`

):

To prove the information-theoretic sample complexity upper bound, we must show that under

any distribution at most O(1=�) examples are required. Since each positive example contains

f(v

1

) � : : : � f(v

q

); a computationally unbounded learner can learn the target concept exactly

from a single positive example by inverting the one-way permutation f to �nd each v

i

and then

4



computing each A

`

(v

i

): Such a learner can thus make 20=� calls to the oracle EX(c;D

n

) and output

the identically zero hypothesis if all examples are negative, otherwise output the correct hypothesis

as described above. A simple calculation shows that this algorithm �nds an �-accurate hypothesis

with high probability, and hence IT SC(C

�

;n; �) = O(1=�):

It remains to bound the computational sample complexity of C

�

; we begin with the simpler

upper bound. We say that a 1-decision list over f0; 1g

n

is well-structured if its length is exactly

n and it has the following structure: for 1 � t � mq the t-th pair of the decision list has x

t

or

x

t

as its conjunction and has 0 as its output bit, and for 1 � t � q` the (mq + t)-th term of

the decision list has x

mq+t

as its conjunction. Given a sample S of examples which are labelled

according to the concept c

v

; it is easy for a polynomial-time algorithm to �nd a well-structured

1-decision list which is consistent with S: Any positive example of S identi�es the �rst mq output

bits of the well-structured 1-decision list, and each useful example provides the output bit for one

of the last q` pairs (note that it is possible to identify useful examples as long as S contains at

least one positive example). Since there are 2

n

well-structured 1-decision lists, Occam's Razor [6]

immediately implies that O(n=�) examples su�ce for this polynomial-time learning algorithm.

Now we show the lower bound on CSC(C

�

;n; �) by exhibiting a particular distribution under

which many examples are required. Let D

n

be the distribution on f0; 1g

n

which assigns total weight

1 � 3�=�

`

uniformly to useless examples and assigns the remaining 3�=�

`

weight uniformly to the

q` useful examples ff(v

1

) � � � �f(v

q

) � 0

k

10

q`�k�1

g

q`�1

k=0

: Under this distribution, each bit of each

A

`

(v

i

) is equally likely to occur as the label of a useful example. Let S be a sample of q�

`

=18�

examples which are drawn from EX(c;D

n

): A straightforward argument shows that with extremely

high probability S will contain at least two useful examples (whose �rst mq bits must all agree).

Also, by our choice of ` and Theorem 2, we have that ` = �(m) and hence n = �(mq); it follows

that S almost certainly will not contain a pair of useless examples whose �rst mq bits all agree.

Consequently, with extremely high probability a polynomial-time learning algorithm which draws

jSj examples will be able to identify the bit strings f(v

1

); : : : ; f(v

q

):

Suppose that a polynomial-time learning algorithm could achieve an �-accurate hypothesis from

the sample S: Since the algorithm knows f(v

1

); : : : ; f(v

q

), using its �-accurate hypothesis on the q`

useful examples described above it could construct B

1

; : : : ; B

q

in polynomial time, where each B

i

is

an `-bit string which is the learning algorithm's guess at A

`

(v

i

): Since the hypothesis is �-accurate

under D

n

; at most an �

`

=3 fraction of the q` bits in the B

i

's can be incorrect. By Markov's

inequality, at least 2=3 of the B

i

's must each have at most �

`

` incorrect bits; consequently, by

using the polynomial-time decoding algorithm for A

`

; the learning algorithm can �nd at least 2=3

of the subkeys fv

1

; : : : ; v

q

g in polynomial time. However, since jSj = q�

`

=18�; by a straightforward

application of Cherno� bounds (see, e.g., [1, 20]) it is extremely unlikely that S contained more than

q=3 useful examples; consequently, with very high probability the polynomial-time learner received

no information at all (other than f(v

i

)) for at least 2=3 of the subkeys. It follows that the poly(n)-

time learner was able to invert f on at least 1=3 of the f(v

i

)'s \from scratch." Since each subkey

v

i

is m = �(n

�

) bits long, though, our poly(n)-time learner is also a poly(m)-time algorithm; but

this contradicts the fact that f is one-way. Hence CSC(C

�

;n; �) > q�

`

=18� = 
(n

1��

=�):

4 A stronger gap

In this section we prove the following:

Theorem 3 Let k � 1 be any integer. If length-preserving one-way permutations exist, then there

is a concept class C

k

which has IT SC(C

k

;n; �) = O(1=�) and CSC(C

k

;n; �) = �(n

k

=�): where each

concept in C

k

over f0; 1g

n

is a k-decision list.

