
On Learning Monotone DNF under Produt

Distributions

Roo A. Servedio

Division of Engineering and Applied Sienes, Harvard University

Cambridge, MA 02138

roo�deas.harvard.edu

Abstrat. We show that the lass of monotone 2

O(

p

log n)

-term DNF

formulae an be PAC learned in polynomial time under the uniform dis-

tribution from random examples only. This is an exponential improve-

ment over the best previous polynomial-time algorithms in this model,

whih ould learn monotone o(log

2

n)-term DNF, and is the �rst eÆient

algorithm for monotone (log n)

!(1)

-term DNF in any nontrivial model of

learning from random examples. We also show that various lasses of

small onstant-depth iruits whih ompute monotone funtions on few

input variables are PAC learnable in polynomial time under the uniform

distribution. All of our results extend to learning under any onstant-

bounded produt distribution.

1 Introdution

A disjuntive normal form formula, or DNF, is a disjuntion of onjuntions of

Boolean literals. The size of a DNF is the number of onjuntions (also known

as terms) whih it ontains. In a seminal 1984 paper [30℄ Valiant introdued the

distribution-free model of Probably Approximately Corret (PAC) learning from

random examples and posed the question of whether polynomial-size DNF are

PAC learnable in polynomial time. Over the past �fteen years the DNF learning

problem has been widely viewed as one of the most important { and hallenging

{ open questions in omputational learning theory. This paper substantially

improves the best previous results for a well-studied restrited version of the

DNF learning problem.

1.1 Previous Work

The lak of progress on Valiant's original question { are polynomial-size DNF

learnable from random examples drawn from an arbitrary distribution in poly-

nomial time? { has led many researhers to study restrited versions of the DNF

learning problem. As detailed below, the restritions whih have been onsidered

inlude

{ allowing the learner to make membership queries for the value of the target

funtion at points seleted by the learner;



{ requiring that the learner sueed only under restrited distributions on ex-

amples, suh as the uniform distribution, rather than all distributions;

{ requiring that the learner sueed only for restrited sublasses of DNF for-

mulae suh as monotone DNF with a bounded number of terms.

A SAT-k DNF is a DNF in whih eah truth assignment satis�es at most

k terms. Khardon [22℄ gave a polynomial time membership query algorithm

for learning polynomial-size SAT-1 DNF under the uniform distribution; this

result was later strengthened by Blum et al. [4℄ to SAT-k DNF for any onstant

k: Bellare [6℄ gave a polynomial time membership query algorithm for learning

O(log n)-term DNF under the uniform distribution. This result was strengthened

by Blum and Rudih [7℄ who gave a polynomial time algorithm for exat learning

O(log n)-term DNF using membership and equivalene queries; several other

polynomial-time algorithms for O(log n)-term DNF have sine been given in

this model [3, 9, 10, 25℄. Mansour [27℄ gave a n

O(log logn)

-time membership query

algorithm whih learns polynomial-size DNF under the uniform distribution.

In a elebrated result, Jakson [18℄ gave a polynomial-time membership query

algorithm for learning polynomial-size DNF under onstant-bounded produt

distributions. His algorithm, the eÆieny of whih was subsequently improved

by several authors [11, 23℄, is the only known polynomial time algorithm for

learning the unrestrited lass of polynomial size DNF in any learning model.

In the standard PAC model without membership queries positive results are

known for various sublasses of DNF under restrited distributions. A read-k

DNF is one in whih eah variable appears at most k times. Kearns et al. [20, 21℄

showed that read-one DNF are PAC learnable under the uniform distribution

in polynomial time. Hanok [15℄ extended this result to read-k DNF for any

onstant k: Verbeurgt [31℄ gave an algorithm for learning arbitrary polynomial-

size DNF under the uniform distribution in time n

O(logn)

; and Linial et al. [26℄

gave an algorithm for learning any AC

0

iruit (onstant depth, polynomial size,

unbounded fanin AND/OR gates) under the uniform distribution in n

poly(logn)

time.

