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Abstract. We describe a novel family of PAC model algorithms for learning linear threshold functions. The new
algorithms work by boosting a simple weak learner and exhibit sample complexity bounds remarkably similar to
those of known online algorithms such as Perceptron and Winnow, thus suggesting that these well-studied online
algorithms in some sense correspond to instances of boosting. We show that the new algorithms can be viewed as
natural PAC analogues of the online p-norm algorithms which have recently been studied by Grove, Littlestone,
and Schuurmans (1997, Proceedings of the Tenth Annual Conference on Computational Learning Theory (pp.
171–183) and Gentile and Littlestone (1999, Proceedings of the Twelfth Annual Conference on Computational
Learning Theory (pp. 1–11). As special cases of the algorithm, by taking p = 2 and p = ∞ we obtain natural
boosting-based PAC analogues of Perceptron and Winnow respectively. The p = ∞ case of our algorithm can
also be viewed as a generalization (with an improved sample complexity bound) of Jackson and Craven’s PAC-
model boosting-based algorithm for learning “sparse perceptrons” (Jackson & Craven, 1996, Advances in neural
information processing systems 8, MIT Press). The analysis of the generalization error of the new algorithms relies
on techniques from the theory of large margin classification.

Keywords: probably approximately correct learning, boosting, linear threshold functions

1. Introduction

One of the most fundamental problems in computational learning theory is that of learning
an unknown linear threshold function from labeled examples. Many different learning
algorithms for this problem have been considered over the past several decades. In particular,
in recent years many researchers have studied simple online additive and multiplicative
update algorithms, namely the Perceptron and Winnow algorithms and variants thereof
(Auer & Warmuth, 1995; Baum, 1990; Bylander, 1998; Freund & Schapire, 1999; Gentile
& Littlestone, 1999; Grove, Littlestone, & Schuurmans, 1997; Kivinen, Warmuth, & Auer,
1997; Littlestone, 1988, 1989, 1991; Servedio, 1999; Schmitt, 1998).

This paper takes a different approach. We describe a natural parameterized family of
boosting-based PAC algorithms for learning linear threshold functions. The weak hypothe-
ses used are linear functionals and the strong classifier obtained is a linear threshold func-
tion. Although our new algorithms are conceptually and algorithmically very different from
Perceptron and Winnow, we establish performance bounds for the new algorithms which are
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remarkably similar to those of Perceptron and Winnow; we thus refer to the new algorithms
as PAC analogues of Perceptron and Winnow. We hope that the analysis of these new algo-
rithms will yield fresh insights into the relationship between boosting and online algorithms.

We give a unified analysis of our Perceptron and Winnow analogues which includes
many other algorithms as well. Grove, Littlestone, and Schuurmans (1997) have shown that
Perceptron and (a version of) Winnow can be viewed as the p = 2 and p → ∞ cases of a
general online p-norm linear threshold learning algorithm, where p ≥ 2 is any real number.
We present PAC-model boosting-based analogues of these online p-norm algorithms for
any value 2 ≤ p ≤ ∞. The PAC-model Perceptron and Winnow analogues mentioned above
are respectively the p = 2 and p = ∞ cases of this general algorithm.

The p = ∞ case of our algorithm can also be viewed as a generalization of Jackson
and Craven’s PAC-model algorithm for learning “sparse perceptrons” (Jackson & Craven,
1996). Their algorithm boosts using weak hypotheses which are single Boolean literals; this
is similar to what the p = ∞ case of our algorithm does. Our analysis of the p = ∞ case
generalizes their algorithm to deal with real-valued rather than Boolean input variables,
thus achieving a goal stated in Jackson and Craven (1996), and also yields a substantially
stronger sample complexity bound than was established in Jackson and Craven (1996).

Section 2 of this paper contains preliminary material, including an overview of the on-
line p-norm algorithms from Gentile and Littlestone (1999) and Grove, Littlestone, and
Schuurmans (1997). In Section 3 we present a simple PAC-model p-norm algorithm and
prove that it is a weak learning algorithm for all 2 ≤ p < ∞. In Section 4 we apply techniques
from the theory of large margin classification to show how our weak learning algorithm
can be boosted to a strong learning algorithm with small sample complexity. Finally, in
Section 5 we compare our PAC algorithms with the analogous online algorithms, extend
our algorithm to the case p = ∞, and discuss the relationship between the p = ∞ case of
our algorithm and the Jackson–Craven algorithm for learning sparse perceptrons.

1.1. Related work

Several authors have previously studied linear threshold learning algorithms which work by
combining weak predictors. Freund and Schapire have studied an algorithm which predicts
using a weighted vote of the hypotheses which the Perceptron algorithm generates during
its training phase (Freund & Schapire, 1999). The weight of each hypothesis in this vote is
proportional to its survival time, i.e. the number of examples which elapse before it classifies
an example incorrectly and causes the Perceptron algorithm to generate a new hypothesis.
Freund and Schapire prove generalization error bounds on the resulting classifier which
are similar to Vapnik’s generalization error bounds for the “maximal margin” hyperplane
(Vapnik, 1998). The Freund-Schapire algorithm differs from our approach in several ways:
for one thing, their algorithm is unlike ours in that it does not use boosting to combine
the weak predictors. Additionally, whereas our algorithm’s final hypothesis is a single lin-
ear threshold function, their algorithm’s final hypothesis is a depth-2 threshold circuit (a
weighted vote over Perceptron hypotheses which are themselves linear threshold functions).

