
Deterministic search for CNF satisfying assignments

in almost polynomial time

Rocco A. Servedio∗

Columbia University
Li-Yang Tan†

Toyota Technological Institute

September 15, 2017

Abstract

We consider the fundamental derandomization problem of deterministically finding a satisfy-
ing assignment to a CNF formula that has many satisfying assignments. We give a deterministic
algorithm which, given an n-variable poly(n)-clause CNF formula F that has at least ε2n sat-
isfying assignments, runs in time

nÕ(log log n)2

for ε ≥ 1/polylog(n) and outputs a satisfying assignment of F . Prior to our work the fastest
known algorithm for this problem was simply to enumerate over all seeds of a pseudorandom

generator for CNFs; using the best known PRGs for CNFs [DETT10], this takes time nΩ̃(log n)

even for constant ε. Our approach is based on a new general framework relating deterministic
search and deterministic approximate counting, which we believe may find further applications.

∗Supported by NSF grants CCF-1420349 and CCF-1563155. Email: rocco@cs.columbia.edu
†Supported by NSF grant CCF-1563122. Part of this research was done during a visit to Columbia University.

Email: liyang@cs.columbia.edu

1 Introduction

Understanding the role of randomness in efficient computation has been a major focus of com-
plexity theory over the past several decades. In particular, much effort has been dedicated to
developing general techniques for unconditional derandomization, i.e. methods of constructing effi-
cient deterministic algorithms (that do not rely on any unproven hardness assumptions) for com-
putational problems that are known to have efficient randomized algorithms. Notable successes
have been achieved in this line of work: pseudorandom generators with highly non-trivial seed
length, and much-faster-than-brute-force deterministic approximate counting algorithms, are now
known for many function classes such as those defined by logarithmic space, small-depth circuits,
sparse and low-degree F2 polynomials, various classes of branching programs, functions of a few
halfspaces, low-degree polynomial threshold functions, and more (see e.g. [AW85, Nis91, LVW93,
NW94, LV96, SZ99, Tre04, Bra10, RS10, GOWZ10, DGJ+10, DKN10, GKM+11, GMR+12, IMZ12,
Kan12, MZ13, TX13, DS14, BRRY14, HS16] and many other works).

While striking progress has thus been made, there remain fundamental gaps in our understand-
ing of the overarching question in unconditional derandomization: can every randomized algorithm
be made deterministic with only a polynomial slowdown? In particular, while highly non-trivial
results have been achieved for the classes mentioned above, a “full derandomization”—i.e. a deter-
ministic algorithm running in polynomial time, as opposed to, say, quasipolynomial time—remains
elusive even for some of the simplest classes of functions. (Even for the class of linear threshold
functions, a full derandomization was only achieved in relatively recent work [RS10, GKM+11].)

The question we consider. Perhaps the most basic full derandomization problem that remains
open is the CNF search problem:

Input: An n-variable M -clause CNF formula F that is promised to have many, say at
least ε2n, satisfying assignments.

Goal: Output any satisfying assignment of F .

Using randomness it is easy to find a satisfying assignment with high probability simply by sampling
O(1/ε) many assignments and evaluting F on each one. Is there a polynomial-time deterministic al-
gorithm? This problem was first considered by Ajtai and Wigderson in their pioneering work [AW85]
on unconditional derandomization, in which they gave the first non-trivial (subexponential-time)
deterministic algorithm for the problem.

1.1 Prior results and related work

We briefly recall the prior state of the art for this and related problems.

Pseudorandom generators and hitting sets for CNFs. Prior to our work the fastest known
algorithm was simply to enumerate over all seeds of a pseudorandom generator G that ε-fools the
class of M -clause n-variable CNF formulas; the definition of a pseudorandom generator immediately
implies that some seed string y will have F (G(y)) = 1. Using the best known construction of ε-
PRGs for M -clause n-variable CNFs [DETT10], this gives an algorithm running in time poly(n) ·
(M/ε)Õ(log(M/ε)). We observe that this PRG-based approach is oblivious to the input formula F ,
and can be used even if F is only provided as a black-box oracle instead of an explicit CNF formula.
While this may be viewed as an advantage, it also suggests that non-oblivious approaches which

1

exploit the structure of the input formula F may be able to achieve faster runtimes. We further
observe that only an ε-hitting set for CNFs rather than an ε-PRG is required for this oblivious
approach, but the best known explicit construction of hitting sets for general CNFs is simply the
[DETT10] PRG. We recall that a seemingly-modest improvement of the [DETT10] PRG’s seed
length from Õ(log2(M/ε)) to O(log1.99(M/ε)), even for ε-hitting sets, would improve state-of-the-
art lower bounds against depth-three circuits, breaking a longstanding barrier in circuit complexity.
(For the special case of read-once CNF formulas, Śıma and Zák [SZ10] have given an ε-hitting set
of poly(n) size for ε > 5/6, and Gopalan et al. [GMR+12] have given an ε-PRG with seed length
Õ(log(n/ε)).)

The work of Goldreich and Wigderson. Recently, Goldreich and Widgderson [GW14] initi-
ated the study of deterministic search in the regime where ε is extremely close to 1, a relaxation of
the standard regime where we typically think of ε = 1/2 or ε = o(1). As one of their main results,
they give a polynomial-time deterministic search algorithm for AC0 circuits when ε ≥ 1−2n

0.99
/2n.

For the special case of M -clause n-variable CNF formulas (the subject of this work), they observe
that if ε ≥ 1 − 1/(4M) then any δ = 1/(4M)-biased sample space over {0, 1}n must contain a
satisfying assignment of F . Since well-known deterministic algorithms [NN93, AGHP92] can enu-
merate all poly(n/δ) elements of such a sample space in poly(n/δ) time, this gives a poly(n,M)
time algorithm in this special case. (As they note in their paper, this observation is already implicit
in the work of [GMR+12].)

Deterministic approximate counting and answering Trevisan’s question. While the
PRG-based approach described above is the most efficient algorithm known for deterministic CNF
search, a more efficient algorithm is known for deterministic approximate counting of CNF satis-
fying assignments. Building on early work of Luby and Veličković [LV96], Gopalan, Meka, and
Reingold [GMR13] gave a deterministic algorithm which, given as input an M -clause n-variable

CNF F and a parameter ε > 0, runs in time (Mn/ε)Õ(log logn+log logM+log(1/ε)) and outputs an
(additive) ε-accurate estimate of the fraction of assignments that satisfy F .

