Segank: A Distributed Mobile Storage System

Sumeet Sobti Nitin Garg Fengzhou Zhentg Junwen Lai Yilei Shao
Chi zhang Elisha Ziskind Arvind Krishnamurthy Randolph Y. Wany

Abstract provide ubiquitous connectivity in the wide area are now

. o) very affordable. Third, stationary storage elements are
This paper presents a distributed mobile storage SYShecoming increasingly wired, and they are “always on”

tem designed for storage elements connected by & néfre network. These may not only include computers in
work of non-uniform quality. Flexible data placement s ffices and server rooms, but also broadband-connected
crucial, and it leads to challenges for locating data an¢;ompuyters at home and hotels, and an increasing array
keeping it consistent. Our system employs a locationyf entertainment appliances, such as Tivo-like personal
gnd topology-sensitive multicast-like §o|ution for.locz_it- video recorders. The connectivity quality among these
ing data, lazy peer-to-peer propagation of invalidationgeyices also exhibits a high degree of variance. A typical

information for ensuring consistency, and a distributedpg) -connected home computer, for example, may only
snapshot mechanism for supporting sharing. The compgyve an up-link capacity around 100 Kbps.
bination of these mechanisms allows a user to make the Despite the high variance in connectivity quality, to-

most of what a non-uniform network has to offer in terms) jisconnection is (or can be) increasingly rare, as those
of gaining fast access to fresh data, without mcurnngtthho own BlackBerry email devices, and those who ex-

foreground penalty of keeping distributed elements on &,qriment with Internet access on transcontinental flights

weak network consistent. are beginning to realize. While our system has provi-
. sions to cope with it, total disconnectionnst our top
1 Introduction focus. Instead, our focus is to cope with a non-uniform

. . . _but always-on interconnect linking distributed and mo-
In this paper, we study the construction of a mobile .
bile storage elements.

storage system designed to work on distributed storage
elements conn(_acted by a network of non_—uniform quality.fLZ Requirements
The target environment of our system is one where al
storage elements are connected with each other, but only We begin by considering some example usage scenar-
some storage elements, typically those that are close tims. A user owns several computers. Perhaps some of
each other, enjoy high-quality links. them are in his office, some at his DSL-linked home, and
. some in an “off-site” office in a different city, which he

11 TheTarget Environment occasionally visits. Some of them are desktop machines,

This non-uniformly connected world is the reality to- and others are laptops and PDAs that may accompany the
day and it is continuing to evolve. There are three aspectgser when he travels.
of this development. First, low-cost short-range wireless When the user arrives at his office, some of his latest
technologies, such as 802.11 and Bluetooth, are prolifwork may have been done on a laptop that he carried
erating. These technologies allow mobile elements in dalome the night before and is still with him. At this time,
small neighborhood to be spontaneously connected witithe user should not be forced to wait for all the new data
each other at a level of quality that is quite good. Sec+o propagate from the laptop to the office desktop before
ond, when a fast WiFi “gateway” into the Internet is not he is allowed to resume work on the desktop. He should
available, low quality wireless connectivity may still be be able to see and operate on the complete and latest view
available. Technologies, such as cellular modems, thatf his data from his desktop immediately. Also, the user

. . . should not have to remember where the latest copy of a

*Department of Computer Science, Princeton Univer- . . .
sity, {sobti, nitin, zheng, lai, yshao, chizhang, eziskind, ry- partlcular piece of data is.
wang} @cs.princeton.edu. The next day, the user may run into a colleague on

Department of ~Computer ~Science, Yale University, a train and the two spontaneously decide to share some
a”"”}ggﬁséﬁmgﬂ's supported by NSF grants CCR_0985304, ANI- files. In this case, the system should try its best to satisfy
0207399, and CCR-0209122. Wang is supported by NSF grarfs cc the requests using the ad hoc 802.11 link between the two
9984790 and CCR-0313089. laptops, and resort to a cellular modem to reach data that

