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Abstrat. We desribe a new boosting algorithm whih generates only

smooth distributions whih do not assign too muh weight to any single

example. We show that this new boosting algorithm an be used to on-

strut eÆient PAC learning algorithms whih tolerate relatively high

rates of maliious noise. In partiular, we use the new smooth boost-

ing algorithm to onstrut maliious noise tolerant versions of the PAC-

model p-norm linear threshold learning algorithms desribed in [23℄. The

bounds on sample omplexity and maliious noise tolerane of these new

PAC algorithms losely orrespond to known bounds for the online p-

norm algorithms of Grove, Littlestone and Shuurmans [14℄ and Gentile

and Littlestone [13℄. As speial ases of our new algorithms we obtain

linear threshold learning algorithms whih math the sample omplexity

and maliious noise tolerane of the online Pereptron and Winnow algo-

rithms. Our analysis reveals an interesting onnetion between boosting

and noise tolerane in the PAC setting.

1 Introdution

Any realisti model of learning from examples must address the issue of noisy

data. In 1985 Valiant introdued the notion of PAC learning in the presene

of maliious noise. This is a worst-ase model of errors in whih some fration

of the labeled examples given to a learning algorithm may be orrupted by an

adversary who an modify both example points and labels in an arbitrary fashion

(a detailed desription of the model is given in Setion 3). The frequeny of suh

orrupted examples is known as the maliious noise rate.

Learning in the presene of maliious noise is in general quite diÆult. Kearns

and Li [16℄ have shown that for many onept lasses it is impossible to learn to

auray � if the maliious noise rate exeeds

�

1+�

: In fat, for many interesting

onept lasses (suh as the lass of linear threshold funtions), the best eÆient

algorithms known an only tolerate maliious noise rates signi�antly lower than

this general upper bound. Despite these diÆulties, the importane of being able

to ope with noisy data has led many researhers to study PAC learning in the

presene of maliious noise (see e.g. [1{3, 6, 7, 20℄).

In this paper we give a new smooth boosting algorithm whih an be used

to transform a maliious noise tolerant weak learning algorithm into a PAC



algorithm whih learns suessfully in the presene of maliious noise. We use

this smooth boosting algorithm to onstrut a family of PAC algorithms for

learning linear threshold funtions in the presene of maliious noise. These new

algorithms math the sample omplexity and noise tolerane of the online p-

norm algorithms of Grove, Littlestone and Shuurmans [14℄ and Gentile and

Littlestone [13℄, whih inlude as speial ases the well-known Pereptron and

Winnow algorithms.

1.1 Smooth Boosting and Learning with Maliious Noise

Our basi approah is quite simple, as illustrated by the following example.

Consider a learning senario in whih we have a weak learning algorithm L

whih takes as input a �nite sample S of m labeled examples. Algorithm L is

known to have some tolerane to maliious noise; spei�ally, L is guaranteed to

generate a hypothesis with nonnegligible advantage provided that the frequeny

of noisy examples in its sample is at most 10%: We would like to learn to high

auray in the presene of maliious noise at a rate of 1%.

The obvious approah in this setting is to use a boosting algorithm, whih

will generate some sequene of distributions D

1

;D

2

; : : : over S: This approah

an fail, though, if the boosting algorithm generates distributions whih are very

skewed from the uniform distribution on S; if distribution D

i

assigns weights as

large as

20

m

to individual points in S; for instane, then the frequeny of noisy

examples for L in stage i ould be as high as 20%: What we need instead is a

smooth boosting algorithm whih only onstruts distributions D

i

over S whih

never assign weight greater than

10

m

to any single example. By using suh a

smooth booster we are assured that the weak learner will funtion suessfully

at eah stage, so the overall boosting proess will work orretly.

While the setting desribed above is arti�ial, we note that indiret empirial

evidene has been given supporting the smooth boosting approah for noisy

settings. It is well known [8, 21℄ that ommonly used boosting algorithms suh as

AdaBoost [11℄ an perform poorly on noisy data. Dietterih [8℄ has suggested that

this poor performane is due to AdaBoost's tendeny to generate very skewed

distributions whih put a great deal of weight on a few noisy examples. This

overweighting of noisy examples annot our under a smooth boosting regimen.

In Setion 2 we give a new boosting algorithm, SmoothBoost, whih is guar-

anteed to generate only smooth distributions as desribed above. We show in

Setion 5 that the distributions generated by SmoothBoost are optimally smooth.

SmoothBoost is not the �rst boosting algorithm whih attempts to avoid

the skewed distributions of AdaBoost; algorithms with similar smoothness guar-

antees have been given by Domingo and Watanabe [9℄ and Impagliazzo [15℄.

Freund [10℄ has also desribed a boosting algorithm whih uses a more moderate

weighting sheme than AdaBoost. In Setion 2.3 we show that our SmoothBoost

algorithm has several other desirable properties, suh as onstruting a large

margin �nal hypothesis, whih are essential for the noisy linear threshold learn-

ing appliation of Setion 3. We disuss the relationship between SmoothBoost

and the algorithms of [9, 10, 15℄ in Setion 2.4.



1.2 Learning Linear Threshold Funtions with Maliious Noise

We use the SmoothBoost algorithm in Setion 3 to onstrut a family of PAC-

model maliious noise tolerant algorithms for learning linear threshold funtions.