Ji and Ma have suggested that a random-search-and-test approach can be used to find
weak classifier linear threshold functions for certain restricted halfspace learning problems
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(Ji & Ma, 1997). They propose combining these weak classifier linear threshold functions
with a simple majority vote; thus, their approach also results in a final hypothesis which is
a depth 2 threshold circuit.

Our approach is closest to that of Jackson and Craven, who use boosting to combine
single literals into a strong hypothesis linear threshold function. As we show in Section 5,
the p = ∞ case of our algorithm strengthens and generalizes their results.

The close similarity in performance bounds between our boosting-based algorithms and
the online p-norm algorithms suggests a relationship between boosting and online learning.
Freund and Schapire (1996) and Schapire (1999) have investigated this relationship in the
context of game theory.

2. Preliminaries

We start with some geometric definitions. For a point x̃ = (x1, . . . , xn) ∈ �n and p ≥ 1 we
write ‖x̃‖p to denote the p-norm of x̃, namely

‖x̃‖p =
(

n∑
i=1

|xi |p

)1/p

.

The ∞-norm of x̃ is ‖x̃‖∞ = maxi=1,...,n |xi |. For p, q ≥ 1 the q-norm is dual to the p-norm
if 1

p + 1
q = 1; hence the 1-norm and the ∞-norm are dual to each other and the 2-norm is

dual to itself. In this paper p and q always denote dual norms. The following facts are well
known (e.g. Taylor & Mann, 1972, pp. 203–204):

Hölder Inequality: |ũ · ṽ| ≤ ‖ũ‖p‖ṽ‖q for all ũ, ṽ ∈ �n and 1 ≤ p ≤ ∞.

Minkowski Inequality: ‖ũ + ṽ‖p ≤ ‖ũ‖p + ‖ṽ‖p for all ũ, ṽ ∈ �n and 1 ≤ p ≤ ∞.

Throughout this paper the example space X is a subset of �n . A linear threshold function
over X is a function f such that f (x̃) = sign(ũ · x̃) for some ũ ∈ �n (recall that the function
sign(z) takes value 1 if z ≥ 0 and takes value −1 if z < 0). We note that the standard definition
of a linear threshold function allows a nonzero threshold, i.e. f (x̃) = sign(ũ · x̃ − θ) where
θ can be any real number. However, any linear threshold function of this more general form
over n variables is equivalent to a linear threshold function with threshold 0 over n + 1
variables, so our definition incurs no real loss of generality.

We write ‖X‖p to denote supx̃∈X ‖x̃‖p. We use the symbol δũ,X to denote the quantity

δũ,X
def= inf

x̃∈X
(ũ · x̃)(sign(ũ · x̃)),

which is a measure of the separation between examples in X and the hyperplane whose
normal vector is ũ. We assume throughout the paper that ‖X‖p < ∞, i.e. the set X is
bounded, and that δũ,X > 0, i.e. there is some nonzero lower bound on the separation between
the hyperplane defined by ũ and the examples in X .

We write log to denote logarithm base two and ln to denote the natural logarithm.
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2.1. PAC learning

For ũ ∈ �n let EX(ũ,D) denote an example oracle which, when queried, provides a labeled
example 〈x̃, sign(ũ · x̃)〉 where x̃ is drawn according to the distributionD over X. We say that
an algorithm A is a strong learning algorithm for ũ on X if it satisfies the following condition:
there is a function m(ε, δ, ũ, X) such that for any distribution D over X, for all 0 < ε, δ < 1,

algorithm A makes at most m(ε, δ, ũ, X) calls to EX(ũ,D), and with probability at least 1−δ

algorithm A outputs a hypothesis h : X → {−1, 1} such that Prx∈D[h(x̃) �= sign(ũ · x̃)] ≤ ε.

We say that such a hypothesis h is an ε-accurate hypothesis for ũ under D and that the
function m(ε, δ, ũ, X) is the sample complexity of algorithm A.

As our main result we describe a strong learning algorithm and carefully analyze its
sample complexity. To do this we must consider algorithms which do not satisfy the strong
learning property but are still capable of generating hypotheses that have some slight advan-
tage over random guessing (such so-called weak learning algorithms were first considered
by Kearns and Valiant (1994)). Let

S = 〈x̃1, sign(ũ · x̃1)〉, . . . , 〈x̃m, sign(ũ · x̃m)〉

be a finite sequence of labeled examples from X and let D be a distribution over S. For
0 < γ < 1/2, we say that h : X → [−1, 1] is a (1/2 − γ )-approximator for ũ under D if

1

2

m∑
i=1

D(x̃ i ) · |h(x̃ i ) − sign(ũ · x̃ i )| ≤ 1

2
− γ. (1)

We say that an algorithm A is a (1/2 − γ )-weak learning algorithm for ũ under D if the
following condition holds: for any finite set S as described above and any distribution D on
S, if A is given D and S as input then A outputs a hypothesis h : X → [−1, 1] which is a
(1/2 − γ )-approximator for ũ under D. Thus for our purposes a weak learning algorithm is
one which can always find a hypothesis that outperforms random guessing on a fixed sample.

2.2. Online learning and p-norm algorithms

In the online model, learning takes place over a sequence of trials. Throughout the learning
process the learner maintains a hypothesis h which maps X to {−1, 1}. Each trial proceeds
as follows: upon receiv1ing an example x ∈ X the learning algorithm outputs its predic-
tion ŷ = h(x) of the associated label y. The learning algorithm is then given the true label
y ∈ {−1, 1} and the algorithm can update its hypothesis h based on this new information
before the next trial begins. The performance of an online learning algorithm on an ex-
ample sequence is measured by the number of prediction mistakes which the algorithm
makes.

