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Abstract

Given any linear threshold function f on n Boolean vari-
ables, we construct a linear threshold function g which dis-
agrees with f on at most an ε fraction of inputs and has
integer weights each of magnitude at most

√
n · 2Õ(1/ε2).

We show that the construction is optimal in terms of its de-
pendence on n by proving a lower bound of Ω(

√
n) on the

weights required to approximate a particular linear thresh-
old function.

We give two applications. The first is a deterministic
algorithm for approximately counting the fraction of sat-
isfying assignments to an instance of the zero-one knapsack
problem to within an additive ±ε. The algorithm runs in
time polynomial in n (but exponential in 1/ε2).

In our second application, we show that any linear
threshold function f is specified to within error ε by esti-
mates of its Chow parameters (degree 0 and 1 Fourier co-
efficients) which are accurate to within an additive error
of ±1/(n · 2Õ(1/ε2)). This is the first such accuracy bound
which is inverse polynomial in n (previous work of Gold-
berg [12] gave a 1/quasipoly(n) bound), and gives the first
polynomial bound (in terms of n) on the number of exam-
ples required for learning linear threshold functions in the
“restricted focus of attention” framework.

1. Introduction

A linear threshold function, or LTF, is a Boolean func-
tion f : {−1, 1}n → {−1, 1} for which there exist w =
(w1, . . . , wn) ∈ Rn and θ ∈ R such that f(x) =
sgn (

∑n
i=1 wixi − θ) for all x ∈ {−1, 1}n. Linear thresh-

old functions (sometimes referred to in the literature as
“threshold gates” or “weighted threshold gates”) have been
extensively studied since the 1960s [7, 20, 31] and currently
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play an important role in many areas of theoretical com-
puter science. In complexity theory, complexity classes of
fundamental interest such as TC0 are defined in terms of
linear threshold functions, and much effort has been ex-
pended on understanding the computational power of sin-
gle linear threshold gates and shallow circuits composed of
these gates (see e.g. [13, 14, 15, 18, 34, 37]). Linear thresh-
old functions also play a central role in computational learn-
ing theory and machine learning; many of the most widely
used and successful learning techniques such as support
vector machines [39], various boosting algorithms [10, 11],
and fundamental algorithms such as Perceptron [4, 33] and
Winnow [27, 28] are based on linear threshold functions
in an essential way. Algorithms which learn linear thresh-
old functions have also proved instrumental in the design of
the fastest known learning algorithms for various expressive
classes of Boolean functions (see e.g. [24, 25, 29]).

It is not hard to see that any linear threshold function
f : {−1, 1}n → {−1, 1} has some representation – in fact
infinitely many – in which all the weights wi are integers.
It is of considerable interest in both learning theory and
complexity theory (see the references cited above) to un-
derstand how large these integer weights must be. Easy
counting arguments show that most linear threshold func-
tions over {−1, 1}n require integer weights of magnitude
2Ω(n). A classic result of Muroga et al. [32] shows that
any linear threshold function f over {−1, 1}n can be ex-
pressed using integer weights w1, . . . , wn each satisfying
|wi| ≤ 2O(n log n). (This result has since been rediscovered
many times, see e.g. [19, 36].) Håstad [16] gave a match-
ing lower bound by exhibiting a particular linear threshold
function and proving that any integer representation for it
must have weights of magnitude 2Ω(n log n). Thus the size of
weights that are required to (exactly) compute linear thresh-
old functions is now rather well understood.

In this paper we are interested in the size of weights
that are required to approximately compute linear thresh-
old functions. Let us say that a Boolean function g is an
ε-approximator for f if Pr[g(x) 6= f(x)] ≤ ε, where the



probability is over a uniform choice of x from {−1, 1}n.
We consider the following:
Question: Let f be an arbitrary linear threshold function.
If g is an LTF which ε-approximates f and has integer
weights, how large do the weights of g need to be?
As a first indication that the landscape can change dramat-
ically when we switch from exact to approximate com-
putation, consider the comparison function COMP (x, y)
on 2n bits which outputs 1 iff x ≥ y (viewing x and
y as n-bit binary numbers). It is not hard to show that
COMP (x, y) is a linear threshold function which requires
integer weights of magnitude 2Ω(n), but it is also easy to see
that COMP (x, y) is ε-approximated by a linear threshold
function which has only 2 log(1/ε) many relevant variables
and integer weights each at most O(1/ε).

1.1. Our results: approximating lin-
ear threshold functions using small
weights.

We give a fairly complete answer to the above ques-
tion. In Section 3 we prove a lower bound by exhibiting
a simple linear threshold function f and showing that any
ε-approximating linear threshold function for f must have
some weight of magnitude Ω(

√
n). Perhaps surprisingly,

we also show that O(
√

n) is an upper bound on the weights
required to approximate any linear threshold function to any
constant accuracy ε > 0. Our main result is the following,
proved in Section 4:

Theorem 1 Let f : {−1, 1}n → {−1, 1} be any lin-
ear threshold function. For any ε > 0 there is a ε-
approximating LTF g with integer weights u1, . . . , un which
satisfy

∑n
i=1 u2

i ≤ n · 2Õ(1/ε2).

Theorem 1 immediately implies that each individual weight
ui is at most

√
n · 2Õ(1/ε2) in magnitude. It also implies

that the sum of the magnitudes of all n weights is at most
n · 2Õ(1/ε2).

In terms of the dependence on ε, the “right” answer is
somewhere between (1/ε)ω(1) (see Section 7) and our upper
bound of 2Õ(1/ε2) from Theorem 1; narrowing this gap is an
interesting direction for future work.

1.2. Applications.

We give two main applications of Theorem 1. The
first, in Section 5, is a deterministic algorithm for approx-
imately counting the fraction of satisfying assignments to
any linear threshold function (or equivalently, counting the
number of solutions to a zero-one knapsack problem) to
within additive accuracy ±ε. The algorithm runs in time
Õ(n2) · 2Õ(1/ε2).

The second application is to the problem of reconstruct-
ing a linear threshold function from (approximations to) its
low-degree Fourier coefficients. Various forms of this prob-
lem have been studied since the 1960s (see [6, 5, 3, 12, 23,
42]; we give a detailed description of prior work in Sec-
tion 6). We show that for any constant ε > 0, any linear
threshold function f is information-theoretically specified
to within error ε by estimates of its degree-0 and degree-1
Fourier coefficients (sometimes known as its Chow param-
eters) which are accurate to within an additive ±1/O(n):

Theorem 2 Let f : {−1, 1}n → {−1, 1} be any linear
threshold function. Let g: {−1, 1}n → {−1, 1} be
any Boolean function which satisfies |ĝ(S) − f̂(S)| ≤
1/(n · 2Õ(1/ε2)) for each S = ∅, {1}, {2}, . . . , {n}. Then
Pr[f(x) 6= g(x)] ≤ ε.

This is the first known accuracy bound which is inverse
polynomial in n (previous work of Goldberg [12] gave a
1/quasipoly(n) bound). We also show a 1/Ω(

√

n/ log n)
bound on the accuracy required. Theorem 2 directly yields
the first polynomial bound (in terms of n) on the number
of examples required for learning linear threshold functions
in the “restricted focus of attention” learning framework of
[2].

2. Preliminaries

For v ∈ Rn we write ‖v‖ to denote
√

v2
1 + · · · + v2

n.
We write u · v to denote the inner product

∑n
i=1 uivi of two

vectors u, v ∈ Rn.
We will use standard tail bounds on sums of independent

random variables, in particular the following form of the
Hoeffding bound in which the deviation is bounded in terms
of ‖w‖.

