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Abstract. We present a range of new results for testing properties of Boolean functions that are defined in terms
of the Fourier spectrum. Broadly speaking, our results show that the property of a Boolean function having a concise
Fourier representation is locally testable.

We give the first efficient algorithms for testing whether a Boolean function has a sparse Fourier spectrum (small
number of nonzero coefficients) and for testing whether the Fourier spectrum of a Boolean function is supported in
a low-dimensional subspace of Fn

2 . In both cases we also prove lower bounds showing that any testing algorithm
— even an adaptive one — must have query complexity within a polynomial factor of our algorithms, which are
nonadaptive. Building on these results, we give an “implicit learning” algorithm that lets us test any sub-property of
Fourier concision. We also present some applications of these results to exact learning and decoding.

Our technical contributions include new structural results about sparse Boolean functions and new analysis of
the pairwise independent hashing of Fourier coefficients from [FGKP06].

Key words. Property testing, Fourier spectrum, discrete Fourier analysis, local testability

AMS subject classifications. 94C10, 06E30, 68R99, 42C10

1. Introduction. Recent years have witnessed broad research interest in the local testa-
bility of mathematical objects such as graphs, error-correcting codes and Boolean functions.
One of the goals of this study is to understand the minimal conditions required to make a prop-
erty locally testable. For graphs and codes, works such as [AFNS06, AT08, AS08a, AS08b]
and [KS07, KS08] have given fairly general characterizations of when a property is testable.
For Boolean functions, however, testability is less well understood. On one hand, there are
a fair number of testing algorithms for specific classes of functions such as F2-linear func-
tions [BLR93, BCH+96], dictators [BGS98, PRS02], low-degree F2-polynomials [AKK+05,
Sam07], juntas [FKR+04, Bla08, Bla09], and halfspaces [MORS09]. But there is not much
by way of general characterizations of what makes a property of Boolean functions testable.
Perhaps the only example is the work of [DLM+07], showing that any class of functions
sufficiently well-approximated by juntas is locally testable.

It is reasonable to think that analyzing the Fourier spectrum might help us identify fairly
general classes of Boolean functions that can be tested efficiently (see e.g. [Fis01, Section
9.1]). For one thing, many of the known tests — for linearity, dictators, juntas, and halfs-
paces — involve a careful analysis of the Fourier spectrum. Further intuition comes from
learning theory, where the class of functions that are learnable using many of the well-known
algorithms [LMN93, KM93, Jac97] can be characterized in terms of the Fourier spectrum.
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In this paper we make some progress toward this goal, by giving efficient algorithms for
testing Boolean functions that have low-dimensional or sparse Fourier representations. These
are two natural ways to formalize what it means for a Boolean function to have a “concise”
Fourier representation; thus, roughly speaking our results show that the property of having a
concise Fourier representation is efficiently testable. Further, as we explain below, Boolean
functions with low-dimensional or sparse Fourier representations are closely related to linear
functions, juntas, and low-degree polynomials whose testability has been intensively studied,
and thus the testability of these classes is an interesting question in its own right. Building on
our testing algorithms, we are able to give an “implicit learner” (in the sense of [DLM+07]),
which determines the “truth table” of a sparse Fourier spectrum without actually knowing the
identities of the underlying Fourier characters. This lets us test any sub-property of having
a concise Fourier representation. We view this as a step toward the goal of a more unified
understanding of the testability of Boolean functions.

Our algorithms rely on new structural results on Boolean functions with sparse and close-
to-sparse Fourier spectrums, which may find applications elsewhere. As one such applica-
tion, we show that the well-known Kushilevitz-Mansour algorithm is in fact an exact proper
learning algorithm for Boolean functions with sparse Fourier representations. As another
application, we give polynomial-time unique-decoding algorithms for sparse functions and
k-dimensional functions.

1.1. The Fourier spectrum, dimensionality, and sparsity. We are concerned with test-
ing various properties defined in terms of the Fourier representation of Boolean functions
f : Fn2 → {−1, 1}. Input bits will be treated as 0, 1 ∈ F2, the field with two elements;
output bits will be treated as −1, 1 ∈ R. Every Boolean function f : Fn2 → R has a unique
representation as

f(x) =
∑
α∈Fn

2

f̂(α)χα(x) where χα(x) def= (−1)〈α,x〉 = (−1)
Pn

i=1 αixi . (1.1)

The coefficients f̂(α) are the Fourier coefficients of f , and the functions χα(·) are sometimes
referred to as linear functions or characters. In addition to treating input strings x as lying in
Fn2 , we also index the characters by vectors α ∈ Fn2 . This is to emphasize the fact that we are
concerned with the linear-algebraic structure. We write Spec(f) for the Fourier spectrum of
f , i.e. the set {α ∈ Fn2 : f̂(α) 6= 0}.

Dimensionality and sparsity (and degree).
We begin by defining the notions of low-dimensionality and sparsity.
DEFINITION 1.1. A function f : Fn2 → {−1, 1} is said to be k-dimensional if Spec(f)

lies in a k-dimensional subspace of Fn2 . An equivalent definition is that f is k-dimensional
if it is f(x) = g(χα1(x), . . . , χαk

(x)) where g is any k-variable Boolean function and
χα1 , . . . , χαk

are parity functions. We write dim(f) to denote the smallest k for which f
is k-dimensional.

DEFINITION 1.2. A function f is said to be s-sparse if |Spec(f)| ≤ s. We write spar(f)
to denote |Spec(f)|, i.e. the smallest s for which f is s-sparse.

We recall the notion of the F2-degree of a Boolean function, deg2(f), which is the de-
gree of the unique multilinear F2-polynomial representation for f when viewed as a function
Fn2 → F2. This should not be confused with the real-degree/Fourier-degree. For example,
deg2(χα) = 1 for all α 6= 0. Let us note some relations between dim(f) and spar(f). For
any Boolean function f , we have

deg2(f) ≤ log spar(f) ≤ dim(f), (1.2)
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except that the first inequality fails when deg2(f) = 1. (Throughout this paper, log always
means log2.) The first inequality above is not difficult (see e.g. [BC99, Lemma 3]) and the
second one is essentially immediate. Either of the above inequalities can be quite loose; for
the first inequality, the inner product function (−1)x1x2+x3x4+···+xn−1xn on n variables has
deg2(f) = 2 but log spar(f) = n. For the second inequality, the “address function” (see
Section 2.1 of [BdW02]) with 1

2 log s addressing variables and s1/2 addressee variables can
be shown to be s-sparse but has dim(f) ≥ s1/2. (It is trivially true that dim(f) ≤ s for any
s-sparse function.)

We may rephrase these bounds as containments between classes of functions:

{k-dimensional} ⊆ {2k-sparse} ⊆ {F2 − degree-k} (1.3)

where the right containment is proper for k > 1 and the left is proper for k larger than some
small constant such as 6. Alon et al. [AKK+05] gave essentially matching upper and lower
bounds for testing the class of F2-degree-k functions, showing that 2Θ(k) nonadaptive queries
are necessary and sufficient. We show that 2Θ(k) queries are also necessary and sufficient for
testing each of the first two classes as well; in fact, by our implicit learning result, we can test
a broad range of sub-classes of k-dimensional functions using 2O(k) queries.1

1.2. Our results and techniques.

1.2.1. Testing Sparsity. We give an algorithm for testing whether a function is s-sparse.
Its query complexity is poly(s), which is optimal up to the degree of the polynomial:

THEOREM 1.3. [Testing s-sparsity – informal] There is a nonadaptive poly(s, 1/ε)-
query algorithm for ε-testing whether f is s-sparse. Moreover, any algorithm (adaptive, even)
for 0.49-testing this property must make Ω(

√
s) queries.

The high-level idea behind our tester is that of “hashing” the Fourier coefficients, fol-
lowing [FGKP06]. We choose a random subspace H of Fn2 with codimension O(s2). This
partitions all the Fourier coefficients into the cosets (affine subspaces) defined by H . If f
is s-sparse, then each vector in Spec(f) is likely to land in a distinct coset. We define the
“projection” of f to a coset r + H to be the real-valued function given by zeroing out all
Fourier coefficients not in r+H . Given query access to f , one can obtain approximate query
access to a projection of f by a certain averaging. Now if each vector in Spec(f) is hashed
to a different coset, then each projection function will have sparsity either 1 or 0, so we can
try to test that at most s of the projection functions have sparsity 1, and the rest have sparsity
0. Our main theorem shows that this test in fact succeeds, but the analysis is non-trivial as
sketched below.

The first step is to show that if f passes this test, most of its Fourier mass lies on a few
coefficients. However, this is not a priori enough to conclude that f is close to a sparse
Boolean function. The obvious way to get a Boolean function close to f would be to truncate
the Fourier spectrum to its s largest coefficients and then take the sign, but taking the sign
could destroy the sparsity and give a function which is not at all sparse.

We circumvent this obstacle by using some new structural theorems about sparse Boolean
functions, coupled with a more delicate truncation procudure.We show that if most of the
Fourier mass of a function f lies on its largest s coefficients, then these coefficients are close
to being “dlog se–granular,” i.e. close to integer multiples of 1/2dlog se. We then show that
truncating the Fourier expansion to these coefficients and rounding them to nearby granular
values gives a sparse Boolean-valued function (Theorem 3.4). Thus our sparsity test and its
analysis depart significantly from the Fourier based test for juntas [FKR+04].

1We remind the reader that efficient testability does not translate downward: if C1 is a class of functions that is
efficiently testable and C2 ( C1, the class C2 need not be efficiently testable.
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1.2.2. Testing Low-Dimensionality. We give nearly matching upper and lower bounds
for testing whether a function is k-dimensional:

THEOREM 1.4. [Testing k-dimensionality – informal] There is a nonadaptive al-
gorithm that makes O(k22k/ε) queries for ε-testing (see Definition 2.1) whether f is k-
dimensional. Moreover, any algorithm (adaptive, even) for 0.49-testing this property must
make Ω(2k/2) queries.