Grove, Littlestone, and Schuurmans (1997) and Gentile and Littlestone (1999) have
studied a family of online algorithms for learning linear threshold functions (see figure 1).
We refer to this algorithm, which is parameterized by a real value p ≥ 2, as the online
p-norm algorithm. Like the well-known Perceptron algorithm, the online p-norm algorithm
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Figure 1. The online p-norm algorithm.

updates its hypothesis by making an additive change to a weight vector z̃. However, as shown
in steps 4 and 5 of figure 1, the p-norm algorithm does not use the z̃ vector directly for
prediction but rather predicts using a vector w̃ which is a transformed version of the z̃ vector,
namely wi = sign(zi )|zi |p−1 for all i = 1, . . . , n. Note that when p = 2 we have z̃ = w̃ and
hence the online 2-norm algorithm is the Perceptron algorithm. In Grove, Littlestone and
Schuurmans (1997) it is shown that as p → ∞ the online p-norm algorithm approaches
a version of the Winnow algorithm. More precisely, the following theorem from Grove,
Littlestone, and Schuurmans (1997) gives mistake bounds for the online p-norm algorithms:

Theorem 1. Let S = 〈x̃1, y1〉, . . . , 〈x̃m, ym〉 be a sequence of labeled examples where
x̃ ∈ X and y = sign(ũ · x̃) for every example 〈x̃, y〉 ∈ S.

(a) For any 2 ≤ p < ∞ and any a > 0, if the online p-norm algorithm is invoked with input
parameters (p, z̃0 = (0, . . . , 0), a), then the mistake bound on the example sequence S
is at most

(p − 1)‖ũ‖2
q‖X‖2

p

δ2
ũ,X

.

(b) For any 2 ≤ p < ∞, if z̃0 satisfies ũ · z̃0 > 0 and a = δũ,X ‖z̃0‖2
p

(p−1)ũ·z̃0‖X‖2
p
, then the mistake

bound on S is at most

(p − 1)‖ũ‖2
q‖X‖2

p

δ2
ũ,X

(
1 −

(
ũ · z̃0

‖ũ‖q‖z̃0‖p

)2)
.

(c) Let z̃0 = (1, . . . , 1) and suppose that ui > 0 for i = 1, . . . , n. If p → ∞ and a is as
described in part (b), then the mistake bound given in (b) converges to

2‖ũ‖2
1‖X‖2

∞
δ2

ũ,X

(
log n +

n∑
i=1

ui

‖ũ‖1
log

ui

‖ũ‖1

)
.
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2.3. From online to PAC learning

Various generic procedures have been proposed (Angluin, 1988; Haussler, 1988; Kearns
et al., 1987; Littlestone, 1989) for automatically converting on-line learning algorithms into
PAC-model algorithms. In these procedures the sample complexity of the resulting PAC
algorithm depends on the mistake bound of the original on-line learning algorithm. The
strongest general result of this type (in terms of minimizing the sample complexity of the
resulting PAC algorithm) is the conversion due to Littlestone (1989):

Theorem 2. Let A be an online learning algorithm which changes its hypothesis only
when it makes a mistake and which has a mistake bound of M for concept class C. Then
there is a PAC-model learning algorithm A′ for C as described above which has sample
complexity

O

(
1

ε

(
log

1

δ
+ M

))
.

By applying Theorem 2 to Theorem 1, one can obtain sample complexity bounds on a
generic PAC-model conversion of the online p-norm algorithm. We now describe a com-
pletely different PAC-model algorithm which has remarkably similar sample complexity
bounds.

3. A PAC-model p-norm weak learning algorithm

Our p-norm weak learning algorithm is motivated by the following simple idea: Suppose
that S = 〈x̃1, y1〉, . . . , 〈x̃m, ym〉 is a collection of labeled examples where yi = sign(ũ · x̃ i )

for each i = 1, . . . , m. Now imagine replacing each negative example 〈x̃ i , −1〉 in S by the
equivalent positive example 〈−x̃ i , 1〉 to obtain a new collection S′ of normalized examples.
Let z̃ ∈ �n be the average location of an example in S′, i.e. z̃ is the “center of mass” of the
point cloud S′. Since each example in S′ is positive, each example in S′ must lie on the same
side of the hyperplane ũ · x̃ = 0 as the vector ũ, so clearly z̃ must also lie on this side of the
hyperplane. One might even hope that z̃, or some related vector, points in approximately
the same direction as the vector ũ.

Our p-norm weak learning algorithm, which we call WLA, is presented in figure 2. The
vector z̃ is the “center of mass” of the normalized points with respect to the probability
distribution D which is part of the input to WLA (so running WLA repeatedly on the same
data set S but with different distributions D may yield different values for z̃). Like the
online p-norm algorithm, the WLA algorithm transforms the vector z̃ to a vector w̃ using
the mapping wi = sign(zi )|zi |p−1. The real-valued WLA hypothesis is a scaled version of
the linear functional defined by the vector w̃. The following theorem establishes that this
simple algorithm is in fact a weak learner:

Theorem 3. WLA is a (1/2−γ )-weak learning algorithm for ũ underD for γ = δũ,X

2‖X‖p‖ũ‖q
.