5



This strengthens the result of Decatur et. al. [9] on distribution-free computational versus

information-theoretic sample complexity in two ways: we improve the upper bound on information-

theoretic sample complexity from O(n=�) to O(1=�); and we prove this stronger gap for the much

simpler class of k-decision lists (rather than poly-size circuits).

4.1 Cryptographic preliminaries

The cryptographic de�nitions we present in this section are slightly more general than the standard

de�nitions (we will need this extra generality in Section 5). Throughout this section the function

q(�) denotes an arbitrary nondecreasing integer-valued function which satis�es q(n) � n: For each of

the de�nitions which we provide below, the standard de�nition can be obtained by setting q(n) = n

(the reader is encouraged to verify this for him/herself). The notation \x 2 D

n

" means that x is

selected from the set f0; 1g

n

according to distribution D; the distribution U is uniform.

De�nition 1 A length-preserving permutation f is said to be q(n)-one-way if there is a determin-

istic polynomial-time algorithm which computes f(x); but for all probabilistic poly(q(n))-time algo-

rithms A; for all polynomials Q, for all su�ciently large n; we have Pr

x2U

n

[A(f(x)) = x] <

1

Q(q(n))

:

De�nition 2 Let f be a length-preserving permutation. A polynomial-time computable predicate

B : f0; 1g

�

! f0; 1g is said to be a q(n)-hard-core predicate of f if the following condition holds:

for all probabilistic poly(q(n))-time decision algorithms A; for all polynomials Q; for all su�ciently

large n; we have Pr

x2

U

n

[A(f(x)) = B(x)] <

1

2

+

1

Q(q(n))

:

Suppose that g is a length-preserving q(n)-one-way permutation. Let x = p�y where jpj = jyj =

n; and let f be the function de�ned as f(x) = p � g(y): It is easy to check that f is also a length-

preserving q(n)-one-way permutation; Goldreich and Levin [13] have shown that the predicate

B(x) =

P

n

i=1

p

i

y

i

(mod 2) is a q(n)-hard-core predicate for f:

De�nition 3 A family of probability distributions fX

q(n)

g on f0; 1g

q(n)

is q(n)-pseudorandom if

fX

q(n)

g is poly(q(n))-time indistinguishable from fU

q(n)

g: That is, for all probabilistic poly(q(n))-

time decision algorithms A; for all polynomials Q; for all su�ciently large n; we have

�

�

�

�

�

Pr

z2X

q(n)

[A(z) = 1]� Pr

z2U

q(n)

[A(z) = 1]

�

�

�

�

�

<

1

Q(q(n))

:

De�nition 4 A poly(q(n))-time deterministic algorithm G : f0; 1g

n

! f0; 1g

q(n)

is said to be a

q(n)-pseudorandom generator if the family of distributions fG

q(n)

g is q(n)-pseudorandom, where

G

q(n)

is the distribution on f0; 1g

q(n)

obtained as follows: to select z 2 G

q(n)

; pick x 2 U

n

and set

z = G(x): We write G(z)

i

to denote the i-th bit of G(z):

Now we can state the following useful theorem:

Theorem 4 Let f be a length-preserving q(n)-one-way permutation and let B be a q(n)-hard-core

predicate of f: Let G : f0; 1g

n

! f0; 1g

q(n)

be de�ned as follows:

G(x) = B(x) �B(f(x)) �B(f(f(x))) � � � � �B(f

q(n)�1

(x)):

Then G is a q(n)-pseudorandom generator. Moreover, the distributions fG(z) � f

q(n)

(z)g

z2U

n

and

fw � f

q(n)

(z)g

w2U

q(n)

;z2U

n

are poly(q(n))-time indistinguishable.