We outline the basic idea behind our dimensionality test. Given h ∈ Fn2 , we say that
f : Fn2 → R is h-invariant if it satisfies f(x + h) = f(x) for all x ∈ Fn2 . We define
the subspace Inv(f) = {h : f is h-invariant}. If f is truly k-dimensional, then Inv(f) has
codimension k; we use this as the characterization of k-dimensional functions. We estimate
the size of Inv(f) by randomly sampling vectors h and testing if they belong to Inv(f). We
reject if the fraction of such h is much smaller than 2−k.

The crux of our soundness analysis is to show that if a function passes the test with good
probability, most of its Fourier spectrum is concentrated on a k-dimensional subspace. From
this we conclude that it must in fact be close to a k-dimensional function.

1.2.3. Testing subclasses of k-dimensional functions. Building on these results, we
show that a broad range of subclasses of k-dimensional functions are also testable with 2O(k)

queries. Recall that k-dimensional functions are all functions that can be expressed as f(x) =
g(χα1(x), . . . , χαk

(x)) where g is any k-variable Boolean function. We say that a class C is
an induced subclass of k-dimensional functions if there is some collection C′ of k-variable
Boolean functions such that C is the class of all functions f = g(χα1 , . . . , χαk

) where g is
any function in C′ and χα1 , . . . , χαk

are any linear functions from Fn2 to F2 as before. For
example, let C be the class of all k-sparse polynomial threshold functions over {−1, 1}n; i.e.,
each function in C is the sign of a real polynomial with at most k nonzero terms. This is an
induced subclass of k-dimensional functions, corresponding to the collection C′ = {all linear
threshold functions over k Boolean variables}.

We show that any induced subclass of k-dimensional functions can be tested:
THEOREM 1.5. [Testing induced subclasses of k-dimensional functions – infor-

mal] Let C be any induced subclass of k-dimensional functions. There is a nonadaptive
poly(2k, 1/ε)-query algorithm for ε-testing C.

We note that the upper bound of Theorem 1.5 is essentially best possible in general, by
the 2Ω(k) lower bound for testing the whole class of k-dimensional functions.

Our algorithm for Theorem 1.5 extends the approach of Theorem 1.3 with ideas from the
“testing by implicit learning” work of [DLM+07]. Briefly, by hashing the Fourier coefficients
of a k-dimensional f we are able to construct a matrix of size 2k × 2k whose entries are the
values taken by the characters χα that are in the spectrum of f . This matrix, together with a
vector of the corresponding values of f , serves as a data set for “implicit learning” (we say
the learning is “implicit” since we do not actually know the names of the relevant characters).
Our test inspects sub-matrices of this matrix and tries to find one which, together with the
vector of f -values, matches the truth table of some k-variable function g ∈ C′.

1.2.4. Applications to Exact Learning and Unique Decoding. The soundness of our
tests is proved by (implicitly) giving an algorithm that reconstructs a nearby sparse/low-
dimensional function. We make these algorithms explicit, and show that they are in fact
tolerant to rather high levels of noise. We show that they work up to the unique decoding
radius for these classes, which is the best one could hope for. As an application, we show that
the well-known Kushilevitz-Mansour algorithm is in fact an exact proper learning algorithm
for Boolean functions with sparse Fourier representations, and moreover it can handle some
amount of adversarial noise in the input.
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Organization of the paper. This paper is organized as follows: new structural results,
then testing algorithms, then lower bounds and lastly some applications. We give standard
preliminaries and an explanation of our techniques for hashing the Fourier spectrum in Sec-
tion 2. In Section 3 we prove our new structural theorems about sparse Boolean functions,
and Section 4 uses these theorems to analyze our test for s-sparse functions. We analyze a
natural algorithm for testing k-dimensional functions in Section 5. We give a different al-
gorithm whose analysis extends to testing induced subclasses of k-dimensional functions in
Section 6. We present our lower bounds in Section 7 and conclude with applications to exact
learning and unique-decoding in Section 8.

2. Preliminaries. Throughout the paper we view Boolean functions as mappings from
Fn2 to {−1, 1}. We will also consider functions which map from Fn2 to R. Such functions
have a unique Fourier expansion as in Equation (1.1). For A a collection of vectors α ∈ Fn2 ,
we write wt(A) to denote the “Fourier weight” wt(A) =

∑
α∈A f̂(α)2 on the elements ofA.

This notation suppresses the dependence on f , but it will always be clear from context. We
frequently use Parseval’s identity: wt(Fn2 ) =

∑
α∈Fn

2
f̂(α)2 = ‖f‖22

def= Ex∈Fn
2
[f(x)2]. Here

and elsewhere, an expectation or probability over “x ∈ X” refers to the uniform distribution
on X .

As defined in the previous section, the sparsity of f is spar(f) = |Spec(f)|. We may
concisely restate the definition of dimension as dim(f) = dim(span(Spec(f))).

Given two Boolean functions f and g, we say that f and g are ε-close if Prx∈Fn
2
[f(x) 6=

g(x)] ≤ ε and say they are ε-far if Prx∈Fn
2
[f(x) 6= g(x)] ≥ ε. We use the standard definition

of property testing:
DEFINITION 2.1. Let C be a class of functions mapping Fn2 to {−1, 1}. A property tester

for C is an oracle algorithm A which is given a distance parameter ε > 0 and oracle access
to a function f : Fn2 → {−1, 1} and satisfies the following conditions:

1. if f ∈ C then A outputs “accept” with probability at least 2/3;
2. if f is ε-far from every g ∈ C then A outputs “accept” with probability at most 1/3.

We also say that A ε-tests C. The main interest is in the number of queries the testing algo-
rithm makes.

All of our testing upper and lower bounds allow “two-sided error” as described above.
Our lower bounds are for adaptive query algorithms and our upper bounds are via nonadaptive
query algorithms.

2.1. Projections of the Fourier spectrum. The idea of “isolating” or “hashing” Fourier
coefficients by projection, as done in [FGKP06] in a learning-theoretic context, plays an
important role in our tests.

DEFINITION 2.2. Given a subspace H ≤ Fn2 and a coset r + H , define the projection
operator Pr+H on functions f : Fn2 → R as follows:

P̂r+Hf(α)
def
=

{
f̂(α) if α ∈ r +H ,
0 otherwise.

In other words, we have Pr+Hf = Ar+H ∗ f, where Ar+H
def
=
∑
α∈r+H χα and ∗ is the

convolution operator: f ∗ g(x) = Ey[f(x+ y) · g(y)].
ClearlyAr+H = χr ·

∑
h∈H χh, and it is a simple and well-known fact that

∑
h∈H χh =

|H| · 1H⊥ . Thus we conclude the following (see also Lemma 1 of [FGKP06]):
FACT 2.3. Pr+Hf(x) = Ey∈H⊥ [χr(y)f(x+ y)].
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We now show that for any coset r+H , we can approximately determine both Pr+Hf(x)
and ‖Pr+Hf‖22.

PROPOSITION 2.4. For any x ∈ Fn2 , the value Pr+Hf(x) can be estimated to within±τ
with confidence 1− δ using O(log(1/δ)/τ2) queries to f .

Proof. Empirically estimate the right-hand side in Fact 2.3. Since the quantity inside the
expectation is bounded in [−1, 1], the result follows from a Chernoff bound.

Recall that wt(r +H) =
∑
α∈r+H f̂(α)2 = ‖Pr+Hf‖22. We have:

FACT 2.5. wt(r +H) = Ex∈Fn
2 ,z∈H⊥ [χr(z)f(x)f(x+ z)].

Proof. Using Parseval and Fact 2.3, we have

wt(r +H) = E
w∈Fn

2

[(Pr+Hf(w))2] = E
w∈Fn

2 ,y1,y2∈H
⊥

[χr(y1)f(w + y1)χr(y2)f(w + y2)],

which reduces to the desired equality upon writing x = w + y1, z = y1 + y2.
PROPOSITION 2.6. The value wt(r+H) can be estimated to within±τ with confidence

1− δ using O(log(1/δ)/τ2) queries to f .
Proof. Empirically estimate the right-hand side in Fact 2.5. Since the quantity inside the

expectation is bounded in [−1, 1], the result follows from a Chernoff bound.

2.2. Hashing to a random coset structure. In this section we present our technique for
pairwise independently hashing the Fourier characters.

DEFINITION 2.7. For t ∈ N, we define a random t-dimensional coset structure (H, C)
as follows: We choose vectors β1, . . . , βt ∈ Fn2 independently and uniformly at random and
set H = span{β1, . . . , βt}⊥. For each b ∈ Ft2 we define the “bucket”

C(b)
def
= {α ∈ Fn2 : 〈α, βi〉 = bi for all i}.

We take C to be the (multi)set of C(b)’s, which has cardinality 2t.
REMARK 2.8. Given such a random coset structure, if the βi’s are linearly independent

then the buckets C(b) are precisely the cosets in Fn2/H , and the coset-projection function
PC(b)f is defined according to Definition 2.2. In the (usually unlikely) case that the βi’s
are linearly dependent, some of the C(b)’s will be cosets in Fn2/H and some of them will be
empty. For the empty buckets C(b) we define PC(b)f to be identically 0. It is algorithmically
easy to distinguish empty buckets from genuine coset buckets.

We now derive some simple but important facts about this random hashing process:
PROPOSITION 2.9. Let (H, C) be a random t-dimensional coset structure. Define the

indicator random variable Iα→b for the event that α ∈ C(b).
1. For each α ∈ Fn2 \ {0} and each b we have Pr[α ∈ C(b)] = E[Iα→b] = 2−t.
2. Let α, α′ ∈ Fn2 be distinct. Then Pr[α, α′ belong to the same bucket] = 2−t.
3. Fix any set S ⊆ Fn2 with |S| ≤ s + 1. If t ≥ 2 log s + log(1/δ) then except with

probability at most δ, all vectors in S fall into different buckets.
4. For each b, the collection of random variables (Iα→b)α∈Fn

2
is pairwise independent.