Theorem 3 Fix any 0 6= w ∈ Rn. For any γ > 0, we have

Pr
x∈{−1,1}n

[w · x ≥ γ‖w‖] ≤ e−γ2/2 and

Pr
x∈{−1,1}n

[w · x ≤ −γ‖w‖] ≤ e−γ2/2.

Another useful tool from probability theory is the fol-
lowing theorem, which upper bounds the probability mass
that certain sums of independent random variables can have
on any small region. The result can be derived from The-
orem 2.14 in [35]; a short self-contained proof is given in
[38].

Theorem 4 Fix any w ∈ Rn with |wi| ≤ 1 for each i. Then
for every λ ≥ 1 and θ ∈ R, we have

Pr
x∈{−1,1}n

[|w · x − θ| ≤ λ] ≤ 6λ/‖w‖.



3. The lower bound

In this section we exhibit a linear threshold function
f and show that any representation with integer weights
which computes a good approximator for f must have some
weight of magnitude Ω(

√
n).

Let f : {−1, 1}n+1 → {−1, 1} be defined as
f(x1, . . . , xn+1) = sgn(x1 + · · · + xn + nxn+1 −
n). Note that f(x1, . . . , xn, 1) = Maj(x1, . . . , xn) and
f(x1, . . . , xn,−1) = −1 for all x. For convenience we as-
sume that n ≡ 2 mod 4, but it will be clear that this assump-
tion can be removed WLOG.

Our main result of this section is:

Theorem 5 Let h : {−1, 1}n+1 → {−1, 1} be any
LTF which 1

10 -approximates f , and let sgn(v1x1 + · · · +
vn+1xn+1 − θ) be any integer representation for h. Then
|vi| = Ω(

√
n) for some i.

A straightforward application of the Hoeffding bound
shows that for any ε = Θ(1), there is indeed an ε-
approximating LTF sgn(x1 + · · · + xn + Nxn+1 − N) for
f in which N = Θ(

√
n).

Proof of Theorem 5: Let h1 denote the function
h(x1, . . . , xn, 1) = sgn(v1x1 + · · · + vnxn + vn+1 −
θ). Since h is an 1

10 -approximator for f , we have
Prx1,...,xn

[h1(x) 6= Maj(x)] ≤ 1
5 .

The following claim will be useful. (Stronger bounds
could be given with more effort, but the n/2 bound is good
enough for our purposes and admits a very simple proof.)

Claim 1 The function h1 must depend on at least n/2 vari-
ables.

Proof: Suppose h1 has r < n/2 relevant variables; we
will show that then Prx1,...,xn

[h1 6= Maj] > 1
5 . For each

` = 1, . . . , n let g` : {−1, 1}` → {−1, 1} be the Boolean
function on variables x1, . . . , x` which is the closest ap-
proximator to Maj(x1, . . . , xn). It follows that

Pr[h1 6= Maj] ≥ Pr[gr 6= Maj] ≥ Pr[gn/2 6= Maj].

It is easy to see that each function g` is simply
Maj(x1, . . . , x`). (On each input x = (x1, . . . , x`),
the value of g` is the bit b ∈ {−1, 1} such that the
majority of the 2n−` extensions (x1, . . . , xn) of x have
Maj(x1, . . . , xn) = b; it is easy to check that this bit b is
Maj(x1, . . . , x`).) We thus have that Pr[gn/2 6= Maj]

= Pr[Maj(x1, . . . , xn/2) 6= Maj(x1, . . . , xn)]

≥ Pr[sgn(xn/2+1 + · · · + xn) 6= sgn(x1 + · · · + xn/2)

& |xn/2+1 + · · · + xn| > |x1 + · · · + xn/2|]
= Pr[sgn(xn/2+1 + · · · + xn) 6= sgn(x1 + · · · + xn/2)] ·

Pr[|xn/2+1 + · · · + xn| > |x1 + · · · + xn/2|]
≥ (1/2)(1/2 − o(1)) > 1/5

where the second equality holds because the signs and mag-
nitudes of the sums are independent (since n/2 is odd, each
sign is achieved with probability exactly 1/2).

By Claim 1 we may assume WLOG that each of
x1, . . . , xn/2 is a relevant variable for h1. Since each vi is
an integer, it follows that each of |v1|, . . . , |vn/2| is at least
1. Letting v′ denote the n-dimensional vector (v1, . . . , vn),
we have that ‖v′‖ ≥

√

n/2.
Since h1 is a 1

5 -approximator to Maj(x1, . . . , xn) and
Pr[Maj(x) = 1] = 1

2−o(1), we have that Prx1,...,xn
[v1x1+

· · · + vnxn + vn+1 ≥ θ] ≥ 0.295. Similarly, since
h−1(x)

.
= sgn(v1x1 + · · · + vnxn − vn+1 − θ) is a 1

5 -
approximator to the constant function −1, it must be the
case that Prx1,...,xn

[v1x1 + · · ·+ vnxn − vn+1 ≥ θ] ≤ 0.2.
These two inequalities imply that vn+1 > 0 and that

Pr
x1,...,xn

[|v1x1 + · · · + vnxn − θ| ≤ vn+1] ≥ 0.095. (1)

Let vmax denote maxi=1,...,n |vi|, let ui = vi/vmax for
i = 1, . . . , n, and let λ = vn+1/vmax. Suppose first that
λ ≥ 1. In this case we can apply Theorem 4 to obtain

0.095 ≤ (1) = Pr[|u · x − θ/vmax| ≤ λ]

≤ 6λ

‖u‖ =
6λvmax

‖v′‖ =
6vn+1

‖v′‖

which implies that vn+1 = Ω(
√

n). On the other hand, if
λ < 1 then again by Theorem 4 we have

0.095 ≤ (1) = Pr[|u · x − θ/vmax| ≤ λ]

≤ Pr[|u · x − θ/vmax| ≤ 1] ≤ 6vmax

‖v′‖

which implies vmax = Ω(
√

n). So in each case some weight
is Ω(

√
n), and Theorem 5 is proved.

4. Proof of Theorem 1

Let ε > 0 be given and let f : {−1, 1}n → {−1, 1} be
any linear threshold function. Without loss of generality we
may suppose that f(x) = sgn (

∑n
i=1 wixi − θ) where we

have 1 = |w1| ≥ |w2| ≥ · · · ≥ |wn| > 0.
As in the argument of [38] we consider different cases

depending on the value of ‖w‖. In each case we show how
to construct an ε-approximating LTF with integer weights
that satisfy the claimed bound.

Case I: ‖w‖ ≥ 12
ε . In this case the construction works

by rounding the weights to a carefully chosen granular-
ity. We actually prove a stronger version of Theorem 1 in
this case by showing that the sum of squared weights for
the ε-approximator is at most O(n ln(1/ε)/ε2) rather than
n · 2Õ(1/ε2).



Let α = ε‖w‖
6
√

2n ln(4/ε)
. For each i = 1, . . . , n let ui be the

value obtained by rounding wi to the nearest integer multi-
ple of α. Let g(x) = sgn(

∑n
i=1 uixi − θ), or equivalently

g(x) = sgn(
∑n

i=1(ui/α)xi − θ/α). We will prove the fol-
lowing lemma:

Lemma 2 The linear threshold function g(x) =
sgn(

∑n
i=1(ui/α)xi − θ/α) is an ε-approximator for

f with integer weights each at most O(
√

n ln(1/ε)) in
magnitude. Moreover, the sum of squares of weights is
O(n ln(1/ε)/ε2).

Proof: For i = 1, . . . , n let ei = wi − ui, so u · x =
w · x− e · x. Let λ ≥ 1 be such that ε

2 = 6λ
‖w‖ . We have that

sgn(u · x − θ) 6= sgn(w · x − θ) only if either |e · x| ≥ λ
or |w · x − θ| ≤ λ. We will show that each of these two
events occurs with probability at most ε

2 for a random x,
and consequently Pr[g(x) 6= f(x)] ≤ ε.