A similar family was onstruted by Servedio in [23℄ using AdaBoost instead of

SmoothBoost as the boosting omponent. It was shown in [23℄ that for linearly

separable data these PAC model algorithms have sample omplexity bounds

whih are essentially idential to those of the online p-norm linear threshold

learning algorithms of Grove, Littlestone and Shuurmans [14℄, whih inlude as

speial ases (p = 2 and p =1) the well-studied online Pereptron and Winnow

algorithms.

Gentile and Littlestone [13℄ have given mistake bounds for the online p-norm

algorithms when run on examples whih are not linearly separable, thus gener-

alizing previous bounds on noise tolerane for Pereptron [12℄ and Winnow [19℄.

A signi�ant drawbak of the AdaBoost-based PAC-model p-norm algorithms of

[23℄ is that they do not appear to sueed in the presene of maliious noise.

We show in Setion 4 that for all values 2 � p � 1; our new PAC algorithms

whih use SmoothBoost math both the sample omplexity and the maliious

noise tolerane of the online p-norm algorithms. Our onstrution thus provides

maliious noise tolerant PAC analogues of Pereptron and Winnow (and many

other algorithms as well).

2 Smooth Boosting

In this setion we desribe a new boosting algorithm, SmoothBoost, whih has

several useful properties. SmoothBoost only onstruts smooth distributions

whih do not put too muh weight on any single example; it an be used to

generate a large margin �nal hypothesis; and it an be used with a weak learn-

ing algorithm whih outputs real-valued hypotheses. All of these properties are

essential for the noisy linear threshold learning problem we address in Setion 3.

2.1 Preliminaries

We �x some terminology from [15℄ �rst. A measure on a �nite set is a funtion

M : S ! [0; 1℄: We write jM j to denote

P

x2S

M(x): Given a measure M; there

is a natural indued distribution D

M

de�ned by D

M

(x) = M(x)=jM j: This

de�nition yields

Observation 1 L

1

(D

M

) �

1

jM j

:

Let D be a distribution over a set S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i of labeled ex-

amples with eah y

j

2 f�1; 1g and let h be a real-valued funtion whih maps

fx

1

; : : : ; x

m

g into [�1; 1℄: If

1

2

P

m

j=1

D(j)jh(x

j

) � y

j

j �

1

2

�  then we say that

the advantage of h under D is : We say that an algorithm whih takes S and D

as input and outputs an h whih has advantage at least  > 0 is a weak learning

algorithm (this is somewhat less general than the notion of weak learning whih



Input: parameters 0 < � < 1; 0 � � �  <

1

2

sample S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i where eah y

i

2 f�1; 1g

weak learner WL whih takes input (S;D

t

) and outputs

h

t

: fx

1

; : : : ; x

m

g ! [�1; 1℄

Output: hypothesis h(x) = sign(f(x))

1. forall j = 1; : : : ;m set M

1

(j) = 1

2. forall j = 1; : : : ;m set N

0

(j) = 0

3. set t = 1

4. until jM

t

j=m < � do

5. forall j = 1; : : : ;m set D

t

(j) =M

t

(j)=jM

t

j

6. run WL(S;D

t

) to get h

t

suh that

1

2

P

m

j=1

D

t

(j)jh

t

(x

j

)� y

j

j �

1

2

� 

7. forall j = 1; : : : ;m set N

t

(j) = N

t�1

(j) + y

j

h

t

(x

j

)� �

8. forall j = 1; : : : ;m set M

t+1

(j) =

�

1 if N

t

(j) < 0

(1� )

N

t

(j)=2

if N

t

(j) � 0

9. set t = t+ 1

10. set T = t� 1

11. return h = sign(f(x)) where f(x) =

1

T

P

T

i=1

h

i

(x)

Fig. 1. The SmoothBoost algorithm.

was originally introdued by Kearns and Valiant in [17℄ but is suÆient for our

purposes). Finally, let g(x) = sign(f(x)) where f : X ! [�1; 1℄ is a real-valued

funtion. We say that the margin of g on a labeled example hx; yi 2 X�f�1; 1g

is yf(x); intuitively, this is the amount by whih g predits y orretly. Note

that the margin of g on hx; yi is nonnegative if and only if g predits y orretly.

2.2 The SmoothBoost Algorithm

The SmoothBoost algorithm is given in Figure 1. The parameter � is the desired

error rate of the �nal hypothesis, the parameter  is the guaranteed advantage of

the hypotheses returned by the weak learner, and � is the desired margin of the

�nal hypothesis. SmoothBoost runs the weak learning algorithm several times on

a sequene of arefully onstruted distributions and outputs a thresholded sum

of the hypotheses thus generated. The quantity N

t

(j) in line 7 may be viewed

as the umulative amount by whih the hypotheses h

1

; : : : ; h

t

beat the desired

margin � on the labeled example hx

j

; y

j

i: The measureM

t+1

assigns more weight

to examples where N

t

is small and less weight to examples where N

t

is large,

thus foring the weak learner to fous in stage t+1 on examples where previous

hypotheses have done poorly. Note that sine any measure maps into [0; 1℄ there

is a strit bound on the amount of weight whih an be assigned to any example.