Proof. Part 1 is because for any α 6= 0, each 〈α, βi〉 is an independent uniformly random
bit. Part 2 is because each 〈α − α′, βi〉 is an independent uniformly random bit, and hence
the probability that 〈α, βi〉 = 〈α′, βi〉 for all i is 2−t. Part 3 follows from Part 2 and taking
a union bound over the at most

(
s+1

2

)
≤ s2 distinct pairs in S. For Part 4, assume first that

α 6= α′ are both nonzero. Then from the fact that α and α′ are linearly independent, it follows
that Pr[α, α′ ∈ C(b)] = 2−2t as required. On the other hand, if one of α 6= α′ is zero, then
Pr[α, α′ ∈ C(b)] = Pr[α ∈ C(b)]Pr[α′ ∈ C(b)] follows immediately by checking the two
cases b = 0, b 6= 0.
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With Proposition 2.9 in mind, we give the following simple deviation bound for the sum
of pairwise independent random variables:

PROPOSITION 2.10. Let X =
∑n
i=1Xi, where the Xi’s are pairwise independent

random variables satisfying 0 ≤ Xi ≤ τ . Assume µ = E[X] > 0. Then for any ε > 0,
we have Pr[X ≤ (1− ε)µ] ≤ τ

ε2µ .

Proof. By pairwise independence, we have Var[X] =
∑

Var[Xi] ≤
∑

E[X2
i ] ≤∑

τE[Xi] = τµ. The result now follows from Chebyshev’s inequality.
Finally, it is slightly annoying that Part 1 of Proposition 2.9 fails for α = 0 (because 0

is always hashed to C(0)). However we can easily handle this issue by renaming the buckets
with a simple random permutation.

DEFINITION 2.11. In a random permuted t-dimensional coset structure, we additionally
choose a random z ∈ Ft2 and rename C(b) by C(b+ z).

PROPOSITION 2.12. For a random permuted t-dimensional coset structure, Proposi-
tion 2.9 continues to hold, with Part 1 even holding for α = 0.

Proof. Use Proposition 2.9 and the fact that adding a random z permutes the buckets.

3. Structural theorems about s-sparse functions. In this section we prove structural
theorems about close-to-sparse Boolean functions. These theorems are crucial to the analysis
of our test for s-sparsity.

DEFINITION 3.1. Let B = {α1, · · · , αs} denote the (subsets of [n] with the) s-largest
Fourier coefficients of f , and let S = B̄ be its complement. We say that f is µ-close to
s-sparse in `2 if

∑
α∈S f̂(α)2 ≤ µ2.

DEFINITION 3.2. We say a rational number has granularity k ∈ N, or is k-granular, if it
is of the form (integer)/2k. We say a function f : Fn2 → R is k-granular if f̂(α) is k-granular
for every α. We say that a number v is µ-close to k-granular if |v − j/2k| ≤ µ for some
integer j.

The following structural result is the key theorem for the completeness of our sparsity
test; it says that in any function that is close to being sparse in `2, all the large Fourier
coefficients are close to being granular.

THEOREM 3.3. [Completeness Theorem.] If f is µ-close to s-sparse in `2, then each
f̂(α) for α ∈ B is µ√

s
-close to dlog se-granular (here B is defined as in Definition 3.1).

Proof. Fix k = dlog se+1, and let (H, C) denote a random permuted k-dimensional coset
structure (defined by choosing vectors β1, . . . , βk ∈ Fn2 and a random shift vector z ∈ Fk2 as
described in Definitions 2.7 and 2.11). For b ∈ Fk2 we have

PC(b)f(x) =
∑

α∈C(b)

f̂(α)χα(x).

Fix αi ∈ B. We will show that with non-zero probability (over the choice of (H, C) and
a uniform choice of b ∈ Fk2) the following two events happen together: the vector αi is the
unique coefficient in B∩C(b), and the `2 Fourier mass of the set S∩C(b) is bounded by µ2

s .
Clearly we have Pr(H,C),b[αi ∈ C(b)] = 2−k. Let us condition on this event. By pairwise
independence, for any j 6= i we have Pr(H,C),b[αj ∈ C(b) | αi ∈ C(b)] = 2−k ≤ 1

2s . Thus
E(H,C),b

[
|{j 6= i such that αj ∈ C(b)}|

∣∣ αi ∈ C(b)
]

= (s−1)
2k < 1

2 . Hence by Markov’s
inequality we get that

Pr(H,C),b[∃j 6= i such that αj ∈ C(b)
∣∣ αi ∈ C(b)] <

1
2
. (3.1)
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Now consider the coefficients from S. We have

E(H,C),b

 ∑
β∈S∩C(b)

f̂(β)2
∣∣ αi ∈ C(b)


=
∑
β∈S

Pr(H,C),b[β ∈ C(b) | αi ∈ C(b)]f̂(β)2

≤ 2−kµ2 ≤ µ2

2s
.

Hence by Markov’s inequality,

Pr(H,C),b

 ∑
β∈S∩C(b)

f̂(β)2 ≥ µ2

s

∣∣ αi ∈ C(b)

 ≤ 1
2
. (3.2)

Thus by applying the union bound to Equations 3.1 and 3.2, we have both the desired events
(αi being the unique solution from B, and small `2 mass from S) happening with non-zero
probability over the choice of (H, C), b. Fixing this choice, we have

PC(b)f(x) = f̂(αi)χαi(x) +
∑

β∈S∩C(b)

f̂(β)χβ(x) where
∑

β∈S∩C(b)

f̂(β)2 ≤ µ2

s
.

But by Fact 2.3 (and writing the coset C(b) as r + H for a suitable r), we also have
PC(b)f(x) = Ey∈H⊥ [χr(y)f(x + y)]. Thus the function PC(b)f(x) is the average of a
Boolean function over 2k points, hence it is (k − 1)-granular.

We now consider the function g(x) =
∑
β∈S∩C(b) f̂(β)χβ(x). Since Ex[g(x)2] ≤ µ2

s ,

for some x0 ∈ Fn2 we have g(x0)2 ≤ µ2

s , hence |g(x0)| ≤ µ√
s
. Fixing this x0, we have

PC(b)f(x0) = f̂(αi)χαi
(x0) + g(x0), and hence |f̂(αi)| = |PC(b)f(x0) − g(x0)|. Since

PC(b)f(x0) is (k − 1)-granular and |g(x0)| ≤ µ√
s
, the claim follows.

Thus, if f has its Fourier mass concentrated on s coefficients, then it is close in `2 to an
s-sparse, dlog se granular real-valued function. We next show that this real-valued function
must in fact be Boolean.

THEOREM 3.4. [Soundness Theorem.] Let f : Fn2 → {−1, 1} be µ-close to s-sparse in
`2, where µ ≤ 1

20s2 . Then there is an s-sparse Boolean function F : Fn2 → {−1, 1} within

Hamming distance at most µ
2

2 from f .
Proof. Let B = {α1, · · · , αs} be the s largest Fourier coefficients of f and let k =

dlog se. By Theorem 3.3, each f̂(αi) is µ√
s

close to k-granular. So we can write

f̂(αi) = F̂ (αi) + Ĝ(αi)

where F̂ (αi) is k-granular and |Ĝ(αi)| ≤ µ√
s
. Set F̂ (β) = 0 and Ĝ(β) = f̂(β) for β ∈ S =

B̄. Thus we have f(x) = F (x) +G(x), further F is s-sparse and k-granular, while

E[G(x)2] ≤ sµ
2

s
+ µ2 ≤ 2µ2.

It suffices to show that F ’s range is {−1, 1}, for if this is the case then G’s range must
be {−2, 0, 2}, the value G(x)2 is exactly 4 whenever f and F differ, and therefore f and F
satisfy

Prx[f(x) 6= F (x)] = Pr[|G(x)| = 2] =
1
4
Ex[G(x)2] ≤ µ2

2
.
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As f is a Boolean function on Fn2 we have

1 = f2 = F 2 + 2FG+G2 = F 2 +G(2f −G). (3.3)

Writing H = G(2f −G), from Fact 3.5 below we have that for all α,

|Ĥ(α)| ≤ ‖G‖2‖2f −G‖2 ≤ ‖G‖2(‖2f‖2 + ‖G‖2) ≤ 2
√

2µ+ 2µ2 < 4µ ≤ 1
5s2

.

On the other hand, since F has granularity k it is easy to see that F 2 has granularity 2k; in
particular, |F̂ 2(α)| is either an integer or at least 2−2k ≥ 1

4s2 -far from being an integer. But
for (3.3) to hold as a functional identity, we must have F̂ 2(0) + Ĥ(0) = 1 and F̂ 2(α) +
Ĥ(α) = 0 for all α 6= 0. It follows then that we must have F̂ 2(0) = 1 and F̂ 2(α) = 0 for all
α 6= 0; i.e., F 2 = 1 and hence F has range {−1, 1}, as claimed.

FACT 3.5. Let f, g : Fn2 → R. Then |f̂g(α)| ≤ ‖f‖2‖g‖2 for every α.
Proof. Any Fourier coefficient of fg is upper bounded by ‖fg‖2, and this is at most

‖f‖2‖g‖2.

4. Testing s-sparsity. This section presents our algorithm for testing whether f : Fn2 →
{−1, 1} is s-sparse, Algorithm Test-Sparsity.

Algorithm Test-Sparsity
Inputs: s, ε

Parameters: µ = min(
√

2ε, 1
20s2 ), t = d2 log s+ log 100e, τ = µ2

100·2t.

1. Choose a random permuted t-dimensional coset structure
(H, C).

2. For each bucket C ∈ C, estimate wt(C) =
∑
α∈C f̂(α)2

to accuracy ±τ with confidence 1 − (1/100)2−t, using
Proposition 2.6.

3. Let L be the set of buckets where the estimate is at
least 2τ. If |L| ≥ s+ 1, reject.

Roughly speaking, Step 1 pairwise independently hashes the Fourier coefficients of f
into Θ(s2) buckets. If f is s-sparse then at most s buckets have nonzero weight and the
test accepts. On the other hand, if f passes the test with high probability then we show that
almost all the Fourier mass of f is concentrated on at most s nonzero coefficients (one for
each bucket in L). Theorem 3.4 now shows that f is close to a sparse function. Our theorem
about the test is the following:

THEOREM 4.1. Algorithm Test-Sparsity ε-tests whether f : Fn2 → {−1, 1} is s-sparse

(with confidence 3/4), making O
(
s6 log s
ε2 + s14 log s

)
nonadaptive queries.