P1: Upendra

Machine Learning kl1422-02 November 21, 2001 15:21

PAC ANALOGUES OF WINNOW AND PERCEPTRON VIA BOOSTING THE MARGIN 139

Figure 2. The p-norm weak learning algorithm WLA.

Proof: Let S = 〈x̃1, y1〉, . . . , 〈x̃m, ym〉 be a sequence of labeled examples where x̃ ∈ X
and y = sign(ũ · x̃) for every pair 〈x̃, y〉 ∈ S, and let D be a distribution over S. We will
show that the hypothesis h which WLA(p, S,D) returns is a (1/2 − γ )-approximator for ũ
under D.

To see that h maps X into [−1, 1], note that for any x̃ ∈ X Hölder’s inequality implies

|h(x̃)| = |w̃ · x̃ |
‖w̃‖q‖X‖p

≤ ‖w̃‖q‖x̃‖p

‖w̃‖q‖X‖p
≤ ‖w̃‖q‖X‖p

‖w̃‖q‖X‖p
= 1.

Now we show that inequality (1) from Section 2.1 holds. Since h(x̃ j ) ∈ [−1, 1] and
y j ∈ {−1, 1} we have that

|h(x̃ j ) − y j | = 1 − y j h(x̃ j ),

and thus

1

2

m∑
j=1

D(x̃ j )|h(x̃ j ) − y j | = 1

2

m∑
j=1

D(x̃ j )(1 − y j h(x̃ j ))

= 1

2
− 1

2‖X‖p

(∑m
j=1 D(x̃ j )y j (w̃ · x̃ j )

‖w̃‖q

)
.

Thus it suffices to show that

∑m
j=1 D(x̃ j )y j (w̃ · x̃ j )

‖w̃‖q
≥ δũ,X

‖ũ‖q
.

We first note that

m∑
j=1

D(x̃ j )y j (w̃ · x̃ j ) = w̃ ·
(

m∑
j=1

D(x̃ j )y j x̃
j

)

= w̃ · z̃
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=
m∑

j=1

|z j |p

= ‖z̃‖p
p

and hence the left-hand side of the desired inequality equals ‖z̃‖p
p/‖w̃‖q .

We also have

‖w̃‖q =
(

n∑
i=1

(|zi |p−1)q

)1/q

=
(

n∑
i=1

|zi |p

)1/q

= ‖z̃‖p/q
p ,

where in the second equality we used the fact that (p − 1)q = p. Consequently the left-
hand side can be further simplified to ‖z̃‖p

p/‖w̃‖q = ‖z̃‖p−p/q
p = ‖z̃‖p, and thus our goal is

to show that ‖z̃‖p ≥ δũ,X/‖ũ‖q . Since δũ,X ≤ ũ · (y j x̃ j ) for j = 1, . . . , m, we have

δũ,X ≤
m∑

j=1

D(x̃ j )ũ · (y j x̃
j ) = ũ ·

(
m∑

j=1

D(x̃ j )y j x̃
j

)

= ũ · z̃

≤ ‖ũ‖q‖z̃‖p,

where the last line follows from the Hölder inequality, and the theorem is proved. ✷

Thus, the simple WLA algorithm can serve as a weak learning algorithm for our halfspace
learning problem. In the next section we use techniques from boosting and large margin
classification to obtain a strong learning algorithm which has small sample complexity.

4. From weak to strong learning

4.1. Boosting to achieve high accuracy

In a series of important papers Schapire (1990) and Freund (1992, 1995) have given boosting
algorithms which transform weak learning algorithms into strong ones. Boosting algorithms
have since been the focus of intense research activity in both the applied and theoretical
machine learning communities.

In this paper we use the Adaboost algorithm from Freund and Schapire (1997) which is
shown in figure 3; our notation for the algorithm is similar to that of Schapire et al. (1998) and
Schapire and Singer (1998). The input toAdaboost is a sequence S = 〈x1, y1〉, . . . , 〈xm, ym〉
of m labeled examples, a weak learning algorithm WL, and two parameters 0 < γ, µ < 1/2.
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Figure 3. The Adaboost algorithm.

Given a distribution Dt over a data set S, algorithm WL outputs a hypothesis ht which maps
S to [−1, 1]. Adaboost works in a sequence of stages, where in stage t it generates a
distribution Dt and runs WL to obtain a hypothesis ht . The final Adaboost hypothesis is a
linear threshold function over the ht s.

In Freund and Schapire (1997) prove that if the algorithm WL is a (1/2 − γ )-weak learning
algorithm, i.e. each call of WL in Adaboost generates a hypothesis ht such that εt (as defined
in line 5) is at most 1/2 − γ , then the fraction of examples in S which are misclassified by
the final hypothesis h is at most µ. Given this result, one straightforward way to obtain a
strong learning algorithm for our halfspace learning problem is to draw a sufficiently large
(as specified below) sample S from the example oracle EX(ũ,D) and run Adaboost on S
using WLA as the weak learning algorithm, γ as given in Theorem 3, and µ < 1/|S|. This
choice of µ ensures that Adaboost’s final hypothesis makes no errors on S; moreover, since
each hypothesis generated by WLA is of the form ht (x̃) = ṽt · x̃ for some ṽt ∈ �n, Adaboost’s
final hypothesis will be of the form h(x̃) = sign(ṽ · x̃) for some ṽ ∈ �n. Using the fact that
the Vapnik-Chervonenkis dimension of the class of zero-threshold linear threshold functions
over �n is n, the well-known theorem of Blumer et al. (1989) implies that with probability
at least 1 − δ the final hypothesis h is an ε-accurate hypothesis for ũ under D provided that
|S| ≥ c(ε−1(n log(ε−1) + log(δ−1))) for some constant c > 0.