Trevisan [Tre10] has remarked that it is curious that this deterministic approximate counting
algorithm—which in particular yields a certificate that F has at least Ω(ε2n) satisfying assignments—
does not yield a comparably efficient algorithm to find a satisfying assignment. In [Tre10] he posed
the problem of developing a deterministic search algorithm running in time comparable to that of
deterministic approximate counting algorithms. Our work gives a positive solution to this prob-
lem (though it should be noted that our search algorithm’s exponent is roughly quadratic in the
exponent of the [GMR13] counting algorithm).

1.2 Our main result and approach

We give a deterministic CNF search algorithm that runs in almost polynomial time:

Theorem 1. There is a deterministic algorithm which, when given as input an M -clause CNF
formula F over {0, 1}n that has |F−1(1)| ≥ ε2n, runs in time(

Mn

ε

)Õ(log log(Mn)+log(1/ε))2

and outputs a satisfying assignment of F .

2

For the case when M = poly(n) and ε ≥ 1/polylog(n), the running time of our algorithm is

nÕ(log logn)2 . As discussed above, the previous fastest algorithm takes time nΩ̃(logn) when M =
poly(n), even for constant ε.

Our approach is based on a new general framework for obtaining deterministic search algorithms
from deterministic approximate counting algorithms (given a few additional ingredients). Roughly
speaking, this approach is an extension of the generic naive reduction described in the next sub-
section; while the naive reduction constructs a satisfying assignment one coordinate at a time, our
approach assigns a whole block of coordinates at each iteration as described in Section 1.2.2 below.
We are optimistic that this framework may find further applications for other deterministic search
problems.

1.2.1 Warm up: a simple and naive search algorithm based on approximate counting

To motivate our approach, we begin by considering a very simple and naive way of obtaining a
deterministic search algorithm from a deterministic approximate counting algorithm. (We will
specialize our discussion to the class of CNF formulas, but the generic reduction we describe here
relates these two derandomization tasks for all function classes.) Suppose we have a deterministic
approximate counting algorithm Acount for the class of CNF formulas: given as input an M -clause
CNF formula F over {0, 1}n, this algorithm Acount runs in time T (n,M, δ) and outputs an (additive)
δ-accurate estimate of Pr[F (x) = 1]. Then this immediately yields, in a black-box manner, a
deterministic search algorithm Asearch with the following performance guarantee: given as input an
M -clause CNF formula F over {0, 1}n that has |F−1(1)| ≥ ε2n, the algorithm Asearch runs in time

T (n,M, ε/(4n)) · 2n (1)

and outputs a satisfying assignment of F . The argument follows the standard n-stage decision-to-
search reduction; in the (i+1)-st stage, after the first i bits (z1, . . . , zi) ∈ {0, 1}i have been obtained,
the algorithm runs Acount with accuracy parameter δ := ε/(4n) both on F (z1, . . . , zi, 0, xi+1, . . . , xn)
and on F (z1, . . . , zi, 1, xi+1, . . . , xn), and takes as the next coordinate zi+1 the bit corresponding to
the higher output value from Acount. A straightforward induction shows that for all i ∈ [n] we have

E
[
F (z1, . . . , zi,xi+1, . . . ,xn)

]
≥ E

[
F (x1, . . . ,xn)

]
− 2i · δ,

so the final string (z1, . . . , zn) satisfies E[F (z1, . . . , zn)] ≥ ε− ε
2 > 0 and hence F (z1, . . . , zn) = 1.

However, instantiating this approach with the best known deterministic approximate counting
algorithm due to Gopalan, Meka, and Reingold [GMR13], which runs in time

T (m,M, δ) = (Mn/δ)Õ(log logn+log logM+log(1/δ)),

we see that the running time (1) evaluates to

(Mn/ε)Õ(log(n/ε)+log logM).

This is nΩ̃(logn) when M = poly(n) (even for constant ε), which is no improvement over the trivial
PRG-based algorithm. The crux of the problem with this naive approach is that we cannot afford
to run the [GMR13] approximate counting algorithm to such high accuracy, δ = O(ε/n).

3

1.2.2 Our approach: a more efficient reduction

At the highest level, our search algorithm shares the same overall structure as the naive bit-
by-bit approach sketched above. Our algorithm is recursive in nature and uncovers a satisfying
assignment of F in a stage-wise manner: in each stage we run a deterministic approximate counting
algorithm on subfunctions of F , and we recurse on the one for which our estimate of its fraction
of satisfying assignments is the largest. However, instead of uncovering a single coordinate of a
satisfying assignment per stage, our algorithm uncovers a p fraction of the remaining coordinates
per stage where p � 1/n. (In our analysis p = exp(−Θ(log log(Mn/ε))2), though its precise
value is unimportant for the rest of this high-level discussion.) Roughly speaking, this allows us to
circumvent the problem highlighted above since there will be at most p−1 lnn many stages in total
(rather than n), and so in each stage we can run the [GMR13] approximate counting algorithm
with a much larger error parameter δ = Ω(ε/(p−1 lnn)) instead of δ = O(ε/n).

Three main ingredients of our approach. We will describe our approach in general terms,
since the overall framework is fairly versatile and could be instantiated in other contexts.

• Let C be the function class of interest, the class for which we would like to design a deter-
ministic algorithm for the “C search problem”: given as input an n-variable function F ∈ C
that is promised to have at least ε2n satisfying assignments, find a satisfying assignment.
(Our analysis will assume that C is closed under restrictions, which holds for natural function
classes including the class of M -clause CNF formulas.)

• Let Csimple ⊆ C be a subclass of “simple” functions within C.

As alluded to above, the plan is to do search for C recursively in stages, uncovering a satisfying
assignment of F ∈ C “chunk-by-chunk”. In each stage we employ three pseudorandom constructs,
the first two of which are:

1. A PRG for Csimple, and

2. A deterministic approximate counting algorithm Acount for C.

The win of our approach over the trivial PRG-based search algorithm will rely on both (1) the
simplicity of the functions in Csimple enabling PRGs of significantly shorter seed length than those
known for C, and in similar spirit, (2) the existence of an approximate counting algorithm for C
with runtime significantly better than that of the trivial PRG-based algorithm for C.

The third and final ingredient is a “pseudorandom C-to-Csimple simplification lemma”:

3. Pseudorandom C-to-Csimple simplification lemma.

Roughly speaking, such a simplification lemma says the following: there is a pseudorandom
distribution R over restrictions such that for all F ∈ C, with high probability over ρ ← R
the randomly restricted function F � ρ belongs to Csimple. In more detail, this pseudorandom
distribution R over the space of restrictions {0, 1, ∗}n should have the following structure:

(a) The set of “live” positions L ⊆ [n] (i.e. the set of ∗’s) can be sampled efficiently with seed
length rSL. We write L← Rstars to denote a draw from this pseudorandom distribution
over subsets of [n].