First we bound Pr[|e · x| ≥ λ]. We have that |ei| ≤ 1
2α

for each i, so the vector e = (e1, . . . , en) has ‖e‖ ≤ 1
2α

√
n.

Observing that λ =
√

2 ln(4/ε) · 1
2α

√
n, the Hoeffding

bound (Theorem 3) gives

Pr[|e · x| ≥ λ] ≤ Pr[|e · x| ≥
√

2 ln(4/ε) · ‖e‖]
≤ 2e−(

√
2 ln(4/ε))2/2 = ε/2.

To bound Pr[|w·x−θ| ≤ λ] we simply apply Theorem 4;
this gives us Pr[|w · x− θ| ≤ λ] ≤ 6λ

‖w‖ , which equals ε
2 by

our original condition on w in Case I.
Thus far we have shown that g is an ε-approximating

LTF for f . It is clear that g has a representation with
integer weights each at most 1/α = O(

√
n ln(1/ε)

‖w‖ε ) =

O(
√

n ln(1/ε)), where the second equality uses ε‖w‖ ≥
12. In fact we can bound the magnitude of the sum of
squares of these integer weights. Let vi = ui/α, so each vi

is an integer and g(x) = sgn(v · x − θ/α). Rounding each
weight wi to obtain ui is easily seen to increase its magni-
tude by at most a factor of two. Consequently we have that
each |vi| ≤ 2|wi|/α, and so we have

n
∑

i=1

v2
i ≤ 4(

n
∑

i=1

w2
i )/α2 = 4‖w‖2 · 72n ln(4/ε)

ε2‖w‖2

= O(n ln(1/ε)/ε2).

Case II: ‖w‖ < 12
ε . Note that since |w1| = 1, this is equiv-

alent to w2
1/(
∑n

j=1 w2
j ) > ε2/144.

Let us set up some notation. We let C1 =
4 ln(4/ε), C2 = 72 ln(2C1/ε), τ = ε2/144, and ` =
3
τ ln(C2/τ) ln(4/ε). Note that ` = Õ(1/ε2). We assume
that ` ≤ n; observe that if this is not the case, then Theo-
rem 1 follows trivially from the standard 2O(n log n) weight

upper bound of Muroga et al., since we can in fact compute
f exactly with weight 2O(n log n) = 2Õ(1/ε2).

As in [38] we consider two subcases.

Case IIa: w2
k/(
∑n

j=k w2
j ) > ε2/144 for all k = 1, . . . , `.

In this case, instead of rounding the weights wi as we did in
Case I, we will truncate the linear threshold function after
the first ` variables and show that the resulting LTF is an
ε-approximator for f . Since this truncated LTF depends on
only ` variables, the standard upper bound of Muroga et
al. implies that it has an integer representation with each
weight at most 2O(` log `) and hence sum of squared weights
also 2O(` log `) = 2Õ(1/ε2).

Let g(x) = sgn(w1x1 + · · · + w`x` − θ). Let W =
w2

`+1 + · · · + w2
n, and let η =

√

2W ln(4/ε). We have that
g(x) 6= f(x) only if either |w`+1x`+1+ · · ·+wnxn| ≥ η or
|w1x1+· · ·+w`x`−θ| ≤ η. We will show that these events
each have probability at most ε

2 and thus obtain Pr[g(x) 6=
f(x)] ≤ ε.

Bounding the first probability is easy; by our choice of
η, the Hoeffding bound gives

Pr[|w`+1x`+1 + · · ·+ wnxn| ≥ η] ≤ 2e−2 ln(4/ε)/2 = ε/2.
(2)

We now show that Pr[|w1x1 + · · · + w`x` − θ| ≤
η] ≤ ε/2. Note that since we are in Case IIa, we have
w2

` > (ε2/144)
∑n

j=`+1 w2
j and thus w` > (ε/12)

√
W =

(ε/12)(η/
√

2 ln(4/ε)). It therefore suffices to show that

Pr

[

|w1x1 + · · · + w`x` − θ| ≤ 12

ε
w`

√

2 ln
4

ε

]

≤ ε

2
. (3)

For i = 1, . . . , n we will write Wi to denote
∑n

j=i w2
j ;

note that Wi = w2
i + Wi+1. The following lemma will be

useful:

Lemma 3 For a < b ≤ `, we have

Wb < (1 − τ)b−aWa <
(1 − τ)b−a

τ
w2

a.

Proof: Since we are in Case IIa we have w2
a > τWa =

τw2
a+τWa+1, or equivalently (1−τ)w2

a > τWa+1. Adding
(1 − τ)Wa+1 to both sides gives (1 − τ)(w2

a + Wa+1) =
(1−τ)Wa > Wa+1. This implies that Wb < (1−τ)b−aWa;
the second inequality follows from w2

a > τWa.

We divide the weights w1, . . . , w` into blocks of con-
secutive weights as follows. The first block B1 is
{w1, . . . , wk1

} where k1 is the first index such that
Wk1+1 < w2

1/C2. Similarly, the i-th block Bi is
{wki−1+1, . . . , wki

} where ki is the first index such that
Wki+1 < w2

ki−1+1/C2.

Corollary 4 Each block Bi is of length at most
1
τ ln(C2/τ).



Proof: By Lemma 3, the length |Bi| of the i-th block must
satisfy 1/C2 ≤ (1 − τ)|Bi|/τ ; the corollary follows from
this.

Recalling that ` = 3
τ ln(C2/τ) ln(4/ε), we have that

there are at least 3 ln(4/ε) many blocks of weights in
w1, . . . , w`.

Let us view the choice of a uniform (x1, . . . , x`) ∈
{−1, 1}` as taking place in successive stages, where in the
i-th stage the variables corresponding to the i-th block Bi

are chosen. The rest of our analysis in Case IIa will only
deal with the first ln(4/ε) blocks so for the rest of Case IIa
we assume that i ≤ ln(4/ε).

Immediately after the i-th stage, some value – call it ξi –
has been determined for w1x1+· · ·+wki

xki
. The following

lemma shows that if ξi is too far from θ, then it is unlikely
that the remaining variables xki+1, . . . , x` will come out in
such a way as to make the final sum sufficiently close to θ.

Lemma 5 If |ξi − θ| ≥ 2
√

Wki+1

√

2 ln(2C1/ε), then we
have

Pr
xki+1,...,x`

[

|w1x1 + · · · + w`x` − θ| ≤ 12

ε
w`

√

2 ln
4

ε

]

≤ ε/C1.

Proof: By the lower bound on |ξi − θ| in the hypothesis of
the lemma, it can only be the case that |w1x1+ · · ·+w`x`−
θ| ≤ (12/ε)

√

2 ln(4/ε)w` if

|wki+1xki+1 + · · · + w`x`|

≥ 2
√

Wki+1

√

2 ln
2C1

ε
− (12/ε)w`

√

2 ln
4

ε
(4)

Since i ≤ ln(4/ε) and each block is of length at most
1
τ ln(C2/τ) by Corollary 4, we have that ki + 1 ≤
1
τ ln(C2/τ) ln(4/ε) + 1. Recalling the definition of `, it
follows that (` − (ki + 1))/2 > 1

τ ln(12/ε). Now using
Lemma 3, we have that

w` ≤
√

W` ≤ (1−τ)(`−(ki+1))/2
√

Wki+1 ≤ ε

12

√

Wki+1.