This analysis, though attractively simple, yields a rather crude bound on sample complex-
ity which does not depend on the particulars of the learning problem (i.e. ũ and X ). In the
rest of this section we use recent results on Adaboost’s ability to generate a large-margin
classifier and the generalization ability of large-margin classifiers to give a much tighter
bound on sample complexity for this learning algorithm.
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4.2. Boosting to achieve a large margin

Suppose that h : X → {−1, 1} is a classifier of the form h(x) = sign( f (x)), where f maps
X into [−1, 1]. We say that the margin of h on a labeled example 〈x, y〉 is y f (x); note that
this quantity is nonnegative if and only if h correctly predicts the label y associated with x .

The magnitude of the margin can be viewed as a measure of the confidence with which the
classifier makes its prediction on x .

The following theorem, which is an extension of Theorem 5 from Schapire et al. (1998),
shows that Adaboost can be used in conjunction with a real-valued weak learner to obtain
large-margin hypotheses. The proof is given in Appendix A.

Theorem 4. Suppose that Adaboost is run on an example sequence S = 〈x1, y1〉, . . . ,
〈xm, ym〉 using a weak learning algorithm WL: S → [−1, 1]. Then for any value θ ≥ 0 we
have

|{i ∈ {1, 2, . . . , m} : yi f (xi ) ≤ θ}|
m

≤ 2T
T∏

t=1

√
ε1−θ

t (1 − εt )1+θ .

The results of Section 3 imply that if WLA is used as the weak learning algorithm in
Adaboost, then the value εt will always be at most 1/2 − γ, and the upper bound of Theorem
4 becomes ((1 − 2γ )1−θ (1 + 2γ )1+θ )T/2. The following technical lemma is useful:

Lemma 5. (1 − 4x)1−x (1 + 4x)1+x ≤ 1 − 4x2 for 0 ≤ x ≤ 1/4.

Proof: Using a simple convexity argument, it can be verified that αr ≤ 1 − (1 − α)r for
any α ≥ 0 and any 0 ≤ r ≤ 1. This inequality implies that (1 − 4x)1−x ≤ 1 − 4x + 4x2 and
(1 + 4x)x ≤ 1 + 4x2, so consequently

(1 − 4x)1−x (1 + 4x)1+x ≤ (1 − 4x + 4x2)(1 + 4x)(1 + 4x2),

which is at most 1 − 4x2 for 0 ≤ x ≤ 1/4. ✷

If we set θ = γ /2 and apply Lemma 5 with x = θ, the upper bound of Theorem 4 becomes
(1 − γ 2)T/2 and we obtain the following:

Corollary 6. If Adaboost is run on a sequence S of labeled examples drawn from
EX(ũ,D) using WLA as the weak learner, γ as defined in Theorem 3 and µ < 1/|S|4,
then the hypothesis h which Adaboost generates will have margin at least γ /2 on every
example in S.

Proof: The bound on µ causes T to be greater than 2
γ 2 log 1

|S| , and consequently the upper
bound of Theorem 4 is less than 1/|S|. ✷

Corollary 6 shows that a judicious choice of parameters for Adaboost enables us to obtain
a final hypothesis which has a margin of at least γ /2 on every example in the training set.
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In the next subsection we use Corollary 6 and the theory of large margin classification
to establish a bound on the generalization error of this hypothesis in terms of the sample
size m.

4.3. Large margins and generalization error

Let F be a collection of real-valued functions on a set X. A finite set {x1, . . . , xk} ⊆ X
is said to be ξ -shattered by F if there are real numbers r1, . . . , rk such that for all b =
(b1, . . . , bk) ∈ {−1, 1}k, there is a function fb ∈ F such that for all i = 1, . . . , k,

fb(xi )

{≥ri + ξ if bi = 1

≤ri − ξ if bi = −1.

For ξ ≥ 0, the fat-shattering dimension of F at scale ξ , denoted fatF (ξ), is the size of
the largest set which is ξ -shattered by F, if this is finite, and infinity otherwise. The fat-
shattering dimension is useful for us because of the following theorem from Bartlett and
Shawe-Taylor (1999):

Theorem 7. LetF be a collection of real-valued functions on X and letD be a distribution
over X ×{−1, 1}. Let S = 〈x̃1, y1〉, . . . , 〈x̃m, ym〉 be a sequence of labeled examples drawn
fromD. With probability at least 1 − δ over the choice of S, if a classifier h(x) ≡ sign( f (x))

with f ∈F has margin at least ξ > 0 on every example in S, then

Pr
(x,y)∈D

[h(x) �= y] ≤ 2

m

(
d log

8em

d
log(32m) + log

8m

δ

)
,

where d = fatF (ξ/16).

As noted in Section 4.1, the final hypothesis h which Adaboost outputs will be of the
form h(x̃) = sign( f (x̃)) with f (x̃) = ṽ · x̃ for some ṽ ∈ �n. Furthermore, since each
invocation of WLA generates a hypothesis of the form ht (x̃) = ṽt · x̃ with ‖ṽt‖q ≤ 1

‖X‖p
,

Minkowski’s inequality implies that the vector ṽ must satisfy ‖ṽ‖q ≤ 1
‖X‖p

. We thus consider
the class of functions

F =
{

x̃ �→ ṽ · x̃ : ‖ṽ‖q ≤ 1

‖X‖p
, x ∈ X

}
. (2)

If we can bound fatF (ξ), then given any sample size m, Theorem 7 immediately yields a
corresponding bound on Prx∈D[h(x̃) �= sign(ũ · x̃)] for our halfspace learning problem. The
following theorem, which is an extension of Theorem 1.6 from Bartlett and Shawe-Taylor
(1999), gives the desired bound on fatF (ξ). The proof is given in Appendix B.