4

(b) Non-live positions [n] \ L are filled in independently and uniformly with {0, 1}, and do
not count against the seed length rSL. We write ρ ← {0, 1}[n]\L to denote a draw of
such a restriction.

We will require each subset L ∈ supp(Rstars) to have size at least pn for some not-too-small
p ∈ (0, 1) (equivalently, we will require R to be supported on restrictions that leave at least
a p fraction of coordinates unfixed). As we will soon see, this is “the same p” as the p in the
high-level description of our approach in the first paragraph of this subsection; the size of L
corresponds exactly to the number of coordinates of a satisfying assignment that we uncover
per stage.

The guarantee that we will require of this pseudorandom C-to-Csimple simplification lemma is
roughly as follows: for every F ∈ C,

E
L←Rstars

[
Pr

ρ←{0,1}[n]\L

[
(F � ρ) /∈ Csimple

]]
≤ δSL, (2)

where the failure probability δSL is as small as possible. In fact, our approach does not actually
require that F � ρ belong to Csimple; it suffices for F � ρ to be well-approximated by some
F ′ ∈ Csimple for a suitable notion of approximation (F � ρ has a “δ-lower-approximator” in
Csimple). The analysis of our CNF search algorithm will crucially exploit this relaxation of (2),
but for clarity of exposition we will assume the stronger guarantee of (2) for the description
of our general framework.

For C being the class of CNF formulas, we remark that “pseudorandom C-to-Csimple simplification
lemmas” have been the subject of much research [AW85, AAI+01, IMP12, GMR13, TX13, GW14].
These simplification lemmas, more commonly referred to as pseudorandom switching lemmas in this
context, are achieved for various notions of “simplicity”, with Csimple being juntas [AW85, AAI+01,
IMP12, GW14], decision trees [TX13], or small-width CNF formulas [GMR13]. We remark that for
all these notions of “simple” CNF formulas, there are indeed PRGs with significantly shorter seed
length than the best known PRG for general CNF formulas [DETT10]. (In our analysis Csimple will
be the class of (log((logMn)/ε))-width CNF formulas, as this leads to the best overall parameters
in our final result.)

Going back to the general framework, we now explain how these three pseudorandom constructs—
(1) PRG for Csimple, (2) deterministic approximate counting algorithm Acount for C, and (3) pseu-
dorandom C-to-Csimple simplification lemma—fit together to give a deterministic search algorithm
for C.

A simple but crucial fact from [AW85]. At the heart of our analysis is an elementary fact
about pseudorandom simplification lemmas. This fact was first stated and utilized in the influential
work of Ajtai and Wigderson [AW85] giving the first non-trivial PRG for AC0 circuits; variants of
it also play a role in the more recent PRG constructions of [GMR+12, IMZ12, RSV13, TX13].

Suppose that we have a pseudorandom C-to-Csimple simplification lemma satisfying (2). Fix an
L ∈ supp(Rstars) such that the inner probability of (2) is at most δSL. Let D be a distribution that
δPRG-fools Csimple, and suppose D can be sampled with rPRG many random bits. The simple but
crucial fact from [AW85] is the following: the distribution over {0, 1}n where

1. The coordinates in [n] \ L are filled in with uniform random bits;

5

2. The coordinates in L are filled in according to the pseudorandom distribution D,

(δSL + δPRG)-fools C. That is, for all F ∈ C,

E
x←U
y←D

[
F (x[n]\L,yL)

]
= E
x←U

[
F (x)

]
± (δSL + δPRG).

Given this observation of [AW85], it follows that there must exist at least one y ∈ supp(D) such
that

E
x←U

[
F (x[n]\L, yL)

]
≥ E
x←U

[
F (x)

]
− (δSL + δPRG).

Equivalently, the restriction π∗ that fixes the coordinates in L according to y preserves (from below)
F ’s fraction of satisfying assignments up to an error of (δSL + δPRG), by which we mean:

E
x←U

[
(F � π∗)(x)

]
≥ E
x←U

[
F (x)

]
− (δSL + δPRG). (3)

Note that the number of coordinates that π∗ fixes is precisely the size of L, which explains why,
as alluded to above, we require the pseudorandom simplification lemma to be such that every
L ∈ supp(Rstars) has size at least pn for some not-too-small p ∈ (0, 1).

Our search algorithm and its analysis. Our goal in a single stage of the recursive algorithm
is to find a restriction that (approximately) satisfies (3): such a restriction reduces our search space
{0, 1}n by |π∗−1({0, 1})| = |L| ≥ pn many dimensions, while ensuring that the restricted function
F � π∗ still has “many” satisfying assignments.

To accomplish this, our search algorithm cycles through all 2rSL+rPRG candidates π—that is,
all possible restrictions fixing L according to y where L ∈ supp(Rstars) and y ∈ supp(D)—and
for each candidate π, it runs the deterministic approximate counting algorithm Acount to estimate
E[(F � π)(x)] to accuracy δcount. It is straightforward to see that the restriction π̃ for which Acount’s
estimate is the largest will satisfy

E
x←U

[
(F � π̃)(x)

]
≥ E
x←U

[
F (x)

]
− (δSL + δPRG)− 2δcount.

Up to an additive factor of 2δcount, this restriction π̃ is “as good as” the restriction π∗ from (3). Our
algorithm recurses on F � π̃, a function over {0, 1}π̃−1(∗) where |π̃−1(∗)| ≤ (1 − p)n. The runtime
of this single stage of our recursive algorithm is at most

2rSL+rPRG · T (n, δcount),

where T (n, δ) denotes the running time of the deterministic approximate counting algorithm Acount,
when given as input an n-variable function F ∈ C and accuracy parameter δ.

By fixing at least a p fraction of the remaining coordinates in each stage, we ensure that there
are at most p−1 lnn many stages in total, after which all n coordinates will have been fixed to
a certain assignment x ∈ {0, 1}n and the algorithm terminates with x as its output. Hence, by
choosing parameters so that

δSL + δPRG + 2δcount ≤
1

2
· ε

p−1 lnn
,

we ensure that the algorithm always recurses on a subfunction that is satisfied by at least an (ε/2)-
fraction of its assignments. In particular, this guarantees that the n-bit assignment x ∈ {0, 1}n
which the algorithm outputs is indeed a satisfying assignment of F . The overall runtime of the
entire algorithm is

2rSL+rPRG · T (n, δcount) · p−1 lnn.