A monotone DNF is a DNF with no negated variables. It is well known that

in the distribution-independent setting, learning monotone DNF is equivalent to

learning general DNF [20℄. However this equivalene does not hold for restrited

distributions suh as the uniform distribution, and many researhers have stud-

ied the problem of learning monotone DNF under restrited distributions. Han-

ok and Mansour [16℄ gave a polynomial time algorithm for learning monotone

read-k DNF under onstant-bounded produt distributions. Verbeurgt [32℄ gave

a polynomial time uniform distribution algorithm for learning poly-disjoint one-

read-one monotone DNF and read-one fatorable monotone DNF. Kuera et

al. [24℄ gave a polynomial-time algorithm whih learns monotone k-term DNF

under the uniform distribution using hypotheses whih are monotone k-term

DNF. This was improved by Sakai and Maruoka [29℄ who gave a polynomial-

time algorithm for learning monotone O(log n)-term DNF under the uniform

distribution using hypotheses whih are monotone O(log n)-term DNF. In [9℄

Bshouty gave a polynomial-time uniform-distribution algorithm for learning a



lass whih inludes monotone O(log n)-term DNF. Later Bshouty and Tamon

[12℄ gave a polynomial-time algorithm for learning a lass whih inludes mono-

tone O(log

2

n=(log logn)

3

)-term DNF under onstant-bounded produt distri-

butions.

1.2 Our Results

We give an algorithm for learning monotone DNF under the uniform distribu-

tion. If the desired auray level � is onstant as a funtion of n (the number of

variables), then the algorithm learns 2

O(

p

logn)

-term monotone DNF over n vari-

ables in poly(n) time. (We note that the algorithm of [12℄ for learning monotone

DNF with O((logn)

2

=(log logn)

3

) terms also requires that � be onstant in order

to ahieve poly(n) runtime.) This is the �rst polynomial time algorithm whih

uses only random examples and suessfully learns monotone DNF with more

than a polylogarithmi number of terms. We also show that essentially the same

algorithm learns various lasses of small onstant-depth iruits whih ompute

monotone funtions on few variables. All of our results extend to learning under

any onstant-bounded produt distribution.

Our algorithm ombines ideas from Linial et al.'s inuential paper [26℄ on

learning AC

0

funtions using the Fourier transform and Bshouty and Tamon's

paper [12℄ on learning monotone funtions using the Fourier transform. By ana-

lyzing the Fourier transform of AC

0

funtions, Linial et al. showed that almost

all of the Fourier \power spetrum" of any AC

0

funtion is ontained in \low"

Fourier oeÆients, i.e. oeÆients whih orrespond to small subsets of vari-

ables. Their learning algorithm estimates eah low Fourier oeÆient by sam-

pling and onstruts an approximation to f using these estimated Fourier oeÆ-

ients. If  is the size bound for low Fourier oeÆients, then sine there are

�

n



�

Fourier oeÆients orresponding to subsets of  variables the algorithm requires

roughly n



time steps. Linial et al. showed that for AC

0

iruits  is essentially

poly(logn); this result was later sharpened for DNF formulae by Mansour [27℄.

Our algorithm extends this approah in the following way: Let C � AC

0

be

a lass of Boolean funtions whih we would like to learn. Suppose that C has

the following properties:

1. For every f 2 C there is a set S

f

of \important" variables suh that almost all

of the power spetrum of f is ontained in Fourier oeÆients orresponding

to subsets of S

f

:

2. There is an eÆient algorithm whih identi�es the set S

f

from random ex-

amples.

(Suh an algorithm, whih we give in Setion 3.1, is impliit in [12℄ and requires

only that f be monotone.) We an learn an unknown funtion f from suh a

lass C by �rst identifying the set S

f

; then estimating the low Fourier oeÆients

whih orrespond to small subsets of S

f

and using these estimates to onstrut an

approximation to f: To see why this works, note that sine f is in AC

0

almost all

of the power spetrum of f is in the low Fourier oeÆients; moreover, property



(1) implies that almost all of the power spetrum of f is in the Fourier oeÆients

whih orrespond to subsets of S

f

: Consequently it must be the ase that almost

all of the power spetrum of f is in low Fourier oeÆients whih orrespond

to subsets of S

f

: Thus in our setting we need only estimate the

�

jS

f

j



�

Fourier

oeÆients whih orrespond to \small" subsets of variables in S

f

: If jS

f

j � n

then this is muh more eÆient than estimating all

�

n



�

low Fourier oeÆients.

In Setion 2 we formally de�ne the learning model and give some neessary

fats about Fourier analysis over the Boolean ube. In Setion 3 we give our

learning algorithm for the uniform distribution, and in Setion 4 we desribe

how the algorithm an be modi�ed to work under any onstant-bounded produt

distribution.