is only available at the office or home. On a third day, achieve 384 Kbps, but industry observers agree that wide
when the user is again on the train, and a colleague in thavailability of such speeds is many years away. Today,
office tries to read some of his files, the system wouldmost US 3G users can realistically expect data speeds of
instead attempt to satisfy the colleague’s requests usingomewhere between 40 to 80 Kbps, a far cry from the hy-
a copy stored on the office LAN, on a DSL-linked home pothetical speeds of 144 Kbps and 192 Kbps [24]. Two
machine, or on the cellular modem-connected laptop omsers who meet on a train, for example, are unlikely to
the train, in that order of preference. be able to communicate and collaborate productively by
We summarize the requirements of the system. In ouseparately connecting to a remote stationary file-server
target system, data may be stored on, moved to, and rephda weak WAN connections.
cated at any device for performance optimization and re- The other extreme approach is to avoid using net-
liability purposes. No device necessarily houses all thawvorks altogether. Instead, a user would rely exclusively
data. A user sees a single image of name space spaan a mobile storage device to carry all of his data. This
ning all the devices. A user experiences coherent seapproach, however, is also unlikely to be adequate for
mantics even when he sends read and write requests insgveral reasons. First, despite the capacity improvement
the system from different entrance points of the network of storage devices, the nature of new applications’ ap-
Data and metadata propagations can happen in the bacgetite for storage is such that the capacity of a single
ground; but no foreground propagation is mandatory fomportable device is unlikely to be sufficient for all of a
the user to be able to start using a consistent system imiser’s storage needs. The capacity of the mobile devices
mediately. An additional requirement that we desire tois likely to continue to lag behind that of their station-
fulfill is to provide a storage or file system-level solution ary counterparts, and we expect much data, such as TV
that can transparently cater to most existing applicationgorograms recorded on a “Tivo,” to continue to reside on
these stationary devices. Second, mobile storage devices
13 The Segank System tend to have poorer performance compared to desktop
We call our system Segank (pronounseg-gank It versions due to considerations such as energy consump-
must solve three key problems: (1) how does the systertion, noise, and form factor. Last, but not least, mobile
locate data that can be stored on any subset of device#orage devices, by themselves, provide little support for
and how does it choose a best replica? (2) without costlyransparent data sharing among collaborating users.
mandatory propagation, how does the system ensure con- o
sistency across multiple devices as old data on these dé-2 EXisting Systems

vices becomes obsolete? (3) how does the system ensure 1o understand the different challenges posed by non-
a consistent image across all devices for the purpose Gfniform connectivity and disconnection, let us start by
sharing and backup? considering the Bayou system [18, 22]. Each Bayou de-
Segank solves the first problem using a location- andjice houses a complete replica of a database, and alter-
topology-sensitive multicast-like solution (Section 3). nates between two distinct states of operation: “discon-
The advantage of this solution is that it minimizes globalpected” and “merging.” In the disconnected state, the
state, allows autonomous data movement decisions, angser of the device only “sees” local state stored on this
can effectively exploit locality. The system solves the device. In the merging state, the device communicates
second problem using lazy peer-to-peer propagation ofyith a peer device, and new updates made on each are
invalidation information (Section 4). The combination pjayed onto the other.
of the laziness element and the decoupling of the propa- \yhile the Bayou model may make sense in a dis-
gation of invalidation information from that of data mini- ¢onnected environment, it is less appropriate for a non-
mizes the cost of bringing weakly connected devices Upyniform network of storage elements. First, the require-
to-date. The system solves the third problem using a disment of housing complete replicas on each device may
tributed snapshot mechanism (Section 5). This solutiothe ynnecessary, expensive, and in some cases, even in-
allows one to flexibly trade off freshness of data againseasible. Second, being required to work on a device

performance when facing weak connectivity. in a “disconnected” mode is overly restrictive when (po-
tentially fresher) data stored on other devices could have
2 Background been made available over a network. In Bayou, the only

. way to access data on other devices is to perform a merge
2.1 Naive Approaches operation with them, play their updates onto the local de-

Solutions that indiscriminately tax a weak wide areavice, and then read data from the local device. Merging
connection are unlikely to be adequate, at least in thean be time-consuming as it propagates both meta-data
foreseeable future. The much anticipated 3G wire-and data, and forcing a user to wait until merging fin-
less networks, for example, are designed to ultimatelyishes can be inconvenient.