6

1.3 Organization of this paper

In the rest of this paper we instantiate the general framework described above with C being the
class of M -clause n-variable CNF formulas, thus establishing our main result (Theorem 1).

In Section 2 we recall the relevant definitions and state a few simplifying assumptions. In
Section 3 we state the pseudorandom C-to-Csimple simplification lemma that we will use in our
context (the pseudorandom switching lemma of [GMR13], with Csimple being the class of small-
width CNF formulas) and establish some of its basic properties. In Sections 4 and 5 we use an
extension of the [AW85] fact, together with this pseudorandom switching lemma and a PRG for
Csimple, to construct a small set of restrictions that is guaranteed to contain a “good” restriction
π∗, one that fixes a significant fraction of coordinates while preserving the bias of a CNF formula
from below. In Section 6 we show how to use a deterministic approximate counting algorithm to
search through this set and find a restriction π̃ that is “almost as good as” π∗, thus completing the
description of one stage of our recursive search algorithm. Finally, in Section 7 we put the pieces
together and give our overall recursive search algorithm.

2 Background and setup

For r < n, we say that a distribution D over {0, 1}n can be sampled efficiently with r random bits
if (i) D is the uniform distribution over a multiset of size exactly 2r of strings from {0, 1}n, and
(ii) there is a deterministic algorithm GenD which, given as input a uniform random r-bit string
x← {0, 1}r, runs in time poly(n) and outputs a string drawn from D.

For δ > 0 and a class C of functions from {0, 1}n to {0, 1}, we say that a distribution D over
{0, 1}n δ-fools C with seed length r if (a) D can be sampled efficiently with r random bits via
algorithm GenD, and (b) for every function f ∈ C, we have∣∣∣∣ E

s←{0,1}r
[f(GenD(s))]− E

x←{0,1}n
[f(x)]

∣∣∣∣ ≤ δ.
Equivalently, we say that GenD is a δ-PRG for C with seed length r.

Given a function f : {0, 1}n → {0, 1} and a class of functions C from {0, 1}n to {0, 1}, we say
that f is δ-sandwiched by C if there exist functions g`, gu ∈ C such that (i) g`(x) ≤ f(x) ≤ gu(x)
for all x ∈ {0, 1}n, and (ii) Ex←{0,1}n [gu(x)− g`(x)] ≤ δ. The function g` (gu, respectively) is said
to be a lower δ-approximator (upper δ-approximator, respectively) for f .

Some simplifying assumptions. We first observe that we may assume without loss of generality
that our algorithm is given the value of ε. This is because the algorithm can try values ε =
1
2 ,

1
4 ,

1
8 , · · · , halting when it finds a satisfying assignment, without changing the claimed asymptotic

running time. We next observe that we may assume without loss of generality that the input CNF
formula has M ≥ n many clauses. This is because if M < n then we can pad F with n −M
clauses (x1 ∨ x1), · · · , (xn−M ∨ xn−M) to obtain an equivalent formula F ′ with n clauses and run
the algorithm on F ′.

The following simple observation allows us to assume without loss of generality that the M -
clause input CNF formula has width bounded by O(log(M/ε)):

Observation 2 (Trimming F). Let F be an M -clause CNF over {0, 1}n, and let F ′ be the CNF
obtained from F by trimming each clause of width w′ > w := log(2M/ε) to width exactly w (by
removing an arbitrary w′ − w literals from the clause). Then

7

1. F ′−1(1) ⊆ F−1(1).

2. E[F ′(x)] ≥ E[F (x)]− ε/2.

We observe that F ′ can be constructed deterministically from F in time poly(M,n).

Proof. The observation about efficiently constructing F ′ from F is immediate, as is part (1) since
if an assignment satisfies a given clause of F ′ then clearly it satisfies the corresponding clause of F .
Part (2) holds because each time a clause is replaced by its trimmed version, the total number of
satisfying assignments is reduced by at most 2−w · 2n = ε

2M · 2
n.

Our algorithm will begin by trimming all wide clauses of F (of width greater than log(2M/ε)) to
have width exactly log(2M/ε). By Observation 2, if F is ε-satisfiable then the resulting F ′ remains
(ε/2)-satisfiable, and furthermore any satisfying assignment of F ′ is a satisfying assignment of the
original CNF F .

Combining all of the simple observations in this section, in order to prove Theorem 1 it suffices
to prove the following:

Theorem 3. There is a deterministic algorithm with the following properties: It is given as input
a value ε > 0 and a CNF formula F over {0, 1}n with M ≥ n clauses, each of width at most
O(log(M/ε)), such that |F−1(1)| ≥ ε2n. The algorithm runs in time(

M

ε

)Õ(log logM+log(1/ε))2

and outputs a satisfying assignment of F .

In the rest of the paper we prove Theorem 3 (so the number of clauses M is assumed to be at
least n throughout the rest of the paper).

3 The [GMR13] pseudorandom switching lemma

As outlined in Section 1.2.2, one of the main ingredients of our deterministic search framework is
a “pseudorandom C-to-Csimple simplification lemma”. For C being the class of CNF formulas, these
are more commonly known as pseudorandom switching lemmas—randomness efficient versions of
the seminal switching lemmas [FSS84, Ajt83, Yao85, H̊as86] from circuit complexity—and they
have been the subject of much research [AW85, AAI+01, IMP12, GMR13, TX13, GW14].

We will use a recent pseudorandom switching lemma of Gopalan et al. [GMR13] as it leads
to the best overall running time. In this pseudorandom switching lemma Csimple is the class of
“narrow” (width-w′) CNFs. As alluded to in Section 1.2.2, this is not quite a pseudorandom C-to-
Csimple simplification lemma in the sense of (2): rather than showing that F � ρ belongs to Csimple

with high probability, the [GMR13] pseudorandom switching lemma only guarantees that F � ρ is
sandwiched by Fupper, Flower ∈ Csimple with high probability. But as we show in the next section,
the analysis we sketched in Section 1.2.2 extends to accommodate this; in fact, for our purposes it
suffices for F � ρ just to have a lower sandwiching approximator in Csimple.

We recall a standard definition from pseudorandomness:

Definition 1 (p-regular distributions). A distribution Rstars over subsets of [n] is said to be p-
regular if for each i ∈ [n] we have PrL←Rstars [i ∈ L] = p.