2 Preliminaries

We write [n℄ to denote the set f1; : : : ; ng and use apital letters for subsets

of [n℄: We write jAj to denote the number of elements in A: Barred lowerase

letters denote bitstrings, i.e. x = (x

1

; : : : ; x

n

) 2 f0; 1g

n

: In this paper Boolean

iruits are omposed of AND/OR/NOT gates where AND and OR gates have

unbounded fanin and negations our only on inputs. We view Boolean funtions

on n variables as real valued funtions whih map f0; 1g

n

to f�1; 1g: A Boolean

funtion f : f0; 1g

n

! f�1; 1g is monotone if hanging the value of an input bit

from 0 to 1 never auses the value of f to hange from 1 to �1:

If D is a distribution and f is a Boolean funtion on f0; 1g

n

; then as in [12,

16℄ we say that the inuene of x

i

on f with respet to D is the probability that

f(x) di�ers from f(y); where y is x with the i-th bit ipped and x is drawn from

D: For ease of notation let f

i;0

denote the funtion obtained from f by �xing x

i

to 0 and let f

i;1

be de�ned similarly. We thus have

I

D;i

(f) = Pr

D

[f

i;0

(x) 6= f

i;1

(x)℄ =

1

2

E

D

[jf

i;1

� f

i;0

j℄:

For monotone f this an be further simpli�ed to

I

D;i

(f) =

1

2

E

D

[f

i;1

� f

i;0

℄ =

1

2

(E

D

[f

i;1

℄�E

D

[f

i;0

℄) : (1)

We frequently use Cherno� bounds on sums of independent random variables

[14℄:

Theorem 1. Let x

1

; : : : ; x

m

be independent identially distributed random vari-

ables with E[x

i

℄ = p; jx

i

j � B; and let s

m

= x

1

+ � � �+ x

m

: Then

m �

2B

2

�

2

ln

2

Æ

implies that Pr

h

�

�

�

s

m

m

� p

�

�

�

> �

i

� Æ:



2.1 The Learning Model

Our learning model is a distribution-spei� version of Valiant's Probably Ap-

proximately Corret (PAC) model [30℄ whih has been studied by many re-

searhers, e.g. [4, 6, 11{13, 16, 18, 22, 24, 26, 27, 31, 32℄. Let C be a lass of Boolean

funtions over f0; 1g

n

; let D be a probability distribution over f0; 1g

n

; and let

f 2 C be an unknown target funtion. A learning algorithm A for C takes as

input an auray parameter 0 < � < 1 and a on�dene parameter 0 < Æ < 1:

During its exeution the algorithm has aess to an example orale EX(f;D)

whih, when queried, generates a random labeled example hx; f(x)i where x is

drawn aording to D: The learning algorithm outputs a hypothesis h whih

is a Boolean funtion over f0; 1g

n

; the error of this hypothesis is de�ned to be

error(h; f) = Pr

D

[h(x) 6= f(x)℄: We say that A learns C under D if for every

f 2 C and 0 < �; Æ < 1; with probability at least 1 � Æ algorithm A outputs a

hypothesis h whih has error(h; f) � �:

2.2 The Disrete Fourier Transform

Let U denote the uniform distribution over f0; 1g

n

: The set of all real valued

funtions on f0; 1g

n

may be viewed as a 2

n

-dimensional vetor spae with inner

produt de�ned as

hf; gi = 2

�n

X

x2f0;1g

n

f(x)g(x) = E

U

[fg℄

and norm de�ned as kfk =

p

hf; fi: Given any subset A � [n℄; the Fourier

basis funtion �

A

: f0; 1g

n

! f�1; 1g is de�ned by �

A

(x) = (�1)

jA\Xj

; where

X is the subset of [n℄ de�ned by i 2 X i� x

i

= 1: It is well known that the

2

n

basis funtions �

A

form an orthonormal basis for the vetor spae of real

valued funtions on f0; 1g

n

; we refer to this basis as the � basis. In partiular,

any funtion f an be uniquely expressed as f(x) =

P

A

^

f(A)�

A

(x); where the

values

^

f(A) are known as the Fourier oeÆients of f with respet to the � basis.

Sine the funtions �

A

form an orthonormal basis, the value of

^

f(A) is hf; �

A

i;

also, by linearity we have that f(x) + g(x) =

P

A

(

^

f(A) + ĝ(A))�

A

(x): Another

easy onsequene of orthonormality is Parseval's identity

E

U

[f

2

℄ = kfk

2

=

X

A�[n℄

^

f(A)

2

:

If f is a Boolean funtion then this value is exatly 1. Finally, for any Boolean

funtion f and real-valued funtion g we have [12, 26℄

Pr

U

[f 6= sign(g)℄ � E

U

[(f � g)

2

℄ (2)

where sign(z) takes value 1 if z � 0 and takes value �1 if z < 0:



3 Learning under Uniform Distributions

3.1 Identifying Relevant Variables

The following lemma, whih is impliit in [12℄, gives an eÆient algorithm for

identifying the important variables of a monotone Boolean funtion. We refer to

this algorithm as FindVariables.