6



In the case where q(n) is a polynomial, this theorem is a standard result (see, e.g., Proposition

3.17 of [12]). This construction of a pseudorandom generator, along with the de�nition of a pseu-

dorandom generator, is originally from [5]. The proof of the more general theorem which we state

above is a straighforward modi�cation of the proof of the standard result; we omit its proof from

this extended abstract.

We note that by Theorem 4, even if a poly(q(n))-time algorithm is given f

q(n)

(z) along with some

bits of G(z); the algorithm still cannot predict the unseen bits of G(z) with accuracy signi�cantly

better than 1=2: This is because the ability to do such prediction would violate the poly(q(n))-time

indistinguishability which is asserted in Theorem 4, since clearly no poly(q(n))-time algorithm could

successfully predict the unseen bits of a uniformly selected random string.

4.2 The concept class C

k

Let f be a length-preserving one-way permutation which has a hard-core predicate, and let G be

the corresponding

�

n

k

�

-pseudorandom generator (so G maps inputs of length m to outputs of length

�

m

k

�

:) Let n = 2m and let D

m

= f

�1

(f0; 1g

m

); D

m

is the set of secret keys. For 1 � i �

�

m

k

�

; let S

i

denote the i-th k-element subset of the set fm+1; : : : ; 2mg under some �xed and easily computable

ordering (i.e. lexicographic), and let z

i

be the conjunction

Q

j2S

i

x

j

: Given any input x 2 f0; 1g

n

;

let i be the the smallest index in f1; : : : ;

�

m

k

�

g such that z

i

is satis�ed by x (if no z

i

is satis�ed by

x for 1 � i �

�

m

k

�

then let i = 0).

The class C

k

has a concept c

v

for each secret key v 2 D

m

: If c

v

is the target concept, then

an example x is useful if x

1

� � �x

m

= f

(

m

k

)

(v) and is useless otherwise. (As in Section 4.1, f

(

m

k

)

(v)

denotes the result of applying f exactly

�

m

k

�

times to v:) The concept c

v

is de�ned as follows:

� c

v

(x) = 0 if x is useless,

� c

v

(x) = G(v)

i

; the i-th bit of G(v); if x is useful and i � 1: If x is useful and i = 0 then

c

v

(x) = 0:

4.3 Proof of Theorem 3

First we show that c

v

is a k-decision list. For each 1 � j � m; let `

j

denote the literal x

j

if the j-th

bit of f

(

m

k

)

(v) is 1; and let `

j

denote x

j

otherwise. The following k-decision list of length m+

�

m

k

�

computes c

v

:

(`

1

; 0); : : : ; (`

m

; 0); (z

1

; G(v)

1

); : : : ; (z

(

m

k

)

; G(v)

(

m

k

)

):

To bound IT SC(C

k

;n; �); note that upon receiving a single positive example, an unbounded

learner can invert f

(

m

k

)

(v) to �nd v (this is possible since f is a permutation) and thus learn the

target concept c

v

exactly. As in the proof of Theorem 1, it follows that IT SC(C

k

;n; �) = O(1=�):

An analogous argument to the computational sample complexity upper bound proof of Theorem

1 establishes that CSC(C

k

;n; �) = O(

�

m

k

�

=�) = O(n

k

=�):

For the computational lower bound, consider the distribution D

n

over f0; 1g

n

which assigns total

weight 1 � 6� uniformly to useless examples and assigns the remaining 6� weight uniformly to the

�

m

k

�

useful examples ff

(

m

k

)

(v)�S

i

g

(

m

k

)

i=1

(here we are viewing each S

i

as an m-bit string in the obvious

way). Let S be a sample of

�

m

k

�

=24� examples which are drawn from EX(c;D

n

); a straightforward

application of Cherno� bounds shows that with very high probability S will contain fewer than

�

m

k

�

=2 useful examples. By Theorem 4, we have that the string-valued random variables fG(z) �

f

(

m

k

)

(z)g

z2U

m

and fw � f

(

m

k

)

(z)g

w2U

(

m

k

)

;z2U

m

are polynomial-time indistinguishable. Consequently,

7



even though a polynomial-time learner may discover f

(

m

k

)