Theorem 8. Let X be a bounded region in �n and let F be the class of functions on X
defined in (2) above. Then fatF (ξ) ≤ 2 ln 4n

ξ 2 .
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4.4. Putting it all together

Combining Theorem 3, Corollary 6, and Theorems 7 and 8, it follows that if our algorithm
uses a sample of size |S| = m, then with probability at least 1 − δ the hypothesis h which
is generated will satisfy

Pr
x̃∈D

[h(x̃) �= sign(ũ · x̃)] = O

(
1

m

(
‖ũ‖2

q‖X‖2
p

δ2
ũ,X

log n log2 m + log
m

δ

))
.

Thus we have established the following (where the Õ-notation hides log factors):

Theorem 9. The algorithm obtained by applying Adaboost to WLA using the parameter
settings described in Corollary 6 is a strong learning algorithm for ũ on X with sample
complexity

m(ε, δ, ũ, X) = Õ

(
1

ε
· ‖ũ‖2

q‖X‖2
p

δ2
ũ,X

)
.

5. Discussion

The sample complexity of our boosting-based p-norm PAC learning algorithm is remarkably
similar to that of the PAC-transformed online p-norm algorithms of Section 2.1. Both sets
of bounds are essentially linear in ε−1 and quadratic in ‖ũ‖q‖X‖p/δũ,X . Comparing the
bounds in more detail, we see that our sample complexity bound contains various log factors
which are not present in the bound for the online variant described in part (a) of Theorem 1.
These log factors stem from the bounds given in Theorem 7 and Lemma 12; we do not know
if they are inherent in the algorithm’s performance or an artifact of the analysis. On the other
hand, the bound of variant (a) has an extra factor of p −1 which is not present in the sample
complexity of our algorithm. Results of Gentile and Littlestone (1999) suggest that the most
meaningful range for p is 2 ≤ p ≤ O(log n), in which case this factor is quite small.

We note that when p = �(log n) Gentile and Littlestone have given alternative expres-
sions for the online p-norm bounds in terms of ‖X‖∞ and ‖ũ‖1. For these values of p,

using an entirely similar analysis the bounds of our algorithm can be analogously rephrased
in terms of ‖X‖∞ and ‖ũ‖1 as well.

5.1. p = 2 and the Perceptron algorithm

Since the p = 2 case of the online p-norm algorithm is precisely the Perceptron algorithm,
the p = 2 case of our algorithm can be viewed as a natural PAC-model analogue of the
online Perceptron algorithm. We note that when p = 2 the upper bound given in Lemma 12
can be strengthened to

√
d · ‖X‖2 (see Lemma 1.3 of Bartlett & Shawe-Taylor, 1999 or

Theorem 4.1 of Alon, Spencer, & Erdos, 1992 for a proof). This means that the fat-shattering
dimension upper bound of Theorem 8 can be improved to 1

ξ 2 , which removes a log factor
from the bound of Theorem 9; however this bound will still contain various log factors
because of the log terms in Theorem 7.
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5.2. p = ∞ and the Jackson-Craven algorithm

At the other extreme, we can also define a natural p = ∞ version of our algorithm. Consider
the vectors z̃ and w̃ which are computed by the weak learning algorithm WLA. If we let r be
the number of coordinates zi of z̃ such that |zi | = ‖z̃‖∞, then for any i we have

lim
p→∞

(
wi

‖w̃‖q

)
= lim

p→∞

(
sign(zi )|zi |p−1( ∑n
i=1 |zi |(p−1)q

)1/q

)

=
{

sign(zi )/r if |zi | = ‖z̃‖∞
0 otherwise.

Hence it is natural to consider a p = ∞ version of WLA, which we denote WLA′, in which
the vector w̃ is defined by taking wi = sign(zi ) if |zi | = ‖z̃‖∞ and wi = 0 otherwise. All of
our analysis continues to hold for the WLA′ algorithm (with minor modifications as sketched
below) and we obtain a p = ∞ strong learning algorithm:

Claim 10. Theorem 9 holds for p = ∞ with WLA′ in place of WLA.

Proof: The proof of Theorem 3 (with WLA′ in place of WLA) is unchanged up through the
point where we must show that

∑m
i=1 D(x̃ i )yi (w̃ · x̃ i )

‖w̃‖1
≥ δũ,X

‖ũ‖1
.

The left-hand side of this inequality can be rewritten as

w̃ · z̃

‖w̃‖1
=

∑
|zi |=‖z̃‖∞ sign(zi )zi∑

|zi |=‖z̃‖∞ 1

=
∑

|zi |=‖z̃‖∞ ‖z̃‖∞∑
|zi |=‖z̃‖∞ 1

= ‖z̃‖∞,

and hence it suffices to prove that ‖z̃‖∞ ≥ δũ,X/‖ũ‖1. This is established at the end of the
proof of Theorem 3, so Theorem 3 holds with p = ∞ and WLA′ substituted for WLA.