Lemma 1. Let f : f0; 1g

n

! f�1; 1g be a monotone Boolean funtion. There

is an algorithm whih has aess to EX(f;U); runs in poly(n; 1=�; log 1=Æ) time

steps for all �; Æ > 0; and with probability at least 1 � Æ outputs a set S

f

� [n℄

suh that

i 2 S

f

implies

X

A:i2A

^

f(A)

2

� �=2 and i =2 S

f

implies

X

A:i2A

^

f(A)

2

� �:

Proof. Kahn et al. ([19℄ Setion 3) have shown that

I

U ;i

(f) =

X

A:i2A

^

f(A)

2

: (3)

To prove the lemma it thus suÆes to show that I

U ;i

(f) an be estimated to

within auray �=4 with high probability. By Equation (1) from Setion 2 this

an be done by estimating E

U

[f

i;1

℄ and E

U

[f

i;0

℄: Two appliations of Cherno�

bounds �nish the proof: the �rst is to verify that with high probability a large

sample drawn from EX(f;U) ontains many labeled examples whih have x

i

= 1

and many whih have x

i

= 0; and the seond is to verify that a olletion of

many labeled examples with x

i

= b with high probability yields an aurate

estimate of E

U

[f

i;b

℄: ut

3.2 The Learning Algorithm

Our learning algorithm, whih we all LearnMonotone, is given below:

{ Use FindVariables to identify a set S

f

of important variables.

{ Draw m labeled examples hx

1

; f(x

1

)i; : : : ; hx

m

; f(x

m

)i from EX(f;U): For

every A � S

f

with jAj �  set �

A

=

1

m

P

m

i=1

f(x

i

)�

A

(x

i

): For every A suh

that jAj >  or A 6� S

f

set �

A

= 0:

{ Output the hypothesis sign(g(x)); where g(x) =

P

A

�

A

�

A

(x):

The algorithm thus estimates

^

f(A) for A � S

f

; jAj �  by sampling and on-

struts a hypothesis using these approximate Fourier oeÆients. The values of

m and  and the parameter settings for FindVariables are spei�ed below.



3.3 Learning Monotone 2

O(

p

logn)

-term DNF

Let f : f0; 1g

n

! f�1; 1g be a monotone t-term DNF. The proof that algorithm

LearnMonotone learns f uses a DNF alled f

1

to show that FindVariables

identi�es a small set of variables S

f

and uses another DNF alled f

2

to show that

f an be approximated by approximating Fourier oeÆients whih orrespond

to small subsets of S

f

:

Let f

1

be the DNF whih is obtained from f by removing every term whih

ontains more than log

32tn

�

variables. Sine there are at most t suh terms eah

of whih is satis�ed by a random example with probability less than �=32tn; we

have Pr

U

[f(x) 6= f

1

(x)℄ <

�

32n

(this type of argument was �rst used by Verbeurgt

[31℄). Let R � [n℄ be the set of variables whih f

1

depends on; it is lear that

jRj � t log

32tn

�

:Moreover, sine I

U ;i

(f

1

) = 0 for i =2 R; equation (3) from Setion

3.1 implies that

^

f

1

(A) = 0 for A 6� R:

Sine f and f

1

are Boolean funtions, f�f

1

is either 0 or 2, so E

U

[(f�f

1

)

2

℄ =

4Pr

U

[f 6= f

1

℄ < �=8n: By Parseval's identity we have

E

U

[(f � f

1

)

2

℄ =

X

A

(

^

f(A)�

^

f

1

(A))

2

=

X

A�R

(

^

f(A)�

^

f

1

(A))

2

+

X

A6�R

(

^

f(A)�

^

f

1

(A))

2

=

X

A�R

(

^

f(A)�

^

f

1

(A))

2

+

X

A6�R

(

^

f(A))

2

< �=8n:

Thus

P

A6�R

^

f(A)

2

<

�

8n

; and onsequently we have

i =2 R implies

X

A:i2A

^

f(A)

2

<

�

8n

: (4)

We set the parameters of FindVariables so that with high probability

i 2 S

f

implies

X

A:i2A

^

f(A)

2

� �=8n (5)

i =2 S

f

implies

X

A:i2A

^

f(A)

2

� �=4n: (6)

Inequalities (4) and (5) imply that S

f

� R; so jS

f

j � t log

32tn

�

: Furthermore,

sine A 6� S

f

implies i 2 A for some i =2 S

f

; inequality (6) implies

X

A6�S

f

^

f(A)

2

� �=4: (7)

The following lemma is due to Mansour ([27℄ Lemma 3.2):



Lemma 2 (Mansour). Let f be a DNF with terms of size at most d: Then for

all � > 0

X

jAj>20d log(2=�)

^

f(A)

2

� �=2:

One approah at this point is to use Mansour's lemma to approximate f by

approximating the Fourier oeÆients of all subsets of S

f

whih are smaller

than 20d log(2=�); where d = log

32tn

�

is the maximum size of any term in f

1

:

However, this approah does not give a good overall running time beause d is too

large. Instead we onsider another DNF with smaller terms than f

1

whih also

losely approximates f: By using this stronger bound on term size in Mansour's

lemma we get a better �nal result.