Rearranging this inequality and using 2C1 ≥ 4, it fol-
lows that the RHS of (4) is at least

√

2 ln(2C1/ε)·
√

Wki+1. So to prove the lemma it suffices to bound
Prxki+1,...,x`

[|wki+1xki+1 + · · ·+w`x`| ≥
√

2 ln(2C1/ε)·
√

Wki+1] by ε/C1. But since w2
ki+1 + · · · + w2

` ≤ Wki+1,
the Hoeffding bound implies that this probability is at most
2e−(

√
2 ln(2C1/ε))2/2 = ε/C1.

We now show that regardless of the value ξi−1 immedi-
ately before the i-th stage, immediately after the i-th stage
we will have |ξi−θ| ≤ 2

√

Wki+1

√

2 ln(2C1/ε) with prob-
ability at most 1/2 over the choice of values for variables in
block Bi in the i-th stage.

Lemma 6 For any ξi−1 ∈ R, we have
Prxki−1+1,...,xki

[|ξi − θ| ≤ 2
√

Wki+1

√

2 ln(2C1/ε)] ≤
1/2.

Proof: Since ξi equals ξi−1 + (wki−1+1xki−1+1 + · · · +

wki
xki

), we have |ξi − θ| ≤ 2
√

Wki+1

√

2 ln(2C1/ε) if
and only if the value wki−1+1xki−1+1 + · · · + wki

xki
lies

in the interval [IL, IR], where

IL := θ − ξi−1 − 2
√

Wki+1

√

2 ln(2C1/ε)

and

IR := θ − ξi−1 + 2
√

Wki+1

√

2 ln(2C1/ε),

of width 4
√

Wki+1

√

2 ln(2C1/ε).
First suppose that 0 /∈ [IL, IR], i.e. the whole

interval has the same sign. If this is the case then
Pr[wki−1+1xki−1+1 + · · · + wki

xki
∈ [IL, IR]] ≤ 1

2 since
by symmetry the value wki−1+1xki−1+1 + · · · + wki

xki
is

equally likely to be positive or negative.
Now suppose that 0 ∈ [IL, IR]. By definition

of ki, we know that
√

Wki+1 ≤ |wki−1+1|/
√

C2,
and consequently the width of [IL, IR] is at most
4|wki−1+1|

√

2 ln(2C1/ε)/
√

C2, which is at most
2
3 |wki−1+1| by the definition of C2. But now ob-
serve that once the value of xki−1+1 is set to either
+1 or −1, this effectively shifts the “target inter-
val,” which now wki−1+2xki−1+2 + · · · + wki

xki

must hit, by a displacement of wki−1+1 to become
[IL − wki−1+1xki−1+1, IR − wki−1+1xki−1+1]. Since
the original interval [IL, IR] contained 0 and was of
length at most 2

3 |wki−1+1|, the new interval does not
contain 0, and thus again by symmetry we have that the
probability (now over the choice of xki−1+2, . . . , xki

) that
wki−1+1xki−1+1 + · · · + wki

xki
lies in [IL, IR]] is at most

1
2 .

In order to have |w1x1 + · · · + w`x` − θ| ≤
(12/ε)

√

2 ln(4/ε)w`, it must be the case that either (1) each
|ξi − θ| < 2

√

Wki+1

√

2 ln(2C1/ε) for i = 1, . . . , ln(4/ε)
or (2) for some i ≤ ln(4/ε) we have |ξi − θ| ≥
2
√

Wki+1

√

2 ln(2C1/ε) but nonetheless |w1x1 + · · · +

w`x` − θ| < (12/ε)
√

2 ln(4/ε)w`. Lemma 6 gives us
that the probability of (1) is at most (1/2)ln(4/ε) = ε/4,
and Lemma 5 gives us that the probability of (2) is at most
ln(4/ε) · ε/C1 = ε/4. Thus the overall probability that
|w1x1 + · · ·+ w`x` − θ| ≤ (12/ε)

√

2 ln(4/ε)w` is at most
ε/2, and (3) is proved.

Case IIb: w2
k/(
∑n

j=k w2
j ) ≤ ε2/144 for some k ∈

{1, . . . , `}. In this case we round the weights wk, . . . , wn

to obtain an ε/2-approximating LTF in which these weights
are small integers. We then argue that this LTF is itself ε/2-
close to an LTF with all small integer weights.



We define weight vectors u′, v′ ∈ Rn as follows: For
i = 1, . . . , k − 1 let u′

i = wi/|wk|. For i = k, . . . , n let u′
i

be the value obtained by rounding wi/|wk| to the nearest in-
teger multiple of α′ =

(ε/2)
√

w2
k
+···+w2

n

6|wk|
√

2n ln(8/ε)
. (Note that every-

where α in Case I had an ε, now α′ has ε/2.) Let v′
i = u′

i/α
′

for all i = 1, . . . , n. Finally let θ′ = θ/|wk|, and let
g: {−1, 1}n → {−1, 1} be the LTF g(x) = sgn(u′ · x− θ′)
or equivalently g(x) = sgn(v′ · x − θ′/α′).

We first show that g is an ε
2 -approximator for f which

has “almost all” small integer weights.

Lemma 7 The linear threshold function g(x) = sgn(v′ ·
x − θ′/α′) is an ε

2 -approximator for f. Each weight v′
i for

i ≥ k is an integer of magnitude O(
√

n ln(1/ε)), and we
have

∑n
i=k(v′

i)
2 = O(n ln(1/ε)/ε2).

Proof: Fix any setting x∗
1, . . . , x

∗
k−1 of the first k − 1 bits.

Let f∗ be the linear threshold function on n − k + 1 vari-
ables which is obtained by fixing the first k − 1 inputs of f
to x∗

1, . . . , x
∗
k−1; note that we may write f∗(xk, . . . , xn) as

sgn(
∑n

j=k(wj/|wk|)xj − θ′ +
∑k−1

j=1 (wj/|wk|)x∗
j ). Sim-

ilarly, let g∗ be the LTF on n − k + 1 variables obtained
by fixing the first k − 1 inputs of g to to x∗

1, . . . , x
∗
k−1, i.e.

g∗(xk, . . . , xn) = sgn(
∑n

j=k v′
jxj − θ′/α′ +

∑k−1
j=1 v′

jx
∗
j ).

We have that 1 = |wk/|wk|| ≥ |wk+1/|wk|| ≥ · · · ≥
|wn/|wk|| > 0. Moreover, each weight v′

i for i ≥ k is ob-
tained from wi/|wk| by rounding to the nearest integer mul-
tiple of α′ (and then scaling by α′ to get integer weights).
Since the thresholds of f∗ and g∗ match up as well (taking
into account the scaling by α′), we may apply Lemma 2,
and conclude that Prxk,...,xn

[g∗ 6= f∗] ≤ ε
2 . Since this

holds for every restriction x∗ ∈ {−1, 1}k−1, it follows that
Prx∈{−1,1}n [g(x) 6= f(x)] ≤ ε

2 . The claimed bounds on
the weights v′

i for i ≥ k follow from Lemma 2.

We next show that any linear threshold function which
has “almost all” its weights integers whose sum of squares
is small (such as g) can be ε/2-approximated by a linear
threshold function with small integer weights.

Lemma 8 Let g: {−1, 1}n → {−1, 1} : g(x) = sgn(s ·
x−µ) be a linear threshold function where sk, sk+1, . . . , sn

are all integers with
∑n

j=k s2
j ≤ N. Then there is a linear

threshold function g′(x) = sgn(t · x − ν) which is an ε
2 -

approximator of g, where

(i) each ti is an integer;

(ii) |ti| ≤
√

N ln(1/ε) · 2O(k log k) for i ≤ k − 1; and

(iii)
∑n

i=1 t2i ≤ N · ln(1/ε) · 2O(k log k).