The query complexity of Theorem 4.1 follows immediately from Proposition 2.6 and
the fact that there are 2t = O(s2) buckets. In the remainder of this section we present the
completeness (Lemma 4.2) and the soundness (Lemma 4.5) of the test. We begin with the
completeness, which is straightforward.

LEMMA 4.2. If f is s-sparse then the test accepts with probability at least 0.9.
Proof. Write f =

∑s′

i=1 f̂(αi)χαi
, where each f̂(αi) 6= 0 and s′ ≤ s. Since there

are 2t buckets, all of the estimates in Step 2 are indeed τ -accurate, except with probability at
most 1/100. If the estimates are indeed accurate, the only buckets with weight at least τ are
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those that contain a nonzero Fourier coefficient, which are at most s in number. So f passes
the test with probability at least 0.9.

We now analyze the soundness. We partition the Fourier coefficients of f into two sets:
B of big coefficients and S of small coefficients. Formally, let

B
def= {α : f̂(α)2 ≥ 3τ}, S

def= {α : f̂(α)2 < 3τ}. (4.1)

We observe that if there are too many big coefficients the test will probably reject:
LEMMA 4.3. If |B| ≥ s+ 1 then the test rejects with probability at least 3/4.
Proof. Proposition 2.12(3) implies that after Step 1, except with probability at most

1/100 there are at least s + 1 buckets C containing an element of B. In Step 2, except with
probability at most 1/100, we get an estimate of at least 3τ − τ ≥ 2τ for each such bucket.
Then |L| will be at least s + 1 in Step 3. Hence the overall rejection probability is at least
1− 2/100.

Next we show that if the weight on small coefficients, wt(S) =
∑
α∈S f̂(α)2, is too

large then the test will probably reject:
LEMMA 4.4. If wt(S) ≥ µ2 then the test rejects with probability at least 3/4.
Proof. Suppose that indeed wt(S) ≥ µ2. Fix a bucket index b and define the random

variable Mb := wt(C(b) ∩ S) =
∑
α∈C(b)∩S f̂(α)2 =

∑
α∈S f̂(α)2 · Iα→b. Here the

randomness is from the choice of (H, C), and we have used the pairwise independent indicator
random variables defined in Proposition 2.12(4). Let us say that the bucket C(b) is good if
Mb ≥ 1

2E[Mb]. We have E[Mb] = 2−t wt(S) ≥ 100τ > 0, and by Proposition 2.10
we deduce Pr[Mb ≤ 1

2E[Mb]] ≤ 3τ
(1/2)2E[Mb] ≤ 3/25. Thus the expected fraction of bad

buckets is at most 3/25, so by Markov’s inequality there are at most (3/5)2t bad buckets
except with probability at most 1/5. But if there are at least (2/5)2t good buckets, we have
at least (2/5)(100s2) ≥ s + 1 buckets b with wt(C(b) ∩ S) ≥ 1

2E[Mb] ≥ 50τ . Assuming
all estimates in Step 2 of the test are accurate to within ±τ (which fails with probability at
most 1/100), Step 3 of the test will reject. Thus we reject except with probability at most
1/5 + 1/100 < 1/4.

Now we put together the pieces to establish soundness of the test:
LEMMA 4.5. Suppose the test accepts f with probability exceeding 1/4. Then f is

ε-close to an s-sparse Boolean function.
Proof. Assuming the test accepts f with probability exceeding 1/4, by Lemma 4.3 we

have |B| ≤ s, by Lemma 4.4 we have wt(S) ≤ µ2. Thus f is µ ≤ 1
20s2 close in `2 to being

s-sparse. We now apply the soundness theorem, Theorem 3.4 to conclude that f must be
µ2

2 ≤ ε-close in Hamming distance to an s-sparse Boolean function.

We note that the proof of Theorem 3.4 in fact shows that f is µ2

2 -close to the function
F =

∑
β∈B f̃(β)χβ , where each f̃(β) is the dlog se-granular value obtained by rounding

f̂(β); this will be useful for us in Section 6.

5. Testing k-dimensionality. In this section we give our algorithm for testing whether a
Boolean function is k-dimensional. The test is inspired by the following notion of invariance:

DEFINITION 5.1. If f : Fn2 → R satisfies f(x + h) = f(x) for all x ∈ Fn2 , we say that
f is h-invariant. We define

Inv(f)
def
= {h : f is h-invariant},

which is clearly a subspace of Fn2 . We may view f as a function on Fn2/Inv(f).
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The following fact is easily verified (see e.g. [GKS07]):
FACT 5.2. For any f : Fn2 → R, we have span(Spec(f)) = Inv(f)⊥. Hence we also

have dim(f) = codim(Inv(f)).
Recalling that dim(f) = dim(span(Spec(f))), Fact 5.2 naturally suggests that we test

k-dimensionality by estimating the probability that a randomly chosen h ∈ Fn2 belongs to
Inv(f). This probability is at least 2−k if f is k-dimensional, and is at most 2−(k+1) if f is not
k-dimensional. If we could perfectly determine whether a vector h belongs to Inv(f) with q
queries, we would get a nonadaptive test makingO(2k)·q queries. In lieu of a perfect decision
on whether h ∈ Inv(f), we instead check that f(x+h) = f(x) for Õ(2k)/ε many randomly
chosen x’s. A formal statement of our test is given as Algorithm Test-Dimensionality.

Algorithm Test-Dimensionality
Inputs: k, ε.
Additional parameter settings: ` = O(1) · 2k, m = O(1) · k2k/ε

1. Pick h1, . . . , h` ∈ Fn2 independently and uniformly at random.
2. For each hi,

Pick x1, . . . , xm ∈ Fn2 independently and uniformly at
random.

If f(xj + hi) = f(xj) for all xj, add hi to the multiset
H.

3. If |H|/` ≥ (9/10)2−k, accept; otherwise, reject.

Our theorem about this test is the following:
THEOREM 5.3. Algorithm Test-Dimensionality ε-tests whether f : Fn2 → {−1, 1} has

dimension k, making O(k22k/ε) nonadaptive queries.
The query complexity in Theorem 5.3 is immediate. It remains to present the complete-

ness (Lemma 5.4) and the soundness (Lemma 5.9) of the test. We begin with the complete-
ness, which is straightforward:

LEMMA 5.4. If f is k-dimensional then the test accepts with probability at least 2/3.
Proof. Clearly any hi ∈ Inv(f) will be added to H . Thus the expected fraction of hi’s

added toH is at least 2−codim(Inv(f)), which is at least 2−k if f is k-dimensional. A Chernoff
bound then shows that the actual fraction will be at least (9/10)2−k except with probability
at most 1/3, assuming the O(1) in the definition of ` is suitably large.

The idea behind the soundness proof is to look at the “essential spectrum” of f , i.e., all
of the (nonzero) characters α such that |f̂(α)| is relatively big. We will show that if the test
passes with reasonable probability then these characters span a space of dimension at most k
(Lemma 5.7), and also have most of the Fourier weight (Lemma 5.8). Formally, let

B
def= {α 6= 0 : f̂(α)2 ≥ (1/100)ε2−k}, S

def= {α 6= 0 : f̂(α)2 < (1/100)ε2−k}.

To prove the two lemmas mentioned, we make use of the following notation and fact:
DEFINITION 5.5. For h ∈ Fn2 , we abbreviate by h⊥ the subspace {0, h}⊥. (This space

has codimension 1 unless h = 0.)
FACT 5.6.

Pr
x∈Fn

2

[f(x+ h) = f(x)] =
∑
α∈h⊥

f̂(α)2.

Proof. This follows easily from Fact 2.5, taking r = 0 and H = h⊥.
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First we show that if span(B) has dimension exceeding k, the test probably rejects:
LEMMA 5.7. If dim(span(B)) ≥ k + 1 then the test rejects with probability at least

2/3.
Proof. Our goal will be to show that the probability a single random h is added to H is

at most (3/4)2−k. Having shown this, a Chernoff bound will show that we reject in Step 5
with probability at least 2/3, provided we take the O(1) in the definition of ` large enough.

To this end, define WeakInv(f) = span(B)⊥, a subspace of Fn2 with codimension at
least k+1 by assumption. The probability that a random h lies in WeakInv(f) is thus at most
(1/2)2−k. We will complete the proof by showing that if h 6∈ WeakInv(f), the probability
it is added to H in Steps 3–4 is at most (1/4)2−k.

So suppose h 6∈ WeakInv(f). By definition, this means that α∗ 6∈ h⊥ for at least one
α∗ ∈ B. Then Fact 5.6 implies that

Pr
x∈Fn

2

[f(x+ h) 6= f(x)] =
∑
α 6∈h⊥

f̂(α)2 ≥ f̂(α∗)2 ≥ (1/100)ε2−k.

Hence the probability h is added toH in Steps 3–4 is at most (1−(1/100)ε2−k)m ≤ exp(−k·
O(1)/100). Taking the O(1) in the definition of m sufficiently large, this is indeed at most
(1/4)2−k, as required.

Next we show that if the weight on small coefficients, wt(S) =
∑
α∈S f̂(α)2, is too

large then the test will probably reject. The intuition is that we expect half of the weight in S
to fall outside a given h⊥, making it unlikely that h is added to H if this weight is big. We
convert the expectation result to a high-probability result using Proposition 2.10.

LEMMA 5.8. If wt(S) > ε then the test rejects with probability at least 2/3.
Proof. As in Lemma 5.7, it suffices to show that the probability a single random h is

added to H is at most (3/4)2−k. So let h be uniformly random and define D = {α :
〈α, h〉 = 1}, the complement of h⊥. Define the random variable

M = wt(D ∩ S) =
∑
α∈S

f̂(α)2 · Iα→1.