8

Our deterministic search framework requires that the pseudorandom C-to-Csimple simplification
lemma holds with respect to a distribution over restrictions with the following structure: first a
draw from a pseudorandom distribution Rstars selects a subset L ⊆ [n] of coordinates which will
“receive ∗’s” (the Live coordinates), and then the non-∗ coordinates [n]\L are filled in uniformly at
random with bits. The [GMR13] pseudorandom switching lemma satisfies this prescribed structure:

Theorem 4 (Theorem 5.3 of [GMR13], pseudorandom switching lemma). There is a universal
constant C > 0 such that for all w,w′, δsand, η > 0 and all p satisfying

p ≤ η

(w log(1/δsand))C logw
, (4)

there is a p-regular distribution Rstars over subsets of [n] that can be sampled efficiently using rSL

random bits where

rSL = O((logw)(log n+ w′ log((logw)/η)) + w log(w log(1/δsand))) (5)

and the following holds: for any width-w CNF F ,

Pr
L←Rstars

ρ←{0,1}[n]\L

[F � ρ is not δsand-sandwiched by width-w′ CNFs] ≤ δsand + ηw
′/4.

We require pseudorandom restrictions that do not put down too few ∗’s. This motivates the
following corollary:

Corollary 3.1 (Condition on having sufficiently many stars). For the distribution Rstars defined
in Theorem 4, let R′stars denote the distribution of L ← supp(Rstars) conditioned on L satisfying
|L| ≥ pn/2. Then for any width-w CNF F ,

Pr
L←R′stars

ρ←{0,1}[n]\L

[F � ρ is not δsand-sandwiched by width-w′ CNFs] ≤ 2(δsand + ηw
′/4)

p
.

Proof. Since Rstars is p-regular we have that EL←Rstars [|L|] = pn, and so

Pr
L←Rstars

[L ∈ supp(R′stars)] = Pr
L←Rstars

[
|L| ≥ pn

2

]
≥ p

2
.

Hence

Pr
L←R′stars

ρ←{0,1}[n]\L

[F � ρ is not δsand · · ·] = Pr
L←Rstars

ρ←{0,1}[n]\L

[F � ρ is not δsand · · · | L ∈ supp(R′stars)]

≤ Pr
L←Rstars

ρ←{0,1}[n]\L

[F � ρ is not δsand · · ·] ·
1

Pr[L ∈ supp(R′stars)]

≤ 2(δsand + ηw
′/4)

p
.

9

4 Bias preservation via pseudorandom switching lemmas

An important ingredient in our approach is a simple but ingenious observation due to Ajtai and
Wigderson [AW85] which we state and prove as Lemma 4.1 below. Informally, it says the following:
Let F : {0, 1}n → {0, 1} be a Boolean function and suppose there is a partition of [n] into L and
[n]\L with the following property: with high probability over a uniform random restriction ρ fixing
the coordinates in [n] \L and leaving the coordinates in L free, the function F � ρ falls into a class
Csimple that is fooled by a distribution D over {0, 1}n. Then the pseudorandom distribution over
restrictions that fixes the coordinates in L according to D and leaves coordinates in [n] \ L free
approximately preserves the bias of F .

In fact, in our analysis we will only require that F � ρ has a lower approximator in Csimple. This
is because for our purposes (deterministic search) it suffices to approximately preserve the bias of F
only in one direction: we have to ensure that the bias of F does not decrease by too much (so that
we do not lose too many or all of the satisfying assignments), but we are fine if the bias increases.

Lemma 4.1 (Implicit in [AW85]). Let F : {0, 1}n → {0, 1} and L ⊆ [n]. Fix a class Csimple of
functions over {0, 1}n and let D be a distribution over {0, 1}n that δPRG-fools Csimple. Suppose that

Pr
ρ←{0,1}[n]\L

[F � ρ does not have a lower δsand-approximator in Csimple] ≤ δSL. (6)

Then
E
x←U
y←D

[F (x[n]\L,yL)] ≥ E
x←U

[F (x)]− (δPRG + δsand + δSL).

Proof. If F � ρ has a lower δsand-approximator F ′ ∈ Csimple then

E
x←U

[(F � ρ)(x)] ≤ E
x←U

[F ′(x)] + δsand (F ′ is a δsand-approximator for F � ρ)

≤
(

E
y←D

[F ′(y)] + δPRG

)
+ δsand (D δPRG-fools F ′)

≤
(

E
y←D

[(F � ρ)(y)] + δPRG

)
+ δsand, (F ′ ≤ (F � ρ) pointwise)

and so

E
x←U

[F (x)] = E
ρ←{0,1}[n]\L

[
E
x←U

[(F � ρ)(x)]
]

≤
(

E
ρ←{0,1}[n]\L

[
E
y←D

[(F � ρ)(y)]
]

+ δPRG + δsand

)
+ δSL ((6) and above)

= E
x←U
y←D

[F (x[n]\L,yL)] + (δPRG + δsand + δSL).

This completes the proof.

We will apply Lemma 4.1 with Csimple being the class of width-w′ CNFs (we will keep w′ a free
parameter for now, but looking ahead we will ultimately set w′ = Θ(logw + log((logM)/ε))), and
D being the distribution given by [GMR13]’s pseudorandom generator:

10

Theorem 5 (Theorem 3.1 of [GMR13], PRG for width-w′ CNFs). The class of width-w′ CNFs
over {0, 1}n can be δPRG-fooled by a distribution DPRG which can be sampled with

rPRG = O((w′)2(log(w′ log(1/δPRG)))2 + w′ log(w′) log(1/δPRG) + log log n). (7)

random bits.

(We remark that the [DETT10] PRG for width-w′ M -clause CNFs can be used in place of
Theorem 5 in our analysis, and will result the same overall running time.)

5 Existence of a bias-preserving restriction π∗

We are ready to combine the results from the previous sections to prove the key structural fact
underlying our search algorithm. Roughly speaking, the next lemma says that there is a small set
of restrictions, all of which fix a significant fraction of coordinates, such that for every width-w
CNF F there is at least one restriction in this set that approximately preserves the bias of F from
below.

Lemma 5.1 (Existence of a bias-preserving restriction). For all w,w′, δsand, δPRG, η > 0 and all p
satisfying assumption (4) of Theorem 4, there is a distribution Rgentle over restrictions in {0, 1, ∗}n
such that the following hold:

1. Rgentle is uniform over a multiset of at most 2rSL+rPRG many outcomes, where

rSL = O((logw)(log n+ w′ log((logw)/η)) + w log(w log(1/δsand)))

rPRG = O((w′)2(log(w′ log(1/δPRG)))2 + w′ log(w′) log(1/δPRG) + log log n).

2. |π−1({0, 1})| ≥ pn/2 for all π ∈ supp(Rgentle).

3. For any width-w CNF F over {0, 1}n, there is at least one π∗ ∈ supp(Rgentle) such that

E
x←U

[(F � π∗)(x)] ≥ E
x←U

[F (x)]− (δPRG + δsand + δSL), (8)

where

δSL =
2(δsand + ηw

′/4)

p
.