Theorem 1 follows in Case IIb by combining Lemmas 7
and 8, recalling that k ≤ ` = Õ(1/ε2) and taking N in
Lemma 8 to be O(n ln(1/ε)/ε2).

Proof of Lemma 8: We first observe that by the Hoeffding
bound, we have

Pr
xk,...,xn

[|skxk + · · · + snxn| >
√

2 ln(4/ε)
√

N ] ≤ ε/2.

Intuitively, we can thus pretend that
∑n

j=k skxk always has
magnitude at most

√

2 ln(4/ε)
√

N and this causes us to in-
cur error at most ε/2 (we will make this more precise later).

We will need the following claim:

Claim 9 Fix an integer R > 0. Let Ω denote {−1, 1}k−1×
{−R,−R+1, . . . , R−1, R}. Let h be any linear threshold
function over Ω, i.e. for some w ∈ Rk and θ ∈ R we have
that h(x) = sgn(w · x − θ) for all x ∈ Ω. Then there is
a representation of h as h(x) = sgn(u · x − θ) in which
(a) each ui is an integer, and (b) |ui| ≤ R · (k + 1)! for
i = 1, . . . , k − 1 and |uk| ≤ (k + 1)!.

This claim is an extension of Muroga et al.’s classic up-
per bound on the size of integer weights that are required
to express linear threshold functions over the usual domain
{−1, 1}n; we defer its proof until later.

Now the pieces are in place to prove Lemma 8. Let R =
√

2 ln(4/ε)
√

N. Given the LTF g(x) = sgn(s·x−µ), let h :

Ω → {−1, 1} be the LTF h(x) = sgn(
∑k−1

j=1 sixi+xk−µ).
By Claim 9, we have that over the domain Ω, h is equivalent
to h(x) = sgn(

∑k
j=1 uixi − µ), where u1, . . . , uk satisfy

conditions (a) and (b). Now consider g′ : {−1, 1}n →
{−1, 1},

g′(x) = sgn

(

k−1
∑

i=1

uixi + uk

(

n
∑

j=k

sjxj

)

− µ

)

.

By our observation at the start of the proof, at
least a 1 − ε

2 fraction of all x ∈ {−1, 1}n have
|∑n

j=k sjxj | ≤ R. For each such x we have g′(x) =

h
(

x1, . . . , xk−1,
∑n

j=k sjxj

)

= g(x). Thus g′ is an ε
2 -

approximator of g with integer weights t1, . . . , tn, where
ti = ui for i ≤ k − 1 and tj = uksj for j ≥ k. Plugging
in the bounds on ui, uk, sj from the conditions of Lemma 8
and Claim 9, the proof of Lemma 8 is done.

Proof of Claim 9: We need only slightly modify known
proofs of Muroga et al.’s upper bound for LTF weights over
{−1, 1}n. In particular we closely follow the outline of the
proof which Håstad gives in Section 3 of [16].

Let H0 : Rk → R be a linear function H0(x) = a ·x+ t
which satisfies the following conditions:

1. sgn(H0(x)) = h(x) for each x ∈ Ω.

2. |H0(x)| ≥ 1 for each x ∈ Ω.



3. Among all linear functions which satisfy conditions
(1) and (2) above, H0 maximizes the number of x ∈ Ω
which have |H0(x)| = 1. If there is more than one pos-
sible H0 which achieves the maximum number, choose
one arbitrarily.

Observe that since h(x) is a linear threshold function over
Ω, there exists some linear function satisfying (1) and (2),
and thus there does exist some H0 satisfying (1)-(3) above.

As in [16], let x(1), . . . , x(r) be the set of points in Ω with
|H0(x

(i)| = 1. The argument in [16] now directly implies
that H0 is uniquely determined by the equations

H0(x
(i)) = h(x(i)) for i = 1, . . . , r.

Consequently the coefficients a1, . . . , ak, t of H0(x) can be
obtained by solving a linear system of k + 1 equations:

a1x
(i)
1 +· · ·+akx

(i)
k +t = h(x(i)) for i = 1, . . . , k+1.

For each of these equations the right-hand side is ±1 as are
the first k − 1 coefficients x

(i)
1 , . . . , x

(i)
k−1 (and the coeffi-

cient of t), whereas the k-th coefficient x
(i)
k is an integer in

{−R, . . . , R}.
Cramer’s rule now tells us that for j = 1, . . . , k, we have

aj = det(Mj)/det(M) for suitable (k + 1)× (k + 1) ma-
trices M1, . . . ,Mk,M. More precisely, the matrix M has
as its i-th row the vector x(i) with a 1 appended as the
(k + 1)-st entry, and the matrix Mj is M but with the j-
th column replaced by the column vector whose i-th en-
try is h(x(i)). Since all entries of M except for the k-th
column are ±1 and each element in the k-th column is an
integer of magnitude at most R, we have that det(M) is
an integer of magnitude at most (k + 1)!R, and the same
is true for det(M1), . . . ,det(Mk−1). The matrix Mk is a
±1 matrix so it satisfies |det(Mk)| ≤ (k + 1)!. Now since
each of a1, . . . , ak has the same denominator we may clear
it throughout and obtain a linear threshold function for h
whose k integer weights are det(M1), . . . ,det(Mk). This
concludes the proof of Claim 9.

4.1. Discussion and consequences for mono-
tone formula construction.

The main result of [38] is a proof that any monotone lin-
ear threshold function f can be ε-approximated by a mono-
tone Boolean AND/OR formula of size n10.6 ·2Õ(1/ε4). The
high-level structure of our proof of Theorem 1 is similar to
that of [38] in that the same cases I, IIa and IIb are consid-
ered,1 but there are some significant differences. First, in

1Readers familiar with [38] will note that Case IIa of this paper is Case
IIb of [38] and vice versa.

Case I of [38] the weights are simply rounded to the near-
est multiple of 1/n rather than the nearest α = 1

O(
√

n)
(ig-

noring the dependence on ε). Second, our Case IIa is han-
dled using a simpler argument in [38] which only yields
` = Õ(1/ε4) in [38] rather than the ` = Õ(1/ε2) we
achieve here. Finally, since the goal in [38] is to construct a
monotone formula rather than a low-weight linear threshold
function, a different approach is used in that paper to handle
Case IIb. (In particular, a recursive tree-based decomposi-
tion is used in [38] which yields a Boolean formula but not
a linear threshold function.)

Inspection reveals that our new analysis of Case I and
our new bound on ` can be straightforwardly worked into
the arguments of [38] to obtain the following quantitative
improvement of its main result:

Corollary 10 Let f : {−1, 1}n → {−1, 1} be any mono-
tone linear threshold function. There is a monotone
Boolean formula of size n5.3 · 2Õ(1/ε2) which is an ε-
approximator for f.

(Briefly, the improvement from n10.6 to n5.3 comes from
the fact that now in Case I, we have that the sum

∑n
i=1 |vi|

of the integer weights of g(x) is O(n) rather than the O(n2)
bound obtained in [38] by rounding each weight to the near-
est 1/n. This O(n) is then plugged into Valiant’s probabilis-
tic construction [41] of monotone formulas of size O(n5.3)
for the majority function on n variables.)

5. Application to deterministic approximate
counting

We describe an application of our approach to the prob-
lem of approximately counting solutions of the zero-one
knapsack problem. In an instance of zero-one knapsack we
are given a vector a = (a1, . . . , an) ∈ Rn and a thresh-
old θ ∈ R; the goal is to approximately compute the frac-
tion p of points x ∈ {0, 1}n which satisfy the linear thresh-
old function sgn(

∑n
i=1 aixi − θ). It is not hard to see that

we may equivalently consider the domain of the LTF to be
{−1, 1}n as we have been doing throughout this paper.