Here Iα→1 is the indicator random variable for α falling into D. Thinking of h as forming
a random 1-dimensional coset structure, we have D = C(1) and the notation is consistent
with Proposition 2.9. Recalling that 0 6∈ S, it follows from that proposition that E[M ] =
(1/2) wt(S) > ε/2 and that the random variables (Iα→1)α∈S are pairwise independent.
Thus Proposition 2.10 implies that

Pr[M ≤ 1
2E[M ]] ≤ (1/100)ε2−k

(1/2)2E[M ]
≤ (8/100)2−k.

On the other hand, if M > 1
2E[M ] then by Fact 5.6 we have

Pr
x∈Fn

2

[f(x+ h) 6= f(x)] = wt(D) ≥M > 1
2E[M ] > ε/4.

In this case, m is more than large enough to imply that h will be added to H in Steps 3–4
with probability at most (1/4)2−k (as in Lemma 5.7). Overall, the probability that a single
random h is added to H is at most (8/100)2−k + (1/4)2−k < (3/4)2−k, as desired.

We can now establish the soundness of the test:
LEMMA 5.9. Suppose the test accepts f with probability exceeding 1/3. Then f is

ε-close to a k-dimensional function.
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Proof. Assuming the test accepts f with probability exceeding 1/3, Lemma 5.7 implies
that dim(span(B)) ≤ k, and Lemma 5.8 implies that wt(S) ≤ ε. Define F : Fn2 → R by

F (x) = f̂(0) +
∑
α∈B

f̂(α)χα(x).

Clearly F is k-dimensional, and ‖f−F‖22 = wt(S) ≤ ε. If we now define g : Fn2 → {−1, 1}
by g = sgn(F ), then g is k-dimensional (since it is a function of the k characters F is
a function of) and g is ε-close to f . Indeed Pr[f(x) 6= g(x)] ≤ E[|f(x) − F (x)|2] =
‖f − F‖22 ≤ ε.

6. Testing induced subclasses of k-dimensional functions. Let C be any fixed induced
subclass of k-dimensional functions, defined by a class C′ of k-variable Boolean functions
(recall Section 1.2.3). In this section we show that C is ε-testable using poly(2k, 1/ε) queries.

6.1. Overview. Let us give a brief overview of our method for testing membership in C.
The first step is to run the s-sparsity test from Section 4 with s set to 2k (note that since every
function in C is 2k-sparse, every function in C will pass this step with high probability.) By
Lemma 4.5, if f passes this step with high probability then f is close to the Boolean function

F =
∑
β∈B

f̃(β)χβ , (6.1)

which is both s-sparse and k-dimensional (recall from Equation 4.1 that B is the set of “big”
Fourier coefficients of f ). In fact, the sparsity test “isolates” the elements of B by placing
each β ∈ B into its own distinct bucket.

The key to our approach is the following: for any given bucket that the sparsity test
identifies (which contains exactly one element β ∈ B), we can efficiently simulate query
access to the function χβ . This is done using Proposition 2.4 and a simple form of linear
self-correction; we emphasize that it is accomplished without revealing the actual identity of
any β in Spec(F ) (indeed, this would require a number of queries dependent on n). The fact
that the actual identity of each χβ is never revealed but we are nonetheless able to obtain the
value of χβ(x) is similar to the “implicit learning” approach of [DLM+07].

We select O(k2k) random points x and perform the simulated queries described above
on these points for all of the buckets that the sparsity test identifies. By doing this, we obtain a
complete “implicit truth table” for F which is likely to contain no errors. Roughly speaking,
this is a table whose rows are indexed by query points x; each row’s entries give the values of
χβ(x) for each β ∈ B, along with a final value that gives F (x) (see Section 6.2 for a precise
definition). With this implicit truth table in hand it is easy to test that f is k-dimensional (see
Section 6.3).

It remains to check whether f corresponds to a junta g (over parity functions) that belongs
to C′. Because F , like f , is a k-dimensional function, F can be written as a k-junta over k of
the {χβ}β∈B functions, i.e. F = g(χα1 , . . . , χαk

) where each αi belongs to B. (There may
be many different ways of doing this; we will try them all.) For each such g, with the implicit
truth table for F in hand we can check — deterministically and without making any further
queries — whether g belongs to C′. This concludes the high-level overview of our method.

The organization of this section is as follows. In Section 6.2 we present an augmented
version of our sparsity test, and argue that this augmented test produces an “implicit truth
table” as described earlier. In Section 6.3 we show that we can use this implicit truth table to
test that f is k-dimensional, and show that if f passes this test with high probability then the
implicit truth table is “complete.” Finally, we explain how to use a complete implicit truth
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table to test membership of f in C in Section 6.4.

REMARK 6.1. Before entering into details in the following subsections, we re-emphasize
that our test for membership in C will begin by first running the sparsity test Algorithm Test-
Sparsity with s = 2k. (Recall again that k-dimensional functions are 2k-sparse.) All of our
subsequent analysis throughout Section 6 will therefore assume that f is a function which
Algorithm Test-Sparsity accepts with probability exceeding 1/4. Consequently Lemma 4.5
and its proof give us useful information about f and other assorted quantities; we collect this
information here and recall relevant parameter settings for ease of future reference.

• Parameter settings: we have µ = min(
√

2ε, 1
20s2 ), t = d2 log s + log 100e, τ =

µ2

100·2t .
• The set B, defined as B = {α : f̂(α)2 ≥ 3τ} (recall Equation 4.1), satisfies
|B| ≤ s. The set S, defined as S = {α : f̂(α)2 < 3τ}, satisfies wt(S) ≤ µ2.

• For each β ∈ B the value f̂(β) is within µ/
√
s of a nonzero dlog se-granular num-

ber f̃(β) (by Theorem 3.3). Consequently each f̂(β) has magnitude at least 1/(4s)
and has the same sign as f̃(β).

• The function F defined in Equation 6.1 is s-sparse and Boolean, and f is µ2

2 -close
to F in Hamming distance.

6.2. Building an implicit truth table. We first give a precise definition of an “implicit
truth table.” We then present our algorithm Build-Implicit-Truth-Table and argue that then
with high probability it correctly builds an implicit truth table.

DEFINITION 6.2. Let M be a list of strings x ∈ Fn2 . The implicit truth table for F
corresponding toM consists of a matrix Q ∈ {−1, 1}M×|B| and a vector F ∈ {−1, 1}M.
We call |M| the size of the implicit truth table. The rows of the matrix Q are indexed by the
elements ofM and the columns by the elements of B, and the (x, β) entry is equal to χβ(x)
for all x ∈M and β ∈ B. The entries of vector F are indexed by the elements ofM and are
defined by Fx = F (x).

We observe that Fx is uniquely determined by the x-row ofQ, in the sense that if x, y ∈
Fn2 give rise to identical rows of Q then Fx equals Fy . (This is simply because the values
χβ(x) and χβ(y) are identical for each β ∈ B, and thus F (x) = F (y) by Equation 6.1.)

Our algorithm Build-Implicit-Truth-Table is given below. We stress that the first three
steps of the test could be replaced simply by “Run Algorithm Test-Sparsity(s, ε)” – the
parameters and the code are completely identical to Test-Sparsity. We have reproduced the
code of Test-Sparsity here to make Build-Implicit-Truth-Table more self-contained and
readable.

The high-level idea of Build-Implicit-Truth-Table is as follows. After running Test-
Sparsity in Steps 1-3, the buckets that will be used are identified as L′ in Step 4. Step 5
draws the listM of strings that define the implicit truth table (Q,F) being constructed, and
Step 6 constructs the vector F . Steps 7-10 use linear self-correction and Proposition 2.4 to
build the matrix Q. The main result of this subsection, establishing correctness of Build-
Implicit-Truth-Table, is Theorem 6.6.
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Algorithm Build-Implicit-Truth-Table
Inputs: s, ε, m ≤ O(s2)
Parameters: µ = min(

√
2ε, 1

20s2 ), t = d2 log s+ log 100e, τ = µ2

100·2t.

1. Choose a random permuted t-dimensional coset structure
(H, C).

2. For each bucket C ∈ C, estimate wt(C) =
∑
α∈C f̂(α)2

to accuracy ±τ with confidence 1 − (1/100)2−t, using
Proposition 2.6.

3. Let L be the set of buckets where the estimate is at
least 2τ. If |L| ≥ s+ 1, reject.

4. Let L′ ⊆ L be the buckets whose Step 2 estimate is at
least 1/(32s2).

5. Draw a list M = {x1, x2, . . . , xm} of m uniformly random
strings from Fn2.

6. Define the length-m column vector F by querying f on
each x ∈M and setting Fx = f(x).

7. Draw a list M′ = {y1, y2, . . . , ym} of m uniformly random
strings from Fn2.

8. Define the m × |L′| matrix Q′ as follows: For each
i ∈ [m] and C ∈ L′, estimate PCf(yi) to within ±1/(4s) with
confidence 1 − 1/(200sm), using Proposition 2.4; set Q′i,C
to be the sign of the estimate.

9. Define the m × |L′| matrix Q′′ as follows: For each i ∈ [m]
and C ∈ L′, estimate PCf(xi + yi) to within ±1/(4s) with
confidence 1−1/(200sm), using Proposition 2.4; set Q′′i,C to
be the sign of the estimate.

10. Define the m × |L′| matrix Q as follows: For each i ∈ [m]
and C ∈ L′, set Qi,C = Q′i,C · Q′′i,C. Output (M,Q,F).

REMARK 6.3. The query complexity of Algorithm Build-Implicit-Truth-Table differs
from that of Algorithm Test-Sparsity by at most a constant factor. To see this, note that
although that Steps 4 through 10 are described as being adaptive, they could easily be done
nonadaptively by estimating PCf(yi) and PCf(xi + yi) for every bucket C ∈ C. Even this
would require query complexity only m + O(s2) · m · O(s2 log s) ≤ O(s6 log s), which is
asymptotically no more than the query complexity of Algorithm Test-Sparsity.