Proof. The distribution Rgentle is defined as follows: to make a draw π ← Rgentle,

1. Draw L← R′stars, the distribution over subsets L ⊆ [n] defined in Corollary 3.1.

2. Draw y ← DPRG, the distribution over {0, 1}n from Theorem 5 that δPRG-fools w′-CNFs.

3. Output the restriction π ∈ {0, 1, ∗}n where

πi =

{
yi if i ∈ L
∗ otherwise.

11

By Corollary 3.1 and Theorem 5, we have that R′stars is uniform over a multiset of at most 2rSL

outcomes and DPRG is uniform over a multiset of 2rPRG many outcomes, and hence Rgentle is
uniform over a multiset of at most 2rSL+rPRG many outcomes. By its definition, the distribution
R′stars satisfies |L| ≥ pn/2 for all L ∈ supp(R′stars), and hence |π−1({0, 1})| ≥ pn/2 for all π ∈
supp(Rgentle).

It remains to justify the third claim above. For any width-w CNF F , by Corollary 3.1 there
must be at least one L ∈ supp(R′stars) that satisfies the assumption (6) of Lemma 4.1 with Csimple

being the class of width-w′ CNFs and δSL = 2(δsand + ηw
′/4)/p. For such an L, it follows from

Lemma 4.1 and the fact that DPRG δPRG-fools Csimple that

E
x←U

y←DPRG

[F (x[n]\L,yL)] ≥ E
x←U

[F (x)]− (δPRG + δsand + δSL),

and hence
E
x←U

[F (x[n]\L, yL)] ≥ E
x←U

[F (x)]− (δPRG + δsand + δSL)

for at least one y ∈ supp(DPRG). This pair (y, L) therefore defines a restriction π∗ ∈ supp(Rgentle)—
the restriction that fixes the coordinates in L according to y—that satisfies (8), and the proof is
complete.

6 Finding π∗, or a restriction π̃ that is almost as good

To find a restriction that (approximately) satisfies (8) we will approximate the bias of F � π for
all candidates π ∈ supp(Rgentle) using a deterministic approximate counting algorithm for CNF
formulas:

Theorem 6 (Theorem 4.6 of [GMR13] (second equation before end of proof), approximate counting
algorithm). There is a deterministic algorithm that runs in time

Tcount = MnO(log(w/δcount))(log n)O(w)2O(w log(w/δcount)(log log(w/δcount))2)

and δcount-approximates the bias of any M -clause width-w CNF F over {0, 1}n, i.e. it outputs a
value v ∈ [0, 1] such that |v −Ex←{0,1}n [F (x)]| ≤ δcount.

Combining Lemma 5.1 and Theorem 6, we get:

Corollary 6.1 (One stage of our recursive algorithm). There is a deterministic algorithm A with
the following guarantee. Given as input an M -clause width-w CNF F over {0, 1}n and parameters
w′, δsand, δPRG, δcount, η > 0 and p satisfying assumption (4) of Theorem 4,

1. A runs in time

exp(rSL(n,w,w′, η, δsand) + rPRG(n,w′, δPRG)) · Tcount(n,M,w, δcount),

where rSL and rPRG are as defined in Lemma 5.1, and Tcount is as defined in Theorem 6.

2. A outputs a restriction π̃ ∈ {0, 1, ∗}n such that

(a) |π̃−1({0, 1})| ≥ pn/2,

12

(b) π̃ approximately preserves the bias of F from below:

E
x←U

[(F � π̃)(x)] ≥ E
x←U

[F (x)]− (δPRG + δsand + δSL)− 2δcount,

where

δSL =
2(δsand + ηw

′/4)

p
.

Proof. The algorithm A cycles through all (at most) 2rSL+rPRG many restrictions π in the support
of the distribution Rgentle defined in Lemma 5.1, and for each one uses [GMR13]’s approximate
counting algorithm in Theorem 6 to approximate the bias of F � π to accuracy δcount. A outputs
the restriction π̃ for which its estimate of the bias of F � π̃ is the largest.

The bound on the running time of A is an immediate consequence of Lemma 5.1 and Theorem 6,
as is item 2(a) in the claim. It remains to verify that π̃ satisfies 2(b). By Lemma 5.1, there is at
least one π∗ ∈ supp(Rgentle) satisfying

E
x←U

[(F � π∗)(x)] ≥ E
x←U

[F (x)]− (δPRG + δsand + δSL).

By the correctness of [GMR13]’s approximate counting algorithm, A’s estimate of the bias F � π∗

is at least

E
x←U

[(F � π∗)(x)]− δcount ≥ E
x←U

[F (x)]− (δPRG + δsand + δSL)− δcount,

and hence so is its estimate of the bias of F � π̃. Finally, again by the correctness of [GMR13]’s
approximate counting algorithm, we conclude that the true bias of F � π̃ is within δcount of A’s
estimate, and hence

E
x←U

[(F � π∗)(x)] ≥
(

E
x←U

[F (x)]− (δPRG + δsand + δSL)− δcount

)
− δcount

= E
x←U

[F (x)]− (δPRG + δsand + δSL)− 2δcount.

This completes the proof.

6.1 Applying Corollary 6.1: setting of parameters

We first introduce two more parameters T ∈ N and τ ∈ (0, 1) to denote

T :=
2 lnn

p
and τ :=

ε

2T
.

Looking ahead, the semantics of T and τ are as follows: each stage of our recursive search
algorithm—a call to the subroutine in Corollary 6.1—fixes at least a p/2 fraction of the remaining
coordinates (recall item 2(a) of Corollary 6.1), so T is chosen so that after T stages the number of
unfixed coordinates is at most

n · (1− p/2)T = n · (1− p/2)(2 lnn)/p < 1,

i.e. we will have arrived at an actual assignment to the CNF F . Since T is an upper bound on the
number of calls to the subroutine in Corollary 6.1, we will set parameters so that the bias of F is

13

preserved to within an additive τ = ε/2T in each call. This ensures that the bias of F remains at
least

ε− τ · T =
ε

2
> 0

throughout, and hence the final assignment we arrive at is in fact a satisfying assignment of F .
With these definitions of T and τ in hand, we will invoke the algorithm in Corollary 6.1 with

the following choice of parameters:

p =

(
1

w log((logM)/ε)

)2C logw

,

η =
1

w log((logM)/ε)
,

w′ = 16C logw + 4 log

(
192 lnM

ε

)
,

where C > 0 is the universal constant from Theorem 4, and

δcount =
τ

3
, δPRG =

τ

6
, δsand =

pτ

48
.