(v) from any positive example, such a

learner cannot predict the bits of G(v) which it has not seen with accuracy signi�cantly better

than 1=2: Since useful examples which correspond to the unseen bits of G(v) have weight at least

3� under the distribution D

n

; the polynomial-time learner's overall error rate will exceed �: Hence

CSC(C

k

;n; �) �

�

m

k

�

=24� = �(n

k

=�):

It is interesting to contrast the bounds given in Theorem 3 with other known bounds. The

upper bound on information-theoretic sample complexity which is given in Theorem 3 is the best

possible for nontrivial concept classes. Rivest's polynomial-time algorithm for learning k-decision

lists [24] requires O(

n

k

�

minflogn; log

1

�

g) examples; thus our lower bound on computational sample

complexity could be improved by at most a logarithmic factor for concept classes of k-decision lists.

Ehrenfeucht et. al. [10] have shown that 
(n

k

=�) examples are required for information-theoretic

reasons for learning k-decision lists. Our Theorem 3 shows that 
(n

k

=�) examples can be required

for learning subclasses of k-decision lists for computational reasons even in the absence of any

information-theoretic barriers to learning from fewer examples.

5 Hardness of attribute-e�cient learning

We now consider attribute-e�cient learning algorithms. These algorithms require very few examples

relative to the total number of input variables (i.e. attributes), and hence have exceptionally good

performance over high-dimensional input spaces which contain many irrelevant attributes. This

property has led researchers to apply attribute-e�cient algorithms to real-world problems such as

calendar scheduling [3], text categorization [8], and context-sensitive spelling correction [11].

Attribute-e�ciency has chiey been studied in the on-line mistake-bound model of concept

learning which was introduced in [21, 22]. In this model learning proceeds in a series of trials,

where in each trial the learner is given an unlabelled boolean example x 2 f0; 1g

n

and must predict

the value c(x); after each prediction the learner is told the true value of c(x) and can update its

hypothesis. The mistake bound of a learning algorithm on a target concept c is measured by the

worst-case number of mistakes that the algorithm makes over all (possibly in�nite) sequences of

examples, and the mistake bound of a learning algorithm on a concept class C is the worst-case

mistake bound across all concepts c 2 C: A learning algorithm L for a concept class C over f0; 1g

n

is said to run in polynomial time if the mistake bound of L on C is poly(n) and the time required

by L to make its prediction and update its hypothesis on each example is poly(n):

A boolean function c over x

1

; : : : ; x

n

is said to depend on a variable x

i

if there are two vectors

y; z 2 f0; 1g

n

which have y

j

= z

j

for all j 6= i; y

i

6= z

i

; and c(y) 6= c(z): Let C be a class of boolean

functions on x

1

; : : : ; x

n

each of which depends on at most r variables and each of which has a

description of length at most s under some reasonable encoding scheme. Following [4], we say that

a learning algorithm L for C in the mistake-bound model is attribute-e�cient if the mistake bound

of L on any concept c 2 C is poly(r; s; logn):

In this section we provide strong evidence that there are polynomial-time-learnable concept

classes for which attribute-e�cient learning is information-theoretically possible but computation-

ally hard. We do this by proving the following theorem:

Theorem 5 For any integer c � 2; let log(c; n) denote

c

z }| {

log � � � logn: Let q(c; n) = n

log(c;n)

: If length-

preserving q(c; n)-one-way permutations exist, then there is a concept class C of log(c; n)-decision

lists which has the following properties in the mistake-bound model:

� A computationally unbounded learner can learn C with at most 1 mistake,

8



� C can be learned in polynomial time,

� C cannot be learned in polynomial time by an attribute-e�cient learning algorithm.

We note that while the existence of length-preserving q(c; n)-one-way permutations is a non-

standard cryptographic assumption, it is still quite weak. One can easily show, for instance, that

the nonexistence of length-preserving q(c; n)-one-way permutations would yield a far more power-

ful algorithm for factoring Blum integers than any which is currently known for this well-studied

problem (see the Appendix).