More preisely, let f

2

be the DNF obtained from f by removing every term

whih ontains at least log

32t

�

variables. Let  = 20 log

128t

�

log

8

�

: Mansour's

lemma implies that

X

jAj>

^

f

2

(A)

2

� �=8: (8)

Moreover, we have Pr

U

[f 6= f

2

℄ � �=32 and hene

4Pr

U

[f 6= f

2

℄ = E

U

[(f � f

2

)

2

℄ =

X

A

(

^

f(A)�

^

f

2

(A))

2

� �=8: (9)

Let �

A

and g(x) be as de�ned in LearnMonotone. Using inequality (2) from

Setion 2.2, we have

Pr[sign(g) 6= f ℄ � E

U

[(g � f)

2

℄ =

X

A

(�

A

�

^

f(A))

2

= X + Y + Z;

where

X =

X

jAj�;A6�S

f

(�

A

�

^

f(A))

2

;

Y =

X

jAj>

(�

A

�

^

f(A))

2

;

Z =

X

jAj�;A�S

f

(�

A

�

^

f(A))

2

:

To bound X; we observe that �

A

= 0 for A 6� S

f

; so by (7) we have

X =

X

jAj�;A6�S

f

^

f(A)

2

�

X

A6�S

f

^

f(A)

2

� �=4:

To bound Y; we note that �

A

= 0 for jAj >  and hene Y =

P

jAj>

^

f(A)

2

:

Sine

^

f(A)

2

� 2(

^

f(A)�

^

f

2

(A))

2

+ 2

^

f

2

(A)

2

, we have

Y � 2

X

jAj>

(

^

f(A)�

^

f

2

(A))

2

+ 2

X

jAj>

^

f

2

(A)

2



� 2

X

A

(

^

f(A)�

^

f

2

(A))

2

+ �=4

� �=2

by inequalities (8) and (9) respetively.

It remains to bound Z =

P

jAj�;A�S

f

(�

A

�

^

f(A))

2

: As in Linial et al. [26℄

this sum an be made less than �=4 by taking m suÆiently large so that with

high probability eah estimate �

A

di�ers from the true value

^

f(A) by at most

p

�=4jS

f

j



: A straightforward Cherno� bound argument shows that taking m =

poly(jS

f

j



; 1=�; log(1=Æ)) suÆes.

Thus, we have X + Y + Z � �: Realling our bounds on jS

f

j and ; we have

proved:

Theorem 2. Under the uniform distribution, for any �; Æ > 0; the algorithm

LearnMonotone an be used to learn t-term monotone DNF in time polynomial

in n; (t log

tn

�

)

log

t

�

log

1

�

and log(1=Æ):

Taking t = 2

O(

p

log n)

we obtain the following orollary:

Corollary 1. For any onstant � algorithm LearnMonotone learns 2

O(

p

logn)

-

term monotone DNF in poly(n; log(1=Æ)) time under the uniform distribution.

As noted earlier, Bshouty and Tamon's algorithm [12℄ for learning monotone

DNF with O((logn)

2

=(log logn)

3

) terms also requires that � be onstant in order

to ahieve poly(n) runtime.

3.4 Learning Small Constant-Depth Monotone Ciruits on Few

Variables

Let C be the lass of depth d; sizeM iruits whih ompute monotone funtions

on r out of n variables. An analysis similar to that of the last setion (but

simpler sine we do not need to introdue auxiliary funtions f

1

and f

2

) shows

that algorithm LearnMonotone an be used to learn C: As in the last setion the

FindVariables proedure is used to identify the \important" relevant variables,

of whih there are now at most r: Instead of using Mansour's lemma, we use the

main lemma of Linial et al. [26℄ to bound the total weight of high-order Fourier

oeÆients for onstant-depth iruits:

Lemma 3 (Linial et al.). Let f be a Boolean funtion omputed by a iruit

of depth d and size M and let  be any integer. Then

X

jAj>

^

f(A)