The next proposition justifies our choice of parameters:

Proposition 6.2. For this choice of parameters, we have that

1. p, η, and δsand satisfy assumption (4) of Theorem 4:

p ≤ η

(w log(1/δsand))C logw
.

2. For δSL = 2(δsand + ηw
′/4)/p,

δPRG + δsand + δSL + 2δcount ≤ τ.

Proof. For the first claim, we note that

log

(
1

δsand

)
= log

(
192 lnn

εp2

)
= log((log n)/ε) + 2 log(1/p) +O(1)

= O(log2w)(log((logM)/ε)),

and so indeed for w larger than a suitable absolute constant, we have

η

(w log(1/δsand))C logw
>

η

(w log((logM)/ε))1.01C logw

=

(
1

w log((logM)/ε)

)1.01C logw+1

>

(
1

w log((logM)/ε)

)2C logw

= p.

14

As for the second claim, by our choice of δPRG = τ/6 and δcount = τ/3 the claimed bound is
equivalent to

δsand + δSL ≤
τ

6
.

Since δsand < δSL, it suffices to ensure that

δSL ≤
τ

12
, or equivalently, δsand + ηw

′/4 ≤ pτ

24
.

Recalling our choice of δsand = pτ/48, it remains to check that

ηw
′/4 ≤ pτ

48
=

εp2

192 lnn
.

Indeed,

ηw
′/4 =

(
1

w log((logM)/ε)

)4C logw+log((192 lnM)/ε)

<

(
1

w log((logM)/ε)

)4C logw

· 2− log((192 lnM)/ε)

=
εp2

192 lnM
≤ εp2

192 lnn
(using M ≥ n).

This completes the proof of the second claim.

We note the following estimates for our choice of parameters when w = O(log(M/ε)) (recall
Theorem 3 and in particular that M ≥ n):

1

p
= (log(M/ε))O(log log(M/ε)) (9)

log(1/η) = O(log log(M/ε)) (10)

w′ = O(log((logM)/ε)) (11)

log(1/δ) = O(log((logM)/ε)) +O(log log(M/ε))2. (for δ ∈ {δcount, δPRG, δsand}) (12)

Proposition 6.2 yields the following special case of Corollary 6.1:

Corollary 6.3 (Corollary 6.1 for our choice of parameters). There is a deterministic algorithm A
with the following guarantee. Given as input an M -clause width-w CNF F over {0, 1}n,

1. A runs in time

exp(rSL(n,w,w′, η, δsand) + rPRG(n,w′, δPRG)) · Tcount(n,M,w, δcount)

=

(
M

ε

)Õ(log((logM)/ε))2

2. A outputs a restriction π̃ ∈ {0, 1, ∗}n such that

(a) |π̃−1({0, 1})| ≥ pn/2,

(b) E
x←U

[(F � π̃)(x)] ≥ E
x←U

[F (x)]− τ.

15

7 Putting the pieces together: the overall search algorithm

Using the results of the previous subsections we now prove Theorem 3. The claimed algorithm is
given as input a pair (F, ε); recall that from the theorem statement and as shown in Section 2, we
may assume that the CNF F has M ≥ n clauses each of width at most w = O(log(M/ε)).

The algorithm proceeds for at most T = (2 lnn)/p iterative stages (where p is as defined in
Section 6.1) as follows. In the t-th stage it operates on a CNF formula F � (π̃0 ◦ · · · ◦ π̃t−1); the
first stage is the (t = 1)-th stage and we take π̃0 to be the trivial restriction which assigns ∗ to
each of the n input variables, so F � π̃0 is simply the input CNF F . Before starting the first stage,
the algorithm records the values of parameters w,w′, η, δsand, and δPRG. (Observe that all of these
values w,w′, η, δsand, δPRG are defined solely in terms of M and ε, see Equations (10), (11) and (12);
these values will never change during the execution of the algorithm.)

Stage 1 is carried out as follows:

• Let n1 denote the number of variables that are alive under restriction π̃0, which in stage
1 is n1 = n. The algorithm compute the seed lengths rSL,1 := rSL(n1, w, w

′, η, δsand) and
rPRG,1 := rPRG(n1, w

′, δPRG).

• Then the algorithm executes the deterministic algorithm A from Corollary 6.3 on the n1-
variable function F � π̃0. The algorithm produces a restriction π̃1 ∈ {0, 1, ∗}n1 with the
properties described in 2(a) and 2(b) of Corollary 6.3.

The general t-th stage of the algorithm is carried out in a similar way:

• Let nt denote the number of variables that are alive under the restriction π̃0 ◦ · · · ◦ π̃t−1 ∈
{0, 1, ∗}n. The algorithm computes the seed lengths rSL,t := rSL(nt, w, w

′, η, δsand) and
rPRG,t := rPRG(nt, w

′, δPRG) which are appropriate for the pseudorandom switching lemma
and pseudorandom generators for nt-variable functions.

• Then the algorithm executes the deterministic algorithm A from Corollary 6.3 on the nt-
variable CNF F � (π̃0 ◦ · · · ◦ π̃t−1). The algorithm produces a restriction π̃t ∈ {0, 1, ∗}nt with
the properties described in 2(a) and 2(b) of Corollary 6.3.

We may view the restriction π̃0 ◦ · · · ◦ π̃t as belonging to {0, 1, ∗}n. If π̃0 ◦ · · · ◦ π̃t belongs to
{0, 1}n (leaves no variables free) then the algorithm halts and outputs π̃0 ◦ · · · ◦ π̃t, otherwise it
increments t and proceeds to the next stage.

It remains to establish correctness; this is easy given Corollary 6.3. A crucial aspect of the
algorithm is that in the t-th stage it works on the nt-variable CNF F � (π̃0 ◦ · · · ◦ π̃t−1). Thanks to
part 2(a) of Corollary 6.3, this implies that each value of nt is at most n(1−p/2)t−1, so consequently
after at most T stages the algorithm will indeed obtain a restriction π̃0 ◦ · · · ◦ π̃t ∈ {0, 1}n and
halt as desired. For the running time of the algorithm, it follows from part (1) of Corollary
6.3 that the running time of each of the (at most) T = (2 lnn)/p stages is upper bounded by

(M/ε)Õ(log((logM)/ε))2 and hence this is also an upper bound on the running time of the entire
algorithm (recalling the bound on p from (9)). Finally, from the discussion at the start of Section
6.1, we have that the bias of F (π̃0◦· · ·◦ π̃t) is greater than zero, and hence π̃0◦· · ·◦ π̃t is a satisfying
assignment as desired. This concludes the proof of Theorem 3.