5.1 Proof of Theorem 5

First we de�ne the concept class C: This construction is similar to the construction of Section 4.2

but with some di�erent parameters.

Let f be a length-preserving q(c; n)-one-way permutation and let G be the corresponding q(c; n)-

pseudorandom generator whose existence is guaranteed by Theorem 4. Let m = dn

1

log(c;n)

e and let

the set of secret keys be D

m

= f

�1

(f0; 1g

m

): Let k(n) be the least integer such that

�

m

k(n)

�

� q(c;m):

Straightforward manipulations show that q(c;m) = �(n

1�

log(2c�1;n)

log(c;n)

); using the lower bound

�

x

y

�

�

(

x

y

)

y

it follows that k(n) � log(c; n):

For i = 1; : : : ; q(c;m) let S

i

denote the i-th k(n)-element subset of the set fm+1; : : : ; 2mg and

let z

i

be the conjunction

Q

j2S

i

x

j

: Given any input x 2 f0; 1g

n

; let i be the the smallest index in

f1; : : : ; q(c;m)g such that z

i

is satis�ed by x (if no z

i

is satis�ed by x then i = 0).

For each secret key v 2 D

m

; there exists a corresponding concept c

v

2 C: If c

v

is the target

concept, then an example x is useful if x

1

� � �x

m

= f

q(c;m)

(v) and is useless otherwise. The concept

c

v

is de�ned as follows:

� c

v

(x) = 0 if x is useless,

� c

v

(x) = G(v)

i

; the i-th bit of G(v); if x is useful and i � 1: If x is useful and i = 0 then

c

v

(x) = 0:

Now we prove that C has the properties listed in Theorem 5. The �rst property is easy:

a computationally unbounded learner can achieve a mistake bound of 1 by predicting 0 until it

makes a mistake. From this positive example the unbounded learner can compute v (by inverting

f

q(c;m)

(v)) and hence can exactly identify the target concept.

For the second property, note that the concept c

v

can be represented as a log(c; n)-decision

list of length at most m + q(c;m): As in the computational sample complexity upper bound of

Theorem 1, a polynomial-time algorithm can learn the �rst m pairs of the target decision list from

a single positive example, and will make at most one mistake for each of the last q(c;m) pairs of

the decision list. Since q(c;m) = o(n); it follows that C can be learned in polynomial time.

Now suppose that there is a polynomial-time attribute-e�cient learning algorithm for the con-

cept class C: Since each concept c

v

has an m-bit description (the string v), we have that s = O(m):

Each function c

v

depends only on the variables x

1

; : : : ; x

2m

; so r is also O(m): Hence any attribute-

e�cient learning algorithm for C must have mistake bound poly(m; logn) = poly(m):

Consider the q(c;m)-long sequence S of useful examples ff

q(c;m)

(v) � S

i

� 0

n�2m

g

q(c;m)

i=1

: From

Theorem 4, we have that no poly(q(c;m))-time learning algorithm can predict an unseen bit of G(v)

with accuracy signi�cantly better than 1=2: Since q(c;m) = n

1�o(1)

; we have that poly(q(c;m)) =

poly(n): Hence any poly(n)-time learning algorithm will have probability 1=2 of making a mistake

on each example in the sequence S; it follows that with extremely high probability, any poly(n)-time

9



algorithm will make �(q(c;m)) mistakes on S: But this means that no polynomial-time attribute-

e�cient learning algorithm can exist for C; since poly(m) = o(q(c;m)):

6 Conclusion

We have demonstrated the existence of various subclasses of k-decision lists which can be information-

theoretically learned from a constant number of examples but which requires any polynomial-time

learner to use �(n

k

) examples. We have also shown that under a plausible cryptographic assump-

tion, attribute-e�cient learning is computationally hard but information-theoretically possible for

a polynomial-time learnable class whose concepts are log(c; n)-decision lists of length o(n):

Many directions remain for future research. For one thing, it would be interesting to see if

gaps such as the ones we have demonstrated in Sections 3 and 4 can be shown for concept classes

whose concepts are even simpler than decision lists, and to determine whether the cryptographic

assumptions which are used to establish these gaps can be weakened. In a similar vein, it would

be nice to be able to replace the cryptographic assumption which is used to prove Theorem 5 with

a more standard cryptographic assumption.