2.3 Proof of Corretness

Several useful properties of the SmoothBoost algorithm are easy to verify. The

algorithm is alled SmoothBoost beause eah distribution it onstruts is guar-

anteed to be \smooth," i.e. no single point reeives too muh weight:

Lemma 1. Eah D

t

de�ned in step 5 of SmoothBoost has L

1

(D

t

) �

1

�m

:

Proof. Follows diretly from Observation 1 and the ondition in line 4. ut

Another useful property is that the �nal hypothesis h has margin at least �

on all but a � fration of the points in S :

Theorem 1. If SmoothBoost terminates then f satis�es

jfj : y

j

f(x

j

)��gj

m

< �:

Proof. Sine N

T

(j) = T (y

j

f(x

j

)� �); if y

j

f(x

j

) � � then N

T

(j) � 0 and hene

M

T+1

(j) = 1: Consequently we have

jfj : y

j

f(x

j

) � �gj

m

�

P

m

j=1

M

T+1

(j)

m

=

jM

T+1

j

m

< �

by the ondition in line 4. ut

Note that sine � � 0 Theorem 1 implies that the �nal SmoothBoost hypoth-

esis is orret on all but a � fration of S:

Finally we must show that the algorithm terminates in a reasonable amount

of time. The following theorem bounds the number of times that SmoothBoost

will exeute its main loop:

Theorem 2. If eah hypothesis h

t

returned by WL in line 6 has advantage at

least  under D

t

(i.e. satis�es the ondition of line 6) and � is set to



2+

; then

SmoothBoost terminates with T <

2

�

2

p

1�

:

As will be evident from the proof, slightly di�erent bounds on T an be

established by hoosing di�erent values of � in the range [0; ℄: We take � =



2+

in the theorem above both to obtain a margin of 
() and to obtain a lean

bound in the theorem. Theorem 2 follows from the bounds established in the

following two lemmas:

Lemma 2.

P

m

j=1

P

T

t=1

M

t

(j)y

j

h

t

(x

j

) � 2

P

T

t=1

jM

t

j:

Lemma 3. If � =



2+

; then

P

m

j=1

P

T

t=1

M

t

(j)y

j

h

t

(x

j

) <

2m



p

1�

+

P

T

t=1

jM

t

j:

Combining these bounds we obtain

2m



p

1�

> 

P

T

t=1

jM

t

j � �mT where the

last inequality is beause jM

t

j � �m for t = 1; : : : ; T:

Proof of Lemma 2: Sine h

t

(x

j

) 2 [�1; 1℄ and y

j

2 f�1; 1g; we have y

j

h

t

(x

j

) =

1� jh

t

(x

j

)� y

j

j; and thus

m

X

j=1

D

t

(j)y

j

h

t

(x

j

) =

m

X

j=1

D

t

(j)(1� jh

t

(x

j

)� y

j

j) � 2:



This implies that

m

X

j=1

T

X

t=1

M

t

(j)y

j

h

t

(x

j

) =

T

X

t=1

jM

t

j

m

X

j=1

D

t

(j)y

j

h

t

(x

j

) �

T

X

t=1

2jM

t

j:

ut

The proof of Lemma 3 is given in Appendix A.

2.4 Comparison with Other Boosting Algorithms

The SmoothBoost algorithm was inspired by an algorithm given by Impagliazzo

in the ontext of hard-ore set onstrutions in omplexity theory [15℄. Klivans

and Servedio [18℄ observed that Impagliazzo's algorithm an be reinterpreted as a

boosting algorithm whih generates distributions D

t

whih, like the distributions

generated by SmoothBoost, satisfy L

1

(D

t

) �

1

�m

: However, our SmoothBoost

algorithm di�ers from Impagliazzo's algorithm in several important ways. The

algorithm in [15℄ uses additive rather than multipliative updates forM

t

(j), and

the bound on T whih is given for the algorithm in [15℄ is O(

1

�

2



2

) whih is worse

than our bound by essentially a fator of

1

�

: Another important di�erene is that

the algorithm in [15℄ has no � parameter and does not appear to output a large

margin �nal hypothesis. Finally, the analysis in [15℄ only overs the ase where

the weak hypotheses are binary-valued rather than real-valued.

Freund and Shapire's well-known boosting algorithm AdaBoost is some-

what faster than SmoothBoost, requiring only T = O(

log(1=�)



2

) stages [11℄. Like

SmoothBoost, AdaBoost an be used with real-valued weak hypotheses and an

be used to output a large margin �nal hypothesis [22℄. However, AdaBoost is not

guaranteed to generate only smooth distributions, and thus does not appear to

be useful in a maliious noise ontext.

Freund has reently introdued and studied a sophistiated boosting al-

gorithm alled BrownBoost [10℄ whih uses a gentler weighting sheme than

AdaBoost. Freund suggests that BrownBoost should be well suited for deal-

ing with noisy data; however it is not lear from the analysis in [10℄ whether

BrownBoost-generated distributions satisfy a smoothness property suh as the

L

1

(D

t

) �

1

�m

property of SmoothBoost, or whether BrownBoost an be used

to generate a large margin �nal hypothesis. We note that the BrownBoost algo-

rithm is muh more ompliated to run than SmoothBoost, as it involves solving

a di�erential equation at eah stage of boosting.

SmoothBoost is perhaps most similar to the modi�ed AdaBoost algorithm

MadaBoost whih was reently de�ned and analyzed by Domingo and Watan-

abe [9℄. Like SmoothBoost, MadaBoost uses multipliative updates on weights

and never allows weights to exeed 1 in value. Domingo and Watanabe proved

that MadaBoost takes at most T �

2

�

2

stages, whih is quite similar to our

bound in Theorem 2. (If we set � = 0 in SmoothBoost, a slight modi�ation

of the proof of Theorem 2 gives a bound of roughly

4

3�

2

; whih improves the

Madaboost bound by a onstant fator.) However, the analysis for MadaBoost



given in [9℄ only overs only the ase of binary-valued weak hypotheses, and

does not establish that MadaBoost generates a large margin �nal hypothesis. We

also note that our proof tehnique of simultaneously upper and lower bounding

P

m

j=1

P

T

t=1

M

t

(j)y

j

h

t

(x

j

) is di�erent from the approah used in [9℄.