16

References

[AAI+01] Manindra Agrawal, Eric Allender, Russell Impagliazzo, Toniann Pitassi, and Steven
Rudich. Reducing the complexity of reductions. Comput. Complexity, 10(2):117–138,
2001. 1.2.2, 3

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple constructions
of almost k-wise independent random variables. Random Structures & Algorithms,
3(3):289–304, 1992. 1.1

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic,

24(1):1–48, 1983. 3

[AW85] Miklós Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant
depth circuits. In Proceedings of the 26th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 11–19, 1985. 1, 1, 1.2.2, 1.2.2, 1.2.2, 1.3, 3, 4, 4.1

[Bra10] Mark Braverman. Polylogarithmic independence fools AC0 circuits. Journal of the
ACM, 57(5):28, 2010. 1

[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom genera-
tors for regular branching programs. SIAM J. Comput., 43(3):973–986, 2014. 1

[DETT10] Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudoran-
dom generators for depth 2 circuits. In Proceedings of the 13th International Workshop
on Randomization and Computation (RANDOM), pages 504–517, 2010. (document),
1.1, 1.2.2, 4

[DGJ+10] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco Servedio, and Emanuele
Viola. Bounded independence fools halfspaces. SIAM Journal on Computing,
39(8):3441–3462, 2010. 1

[DKN10] Ilias Diakonikolas, Daniel Kane, and Jelani Nelson. Bounded independence fools degree-
2 threshold functions. In Proceedings of the 51st Annual Symposium on Foundations of
Computer Science (FOCS), pages 11–20, 2010. 1

[DS14] Anindya De and Rocco Servedio. Efficient deterministic approximate counting for
low-degree polynomial threshold functions. In Proceedings of the 46th Annual ACM
Symposium on Theory of Computing (STOC), pages 832–841, 2014. 1

[FSS84] Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984. 3

[GKM+11] Parikshit Gopalan, Adam Klivans, Raghu Meka, Daniel Štefankovič, Santosh Vempala,
and Eric Vigoda. An FPTAS for #Knapsack and related counting problems. In 52nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 817–
826, 2011. 1

[GMR+12] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil P. Vadhan.
Better pseudorandom generators from milder pseudorandom restrictions. In Proceedings

17

of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 120–129, 2012. 1, 1.1, 1.1, 1.2.2

[GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster
deterministic counting algorithm. Comput. Complexity, 22(2):275–310, 2013. 1.1, 1.2.1,
1.2.2, 1.2.2, 1.3, 3, 3, 4, 4, 5, 6, 6

[GOWZ10] Parikshit Gopalan, Ryan O’Donnell, Yi Wu, and David Zuckerman. Fooling functions
of halfspaces under product distributions. In Proceedings of the 25th Annual IEEE
Conference on Computational Complexity (CCC), pages 223–234, 2010. 1

[GW14] Oded Goldreich and Avi Widgerson. On derandomizing algorithms that err extremely
rarely. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing
(STOC), pages 109–118. ACM, 2014. 1.1, 1.2.2, 3

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, pages 6–20, 1986. 3

[HS16] Prahladh Harsha and Srikanth Srinivasan. On polynomial approximations to AC0. In
Proceedings of the 19th International Workshop on Randomization and Computation
(RANDOM), pages 32:1–32:14, 2016. 1

[IMP12] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algo-
rithm for AC0. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 961–972, 2012. 1.2.2, 3

[IMZ12] Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from
shrinkage. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 111–119, 2012. 1, 1.2.2

[Kan12] Daniel Kane. A structure theorem for poorly anticoncentrated Gaussian chaoses and
applications to the study of polynomial threshold functions. In Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 91–100,
2012. 1

[LV96] Michael Luby and Boban Veličković. On deterministic approximation of DNF. Algo-
rithmica, 16(4-5):415–433, 1996. 1, 1.1

[LVW93] Michael Luby, Boban Veličković, and Avi Wigderson. Deterministic approximate count-
ing of depth-2 circuits. In Proceedings of the 2nd ISTCS, pages 18–24, 1993. 1

[MZ13] Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold
functions. SIAM Journal on Computing, 42(3):1275–1301, 2013. 1

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–
70, 1991. 1

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993. 1.1

18

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. randomness. J. Comput. System Sci.,
49(2):149–167, 1994. 1

[RS10] Yuval Rabani and Amir Shpilka. Explicit construction of a small epsilon-net for linear
threshold functions. SIAM J. on Comput., 39(8):3501–3520, 2010. 1

[RSV13] Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for regular
branching programs via Fourier analysis. In Proceedings of the 17th International Work-
shop on Randomization and Computation (RANDOM), pages 655–670, 2013. 1.2.2

[SZ99] Michael Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). J. Comput. System
Sci., 58(2):376–403, 1999. 1

[SZ10] Jiŕı Śıma and Stanislav Zák. A polynomial time construction of a hitting set for read-
once branching programs of width 3. Electronic Colloquium on Computational Com-
plexity (ECCC), 17:88, 2010. 1.1

[Tre04] Luca Trevisan. A note on approximate counting for k-DNF. In Proceedings of the
8th International Workshop on Randomization and Computation (RANDOM), pages
417–426, 2004. 1

[Tre10] Luca Trevisan. Open Problems in Unconditional Derandomization. Presentation at
China Theory Week 2010, slides available at http://conference.itcs.tsinghua.

edu.cn/CTW2010/content/Slides/2.pdf, 2010. 1.1

[TX13] Luca Trevisan and Tongke Xue. A derandomized switching lemma and an improved
derandomization of AC0 . In Proceedings of the 28th Annual IEEE Conference on
Computational Complexity (CCC), pages 242–247, 2013. 1, 1.2.2, 1.2.2, 3

[Yao85] Andrew Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of
the 26th Annual Symposium on Foundations of Computer Science, pages 1–10, 1985. 3

19

http://conference.itcs.tsinghua.edu.cn/CTW2010/content/Slides/2.pdf
http://conference.itcs.tsinghua.edu.cn/CTW2010/content/Slides/2.pdf

	Introduction
	Prior results and related work
	Our main result and approach
	Warm up: a simple and naive search algorithm based on approximate counting
	Our approach: a more efficient reduction

	Organization of this paper

	Background and setup
	The GMR13 pseudorandom switching lemma
	Bias preservation via pseudorandom switching lemmas
	Existence of a bias-preserving restriction *
	Finding *, or a restriction that is almost as good
	Applying Corollary 6.1: setting of parameters

	Putting the pieces together: the overall search algorithm