As noted in Section 5, each concept of the class described there has a natural m-bit representa-

tion. However, to represent a concept in this class as a decision list requires more than m bits; our

attribute-e�cient hardness result relies on the m-bit representation. It would be very interesting to

see an attribute-e�cient hardness result for a concept class of decision lists where the description

length of a concept is taken to be the length of the decision list which computes it.

A related goal is to establish hardness results for attribute-e�cient learning of simpler concept

classes. In particular, let L

k

denote the class of 1-decision lists of length k: Using the Halving Algo-

rithm [21], the class L

k

can be learned with O(k logn) mistakes, but no polynomial-time algorithm

is known which makes poly(k; logn) mistakes; currently known polynomial-time algorithms make

�(min(kn; k

2k

logn)) mistakes [2]. Perhaps techniques such as those used in this paper can help

resolve whether L

k

is attribute-e�ciently learnable in polynomial time.

7 Acknowledgements

This research was supported by an NSF Graduate Fellowship and by grants NSF-CCR-95-04436

and ONR-N00014-96-1-0550. Thanks go to Les Valiant and Amos Beimel for helpful suggestions

which greatly improved the structure of the paper.

References

[1] D. Angluin, L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matchings, J.

Comput. System Sci., 18 (1979), pp. 155-193.

[2] A. Blum, On-Line Algorithms in Machine Learning, available at

http://www.cs.cmu.edu/~avrim/Papers/pubs.html, 1996.

[3] A. Blum, Empirical support for winnow and weighted-majority algorithms: results on a calendar

scheduling domain, Machine Learning 26 (1997), pp. 5-23.

[4] A. Blum, L. Hellerstein, N. Littlestone, Learning in the presence of �nitely or in�nitely many

irrelevant attributes, J. Comput. System Sci., 50 (1995), pp. 32-40.

[5] M. Blum, S. Micali, How to generate cryptographically strong sequences of pseudo-random bits, SIAM

J. Comput., 13 (1984), pp. 850-864.

10



[6] A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth, Occam's Razor, Inform. Process.

Lett., 24 (1987), pp. 377-380.

[7] N. Bshouty, L. Hellerstein, Attribute e�cient learning with queries, Proc. Ninth Ann. Conf. on

Comp. Learning Theory, ACM Press, New York, NY, 1996.

[8] I. Dagan, Y. Karov, D. Roth, Mistake-Driven Learning in Text Categorization, in 2nd Conf. on

Empirical Methods in Natural Language Processing (EMNLP-97), 1997.

[9] S. E. Decatur, O. Goldreich, D. Ron, Computational Sample Complexity, in Proc. Tenth Ann.

Conf. on Comp. Learning Theory, ACM Press, New York, NY, 1997, pp. 130-142.

[10] A. Ehrenfeucht, D. Haussler, M. Kearns, L. Valiant, A general lower bound on the number of

examples needed for learning, Inform. and Comput., 82 (3) (1989), pp. 247-261.

[11] A.R. Golding, D. Roth, A Winnow-based approach to spelling correction, Machine Learning, Special

Issue on Machine Learning and Natural Language Processing (1998), to appear.

[12] O. Goldreich, Foundations of Cryptography (Fragments of a Book), at

http://www.wisdom.weizmann.ac.il/~oded/frag.html, 1995.

[13] O. Goldreich, L. Levin, A Hard-Core Predicate for all One-Way Functions, in Proc. 21st Ann.

Symp. on Theory of Comp., ACM Press, New York, NY, 1995, pp. 25-32.

[14] S. Goldwasser, M. Bellare, Lecture notes on cryptography, at

http://www-cse.ucsd.edu/users/mihir/papers/gb.html, 1996.

[15] D. Haussler, Quantifying infuctive bias: AI learning algorithms and Valiant's learning framework,

Arti�cial Intelligence, 36 (1988), pp. 177-221.

[16] M. Kharitonov, Cryptographic lower bounds for learnability of boolean functions on the uniform

distribution, J. Comput. System Sci., 50 (1995), pp. 600-610.