The rest of the analysis goes through unchanged except for inequalities (7) and (8) of
Lemma 12. Since ‖X‖∞ = supx̃∈X max j=1,...,n |x j |, we have that Y j ≤ d‖X‖2

∞ for all j,
and hence in place of inequalities (7) and (8) we have

‖z̃‖∞ = max
j

|z j |

≤ max
j

√
2Y j log 4n

≤
√

2d log 4n · ‖X‖∞,

which proves Lemma 12. ✷



P1: Upendra

Machine Learning kl1422-02 November 21, 2001 15:21

146 R. SERVEDIO

There is a close relationship between this p = ∞ algorithm and the work of Jackson and
Craven on learning sparse perceptrons (Jackson & Craven, 1996). Note that if r = 1, i.e.
only one coordinate of z̃ has |zi | = ‖z̃‖∞, then the WLA′ hypothesis is h(x̃) = �

‖X‖∞
where �

is the signed variable from

{x1, . . . , xn, −x1, . . . ,−xn}

which is most strongly correlated under distribution D with the value of sign(ũ · x̃). This
is very similar to the weak learning algorithm used by Jackson and Craven (1996), which
takes the single best-correlated literal as its hypothesis (breaking ties arbitrarily).

The proof that this “best-single-literal” algorithm used in Jackson and Craven (1996) is
a weak learning algorithm is due to Goldmann, Håstad, and Razborov (1992). However,
the proof in Goldmann, Håstad, and Razborov (1992) assumes that the example space
X is {0, 1}n and that the target vector ũ has all integer coefficients; thus, as noted by
Jackson and Craven (1996), their algorithm for learning sparse perceptrons only applies to
learning problems which are defined over discrete input domains. In contrast, our p = ∞
algorithm can be applied on continuous input domains—the only restrictions required by
our algorithm are that the example space X and the target vector ũ satisfy ‖X‖∞ <∞ and
δũ,X > 0.

We also observe that Theorem 9 establishes a tighter sample complexity bound for our
p = ∞ strong learning algorithm than was given in Jackson and Craven (1996). To see this,
let X = {0, 1}n and suppose that the target vector ũ ∈ �n has all integer coefficients so
the algorithm from Jackson and Craven (1996) can be applied. For this learning problem
we have δũ,X = �(1) and ‖X‖∞ = 1; letting s = ‖ũ‖1, Theorem 9 implies that our p = ∞
strong learning algorithm has sample complexity roughly s2/ε (ignoring log factors). This
is essentially the same bound which can be obtained from the Balanced Winnow algorithm
of Littlestone (1989) (though somewhat weaker than the bound which can be obtained
from the original Winnow algorithm of Littlestone (1988)), and is an improvement over the
roughly s4/ε sample complexity bound given in Jackson and Craven (1996).

6. Open questions

Our results give evidence of the broad utility of boosting algorithms such as Adaboost.
A natural question is how much further this utility extends: are there simple boosting-
based PAC versions of other standard learning algorithms? We note in this context that
Kearns and Mansour (1996) have shown that various heuristic algorithms for top-down
decision tree induction can be viewed as instantiations of boosting. Another goal is to
construct more powerful boosting-based PAC algorithms for linear threshold functions.
All of the algorithms discussed in this paper have an inverse quadratic dependence on
the separation parameter δũ,X ; linear-programming based algorithms for learning linear
threshold functions (see, e.g., Blum et al., 1996; Blumer et al., 1989; Cohen, 1997; Long,
1994; Maass & Turan, 1994) do not have such a dependence. Is there a natural boosting-
based PAC algorithm for linear threshold functions with performance bounds similar to
those of the linear-programming based algorithms?
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Appendix A: Proof of Theorem 4

The proof combines ideas from Schapire et al. (1998), where it is shown that Adaboost
with binary valued hypotheses generates a large margin classifier, and Schapire and Singer
(1998), where an analysis is given for Adaboost’s classification error with real valued
hypotheses. As in Theorem 5 of Schapire et al. (1998), if yi f (xi ) ≤ θ then

yi

T∑
t=1

αt ht (xi ) ≤ θ

T∑
t=1

αt

which implies that

exp

(
−yi

T∑
t=1

αt ht (xi ) + θ

T∑
t=1

αt

)
≥ 1.

Following Schapire et al. (1998), we thus have that

|{i ∈ {1, 2, . . . , m} : yi f (xi ) ≤ θ}|
m

≤
m∑

i=1

1

m
·
[

exp

(
− yi

T∑
t=1

αt ht (xi ) + θ

T∑
t=1

αt

)]

= exp
(
θ

∑T
t=1 αt

)
m

m∑
i=1

exp

(
− yi

T∑
t=1

αt ht (xi )

)

= exp

(
θ

T∑
t=1

αt

)(
T∏

t=1

Zt

)
m∑

i=1

DT +1(xi )

= exp

(
θ

T∑
t=1

αt

)(
T∏

t=1

Zt

)
(3)

where the second equality follows from the definition of Dt+1 and the final equality is
because DT +1 is a distribution and hence sums to 1. Our goal is thus to bound the right side
of inequality (3).