We proceed with our analysis of Build-Implicit-Truth-Table.
LEMMA 6.4. Define c : B → L′ such that c(β) is the bucket containing β. Except with

probability at most 2/100, the mapping c is a 1-1 correspondence.
Proof. By Proposition 2.12(3), except with failure probability at most 1/100 after Step 1

all β ∈ B fall into different buckets, so the function c is injective. After Step 2, except
with failure probability 1/100 the estimates are all accurate to within ±τ (so the total failure
probability incurred is 2/100). To see that the range of c is contained in L′, note that for each
β ∈ B we have |f̂(β)| ≥ 1/(4s) (see Remark 6.1); hence the bucket containing β has weight
at least 1/(16s2) ≥ 1/(32s2) + τ and therefore this bucket will be put into L′ in Step 4. To
show that c is an onto map we need to verify that each bucket in L′ contains a vector from B.
Since wt(S) ≤ µ2 ≤ 1/(400s4) < 1/(32s2)− τ (again see Remark 6.1), even if all vectors
α 6∈ B landed in the same bucket, if that bucket did not contain any vector from B then it
would not be added into L′.
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This lemma implies that we may view the columns of the matricesQ,Q′, andQ′′ defined
in Algorithm Build-Implicit-Truth-Table as indexed by elements of {c(β)}β∈B .

Algorithm Build-Implicit-Truth-Table constructs two matricesQ′ andQ′′ for two lists
of strings (yi)i∈[m] and (xi + yi)i∈[m] because the most straightforward approach (simply
computing sgn(Pc(β)f(xi) to compute χβ(xi)) is off by a factor of sgn(f̃(β)). In order to
offset this factor, Algorithm Build-Implicit-Truth-Table uses linear self-correction.

LEMMA 6.5. After Step 9, we have that Q′i,c(β) = sgn(f̃(β))χβ(yi) and Q′′i,c(β) =

sgn(f̃(β))χβ(xi + yi) for each i ∈ [m] and β ∈ B except with probability at most 4/100.
Proof. For each β ∈ B, define the function Gβ = Pc(β)f − f̃(β)χβ . Using the 1-1

correspondence between B and L′ provided by Lemma 6.4 and the fact that coset-projection
functions have disjoint Fourier support, we have

O(µ2) ≥ ‖f − F‖22 =
∑
β∈B

‖Gβ‖22 +
∑
C 6∈L′

‖PCf‖22 ≥
∑
β∈B

‖Gβ‖22 (6.2)

(see the final bullet of Remark 6.1 for the leftmost inequality above). Say that a string x ∈ Fn2
is bad for β ∈ B if |Gβ(x)| > 1/(4s). Since ‖Gβ‖22 = E[G2

β ], by Markov’s inequality the
fraction of strings bad for β is at most (4s)2‖Gβ‖22. Thus we conclude that the fraction of
strings x which are bad for any β ∈ B is at most 16s2

∑
β∈B ‖Gβ‖22 ≤ O(s2µ2), using (6.2).

Since m ≤ O(s2), the probability that any string yi or xi + yi is bad for any β ∈ B is at
most O(s4µ2) ≤ 1/100. So we assume all strings yi and xi + yi are good for all β ∈ B, and
overall we have accumulated failure probability at most 3/100.

Fix i ∈ [m] and β ∈ B. Assuming yi and xi + yi are good for β ∈ B, it remains to show
that Q′i,c(β) equals sgn(f̃(β))χβ(yi) and Q′′i,c(β) equals sgn(f̃(β))χβ(xi + yi). Since f̃(β)

is a nonzero dlog se-granular number, we have |f̃(β)χβ(yi)| ≥ 1/2s. Thus if yi is good for β
we must have both that |Pc(β)f(yi)| ≥ 1/(2s) and that sgn(Pc(β)f(yi)) = sgn(f̃(β))χβ(yi).
Now the fact that the estimate for Pc(β)f(yi) is accurate to within ±1/(4s) except with
probability at most 1/(200sm) means that Q′i,c(β) will have the same sign as Pc(β)f(x),
as required. A similar argument holds for Q′′i,c(β). Taking a union bound over all (at most
s) β ∈ B and all i ∈ [m], all the lemma’s claims hold except with probability at most
3/100 + 1/200 + 1/200 = 4/100.

Our main theorem concerning Algorithm Build-Implicit-Truth-Table is the following:
THEOREM 6.6. Except with probability at most 5/100, the triple (M, Q,F) output by

Algorithm Build-Implicit-Truth-Table is such that (Q,F) is the implicit truth table for F
corresponding toM.

Proof. By the previous lemma, we have that Q′i,c(β) = sgn(f̃(β))χβ(yi) and Q′′i,c(β) =

sgn(f̃(β))χβ(xi + yi) for each i ∈ [m] and β ∈ B except with probability at most 4/100.
Since

Qi,c(β) = Q′i,c(β) · Q
′′
i,c(β) = sgn(f̃(β))χβ(yi)sgn(f̃(β))χβ(xi + yi) = χβ(yi)χβ(xi + yi)

which equals χβ(xi), this establishes the correctness of Q.
Since f and F are µ2

2 -close as Boolean functions (see Remark 6.1), the probability that

Fx 6= F (x) for any xi ∈ M is at most m · µ
2

2 ≤ O(s2µ2) ≤ 1/100. A union bound
completes the proof of the theorem.

6.3. An alternate test for k-dimensionality. We have seen that if f is such that Test-
Sparsity (run with parameter s = 2k) accepts with probability at least 1/4, then with high
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probability Build-Implicit-Truth-Table constructs an implicit truth table (Q,F) for F in
terms of the relevant characters β ∈ B. We now turn our attention to k-dimensionality.

LEMMA 6.7. Consider the matrix Q under the identification 1 ∈ R ↔ 0 ∈ F2 and
−1 ∈ R ↔ 1 ∈ F2. The set of all possible rows that could appear in Q (as the possible
elements ofM range over all of Fn2 ) forms a dim(F )-dimensional subspace of F|B|2 . In the
construction of Q, each row of Q is uniformly distributed on this subspace.

Proof. It suffices to prove the following: If one chooses a uniform x ∈ Fn2 , the F2-
identified vector 〈χβ(x)〉β∈B — i.e., 〈β, x〉β∈B — is uniformly distributed on a subspace of
dimension dim(span(B)). Indeed, letting A ∈ F|B|×n2 be the matrix formed by stacking the
β ∈ B as rows, the image of A is a subspace of dimension rank(A) = dim(span(B)). The
set of x’s achieving a particular vector in the image forms a coset in Fn2/ ker(A); the fact that
all cosets have the same cardinality completes the proof.

DEFINITION 6.8. We say that an implicit truth table (Q,F) for F is complete if Q
contains all 2dim(F ) possible rows at least once.

LEMMA 6.9. Set m = 200k2k in Algorithm Build-Implicit-Truth-Table. If F is k-
dimensional then Q is complete except with probability at most 1/100. Further, if F is not
k-dimensional then Q contains more than 2k distinct rows except with probability at most
1/100.

Proof. These facts follow easily from the Coupon Collector analysis and Lemma 6.7.
Lemma 6.9 tells us that by considering the number of distinct rows of Q, we get a test

for k-dimensionality which is an alternative to the earlier algorithm Test-Dimensionality:

Algorithm Test-Dim-Using-Truth-Table
Inputs: k, ε
Additional parameter settings: s = 2k,m = 200k2k

1. Run Algorithm Build-Implicit-Truth-Table with parameters s, ε,m.
2. Reject if Q has more than 2k distinct rows; otherwise

accept.

THEOREM 6.10. If f is k-dimensional then Algorithm Test-Dim-Using-Truth-Table
accepts and constructs a complete implicit truth table (Q,F) with probability at least 2/3.
Further, if the test accepts with probability exceeding 1/4 then f is ε-close to F , which is
k-dimensional, and except with probability at most 6/100 the pair (Q,F) constructed by the
test is a complete implicit truth table for F.

Proof. For the first statement, if f is k-dimensional then it is s-sparse, so Algorithm Test-
Sparsity (equivalently, Steps 1-3 of Algorithm Build-Implicit-Truth-Table) passes with
probability at least 3/4. By Theorem 6.6 we have that (Q,F) is the implicit truth table
for F except with probability at most 5/100. We now use the fact that if f is s-sparse then
the function F must be identical to f . (This is because both f and F , being s-sparse Boolean
functions, have F2-degree at most log s, and it is well known, by a Schwartz-Zippel variant
for F2, that two such polynomials, at distance at most µ

2

2 < 1/s, must be identical.) Since
F = f is k-dimensional, any implicit truth table for F has at most 2k distinct rows, by
Lemma 6.7. By Lemma 6.9, Q is complete except with probability at most 1/100. Thus
the test accepts and produces a complete implicit truth table (Q,F) with probability at least
3/4− 6/100 > 2/3, as claimed.

For the second statement, suppose f passes Algorithm Test-Dim-Using-Truth-Table
with probability exceeding 1/4. Then certainly f passes Algorithm Test-Sparsity with prob-
ability at least 1/4, so F is well-defined and f is ε-close to F by the last bullet of Remark 6.1.
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Further, F must be k-dimensional as claimed, for otherwise the combination of Theorem 6.6
and Lemma 6.9 would imply that f is accepted with probability at most 6/100. These same
two lemmas imply that the (Q,F) produced by the test are a complete implicit truth table
except with probability at most 6/100.

6.4. Testing subclasses of k-dimensionality with implicit learning. To capture every
possible representation of F as a function of k parities, we require a column for each β ∈
span(B) instead of one for each β ∈ B. We obtain these columns by finding a basis for the
column space of the matrix Q (in the F2-identification of Q) and explicitly computing the
2dim(F ) columns in the space that this basis spans; it is easy to do this algorithmically, using
Gaussian elimination to find such a basis. LetW be this expanded version of Q. (We could
also remove duplicate rows fromW , but this is not strictly necessary.)

DEFINITION 6.11. We define a k-restriction of (W,F) to be a pair (W ′,F), whereW ′
is formed by taking k columns ofW .