The problem of efficiently computing a multiplicative
(1 ± ε)-approximation of p has received much attention
[9, 21, 22]; the first polynomial-time algorithm was given
by Morris and Sinclair [30] using sophisticated Monte Carlo
Markov Chain techniques, and more recently a simpler ran-
domized algorithm based on dynamic programming and
“dart throwing” was given by Dyer [8].

Our techniques, combined with the dynamic program-
ming idea of Dyer [8], give a simple deterministic algo-
rithm for computing an ε-accurate additive approximation
of p. (Achieving such an additive approximation is triv-
ial, of course, if randomization is allowed: simply make



O(1/ε2) random draws from {−1, 1}n and output the frac-
tion of satisfying assignments in this sample as an approxi-
mation of p.) See [40] for work in a similar spirit on deter-
ministically counting the fraction of satisfying assignments
to a k-DNF to additive accuracy ±ε.

Theorem 6 There is a deterministic Õ(n2) · 2Õ(1/ε2)-time
algorithm with the following property: given an instance of
the zero-one knapsack problem for which the true fraction
of satisfying assignments in {−1, 1}n is p, the algorithm
outputs a value p̃ such that |p − p̃| ≤ ε.

Proof: Given w1, . . . , wn, θ, the idea is to efficiently
construct a linear threshold function g(x) which ε-
approximates f(x) = sgn(w · x − θ) as in the proof of
Theorem 1, and then use dynamic programming to exactly
count the number of satisfying assignments to g.

Suppose first that w1, . . . , wn satisfy Case I of Sec-
tion 4. Then as in that section we round each weight to
the nearest integer multiple of α and divide by α through-
out to obtain an ε-approximating linear threshold function
g(x) = sgn(v · x − θ′) with integer weights vi that sat-
isfy

∑n
i=1 |vi| ≤ M = O(n ln(1/ε)/ε2). Let F (r, s) =

|{x ∈ {−1, 1}r :
∑r

i=1 vixi = s}|. We can compute
F (r, s) for all 1 ≤ r ≤ n,−M ≤ s ≤ M in O(nM)
time with dynamic programming, using the initial condition
F (0, 0) = 1 and the relation F (r+1, s) = F (r, s−vr+1)+
F (r, s + vr+1). The number of satisfying assignments to g
is
∑

s≥θ′ F (n, s).

Now suppose that w1, . . . , wn satisfy Case IIa. We now
take g(x) = sgn(w1x1 + · · ·+w`x`−θ) to be the truncated
LTF analyzed in Case IIb. While the weights w1, . . . , w`

and partial sums
∑r

i=1 wixi may not be integers, we can
still perform dynamic progamming using the observation
that for any r ≤ ` there are at most 2r real values ρ such
that F (r, ρ) = |{x ∈ {−1, 1}r :

∑r
j=1 wixi = ρ}| is

nonzero. Thus we can compute F (r, ρ) for all ρ which have
F (r, ρ) 6= 0 as before in overall time 2O(`) = 2Õ(1/ε2).

Finally suppose that w1, . . . , wn satisfy Case IIb. In this
case we use the linear threshold function g(x) = sgn(v′·x−
θ′/α′) described in Lemma 7. Since g has at most k−1 ≤ `
weights which are not integers and the integer weights have
total magnitude bounded by M = O(n ln(1/ε)/ε2), we
now have that for any 1 ≤ r ≤ n there are at most
O(2`M) real values ρ such that F (r, ρ) = |{x ∈ {−1, 1}r :
∑r

j=1 wixi = ρ}| is nonzero. So we can compute F (r, ρ)
for all ρ which have F (r, ρ) 6= 0 as before in overall time
Õ(n2`M) = Õ(n2) · 2Õ(1/ε2). (The extra log factor comes
from sorting the F (r, ρ) values in order of increasing ρ once
they have all been computed for each r, and performing bi-
nary search over this sorted list in the next stage to find each
F (r, ρ ± v′

r+1) value as required.)

6. Approximating an LTF from noisy versions
of its low-degree Fourier coefficients

Recall that for a Boolean function f : {−1, 1}n →
{−1, 1}, the Fourier coefficients {f̂(S)}S⊆[n] of f are the
coefficients of the (unique) multilinear polynomial

f(x) =
∑

S⊆[n]

f̂(S)xS where xS denotes
∏

i∈S

xi

which agrees with f everywhere on {−1, 1}n. The degree
of a Fourier coefficient f̂(S) is the degree |S| of of the cor-
responding monomial.

In 1961 Chow [6] proved that every linear threshold
function is uniquely specified (among all Boolean func-
tions) by its n + 1 Fourier coefficients of degree 0 and 1;
these coefficients are sometimes referred to as the Chow pa-
rameters of f. Following this result (which was later gener-
alized by Bruck [5]), there has been interest in how to algo-
rithmically obtain a weights-based representation f(x) =
sgn(w · x − θ) of f from its Chow parameters, see e.g.
[23, 42]. This seems to be a difficult problem, and we do
not address it here.

A related question which has also been studied is the
following: suppose we are given noisy rather than exact
values of the Chow parameters. How does this affect the
precision with which f is (information-theoretically) speci-
fied by these parameters? One motivation for studying this
question comes from the “1-restricted focus of attention”
model in computational learning theory; roughly speaking
this is a learning model in which the learner is only allowed
to see a single bit xi of each example x = (x1, . . . , xn)
used for learning (see [2, 1] for details). As observed by
[3, 12], the class of linear threshold functions over {−1, 1}n

is uniform-distribution information-theoretically learnable
from poly(n) many examples in this framework if and only
if any linear threshold function is information-theoretically
specified to high accuracy from Chow parameter estimates
which are accurate to an additive ±1/poly(n).

With this motivation Birkendorf et al. gave the following
result:

Theorem 7 ([3]) Let f(x) = sgn(w1x1 + · · ·+wnxn − θ)
be a linear threshold function with integer weights wi such
that W =

∑n
i=1 |wi|. Let g: {−1, 1}n → {−1, 1} be any

Boolean function which satisfies |ĝ(S) − f̂(S)| ≤ ε
W for

each S = ∅, {1}, {2}, . . . , {n}. Then Pr[f(x) 6= g(x)] ≤
ε.

Theorem 7 gives a strong bound on the precision required in
the Chow parameters if f has low weight, but a weak bound
for arbitrary LTFs since W may need to be 2Ω(n log n). Sub-
sequently Goldberg [12] gave an incomparable result which
can be rephrased as follows:



Theorem 8 ([12]) Let f be any linear threshold function,
and let g: {−1, 1}n → {−1, 1} be any Boolean function
which satisfies |ĝ(S)− f̂(S)| ≤ (ε/n)O(log(n/ε) log(1/ε)) for
each S = ∅, {1}, {2}, . . . , {n}. Then Pr[f(x) 6= g(x)] ≤
ε.

In contrast, our bound in Theorem 2 has a worse depen-
dence on ε but has a 1/n rather than 1/quasipoly(n) depen-
dence on n. Theorem 2 yields an affirmative answer (at least
for constant ε) to the open question of whether arbitrary lin-
ear threshold functions can be learned in the uniform distri-
bution 1-RFA model with polynomial sample complexity:

Corollary 11 Fix any constant ε > 0. There is an algo-
rithm for learning arbitrary linear threshold functions to
accuracy ε under the uniform distribution in the 1-restricted
focus of attention model, using poly(n) many examples.

We prove Theorem 2 in Appendix A.

6.1. Lower bounds on required accuracy for
Chow parameter estimation.

In this section we sketch a simple (though somewhat in-
direct) argument which shows that no variant of Theorem 2
in which the bound on |ĝ(S)− f̂(S)| is 1/o(

√

n/ log n) (as
a function of n) can be true.