If we let

rt =
m∑

i=1

Dt (xi )yi ht (xi )

then using the fact that

|h(x j ) − y j | = 1 − y j h(x j )

we find that εt = 1−rt
2 . Substituting into the definition of αt we obtain

αt = 1

2
ln

(
1 + rt

1 − rt

)
.
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Following (Schapire & Singer, 1998) for simplicity of notation we now fix t and let
ui = yi ht (xi ), Z = Zt , D=Dt , ε = εt , r = rt , and α = αt . As noted in Schapire and Singer
(1998) a simple convexity argument shows that

e−αu ≤ 1 + u

2
e−α + 1 − u

2
eα

for any α ∈ � and any u ∈ [−1, 1]. Since ui always lies in the interval [−1, 1], we can apply
this inequality to obtain

Z =
m∑

i=1

D(xi )e−αui

≤
m∑

i=1

D(xi )

(
1 + ui

2
e−α + 1 − ui

2
eα

)
. (4)

As in Section 3.5 of Schapire and Singer (1998), substituting α into inequality (4) yields

Zt ≤
√

1 − r2
t

=
√

1 − (1 − 2εt )2

= 2
√

εt (1 − εt ). (5)

Substituting inequality (5) into inequality (3) and using the definition of αt yields the desired
bound of the theorem. (Theorem 4) ✷

Appendix B: Proof of Theorem 8

Theorem 8 follows immediately upon combining the inequalities proved in the following
two lemmas.

Lemma 11. If the set {x̃1, . . . , x̃ d} is ξ -shattered byF then every b = (b1, . . . , bd) ∈ {−1, 1}d

satisfies∥∥∥∥∥
d∑

i=1

bi x̃
i

∥∥∥∥∥
p

≥ ξd‖X‖p.

Proof: Suppose that {x̃1, . . . , x̃ d} is ξ -shattered by F as witnessed by the real num-
bers r1, . . . , rd . Then for every b = (b1, . . . , bd) ∈ {−1, 1}d , there is a vector ṽb ∈ �n with
‖ṽb‖q ≤ 1

‖X‖p
such that bi (ṽb · x̃ i − ri ) ≥ ξ for i = 1, . . . , d. Summing these d inequalities

and rearranging, we obtain

ṽb ·
(

d∑
i=1

bi x̃
i

)
≥ ξd +

d∑
i=1

biri . (6)
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There are two cases to consider. Case 1 is if
∑d

i=1 biri ≥ 0; if this is true, we have

1

‖X‖p
·
∥∥∥∥∥

d∑
i=1

bi x̃
i

∥∥∥∥∥
p

≥ ‖ṽb‖q

∥∥∥∥∥
d∑

i=1

bi x̃
i

∥∥∥∥∥
p

≥ ṽb ·
(

d∑
i=1

bi x̃
i

)

≥ ξd

(where the first inequality is by the definition of ṽb, the second inequality is Hölder’s, and the
third is from inequality (6)), which yields the desired inequality ‖∑d

i=1 bi x̃ i‖p ≥ ξd‖X‖p.

In the second case,
∑d

i=1 biri < 0. If this is the case then let c = (c1, . . . , cd) =
(−b1, . . . ,−bd). We then have

∑d
i=1 ciri > 0, so Case 1 implies that ‖∑d

i=1 ci x̃ i‖p ≥
ξd‖X‖p, and the lemma follows since∥∥∥∥∥

d∑
i=1

ci x̃
i

∥∥∥∥∥
p

=
∥∥∥∥∥ −

d∑
i=1

bi x̃
i

∥∥∥∥∥
p

=
∥∥∥∥∥

d∑
i=1

bi x̃
i

∥∥∥∥∥
p

.

✷

Lemma 12. For any set {x̃1, . . . , x̃ d} with each ‖x̃ i‖p ≤ ‖X‖p, if p ≥ 2 then there is some
b = (b1, . . . , bd) ∈ {−1, 1}d such that ‖∑d

i=1 bi x̃ i‖p ≤ √
2d ln 4n · ‖X‖p.

Proof: The proof uses the probabilistic method. We consider the random variable z̃ =∑d
i=1 bi x̃ i where (b1, . . . , bd) is uniformly distributed over {−1, 1}d . For any coordinate

j ∈ {1, . . . , n} we have z j = ∑d
i=1 bi xi

j and hence E[z j ] = 0. Let Y j = |x1
j |2 + · · · + |xd

j |2;
Hoeffding’s bound (Hoeffding, 1963) on sums of independent random variables states that
for any t > 0 we have

Pr[|z j | > t] ≤ 2 exp

(−t2

2Y j

)
.

As a consequence, taking t = √
2Y j ln 4n we have that Pr[|z j | ≥ t] ≤ 1/2n. Using the union

bound across j = 1, 2, . . . , n, we have that with probability at least 1/2 every coordinate
z j of z̃ satisfies |z j | <

√
2Y j ln 4n, and hence

‖z̃‖p =
(

n∑
j=1

|z j |p

)1/p

≤
(

n∑
j=1

(√
2Y j ln 4n

)p

)1/p

=
√

2 ln 4n ·
((

n∑
j=1

[∣∣x1
j

∣∣2 + · · · + ∣∣xd
j

∣∣2]p/2

)2/p)1/2

(7)
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Since p ≥ 2, we have p/2 ≥ 1 and hence Minkowski’s inequality implies that

(
n∑

j=1

[∣∣x1
j

∣∣2 + · · · + ∣∣xd
j

∣∣2]p/2

)2/p

≤
[

n∑
j=1

∣∣x1
j

∣∣2p/2

]2/p

+ · · · +
[

n∑
j=1

∣∣xd
j

∣∣2p/2

]2/p

= ‖x̃1‖2
p + · · · + ‖x̃ d‖2

p

≤ d‖X‖2
p. (8)

The lemma follows by combining inequalities (7) and (8). ✷
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