Since each column of W corresponds to χβ for some β ∈ span(B), a k-restriction
(W ′,F) may be viewed as an (attempted) truth table of a k-variable Boolean function. Each
input bit inW ′ corresponds to the value of a character, and thus we may also view (W ′,F)
as an attempted description of a k-dimensional function g(χα1 , . . . , χαk

). If there are two
identical rows ofW ′ whose corresponding F-values disagree then (W ′,F) is an inconsistent
truth table that does not correspond to any Boolean function. Otherwise (W ′,F) is the truth
table of some k-variable Boolean function g.

Now recall from the beginning of this Section that C′ is a class of Boolean functions
on k variables, and C – the class we are testing – is the induced subclass of k-dimensional
functions on Fn2 . We say that the k-restriction (W ′,F) is C′-consistent if it is the truth table
of some function g ∈ C′.

We now give our test for testing subclasses of k-dimensionality (i.e. testing membership
in C′):

Algorithm Test-Induced-Subclass
Inputs: k, ε
Additional parameter settings: s = 2k,m = 200k2k

1. Run Algorithm Test-Dim-Using-Truth-Table.
2. Let W be the expanded version of Q as described above.
3. Accept if and only if there exists a function in C′ that

is consistent with some k′-restriction of (W,F) where
k′ ≤ k.

Notice that Step 2 above uses no additional randomness and no additional queries. Any
method for performing Step 2 is acceptable, even brute force search.

THEOREM 6.12. Let C′ be a class of Boolean functions on up to k bits; assume each
function in C′ depends on each of its input bits. Let C be the induced subclass of k-dimensional
functions over Fn2 . Then Algorithm Test-Induced-Subclass makes poly(2k, 1/ε) nonadap-
tive queries and ε-tests the class C. (The running time depends on the implementation of
Step 3.)

Proof. Both the completeness and soundness can straightforwardly be verified to follow
from Theorem 6.10. The main thing to note in the argument establishing completeness is that
if f = g(χα1 , . . . , χαk′ ) for some g ∈ C′, then although the αi’s are not necessarily in B
each of them must be in span(B). (This uses the fact that h depends nontrivially on each of
its inputs.)
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We can give some naive upper bounds regarding the running time for Step 2. Using
brute force search for the right k′ ≤ k columns, we have a running time of O(2k

2
)T , where

T is the time required to check if a given k′-restriction is consistent with some function
in C′. Furthermore, T is certainly bounded by O(22k

), so for every induced subclass of
k-dimensionality we have a running time with only linear dependence on n (but possibly
doubly-exponential dependence on k). In most natural cases, T is polynomial in 2k, leading
to the improved running time of 2O(k2). For example, since we can determine whether a
truth table is a linear threshold function in polynomial time (with linear programming), the
class of k-sparse polynomial threshold functions can be tested with poly(2k, 1/ε) queries
and poly(2k

2
, 1/ε) ·n time. Improvement even to time 2O(k) maybe possible for this or other

natural classes; we leave this as a question for further investigation.

7. Lower bounds. In this section we show that the query complexities of our s-sparsity
test and k-dimensionality test are tight up to polynomial factors. In fact, our lower bound
Theorem 7.1 is somewhat stronger. First, though, let us review some known lower bounds.

Buhrman et al. [BFNR08] implicitly considered the testability of k-dimensionality. In
their Theorem 6, they showed that any adaptive 1/8-tester for k-dimensional functions (for
any k ≤ n − 1) must make Ω(2k/2) queries. In an earlier work, Alon et al. [AKK+05]
gave a lower bound for testing whether a function has degree k. Their result shows that there
is some positive ε such that any nonadaptive ε-tester for having degree k must make Ω(2k)
queries.

Our lower bound combines, clarifies, and partially strengthens these two results:
THEOREM 7.1. Fix τ > 0 and let C = C(τ) be sufficiently large (one can check

that O(log(1/τ)) suffices). Define the following two probability distributions on functions
f : FCk2 → {−1, 1}:

• Dyes: Choose a random k-dimensional coset structure (H, C) on the strings in FCk2

and form f by making it a randomly chosen constant from {−1, 1} on each bucket.
• Dno: Choose a completely random function on FCk2 conditioned on it being (1/2−
τ)-far from every function that has F2-degree at most k.

Then any adaptive query algorithm which distinguishes Dyes and Dno with probability ex-
ceeding 1/3 must make at least Ω(2k/2) queries.

Note that Dyes is supported on k-dimensional functions and Dno is supported on func-
tions far from even having F2-degree k. Using (1.3), this result immediately gives a Ω(2k/2)-
query lower bound for adaptively (1/2 − τ)-testing k-dimensionality and an Ω(s1/2)-query
lower bound for adaptively (1/2− τ)-testing s-sparsity.

Note that it suffices to prove Theorem 7.1 for deterministic adaptive query algorithms.
This is the “easy direction” of Yao’s Principle: if A is a randomized distinguisher, we have

1/3 < Pr
A’s coins,f∼Dyes

[Acoins(f) = acc]− Pr
A’s coins,f∼Dno

[Acoins(f) = acc]

= E
A’s coins

[
Pr

f∼Dyes
[Acoins(f) = acc]− Pr

f∼Dno
[Acoins(f) = acc]

]
,

and so by averaging there exists a setting for the coins giving a deterministic distinguisher
which is at least as good.

A q-query deterministic adaptive query algorithm is nothing more than a decision tree
of depth at most q, where the internal nodes are labeled by query strings from FCk2 and the
leaves are labeled by “accept” and “reject”. In fact, we need not be concerned with leaf labels.
Given a decision tree T with unlabeled leaves, it is well known (indeed, it is essentially by
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definition) that the error of the best distinguisher one can get by labeling the leaves is precisely
‖Lyes −Lno‖TV . Here Lyes (Lno) denotes the distribution on leaves of T induced by a draw
from Dyes (Dno), and ‖ · ‖TV denotes total variation distance.

Thus to prove Theorem 7.1, the following suffices: Fix a decision tree T with depth

q ≤ (1/10)2k/2.

We may assume that no string appears twice on any root-to-leaf path and that the depth of
every path is precisely q. We prove that

‖Lyes − Lno‖TV ≤ 1/3, (7.1)

and this establishes Theorem 7.1.

We will prove (7.1) via two lemmas.
LEMMA 7.2. Let Dunif denote the uniform distribution on functions FCk2 → {−1, 1}.

Under Dunif , the probability that f is (1/2− τ)-close to having degree k is at most 1/100.
Proof. A statement along these lines was given in [AKK+05]; we fill in the details

of the volume argument here. Fix any function g : FCk2 → {−1, 1}; when f ∼ Dunif ,
the probability that it is (1/2 − τ)-close to g is at most exp(−2τ22Ck), by a standard
large-deviation bound. Union-bounding over all degree-k functions g, of which there are
k∑
i=0

2(Ck
i ) ≤ (k + 1)2(Ck

k ), gives an overall probability of at most

(k + 1)2(Ck
k ) · exp(−2τ22Ck) ≤ exp(

(
Ck

k

)
− 2τ22Ck).

This is certainly at most 1/100 if we take C = C(τ) large enough.
We can define Lunif by analogy with Lyes and Lno; clearly, Lunif is the uniform distri-

bution on the 2q leaves of T .
LEMMA 7.3. ‖Lyes − Lunif‖TV ≤ 1/99
Proof. This proof is similar to the one in [BFNR08], although we believe we are cor-

recting a gap in that argument. Consider a draw f ∼ Dyes; recall this defines a random k-
dimensional coset structure (H, C). For a particular leaf v in T , consider the strings appearing
on the path to v. By q’s definition we have k ≥ 2 log q + log(100); hence Proposition 2.9(3)
implies that, except with probability at most 1/100 over the choice of (H, C), all strings on
this path to v fall into different buckets. Conditioned on this happening, the probability that
f is consistent with the path to v is precisely 2−q . Thus we have shown that for each leaf v,

PrLyes [v] ≥ (1− 1/100)2−q.

The lemma now follows from Proposition 7.4 below.
PROPOSITION 7.4. Let P be a probability distribution on a set of size m in which each

element has probability at least (1 − δ)/m. Let U denote the uniform distribution. Then
‖P − U‖TV ≤ δ/(1− δ).

Proof. The unaccounted-for probability mass in P is at most δ. Hence ‖P−(1−δ)U‖1 ≤
δ, and therefore ‖P/(1−δ)−U‖1 ≤ δ/(1−δ). But ‖P/(1−δ)−P‖1 = (δ/(1−δ))‖P‖1 =
δ/(1− δ). Thus by the triangle inequality we have ‖P − U‖1 ≤ 2δ/(1− δ), completing the
proof.

Finally, to complete the proof of (7.1) and thus Theorem 7.1, simply note that Lemma 7.2
implies ‖Dno −Dunif‖TV ≤ 1/100, hence ‖Lno −Lunif‖TV ≤ 1/100; then use Lemma 7.3
and the triangle inequality: 1/100 + 1/99 ≤ 1/3.
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8. Applications to Decoding and Learning. The soundness of the tests discussed so
far is proved by (implicitly) giving an algorithm that reconstructs a nearby sparse or low-
dimensional function. In this section, we make these algorithms explicit, and show that they
are in fact tolerant to rather high levels of noise. We show that they work up to the unique
decoding radius for these classes, which is the best one could hope for.

Note that the bound deg2(f) ≤ log spar(f) implies that one could use known unique-
decoding algorithms for F2 polynomials of degree log s to unique decode sparse functions
[GKZ08]. However, the running time of such an approach is O(nlog s) whereas we will
achieve running time of poly(n, s). Similarly, in the low-dimensional case, we achieve a
running time of poly(n, 2k) as opposed to O(nk).

8.1. A unique-decoder for sparse functions. We proved the completeness of our Spar-
sity tester by showing that rounding the Fourier coefficients of the function f somewhat sur-
prisingly gives a Boolean function. In this section, we examine this rounding algorithm in
detail and show that it gives a unique-decoder for the class of s-sparse Boolean functions
which works up to half the minimum distance.