Suppose to the contrary that Theorem 2 held with a
bound of the form 1/(o(

√

n/ log n) · κ(ε)) for some func-
tion κ that depends only on ε. If we fix ε to be a constant
such as 1/10, the bound is simply 1/o(

√

n/ log n). Recall
that the Fourier coefficient f̂(S) equals E[f(x)χS ] where
χS is the Fourier basis function corresponding to S. A
standard application of the Hoeffding bound shows that a
sample of o(n) many uniform random labelled examples
(x, f(x)) suffices to yield n + 1 estimates α(S) which all
satisfy |α(S) − f̂(S)| < 1/o(

√

n/ log n) with high prob-
ability. (The number of examples required is o(n) rather
than o(n/ log n) because we need each of the n + 1 esti-
mates to be correct with high probability.) Now we can
do a brute-force search over all Boolean functions to find
some g: {−1, 1}n → {−1, 1} whose Chow parameters are
all within the desired 1/o(

√

n/ log n) additive accuracy of
our estimates α(S). The search will eventually find such
a function since f is such a function, and by the assumed
version of Theorem 2, the g thus obtained will be a 1

10 -
approximator of f.

Thus, we have seen that the hypothesized Theorem 2
variant implies that there is an algorithm which can learn
any linear threshold function f to accuracy ε = 1/10, us-
ing uniform random examples only, from o(n) examples.
However, this contradicts known sample complexity lower
bounds in computational learning theory; for instance the
results of [26] can be easily used to show that any algorithm

which learns linear threshold functions to constant accuracy
using uniform random examples over {−1, 1}n must use
Ω(n) examples.

7. Conclusion

We hope that Theorem 1 may find a range of applica-
tions in future work. In computational learning theory, low-
weight linear threshold functions are known to be “nice”
in several senses; our results suggest that similar properties
might sometimes hold for arbitrary linear threshold func-
tions as well. As one example, simple and efficient algo-
rithms are known which can learn low-weight linear thresh-
old functions under noise rates at which no efficient al-
gorithms are known for learning arbitrary linear threshold
functions. Can our results (which can be viewed as stat-
ing that every linear threshold function is “close to” a low-
weight linear threshold function) be used to learn arbitrary
linear threshold functions in the presence of higher noise
rates?

More concretely, an obvious direction for future work is
to improve the asymptotic dependence on ε in our results.
As [12] and [38] have observed, Håstad’s construction of a
linear threshold function which requires integer weights of
size 2Ω(n log n) implies that in general an ε-approximating
LTF for an arbitrary LTF f may require integer weights of
size (1/ε)Ω(log log(1/ε)). While this means that it is impos-
sible to obtain an analogue of Theorem 1 with a poly(1/ε)
dependence on ε, it may well be possible to improve the
current 2Õ(1/ε2) dependence.

Another goal is to obtain stronger bounds on the accu-
racy which is required in the Chow parameters in order
to specify an arbitrary linear threshold function f to accu-
racy ε. Can the gap between our 1/O(n) bound and the
1/Ω(

√

n/ log n) bound given in Section 6.1 be closed?
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A. Proof of Theorem 2

Let ε > 0 be given and let f : {−1, 1}n → {−1, 1} be
any linear threshold function. We may suppose that f(x) =



sgn (F (x)) where F (x) =
∑n

i=1 wixi−θ with 1 = |w1| ≥
|w2| ≥ · · · ≥ |wn| ≥ 0; note that wlog we have |θ| ≤
∑n

i=1 |wi|.
Fix any g: {−1, 1}n → {−1, 1} where for S =

∅, {1}, . . . , {n} we have |ĝ(S) − f̂(S)| ≤ 1/M with M =

n · 2Õ(1/ε2). Let D denote {x ∈ {−1, 1}n : g(x) 6= f(x)}
and τ denote |D|/2n. We will show that τ ≤ ε and thus
establish Theorem 2.

We have

E[|F (x)|] = E[fF ] =
∑

S⊆[n]

f̂(S)F̂ (S)

=
∑

|S|≤1

f̂(S)F̂ (S)

= f̂(∅)(−θ) +
n
∑

i=1

f̂({i})wi

≤ ĝ(∅)(−θ) + ĝ({1})w1 + · · · + ĝ({n})wn

+(|θ| +
n
∑

i=1

|wi|)/M (5)

The second equality above is Parseval’s identity, the third is
because F ’s only nonzero Fourier coefficients are of degree
0 and 1, and the fourth is by definition of F. The inequality
(5) is from our assumption on the Fourier coefficients of
g. Using Parseval again and writing B to denote (|θ| +
∑n

i=1 |wi|)/M , we have

(5) =
∑

|S|≤1

ĝ(S)F̂ (S) + B =
∑

S⊆[n]

ĝ(S)F̂ (S) + B

= E[g(x)F (x)] + B.

Rearranging, this gives

|θ| +∑n
i=1 |wi|

M
≥ E[|F (x)| − g(x)F (x)]

=
2

2n

∑

x∈D

|F (x)|. (6)

Thus far we have followed the proof from [3] (which is
itself closely based on [5]), and indeed it is not difficult to
complete the proof of Theorem 7 from here. Instead we will
use our ideas from Section 4. The approach is to show that
only a small number of points in {−1, 1}n can have |F (x)|
very small, and thus if |D| is large then the right hand side
of (6) must be fairly large, which contradicts (6).

Case I: ‖w‖ ≥ 12
ε . Let λ ≥ 1 be such that ε

2 = 6λ
‖w‖ . By

Theorem 4 we have Pr[|F (x)| ≤ λ] ≤ ε
2 . Now suppose that

τ > ε; this would mean that for at least ε
22n points x ∈ D

we have |F (x)| > λ = ε‖w‖/12. But the bound (6) now
gives

(|θ| +
n
∑

i=1

|wi|)/M ≥ 2

2n
· ε

2
2n · ε‖w‖

12
=

ε2‖w‖
12

This implies that we must have

M ≤ 12(|θ| +∑ |wi|)
ε2‖w‖ ≤ (|θ| +∑ |wi|)

ε
≤ 2n

ε
.

which contradicts the definition of M ; so case I is proved.

Case II: ‖w‖ < 12
ε . In this case we will use the following

result due to Håstad [17], which gives a bound on the rate at
which weights need to decrease (from largest to smallest in
magnitude) for any linear threshold function over {−1, 1}n.

Theorem 9 (Håstad [17]) Let f : {−1, 1}n → {−1, 1} be
any linear threshold function which depends on all n vari-
ables. There is a representation sgn(

∑

i wixi − θ) for f
which is such that (assuming the weights w1, . . . , wn are or-
dered by decreasing magnitude |w1| ≥ |w2| ≥ · · · ≥ |wn|)
we have |wi| ≥ |w1|

i!(n+1) for all i = 2, . . . , n.

We prove Theorem 9 in Section A.1. Note that this implies
in general that for any constant c = O(1), the c-th largest
weight of any LTF need be at most 1/O(n) times smaller
than the largest weight. More specifically, in our context
Theorem 9 lets us assume without loss of generality that the
original weights w1, . . . , wn for f satisfy |wi| ≥ 1

i!(n+1)

for each i. This will prove useful in both cases IIa and IIb
below.

In the following ` = Õ(1/ε2) as in Section 4.
Case IIa: w2

k/(
∑n

j=k w2
j ) > ε2/144 for all k = 1, . . . , `.