2

� 2M2

�

1=d

=20

:

Taking m = poly(r



; 1=�; log(1=Æ)) and  = �((log(M=�))

d

) in LearnMonotone

we obtain:



Theorem 3. Fix d � 1 and let C

d;M;r

be the lass of depth d, size M iruits

whih ompute monotone funtions on r out of n variables. Under the uniform

distribution, for any �; Æ > 0; algorithm LearnMonotone learns lass C

d;M;r

in

time polynomial in n; r

(log(M=�))

d

and log(1=Æ):

One interesting orollary is the following:

Corollary 2. Fix d � 1 and let C

d

be the lass of depth d; size 2

O((logn)

1=(d+1)

)

iruits whih ompute monotone funtions on 2

O((logn)

1=(d+1)

)

variables. Then

for any onstant � algorithm LearnMonotone learns lass C

d

in poly(n; log(1=Æ))

time.

While this lass C

d

is rather limited from the perspetive of Boolean ir-

uit omplexity, from a learning theory perspetive it is fairly rih. We note

that C

d

stritly inludes the lass of depth d; size 2

O((logn)

1=(d+1)

)

iruits on

2

O((logn)

1=(d+1)

)

variables whih ontain only unbounded fanin AND and OR

gates. This follows from results of Okol'nishnikova [28℄ and Ajtai and Gurevih

[1℄ (see also [8℄ Setion 3.6) whih show that there are monotone funtions whih

an be omputed by AC

0

iruits but are not omputable by AC

0

iruits whih

have no negations.

4 Produt Distributions

A produt distribution over f0; 1g

n

is haraterized by parameters �

1

; : : : ; �

n

where �

i

= Pr[x

i

= 1℄: Suh a distribution D assigns values independently to

eah variable, so for a 2 f0; 1g

n

we have D(a) =

�

Q

a

i

=1

�

i

� �

Q

a

i

=0

(1� �

i

)

�

:

The uniform distribution is a produt distribution with eah �

i

= 1=2: The

standard deviation of x

i

under a produt distribution is �

i

=

p

�

i

(1� �

i

): A

produt distribution D is onstant-bounded if there is some onstant  2 (0; 1)

independent of n suh that �

i

2 [; 1 � ℄ for all i = 1; : : : ; n: We let � denote

max

i=1;:::;n

(1=�

i

; 1=(1 � �

i

)): Throughout the rest of this paper D denotes a

produt distribution.

Given a produt distribution D we de�ne a new inner produt over the vetor

spae of real valued funtions on f0; 1g

n

as

hf; gi

D

=

X

x2f0;1g

n

D(x)f(x)g(x) = E

D

[fg℄

and a orresponding norm kfk

D

=

p

hf; fi

D

: We refer to this norm as the

D-norm. For i = 1; : : : ; n let z

i

= (x

i

� �

i

)=�

i

: Given A � [n℄; let �

A

be

de�ned as �

A

(x) =

Q

i2A

z

i

: As noted by Bahadur [5℄ and Furst et al. [13℄, the

2

n

funtions �

A

form an orthonormal basis for the vetor spae of real valued

funtions on f0; 1g

n

with respet to the D-norm, i.e. h�

A

; �

B

i

D

is 1 if A = B

and is 0 otherwise. We refer to this basis as the � basis. The following fat is

useful:



Fat 1 (Bahadur; Furst et. al) The � basis is the basis whih would be ob-

tained by Gram-Shmidt orthonormalization (with respet to the D-norm) of the

� basis performed in order of inreasing jAj:

By the orthonormality of the � basis, any real funtion on f0; 1g

n

an be uniquely

expressed as f(x) =

P

A

~

f(A)�

A

(x) where

~

f(A) = hf; �

A

i

D

is the Fourier o-

eÆient of A with respet to the � basis. Note that we write

~

f(A) for the �

basis Fourier oeÆient and

^

f(A) for the � basis Fourier oeÆient. Also by

orthonormality we have Parseval's identity

E

D

[f

2

℄ = kfk

2

D

=

X

A�[n℄

~

f(A)

2

whih is 1 for Boolean f: Finally, for Boolean f and real-valued g we have ([13℄

Lemma 10)

Pr

D

[f 6= sign(g)℄ � E

D

[(f � g)

2

℄: (10)

Furst et al. [13℄ analyzed the � basis Fourier spetrum of AC

0

funtions

and gave produt distribution analogues of Linial et al.'s results on learning

AC

0

iruits under the uniform distribution. In Setion 4.1 we sharpen and

extend some results from [13℄, and in Setion 5 we use these sharpened results

together with tehniques from [13℄ to obtain produt distribution analogues of

our algorithms from Setion 3.