3 Learning Linear Threshold Funtions with Maliious

Noise

In this setion we show how the SmoothBoost algorithm an be used in on-

juntion with a simple noise tolerant weak learning algorithm to obtain a PAC

learning algorithm for learning linear threshold funtions with maliious noise.

3.1 Geometri Preliminaries

For x = (x

1

; : : : ; x

n

) 2 <

n

and p � 1 we write kxk

p

to denote the p-norm of x;

namely kxk

p

= (

P

n

i=1

jx

i

j

p

)

1=p

: The 1-norm of x is kxk

1

= max

i=1;:::;n

jx

i

j:

We write B

p

(R) to denote the p-norm ball of radius R; i.e. B

p

(R) = fx 2 <

n

:

kxk

p

� Rg:

For p; q � 1 the q-norm is dual to the p-norm if

1

p

+

1

q

= 1; so the 1-norm

and the 1-norm are dual to eah other and the 2-norm is dual to itself. For the

rest of the paper p and q always denote dual norms. The following fats (see e.g.

[25℄ pp. 203-204) will be useful:

H�older Inequality: ju � vj � kuk

p

kvk

q

for all u; v 2 <

n

and 1 � p �1:

Minkowski Inequality: ku+vk

p

� kuk

p

+kvk

p

for all u; v 2 <

n

and 1 � p � 1:

Finally, reall that a linear threshold funtion is a funtion f : <

n

! f�1; 1g

suh that f(x) = sign(u � x) for some u 2 <

n

:

3.2 PAC Learning with Maliious Noise

Let EX

�

MAL

(u;D) be a maliious example orale with noise rate � that be-

haves as follows when invoked: with probability 1� � the orale returns a lean

example hx; sign(u � x)i where x is drawn from the probability distribution D

over B

p

(R): With probability �; though, EX

�

MAL

(u;D) returns a dirty example

hx; yi 2 B

p

(R)�f�1; 1g about whih nothing an be assumed. Suh a maliious

example hx; yi may be hosen by a omputationally unbounded adversary whih

has omplete knowledge of u; D; and the state of the learning algorithm when

the orale is invoked.

The goal of a learning algorithm in this model is to onstrut an approxi-

mation to the target onept sign(u � x): More formally, we say that a Boolean

funtion h : <

n

! f�1; 1g is an �-approximator for u under D if Pr

x
2D

[h(x) 6=

sign(u � x)℄ � �: The learning algorithm is given an auray parameter � and a

on�dene parameter Æ; has aess to EX

�

MAL

(u;D); and must output a hypoth-

esis h whih, with probability at least 1 � Æ; is an �-approximator for u under



D: The sample omplexity of a learning algorithm in this model is the number

of times it queries the maliious example orale.

(A slightly stronger model of PAC learning with maliious noise has also

been proposed [1, 6℄. In this model �rst a lean sample of the desired size is

drawn from a noise-free orale; then eah point in the sample is independently

seleted with probability �; then an adversary replaes eah seleted point with

a dirty example of its hoie; and �nally the orrupted sample is provided to

the learning algorithm. This model is stronger than the original maliious noise

model sine eah dirty example is hosen by the adversary with full knowledge

of the entire sample. All of our results also hold in this stronger model.)

A �nal note: like the Pereptron algorithm, the learning algorithms whih we

onsider will require that the quantity u �x be bounded away from zero (at least

most of the time). We thus say that a distribution D is �-good for u if ju �xj � �

for all x whih have nonzero probability under D; and we restrit our attention

to learning under �-good distributions. (Of ourse, dirty examples drawn from

EX

�

MAL

(u;D) need not satisfy ju � xj � �:)

3.3 A Noise Tolerant Weak Learning Algorithm

As shown in Figure 2, our weak learning algorithm for linear threshold funtions,

alled WLA, takes as input a data set S and a distribution D over S: The algorithm

omputes the vetor z whih is the average loation of the (label-normalized)

points in S under D; transforms z to obtain a vetor w; and predits using the

linear funtional de�ned by w: As motivation for the algorithm, note that if

every example pair hx; yi satis�es y = sign(u � x) for some u; then eah point yx

would lie on the same side of the hyperplane de�ned by u as u itself, and hene

the average vetor z de�ned in Step 1 of the algorithm intuitively should point

in roughly the same diretion as u:

In [23℄ it is shown that the WLA algorithm is a weak learning algorithm for

linear threshold funtions in a noise-free setting. The following theorem shows

that if a small fration of the examples in S are a�eted by maliious noise, WLA

will still generates a hypothesis with nonnegligible advantage provided that the

input distribution D is suÆiently smooth.

Theorem 3. Fix 2 � p � 1 and let S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i be a set of

labeled examples with eah x

j

2 B

p

(R): Let D be a distribution over S suh that

L

1

(D) �

1

�m

: Suppose that � > 0 and u 2 <

n

are suh that � � Rkuk

q

and at

most �

0

m examples in S do not satisfy y

j

(u � x

j

) � �; where �

0

�

��

4Rkuk

q

: Then

WLA(p; S;D) returns a hypothesis h : B

p

(R) ! [�1; 1℄ whih has advantage at

least

�

4Rkuk

q

under D:

Proof: By H�older's inequality, for any x 2 B

p

(R) we have

jh(x)j =

jw � xj

kwk

q

R

�

kwk

q

kxk

p

kwk

q

R

� 1;

and thus h indeed maps B

p

(R) into [�1; 1℄:



Input: parameter p � 2

sample S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i where eah y

i

2 f�1; 1g

distribution D over S

upper bound R on kxk

p

Output: hypothesis h(x)

1. set z =

P

m

j=1

D(j)y

j

x

j

2. for all i = 1; : : : ; n set w

i

= sign(z

i

)jz

i

j

p�1

3. return hypothesis h(x) � v � x where v =

w

kwk

q

R

Fig. 2. The p-norm weak learning algorithm WLA.