We study the granularity of s-sparse functions. Note that plugging µ = 0 in Theorem 3.3
shows that every s-sparse function is dlog se granular, while a closer inspection of the proof
reveals that one can improve this to dlog se − 1 granular. We present a different proof which
gives the optimal bound of blog sc − 1.

THEOREM 8.1. Suppose f : Fn2 → {−1, 1} is s-sparse, s > 1. Then f has granularity
blog sc − 1. (Of course, if f is 1-sparse then it is 0-granular.)

Proof. By induction on n. If n = 0 then s must be 1 and there is nothing to prove. For
general n > 0 we consider two cases. The first is that s = 2n. In this case, since every
Fourier coefficient is an average of 2n many ±1’s, it is of the form (even integer)/2n and
hence has granularity n− 1 = blog sc − 1, as required by the theorem.

The second case is that s < 2n. In this case there is an α such that f̂(α) = 0. Since
multiplying f by χα changes neither its sparsity nor its granularity, we may assume that
f̂(0n) = 0. Now for an arbitrary β 6= 0n we will show that f̂(β) has granularity blog sc − 1,
completing the proof.

Since β 6= 0n we can pick i ∈ [n] such that βi + 1 = 0. Consider now the function
g : F[n]\i

2 → {−1, 1} defined by

g(x) = f(x1, . . . , xi−1,
∑

j∈[n]\i

xjβj , xi+1, . . . , xn). (8.1)

Substituting
∑
j∈[n]\i xjβj for variable xi in the Fourier expansion of f(x), it is easy to

check that for each γ ∈ F[n]\i
2 the coefficient of χγ in the Fourier expansion of (8.1) is

f̂(γ) + f̂(γ + β), and thus we have that ĝ(γ) = f̂(γ) + f̂(γ + β). In particular, this implies
that ĝ(0n) = f̂(0n) + f̂(0n + β) = f̂(β). Since f is s-sparse, the definition of g implies
that g is also s-sparse. But now the induction hypothesis applied to g (a function on n − 1
variables) implies that ĝ(0n) has granularity blog sc − 1, and hence so does f̂(β).

Easy examples such as the AND function show that the granularity bound above is the
best possible. By using Theorem 8.1 and Parseval’s identity, one can show the interesting fact
that any function f : Fn2 → {−1, 1} has sparsity either 1, 4, or at least 8.

Application to learning theory. Theorem 8.1 implies that a variant of the membership query
learning algorithm of [KM93] can be used to exactly reconstruct the Fourier representation
of any s-sparse function f in poly(n, s) time. Specifically, using [KM93] one can find and
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approximate to within ±1/(3s) all Fourier coefficients of f with |f̂(α)| ≥ 1/s. By Theo-
rem 8.1, by rounding each coefficient to the nearest number of granularity blog sc − 1, we
exactly determine all nonzero Fourier coefficients. Prior to this, the analysis of [KM93] im-
plied that an exactly correct hypothesis could be obtained in poly(n, s) time; however the
hypothesis was the sign of some approximation of the Fourier spectrum of f . Using our
result, we establish for the first time that sparse functions are efficiently exactly properly
learnable.

Indeed, one can show that this version of KM gives a unique-decoder for sparse poly-
nomials at low error rates. Recall that every s-sparse polynomial has F2 degree bounded by
d = blog sc. Thus any two sparse polynomials must differ at 2−d fraction of points in the
Boolean hypercube, and it is easy to see that this bound is tight. Thus, sparse functions give a
code of distance 2−d, so given any function f : Fn2 → {±1}, there can be at most one sparse
function g so that d(f, g) < 2−(d+1).

THEOREM 8.2. Let f : Fn2 → {±1} be such that there exists a sparse function g so that
d(f, g) < 2−(d+1). The function g can be recovered from f by rounding each f̂(α) to the
nearest (d− 1) granular number.

Proof. One can view f as being obtained from g by changing its values at η < 2−(d+1)

fraction of points on the hypercube. Thus we have f(x) = g(x) + ν(x) where |ν(x)| = 2
at η fraction of points x, and ν(x) = 0 otherwise. It follows that ν̂(α) ≤ 2η < 2−d for all
α ⊆ [n].

But since each coefficient ĝ(α) is (d − 1)-granular, and any two such distinct numbers
are 2 · 2−d apart, the only (d− 1)-granular number z satisfying |z− f̂(α)| < 2−d is ĝ(α). So
rounding Fourier coefficients recovers the function g(x).

This also shows that by running the KM algorithm and rounding the Fourier coefficients,
we can efficiently recover s-sparse polynomials in time poly(n, s, ε−1) from adversarial error
(mislabeled labels) of rate η = 2−(d+1) − ε. We identify the s largest coefficients using KM
and estimate them to accuracy ε

s . We then round them to the nearest blog sc − 1-granular
number. An argument similar to the one above shows that we recover the sparse polynomial
with good probability.

8.2. A unique-decoder for low-dimensional functions. Given f : Fn2 → {±1}, let
F : Fn2 → F2 denote its representation as a polynomial over F2 which satisfies

f(x) = (−1)F (x).

For h ∈ Fn2 we define the directional derivative Fh(x) as

Fh(x) = F (x+ h) + F (x).

It is easy to see that deg2(Fh) ≤ deg2(F ) − 1 = deg2(f) − 1 for every h. Inv(f) can be
thought of as the subspace of vectors h so that Fh ≡ 0. Further, if f is k-dimensional so that
deg2(f) = k, and if h 6∈ Inv(f), then the Schwartz-Zippel lemma implies

Prx∈Fn
2
[Fh(x) 6= 0] ≥ 2−(k−1).

This gives a test for membership in Inv(f) which is robust to noise.
Assume that we are given f : Fn2 → {±1} so that d(f, g) ≤ 2−(k+1) − ε for some

ε > 0, and g is k-dimensional. Our goal is to recover g from f . The first step is a test for
membership in Inv(g), given as Algorithm Test-Inv.
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Algorithm Test-Inv
Inputs: f, h, ε, δ.

Additional parameter settings: m = 24k

ε2 log 1
δ.

1. Pick x1, . . . , xm ∈ Fn2 independently and uniformly at random.
2. For each j, if f(xj + h) 6= f(xj) add xj to the multiset S.
3. If |S|/m ≤ 2−k, accept; else reject.

LEMMA 8.3. Every h ∈ Inv(g) passes the test with probability 1 − δ, whereas every
h 6∈ Inv(g) passes with probability at most δ.

Proof. Assume that h ∈ Inv(g), so that g(x+h) = g(x) for every x. If f(x+h) 6= f(x),
then either f(x) 6= g(x) or f(x+ h) 6= g(x+ h). Thus

Prx[f(x) 6= f(x+ h)] ≤ Prx[f(x) 6= g(x)] + Prx[f(x+ h) 6= g(x+ h)]

≤ 2(2−(k+1) − ε)
= 2−k − 2ε.

The claim follows by the Chernoff bound.
Now assume that h 6∈ Inv(g). Note that by the Schwartz-Zippel lemma,

Prx[g(x) 6= g(x+ h)] = Prx[Gh(x) 6= 0] ≥ 2−(k−1).

Thus, we have

Prx[f(x) 6= f(x+ h)] ≥ Prx[g(x) 6= g(x+ h)]−
(Prx[f(x) 6= g(x)] + Prx[f(x+ h) 6= g(x+ h)])

≥ 2−(k−1) − 2(2−(k+1) − ε)
= 2−k + 2ε

Again the claim follows by the Chernoff bound.

Algorithm Unique-Decode
Inputs: f, ε, β.

Additional parameter settings: ` = 2(n+ 8 ln(1/β))2k, m = 24k

ε2 log 1
β.

Phase 1: Learning Inv(g).
1. Pick h1, . . . , h` ∈ Fn2 independently and uniformly from Fn2.
2. For each i, run Algorithm Test-Inv with f, hi, ε, δ = β

` ; if it
accepts, add hi to S.

3. Let H = span(S).

Phase 2: Learning g (as a truth-table).
4. For each x ∈ Fn2/H,

Pick h1, . . . , hm independently and uniformly from H.
Set g(x) = Majhi

f(x+ hi).

THEOREM 8.4. Given f : Fn2 → {±1} such that d(f, g) < 2−(k+1) − ε and g is
k-dimensional, Algorithm Unique-Decode recovers g with probability 1− 4β.



24 P. GOPALAN, R. O’DONNELL, R. SERVEDIO, A. SHPILKA AND K. WIMMER

We prove this claim by analyzing the two Phases separately. We prove the correctness
of Phase 1 using the following simple fact which is an easy consequence of Equation (1) of
[LW00]:

FACT 8.5. Let A be a subspace of Fn2 . Sampling n + 8 ln(1/β) vectors independently
and uniformly from A will span all of A with probability at least 1− β.

LEMMA 8.6. We have H = Inv(g) with probability at least 1− 3β.
Proof. Of the ` = 2(n+ 8 ln(1/β))2k vectors hi, the expected number that lie in Inv(g)

is at least 2(n+ 8 ln(1/β)). A Chernoff bound gives that at least n+ 8 ln(1/β) lie in Inv(g)
with probability at least 1 − β, and it is easy to see that conditioned on at least this many
vectors being in Inv(g), they are independent and uniform within that subspace. Since we
pick δ = β

` , with probability at least 1 − β, Algorithm Test-Inv correctly labels all the his
as lying within or outside Inv(g), hence S ⊆ Inv(g). But by Fact 8.5, this means that S
contains a basis for Inv(g) with probability at least 1− β, so the lemma follows.

LEMMA 8.7. Algorithm Unique-Decode returns the correct value of g for every x ∈
Fn2/Inv(g) with probability 1− 4β.

Proof. Assume that H = Inv(g). Fix x ∈ Fn2/Inv(g). We have g(x) = g(x + h) for
every h ∈ H . The coset x+H contains 2n−k points, of which at most

2n(2−(k+1) − ε) = 2n−k
(

1
2
− ε

2k

)
.

are corrupted by error. Thus, the Chernoff bound implies that the majority of m samples will
give the right answer with probability β

2k . To complete the proof, we apply the union bound
to all 2k possible choices for x ∈ Fn2/Inv(g).
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