As in Case IIa of Section 4 we let W = w2
`+1 + · · · + w2

n,
but now we set η′ = 2

√

W ln(8/ε) (compare this with the
η =

√

W ln(4/ε) of the earlier proof).
We have that |F (x)| ≤ η′/2 only if either |w`+1x`+1 +

· · · + wnxn| ≥ η′/2 or |w1x1 + · · · + w`x` − θ| ≤ η′. As
in the derivation of equation (2) the Hoeffding bound gives
us Pr[|w`+1x`+1 + · · ·+ wnxn| ≥ η′/2] ≤ ε/4. It remains
to bound Pr[|w1x1 + · · · + w`x` − θ| ≤ η′] by ε/4; again
reasoning as in the earlier section it suffices to show that

Pr[|w1x1+· · ·+w`x`−θ| ≤ (24/ε)
√

2 ln(8/ε)w`] ≤ ε/4.
(7)

Comparing this with Equation (3), we see that the two ex-
pressions differ only in constant factors. One can verify
that the arguments of Case IIa in Section 4 (with suitably
adjusted constants) also yield (7) as desired.

We thus have that Pr[|F (x)| ≤ η′/2] ≤ ε/2. From
the definitions of η′ and W we have that η′/2 ≥

√
W ≥

|w`+1|, so consequently

Pr[|F (x)| ≤ |w`+1|] ≤ ε/2. (8)

Now let us suppose that τ > ε. Reasoning as in Case I,
we thus have that at least ε

22n many points x ∈ D have
|F (x)| > |w`+1|. The bound (6) now gives

(|θ| +
n
∑

i=1

|wi|)/M ≥ 2

2n
· ε

2
2n · |w`+1|



which is equivalent to

M ≤ |θ| +∑ |wi|
ε|w`+1|

.

Since |θ| ≤∑ |wi|, we have that

M ≤ 2

ε
·
∑n

i=1 |wi|
|w`+1|

≤ 2

ε

(

`

|w`+1|
+

∑n
i=`+1 |wi|
|w`+1|

)

≤ 2

ε

(

`

|w`+1|
+ n

)

≤ 2

ε
(` · (` + 1)!(n + 1) + n)

where the second inequality holds since each of
|w1|, . . . , |w`| is at most 1, the third inequality holds
since each of |w`+1|, . . . , |wn| is at most |w`+1|, and the
fourth inequality follows from Theorem 9. But recalling
that ` = Õ(1/ε2), this upper bound on M contradicts
the fact that M = n · 2Õ(1/ε2) (for a suitable choice of
the hidden polylogarithmic factor in the exponent of the
definition of M ).

Case IIb: w2
k/(
∑n

j=k w2
j ) ≤ ε2/144 for some k ∈

{1, . . . , `}. For each i = 1, . . . , n let vi denote wi/|wk|,
so we have 1 = |vk| ≥ |vk+1| ≥ · · · ≥ vn. Using Theo-
rem 4 with λ = 1, we have that for all τ ∈ R,

Pr
xk,...,xn

[|wkxk + · · · + wnxn − τ |wk|| ≤ |wk|]

= Pr
xk,...,xn

[|vkxk + · · · + vnxn − τ | ≤ 1]

≤ 6/
√

v2
k + · · · + v2

n

= 6|wk|/
√

w2
k + · · · + w2

n ≤ ε/2

where the last inequality holds since we are in Case IIb. It
follows that for any θ ∈ R we have

Pr
x1,...,xn

[|w1x1 + · · · + wnxn − θ| ≤ |wk|]

= Pr
x1,...,xn

[|F (x)| ≤ |wk|] ≤ ε/2.

Now an entirely similar argument to that given from equa-
tion (8) through the end of Case IIa shows that as in that
case, we must have τ ≤ ε. This concludes the analysis of
all cases, so Theorem 2 is proved.

A.1. Proof of Theorem 9.

We first consider the case in which f(x) = f(−x) for
all x ∈ {−1, 1}n, i.e. f can be represented with a threshold
of zero. Once we have the result for such f we will use it to
prove the result for general f.

Let sgn(w1x1 + · · · + wnxn) be a representation for f
which satisfies the conditions

1. sgn(w · x) = f(x) for each x ∈ {−1, 1}n.

2. |w · x| ≥ 1 for each x ∈ {−1, 1}n.

3. Among all vectors in Rn which satisfy conditions
(1) and (2) above, w maximizes the number of x ∈
{−1, 1}n which have |w · x| = 1. If there is more than
one such w, choose one arbitrarily.

The argument in Section 3 of [16] now implies that there
is a set x(1), . . . , x(n) of n elements of {−1, 1}n such that
the coefficients w1, . . . , wn are determined as the unique
solution to the system of equations

v1x
(i)
1 + · · · + vnx(i)

n = f(x(i)) for i = 1, . . . , n.

This is a system of n equations in the variables v1, . . . , vn

where each coefficient is ±1 and the right-hand side of each
equation, f(x(i)), is also ±1. Recall that f depends on all
n variables and consequently we have that each wi – and in
particular wn – is nonzero. Using this fact it is not difficult
to see that the above system of equations is equivalent to the
following system of n equations in v1, . . . , vn:

f(x(1))(v1x
(1)
1 +· · ·+vnx(1)

n ) = f(x(i))(v1x
(i)
1 +· · ·+vnx(i)

n )

for i = 2, . . . , n,

and
vn = wn.

Each of these first n − 1 equations has no constant term
and (dividing by two and rearranging) can be rewritten as
v · y(i) = 0, where y(i) is a vector whose entries are all
−1, 0 or 1. So we have that w1, . . . , wn is the solution to
the system of equations

Y v = b

where Y is a nonsingular n × n matrix with {−1, 0, 1} en-
tries where the last row is (0 0 · · · 0 1) and b1 = · · · =
bn−1 = 0, bn = wn.

We assume that |w1| ≥ |w2| ≥ · · · ≥ |wn|, and now
show that |wk| must be somewhat large compared with |w1|.

After possibly reordering the first n − 1 equations, we
can find a linear combination of the first k − 1 equations
such that the only nonzero coefficient among v1, . . . , vk−1

belongs to v1, i.e. an equation of the form

v1 =

n
∑

j=k

ajvj . (9)

Using Cramer’s Rule and the fact that any (k−1)× (k−1)
matrix with entries in {−1, 0, 1} has determinant at most
(k − 1)!, it is not hard to show that an equality in the form
of (9) must exist where each |aj | ≤ (k − 1)!. But now if



|wk| < |w1|
(k−1)!(n−k+1) , then it is impossible for w to satisfy

(9) since the right-hand side must be too small. This proves
that |wk| ≥ |w1|

(k−1)!(n−k+1) ≥ |w1|
(k−1)!n , so we are done in the

zero-threshold case.
We can treat the case where f has a nonzero threshold

by considering the function g : {−1, 1}n+1 → {−1, 1}
which has zero threshold but an (n + 1)-st weight which
is the threshold of f. The argument for the zero-threshold
case now shows that g has a representation sgn(w1x1 +
· · · + wnxn + wn+1xn+1) with |w1| ≥ · · · ≥ |wn+1| and
|wk| ≥ |w1|

(k−1)!(n+1) ; note that one of these wi weights ac-
tually corresponds to the threshold of the original LTF f . If
w1 is the threshold then w2 is actually the largest weight of
f in magnitude and we have |wk| ≥ |w2|

(k−1)!(n+1) . If wr is
the threshold for some r > 1 then w1 is indeed the largest
of f ’s weights. In this case, for k < r we have that f ’s k-th
biggest weight is wk which satisfies |wk| ≥ |w1|

(k−1)!(n+1) ,
whereas for k > r we have that f ’s k-th biggest weight is
wk+1 which satisfies |wk+1| ≥ |w1|

k!(n+1) . So in every case
the magnitude of the k-th biggest weight is at least 1

k!(n+1)

times the magnitude of the biggest weight, and Theorem 9
is proved.