Now we show that h has the desired advantage. Sine h

t

(x

j

) 2 [�1; 1℄ and

y

j

2 f�1; 1g; we have jh(x

j

)� y

j

j = 1� y

j

h(x

j

); so

1

2

m

X

j=1

D(j)jh(x

j

)�y

j

j =

1

2

m

X

j=1

D(j)(1�y

j

h(x

j

)) =

1

2

�

 

P

m

j=1

D(j)y

j

(w � x

j

)

2kwk

q

R

!

:

To prove the theorem it thus suÆes to show that

P

m

j=1

D(j)y

j

(w�x

j

)

kwk

q

�

�

2kuk

q

: The

numerator of the left side is w �

�

P

m

j=1

D(j)y

j

x

j

�

= w � z =

P

n

i=1

jz

i

j

p

= kzk

p

p

:

Using the fat that (p� 1)q = p; the denominator is

kwk

q

=

 

n

X

i=1

�

jz

i

j

p�1

�

q

!

1=q

=

 

n

X

i=1

jz

i

j

p

!

1=q

= kzk

p=q

p

:

We an therefore rewrite the left side as kzk

p

p

=kzk

p=q

p

= kzk

p

; and thus our goal

is to show that kzk

p

�

�

2kuk

q

: By H�older's inequality it suÆes to show that

z � u �

�

2

; whih we now prove.

Let S

1

= fhx

j

; y

j

i 2 S : y

j

(u � x

j

) � �g and let S

2

= S n S

1

: The de�nition

of S

1

immediately yields

P

j2S

1

D(j)y

j

(u � x

j

) � D(S

1

)�: Moreover, sine eah

kx

j

k

p

� R; by H�older's inequality we have y

j

(u �x

j

) � �kx

j

k

p

� kuk

q

� �Rkuk

q

for eah hx

j

; y

j

i 2 S

2

: Sine eah example in S

2

has weight at most

1

�m

under

D; we have D(S

2

) �

�

0

�

; and hene

z � u =

m

X

j=1

D(j)y

j

(u � x

j

) =

X

j2S

1

D(j)y

j

(u � x

j

) +

X

j2S

2

D(j)y

j

(u � x

j

)

� D(S

1

)� �D(S

2

)Rkuk

q

�

�

1�

�

0

�

�

� �

�

0

Rkuk

q

�

�

3�

4

�

�

4

=

�

2

;



where the inequality (1�

�

0

�

) �

3

4

follows from the bound on �

0

and the fat that

� � Rkuk

q

: ut

3.4 Putting it All Together

The algorithm for learning sign(u � x) with respet to a �-good distribution D

over B

p

(R) is as follows:

{ Draw from EX

�

MAL

(u;D) a sample S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i of m labeled

examples.

{ Run SmoothBoost on S with parameters � =

�

4

;  =

�

4Rkuk

q

; � =



2+

using

WLA as the weak learning algorithm.

We now determine onstraints on the sample size m and the maliious noise rate

� under whih this is a suessful and eÆient learning algorithm.

We �rst note that sine D is �-good for u; we have that � � Rkuk

q

: Further-

more, sine � =

�

4

; Lemma 1 implies that eah distribution D

t

whih is given to

WLA by SmoothBoost has L

1

(D

t

) �

4

�m

: Let S

C

� S be the lean examples and

S

D

= S n S

C

the dirty examples in S: If � �

��

32Rkuk

q

and m �

96Rkuk

q

��

log

2

Æ

;

then a simple Cherno� bound implies that with probability at least 1 �

Æ

2

we

have jS

D

j �

��

16Rkuk

q

m: Thus, we an apply Theorem 3 with �

0

=

��

16Rkuk

q

; so

eah weak hypothesis h

t

(x) = v

t

� x generated by WLA has advantage

�

4Rkuk

q

under D

t

: Consequently, by Theorems 1 and 2, SmoothBoost eÆiently outputs

a �nal hypothesis h(x) = signf(x) whih has margin less than � on at most

an

�

4

fration of S: Sine jS

C

j is easily seen to be at least

m

2

; we have that the

margin of h is less than � on at most an

�

2

fration of S

C

: This means that we

an apply powerful methods from the theory of data-dependent strutural risk

minimization [5, 24℄ to bound the error of h under D:

Reall that the �nal SmoothBoost hypothesis is h(x) = sign(f(x)) where

f(x) = v � x is a onvex ombination of hypotheses h

t

(x) = v

t

� x: Sine eah

vetor v

t

satis�es kv

t

k

q

�

1

R

; by Minkowski's inequality we have that kvk

q

�

1

R

as well. The following theorem is proved in [23℄:

Theorem 4. Fix any value 2 � p � 1 and let F be the lass of funtions

fx 7! v �x : kvk

q

�

1

R

; x 2 B

p

(R)g: Then fat

F

(�) �

2 log 4n

�

2

; where fat

F

(�) is the

fat-shattering dimension of F at sale � as de�ned in, e.g., [4, 5, 24℄.