4.1 Some � Basis Fourier Lemmas

A random restrition �

p;D

is a mapping from fx

1

; : : : ; x

n

g to f0; 1; �g where x

i

is mapped to � with probability p; to 1 with probability (1� p)�

i

; and to 0 with

probability (1 � p)(1 � �

i

): If f is a Boolean funtion then fd� represents the

funtion f(�

p;D

(x)) whose variables are those x

i

whih are mapped to � and

whose other x

i

are instantiated as 0 or 1 aording to �

p;D

:

The following is a variant of H�astad's well known swithing lemma [17℄:

Lemma 4. Let D be a produt distribution with parameters �

i

and � as de�ned

above, let f be a CNF formula where eah lause has at most d literals, and let

�

p;D

be a random restrition. Then with probability at least 1� (4�pd)

s

;

1. the funtion fd� an be expressed as a DNF formula where eah term has at

most s literals;

2. the terms of suh a DNF all aept disjoint sets of inputs.

Proof sketh: The proof is a minor modi�ation of arguments given in Setion 4

of [2℄. ut

The following orollary is a produt distribution analogue of ([26℄ Corollary

1):



Corollary 3. Let D be a produt distribution with parameters �

i

and �; let f be

a CNF formula where eah lause has at most d literals, and let �

p;D

be a random

restrition. Then with probability at least 1� (4�pd)

s

we have that

g

fd�(A) = 0

for all jAj > s:

Proof. Linial et al. [26℄ show that if fd� satis�es properties (1) and (2) of Lemma

4 then

d

fd�(A) = 0 for all jAj > s: Hene suh a fd� is in the spae spanned by

f�

A

: jAj � sg: By Fat 1 and the nature of Gram-Shmidt orthonormalization,

this is the same spae whih is spanned by f�

A

: jAj � sg; and the orollary

follows. ut

Corollary 3 is a sharpened version of a similar lemma, impliit in [13℄, whih

states that under the same onditions with probability at least 1 � (5�pd=2)

s

we have

g

fd�(A) = 0 for all jAj > s

2

: Armed with the sharper Corollary 3, using

arguments from [13℄ it is straightforward to prove

Lemma 5. For any Boolean funtion f; for any integer t;

X

jAj>t

~

f(A)

2

� 2 Pr

�

p;D

[

g

fd�(A) 6= 0 for some jAj > tp=2℄:

Boolean duality implies that the onlusion of Corollary 3 also holds if f is

a DNF with eah term of length at most d: Taking p = 1=8�d and s = log

4

�

in

this DNF version of Corollary 3 and t = 16�d log

4

�

in Lemma 5, we obtain the

following analogue of Mansour's lemma (Lemma 2) for the � basis:

Lemma 6. Let f be a DNF with terms of size at most d: Then for all � > 0

X

jAj>16�d log(4=�)

~

f(A)

2

� �=2:

Again using arguments from [13℄, Corollary 3 an also be used to prove the

following version of the main lemma from [13℄:

Lemma 7. Let f be a Boolean funtion omputed by a iruit of depth d and

size M and let  be any integer. Then

X

jAj>

~

f(A)

2

� 2M2

�

1=d

=8�

:

The version of this lemma given in [13℄ has 1=(d + 2) instead of 1=d in the

exponent of : This new tighter bound will enable us to give stronger guarantees

on our learning algorithm's performane under produt distributions than we

ould have obtained by simply using the lemma from [13℄.



5 Learning under Produt Distributions

5.1 Identifying Relevant Variables

We have the following analogue to Lemma 2 for produt distributions:

Lemma 8. Let f : f0; 1g

n

! f�1; 1g be a monotone Boolean funtion. There is

an algorithm whih has aess to EX(f;D); runs in poly(n; �; 1=�; log 1=Æ) time

steps for all �; Æ > 0; and with probability at least 1 � Æ outputs a set S

f

� [n℄

suh that

i 2 S

f

implies

X

A:i2A

~

f(A)

2

� �=2 and i =2 S

f

implies

X

A:i2A

~

f(A)

2

� �:

The proof uses the fat ([12℄ Lemma 4.1) that 4�

2

i

I

D;i

(f) =

P

A:i2A

~

f(A)

2

for

any Boolean funtion f and any produt distribution D: The algorithm uses

sampling to approximate eah �

i

(and thus �

i

) and to approximate I

D;i

(f): We

all this algorithm FindVariables2.