[17] M. Kearns, M. Li, L. Pitt, L. Valiant, Recent results on boolean concept learning, in P. Langley,

editor, Proc. 4th Int. Workshop on Machine Learning, Morgan Kaufmann, Los Altos, CA, 1987, pp.

337-352.

[18] M. J. Kearns, R. E. Schapire, E�cient distribution-free learning of probabilistic concepts, in Proc.

31st Symp. on Found. of Comp. Sci. , IEEE Comp. Society Press, Los Alamitos, CA, 1990, pp. 382-391.

[19] M. Kearns, L. G. Valiant, Cryptographic limitations on learning boolean formulae and �nite au-

tomata, J. ACM 41(1), (1994), pp. 67-95.

[20] M. Kearns, U. Vazirani, An introduction to computational learning theory, MIT Press, Cambridge,

MA, 1994.

[21] N. Littlestone, Learning quickly when irrelevant attributes abound: a new linear-threshold learning

algorithm, Machine Learning 2 (1988), pp. 285-318.

[22] N. Littlestone, Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms, Ph.D. thesis,

Technical Report UCSC-CRL-89-11, Univ. of Calif., Santa Cruz, 1989.

[23] M. Rabin, Digitalized signatures as intractable as factorization, Technical Report MIT/LCS/TR-212,

MIT Lab. for Comp. Sci., 1979.

[24] R. L. Rivest, Learning decision lists, Machine Learning 2(3), (1987), pp. 229-246.

[25] M. Sipser, D. A. Spielman, Expander Codes, in Proc. 35th Symp. on Found. of Comp. Sci., IEEE

Comp. Society Press, Los Alamitos, CA, 1994, pp. 566-576.

[26] D. A. Spielman, Linear-time encodable and decodable error-correcting codes, in Proc. 27th Ann. Symp.

on Theory of Comp., ACM Press, New York, NY, 1995, pp. 388-397.

[27] R. Uehara, K. Tsuchida, I. Wegener, Optimal attribute-e�cient learning of disjunction, parity,

and threshold functions, Electronic Colloquium on Computational Complexity (061): (1996).

11



[28] L. G. Valiant, A theory of the learnable, Comm. ACM, 27(11) (1984), pp. 1134-1142.

[29] L. G. Valiant, Projection learning, in Proc. Eleventh Ann. Conf. on Comp. Learning Theory, ACM

Press, New York, NY, 1998, pp. 287-293.

8 Appendix

We give a simple proof that if Blum integers are su�ciently hard to factor, then length-preserving

q(c; n)-one-way permutations exist. An integer is a Blum integer if it is the product of two distinct

primes each of which is congruent to 3 mod 4.

De�nition 5 The q(n)-Blum factoring assumption is the following: for all probabilistic poly(q(n))-

time factoring algorithms A; for all polynomials Q; for all su�ciently large n; the probability (taken

over the internal coin tosses of algorithm A and the choice of inputs for algorithm A) that A can

produce a nontrivial divisor of its input (where the input is the product of two randomly chosen

distinct n=2-bit primes each congruent to 3 mod 4) is less than 1=Q(q(n)):

Claim 1 If the q(n)-Blum factoring assumption is true, then length-preserving q(n)-one-way per-

mutations exist.

Proof: Let N be an n-bit Blum integer selected as in De�nition 5, and let Q

N

be the set of

quadratic residues mod N: Let the function R

N

: Q

N

! Q

N

be de�ned as R

N

(x) = x

2

mod N: As

Blum and Williams have noted, R

N

is a length-preserving permutation on Q

N

(see Lemma 2.3.29

of [14] for a proof). Rabin has shown [23] that a poly(q(n))-time algorithm which succeeds in

inverting R

N

with probability 1=poly(q(n)) would yield a probabilistic poly(q(n))-time algorithm

for factoring N with success probability 1=poly(q(n)); where the success probability is taken over

the choice of N and over the algorithm's internal coin tosses. But this would contradict the q(n)-

Blum factoring assumption. Hence if the q(n)-Blum factoring assumption is true, there exists a

length-preserving q(n)-one-way permutation.

12