The following theorem is from [5℄:

Theorem 5. Let F be a olletion of real-valued funtions over some domain

X; let D be a distribution over X � f�1; 1g; let S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i be

a sequene of labeled examples drawn from D; and let h(x) = sign(f(x)) for

some f 2 F : If h has margin less than � on at most k examples in S; then with

probability at least 1� Æ we have that Pr

hx;yi2D

[h(x) 6= y℄ is at most

k

m

+

r

2

m

(d ln(34e=m) log(578m) + ln(4=Æ)); (1)

where d = fat

F

(�=16):



We have that h has margin less than � on at most an

�

2

fration of the lean

examples S

C

; so we may take k=m to be

�

2

in the above theorem. Now if we

apply Theorem 4 and solve for m the inequality obtained by setting (1) to be at

most �; we obtain

Theorem 6. Fix 2 � p � 1 and let D be a distribution over B

p

(R) whih is

�-good for u: The algorithm desribed above uses m =

~

O

�

�

Rkuk

q

��

�

2

�

examples

and outputs an �-approximator for u under D with probability 1�Æ in the presene

of maliious noise at a rate � = 


�

� �

�

Rkuk

q

�

:

4 Comparison with Online Algorithms

The bounds given by Theorem 6 on sample omplexity and maliious noise tol-

erane of our algorithms based on SmoothBoost are remarkably similar to the

bounds whih an be obtained through a natural PAC onversion of the online

p-norm algorithms introdued by Grove, Littlestone and Shuurmans [14℄ and

studied by Gentile and Littlestone [13℄. Grove, Littlestone and Shuurmans (The-

orem 6.1) proved that the online p-norm algorithmmakes at mostO

�

�

Rkuk

q

�

�

2

�

mistakes on linearly separable data. Subsequently Gentile and Littlestone [13℄

extended the analysis from [14℄ and onsidered a setting in whih the examples

are not linearly separable. Their analysis (Theorem 6) shows that if an exam-

ple sequene ontaining K maliious errors is provided to the online p-norm

algorithm, then the algorithm will make at most

O

 

�

Rkuk

q

�

�

2

+K �

Rkuk

q

�

!

mistakes. To obtain PAC-model bounds on the online p-norm algorithms in the

presene of maliious noise, we use the following theorem due to Auer and Cesa-

Bianhi [3℄ (Theorem 6.2):

Theorem 7. Fix a hypothesis lass H of Vapnik-Chervonenkis dimension d: Let

A be an online learning algorithm with the following properties: (1) A only uses

hypotheses whih belong to H; (2) if A is given a noise-free example sequene then

A makes at most m

0

mistakes, and (3) if A is given an example sequene with K

maliious errors then A makes at most m

0

+BK mistakes. Then there is a PAC

algorithm A

0

whih learns to auray � and on�dene Æ; uses

~

O(

B

2

�

2

+

m

0

�

+

d

�

)

examples, and an tolerate a maliious noise rate � =

�

2B

:

Applying this theorem, we �nd that these PAC onversions of the online p-

norm algorithms have sample omplexity and maliious noise tolerane bounds

whih are essentially idential to the bounds given for our SmoothBoost-based

algorithm.



5 SmoothBoost is Optimally Smooth

It is evident from the proof of Theorem 6 that the smoothness of the distribu-

tions generated by SmoothBoost relates diretly to the level of maliious noise

whih our linear threshold learning algorithm an tolerate. On the other hand,

as mentioned in Setion 1, Kearns and Li have shown that for a broad range

of onept lasses no algorithm an learn to auray � in the presene of ma-

liious noise at a rate � >

�

1+�

: Using the Kearns-Li upper bound on maliious

noise tolerane, we prove in this setion that SmoothBoost is optimal up to on-

stant fators in terms of the smoothness of the distributions whih it generates.

This demonstrates an interesting onnetion between bounds on noise-tolerant

learning and bounds on boosting algorithms.

Reall that if SmoothBoost is run on a set of m examples with input parame-

ters �; ; �; then eah distribution D

t

whih SmoothBoost onstruts will satisfy

L

1

(D

t

) �

1

�m

: The proof is by ontradition; so suppose that there exists a

boosting algorithm alled SuperSmoothBoost whih is similar to SmoothBoost

but whih has an even stronger guarantee on its distributions. More preisely

we suppose that SuperSmoothBoost takes as input parameters �;  and a la-

beled sample S of size m; has aess to a weak learning algorithm WL, generates

a sequene D

1

;D

2

; : : : of distributions over S; and outputs a Boolean-valued

�nal hypothesis h: As in Setion 2.3, we suppose that if the weak learning algo-

rithm WL always returns a hypothesis h

t

whih has advantage  under D

t

; then

SuperSmoothBoostwill eventually halt and the �nal hypothesis h will agree with

at least a 1 � � fration of the labeled examples in S: Finally, we suppose that

eah distribution D

t

is guaranteed to satisfy L

1

(D

t

) �

1

64�m

:

Consider the following severely restrited linear threshold learning problem:

the domain is f�1; 1g

2

� <

2

; so any distribution D an assign weight only to

these four points. Moreover, we only allow two possibilities for the target onept

sign(u � x): the vetor u is either (1; 0) or (0; 1): The four points in f�1; 1g

2

are

lassi�ed in all four possible ways by these two onepts, and hene the onept

lass onsisting of these two onepts is a distint onept lass as de�ned by

Kearns and Li [16℄. It is lear that every example belongs to B

1

(1) (i.e. R = 1),

that kuk

1

= 1; and that any distribution D over f�1; 1g

2

is 1-good for u (i.e.