5.2 The Learning Algorithm

We would like to modify LearnMonotone so that it uses the � basis rather than

the � basis. However, as in [13℄ the algorithm does not know the exat values

of �

i

so it annot use exatly the � basis; instead it approximates eah �

i

by a

sample value �

0

i

and uses the resulting basis, whih we all the �

0

basis. In more

detail, the algorithm is as follows:

{ Use FindVariables2 to identify a set S

f

of important variables.

{ Drawm labeled examples hx

1

; f(x

1

)i; : : : ; hx

m

; f(x

m

)i from EX(f;D): Com-

pute �

0

i

=

1

m

P

m

j=1

x

j

i

for 1 � i � n: De�ne z

0

i

= (x

i

� �

0

i

)=

p

�

0

i

(1� �

0

i

) and

�

0

A

=

Q

i2A

z

0

i

:

{ For every A � S

f

with jAj �  set �

0

A

=

1

m

P

m

j=1

f(x

j

)�

0

A

(x

j

): If j�

0

A

j > 1

set �

0

A

= sign(�

0

A

): For every A suh that jAj >  or A 6� S

f

set �

0

A

= 0:

{ Output the hypothesis sign(g(x)); where g(x) =

P

A

�

0

A

�

A

(x):

We all this algorithm LearnMonotone2. As in [13℄ we note that setting �

0

A

to

�1 if j�

0

A

j > 1 an only bring the estimated value loser to the true value of

~

f(A):

5.3 Learning Monotone 2

O(

p

logn)

-term DNF

For the most part only minor hanges to the analysis of Setion 3.3 are required.

Sine a term of size greater than d is satis�ed by a random example from D with

probability less than (

��1

�

)

d

; we now take log �

��1

32tn

�

= �(� log

tn

�

) as the term

size bound for f

1

: Proeeding as in Setion 3.3 we obtain jS

f

j = O(�t log

tn

�

):

We similarly set a term size bound of �(� log

t

�

) for f

2

: We use the � basis



Parseval identity and inequality (10) in plae of the � basis identity and in-

equality (2) respetively. Lemma 6 provides the required analogue of Mansour's

lemma for produt distributions; using the new term size bound on f

2

we obtain

 = �(�

2

log

t

�

log

1

�

):

The one new ingredient in the analysis of LearnMonotone2 omes in bounding

the quantity Z =

P

jAj�;A�S

f

(�

0

A

�

~

f(A))

2

: In addition to the sampling error

whih would be present even if �

0

i

were exatly �

i

; we must also deal with error

due to the fat that �

0

A

is an estimate of the �

0

basis oeÆient rather than the

� basis oeÆient

~

f(A): An analysis entirely similar to that of Setion 5.2 of [13℄

shows that taking m = poly(; jS

f

j



; �



; 1=�; log(1=Æ)) suÆes. We thus have

Theorem 4. Under any produt distribution D; for any �; Æ > 0; algorithm

LearnMonotone2 an be used to learn t-term monotone DNF in time polynomial

in n; (�t log

tn

�

)

�

2

log

t

�

log

1

�

; and log(1=Æ):

Sine a onstant-bounded produt distribution D has � = �(1); we obtain

Corollary 4. For any onstant � and any onstant-bounded produt distribu-

tion D; algorithm LearnMonotone2 learns 2

O(

p

logn)

-term monotone DNF in

poly(n; log(1=Æ)) time.

5.4 Learning Small Constant-Depth Monotone Ciruits on Few

Variables

Using Lemma 7 and an analysis similar to the above, we obtain

Theorem 5. Fix d � 1 and let C be the lass of depth d, size M iruits

whih ompute monotone funtions on r out of n variables. Under any produt

distribution D; for any �; Æ > 0; algorithm LearnMonotone2 learns lass C in

time polynomial in n; r

(� log

M

�

)

d

and log(1=Æ):

Corollary 5. Fix d � 1 and let C be the lass of depth d; size 2

O((logn)

1=(d+1)

)

iruits whih ompute monotone funtions on 2

O((logn)

1=(d+1)

)

variables. Then

for any onstant � and any onstant-bounded produt distribution D; algorithm

LearnMonotone2 learns lass C in poly(n; log(1=Æ)) time.

6 Open Questions

The positive results reported in this paper for 2

O(

p

logn)

-term DNF provide some

hope that it may be possible to obtain a polynomial time algorithm for learning

polynomial size monotone DNF under the uniform distribution from random

examples only. We note that in the non-monotone ase muh less is known;

in partiular, it would be a signi�ant step forward to give a polynomial time

algorithm for learning arbitrary t(n)-term DNF under the uniform distribution,

from random examples only, for any t(n) = !(1):
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