� = 1).

Consider the following algorithm for this restrited learning problem:

{ Draw from EX

�

MAL

(u;D) a sample S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i of m labeled

examples.

{ Run SuperSmoothBoost on S with parameters � =

�

4

;  =

�

4Rkuk

q

=

1

4

using

WLA with p =1 as the weak learning algorithm.

Suppose that the maliious noise rate � is 2�: As in Setion 3.4, a Cherno�

bound shows that form = O(

1

�

log

1

Æ

); with probability at least 1�

Æ

2

we have that

the sample S ontains at most 4�m dirty examples. By the SuperSmoothBoost

smoothness property and our hoie of �; we have that L

1

(D

t

) �

1

16�m

: Theorem

3 now implies that eah WLA hypothesis h

t

has advantage at least

�

4Rkuk

q

=

1

4



with respet to D

t

: As in Setion 3.4, we have that with probability at least 1�

Æ

2

the �nal hypothesis h output by SuperSmoothBoost disagrees with at most an

�

2

fration of the lean examples S

C

:

Sine the domain is �nite (in fat of size four) we an bound generaliza-

tion error diretly. A simple Cherno� bound argument shows that if m is suf-

�iently large, then with probability at least 1 � Æ the hypothesis h will be an

�-approximator for sign(u � x) under D: However, Kearns and Li have shown

(Theorem 1 of [16℄) that no learning algorithm for a distint onept lass an

learn to auray � with probability 1 � Æ in the presene of maliious noise at

rate � �

�

1+�

: This ontradition proves that the SuperSmoothBoost algorithm

annot exist, and hene the distributions generated by SmoothBoost are optimal

up to onstant fators.

6 Conlusions and Further Work

One goal for future work is to improve the SmoothBoost algorithm given in Se-

tion 2. As noted in Setion 5, the smoothness of the generated distributions is

already essentially optimal; however it may be possible to improve other aspets

of the algorithm suh as the number of stages of boosting whih are required.

Is there an algorithm whih mathes the smoothness of SmoothBoost but, like

AdaBoost, runs for only O(

log(1=�)



2

) stages? Another possible improvement would

be to eliminate the � (margin) parameter of SmoothBoost; a version of the algo-

rithm whih automatially hooses an appropriate margin parameter would be

useful in pratial situations.
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Fig. 3. A plot of

^

N with T = 4: Note that

^

N is pieewise linear with joins at integer

values of t: A possible pairing of segments mathes [e

2

; e

3

℄ with [e

5

; e

6

℄ and [e

3

; e

4

℄ with

[e

4

; e

5

℄; leaving [e

0

; e

1

℄; [e

1

; e

2

℄ and [e

6

; e

7

℄ unpaired. In this example

^

N is inreasing on

eah unpaired segment.

A Proof of Lemma 3

By the de�nition of N

t

(j); we have

m

X

j=1

T

X

t=1

M

t

(j)y

j

h

t

(x

j

) =

m

X

j=1

T

X

t=1

M

t

(j)(N

t

(j)�N

t�1

(j) + �)

= �

T

X

t=1

jM

t

j+

T

X

t=1

m

X

j=1

M

t

(j)(N

t

(j)�N

t�1

(j)): (2)

It thus suÆes to show that if � =



2+

; then for eah j = 1; : : : ;m we have

T

X

t=1

M

t

(j)(N

t

(j)�N

t�1

(j)) <

2



p

1� 

+ ( � �)

T

X

t=1

M

t

(j) (3)

sine summing this inequality over j = 1; : : : ;m and substituting into (2) proves

the lemma. Fix any j 2 f1; : : : ;mg; for ease of notation we write N

t

and M

t

in

plae of N

t

(j) and M

t

(j) for the rest of the proof.

If N

t

= N

t�1

for some integer t then the term M

t

(N

t

�N

t�1

) ontributes 0

to the sum in (3), so without loss of generality we assume that N

t

6= N

t�1

for all

integers t: We extend the sequene (N

0

; N

1

; : : : ; N

T

) to a ontinuous pieewise

linear funtion

^

N on [0; T ℄ in the obvious way, i.e. for t an integer and � 2 [0; 1℄

we have

^

N(t+ �) = N

t

+ �(N

t+1

�N

t

): Let

E = fe 2 [0; T ℄ :

^

N(e) = N

t

for some integer t = 0; 1; : : : ; Tg:



The set E is �nite so we have 0 = e

0

< e

1

� � � < e

r

= T with E = fe

0

; : : : ; e

r

g

(see Figure 3). Sine for eah integer t � 1 the interval (t � 1; t℄ must ontain

some e

i

, we an reexpress the sum

P

T

t=1

M

t

(N

t

�N

t�1

) as

r

X

i=1

M

de

i

e

�

^

N(e

i

)�

^

N(e

i�1

)

�

: (4)

We say that two segments [e

a�1

; e

a

℄ and [e

b�1

; e

b

℄ math if

^

N(e

a�1

) =

^

N(e

b

)

and

^

N(e

b�1

) =

^

N(e

a

): For example, in Figure 3 the segment [e

2

; e

3

℄ mathes

[e

5

; e

6

℄ but does not math [e

6

; e

7

℄. We pair up mathing segments until no more

pairs an be formed. Note that if any unpaired segments remain, it must be the

ase that either

^

N is inreasing on eah unpaired segment (if N

T

> 0) or

^

N is

dereasing on eah unpaired segment (if N

T

< 0). Now we separate the sum (4)

into two piees, i.e.

P

r

i=1

M

de

i

e

(

^

N(e

i

)�

^

N(e

i�1

)) = P +U; where P is the sum

over all paired segments and U is the sum over all unpaired segments. We will

show that P < ( � �)

P

T

t=1

M

t

and U <

2



p

1�

, thus proving the lemma.

First we bound P . Let [e

a�1

; e

a

℄ and [e

b�1

; e

b

℄ be a pair of mathing segments

where

^

N is inreasing on [e

a�1

; e

a

℄ and dereasing on [e

b�1

; e

b

℄: The ontribution

of these two segments to P is

M

de

a

e

�

^

N(e

a

)�

^

N(e

a�1

)

�

+M

de

b

e

�

^

N(e

b

)�

^

N(e

b�1

)

�

= (M

de

a

e

�M

de

b

e

)

�

^

N(e

a

)�

^

N(e

a�1

)

�

: (5)

Sine eah segment [e

a�1

; e

a

℄ is ontained in [t� 1; t℄ for some integer t; we have

that de

a

e � 1 � e

a�1

< e

a

� de

a

e: The linearity of

^

N on [de

a

e � 1; de

a

e℄ implies

that

N

de

a

e�1

�

^

N(e

a�1

) <

^

N(e

a

) � N

de

a

e

� N

de

a

e�1

+ 1� � (6)

where the last inequality is beause y

j

h

t

(x

j

) � 1 in line 7 of SmoothBoost.

Similarly, we have that de

b

e � 1 � e

b�1

< e

b

� de

b

e; and hene

N

de

b

e�1

�

^

N(e

b�1

) >

^

N(e

b

) � N

de

b

e

� N

de

b

e�1

� 1� �: (7)

Sine

^

N(e

a

) =

^

N(e

b�1

) inequalities (6) and (7) imply thatN

de

a

e�1

� N

de

b

e�1

�2:

The de�nition of M now implies that M

de

b

e

� (1 � )M

de

a

e

: Sine

^

N(e

a

) �

^

N(e

a�1

) > 0; we thus have that (5) is at most

M

de

a

e

�

^

N(e

a

)�

^

N(e

a�1

)

�

� (1� �)M

de

a

e

(e

a

� e

a�1

) (8)

where the inequality follows from (6) and the linearity of

^

N on [e

a�1

; e

a

℄: Sine

^

N(e

a

)�

^

N(e

a�1

) =

^

N(e

b�1

)�

^

N(e

b

); we similarly have that (5) is at most

M

de

a

e

�

^

N(e

b�1

)�

^

N(e

b

)

�

�



1� 

M

de

b

e

�

^

N(e

b�1

)�

^

N(e

b

)

�

�



1� 

(1 + �)M

de

b

e

(e

b�1

� e

b

): (9)



Using the fat that � =



2+

and some algebra, inequalities (8) and (9) imply

that (5) is at most

(1 + )

2 + 

�

M

de

a

e

(e

a

� e

a�1

) +M

de

b

e

(e

b�1

� e

b

)

�

: (10)

If we sum (10) over all pairs of mathing segments the resulting quantity is an

upper bound on P: In this sum, for eah value of t = 1; : : : ; T; the oeÆient of

M

t

will be at most

(1+)

2+

=  � �: (This bound on the oeÆient of M

t

holds

beause for eah t; the total length of all paired segments in [t� 1; t℄ is at most

1). Consequently we have P < ( � �)

P

T

t=1

M

t

as desired.

Now we show that U; the sum over unpaired segments, is at most

2



p

1�

: If

^

N is dereasing on eah unpaired segment then learly U < 0; so we suppose

that

^

N is inreasing on eah unpaired segment. Let [e



1

�1

; e



1

℄; : : : ; [e



d

�1

; e



d

℄

be all the unpaired segments. As in Figure 2 it must be the ase that the intervals

[

^

N(e



i

�1

);

^

N(e



i

)) are all disjoint and their union is [0; N

T

): By the de�nition of

M; we have U =

P

d

i=1

(1� )

(N

de



i

e�1

)=2

�

^

N(e



i

)�

^

N(e



i

�1

)

�

: As in the bound

for P; we have

N

de



i

e�1

�

^

N(e



i

�1

) <

^

N(e



i

) � N

de



i

e

� N

de



i

e�1

+ 1� � < N

de



i

e�1

+ 1

and hene

U �

d

X

i=1

(1� )

(

^

N(e



i

)�1)=2

�

^

N(e



i

)�

^

N(e



i

�1

)

�

= (1� )

�1=2

d

X

i=1

(1� )

^

N(e



i

)=2

�

^

N(e



i

)�

^

N(e



i

�1

)

�

:

Sine

^

N is inreasing, for eah i we have

(1� )

^

N(e



i

)=2

�

^

N(e



i

)�

^

N(e



i

�1

)

�

<

Z

^

N(e



i

)

z=

^

N(e



i

�1

)

(1� )

z=2

dz:

Sine the disjoint intervals [

^

N(e



i

�1

);

^

N(e



i

)) over [0; N

T

) we thus have

U < (1� )

�1=2

Z

N

T

z=0

(1� )

z=2

dz

< (1� )

�1=2

Z

1

z=0

(1� )

z=2

dz

=

�2

p

1�  ln(1� )

<

2



p

1� 

for 0 <  < 1=2:

(Lemma 3)