While the initial Coda system [11] shares Bayou's vices. This is one of the key features that differenti-
disconnected model of operation, and is equally probates Segank from systems such as Coda and Bayou. A
lematic for a non-uniform network, later enhancementsBayou client relies exclusively on a single device to sat-
extend the system to work with a weak network [13]. Theisfy its read requests. Similarly, a Coda client relies on
more serious problem with Coda is its lack of supportits hoard (and the server in later enhancements.) In or-
of peer-to-peer interaction. Coda differentiates “clients”der to “see” new data written by other clients, mandatory
from “servers” and peer clients do not communicate withpropagation of all updates must occur to bring these de-
each other directly. Each data item has a fixed “home'vices up-to-date. Such propagation can be expensive on
on the server and clients are always required to “reintea weakly connected network. A Segank data consumer,
grate” their updates back to the server. Requiring nearbyn the other hand, is not dependent on any single device.
devices to communicate only with a far-away server be-Segank provides a fresh and consistent view of the en-
comes too strict a constraint when peer-to-peer interactire system even when none of the individual devices is
tions could have worked well. One additional disadvan-entirely “fresh” by itself.
tage that Coda shares with Bayou is its potential high cost
of “merging:” any updates must be played to a serverbe3 Reading Data Using Segankast
fore they become visible to other Coda clients.

A class of existing file and storage systems that do Upon a read request, Segank needs to find out which
address the missing elements of Coda and Bayou argevices have the desired data, and it needs to choose a
the peer-to-peer systems: they do not require any madevice to retrieve the data from. In this section, we dis-
chine to house a complete replica; they take advantage @uss the data location mechanism. We consider a single
an always-on network; they allow peer-to-peer interac+eader in this section and defer the discussion of multi-
tions; and they do not mandate expensive propagationsiser sharing to Section 5.

They, however, exhibit their own problems when ex- A Segank user carries a small device that we call
posed to a mobile environment, a context that they hava MOAD (MObile Air-linked Disk.) Transparent to
not been designed for. A key problem that a system likehe user, the device plays four roles: (1) storing small
Gnutella [6] fails to address is consistency. For exam-amounts of invalidation information that can be quickly
ple, a mobile user may issue read and write requests intaccessed to guarantee a consistent view of the system; (2)
the network of devices from different entrance points,optionally caching and propagating data to improve per-
and the user is not guaranteed a consistent view, as datarmance; (3) providing short-range WiFi connectivity to
copies of different levels of freshness may coexist in dif-peer devices (via 802.11 or Bluetooth) whenever possi-
ferent parts of the network. More recent wide-area peerble; and (4) providing wide-area connectivity to far-away
to-peer file systems employ distributed hash table-basediways-on devices (via a cellular modem) as a last resort
(DHT-based) placement algorithms [2, 14, 20]. Onewhen faster connectivity is not available. We conjecture
problem with this approach is that the hash algorithmshat an industrial strength version of the MOAD can be
dictate the placement of data. On the other hand, in oupackaged in a form factor that is not much larger than a
target environment, we need to be able to control datavrist watch. There is, however, nothing special about the
placement and replication in a more flexible manner. (Wehardware requirements of a MOAD, and a PDA or a lap-
discuss other issues of DHT-based systems in Section Stpp can serve as a MOAD if it has the required commu-

Cluster file systems allow data to be stored flexibly nication capabilities. In our prototype, a Compaq iPAQ
in a fast LAN [1, 12, 23, 16]. These networks, how- equipped with an IBM 1 GB Microdrive is used as the
ever, have a simple, homogeneous topology that behavédOAD.
more like a storage backplane, allowing these systems
to freely manipulate cohesive distributed data structures3-1 Drawbacks of L ocation Maps
In our target environment, we must exercise care notto e plausible solution to the data location problem
overuse weak networks. Data structures that are Cargs to maintain a mapping from an object ID to a list of
lessly spread across many nodes separated by slow linkgeyices where a replica of the object can be found. The
for example, are unacceptable. Also, the work of keepyy jtself is too large to be stored on any one device or
ing distributed storage elements consistent needs to bg pe replicated on all devices, so the map needs to be
pushed to the background as much as possible. distributed. To cope with a non-uniform network, the
system needs to be able to store and replicate pieces of
the map flexibly as it does data; so a higher-level map

Segank allows data stored on distributed devices oof map is needed. This leads to a hierarchical map solu-
owned by different users to be used without mandatingion where the highest level map should be compact and
expensive foreground propagation among different deperhaps easier to manage.

2.3 Minimizing Foreground Propagations

movements, such as caching data at, pushing data t

and evicting cached copies from devices, require readiny

and/or updating the multi-leveled location map. These

operations may involve significant complexity as the sys- boston
tem must exercise care to keep various pieces of dis
tributed state consistent with each other. These opere
tions may also introduce extra costs associated with extr.
network messages and 1/0Os. Furthermore, the locatiol
map approach, in itself, does not answer the question ¢
which copy to actually read when there is more than one

to choose from. Figure 1: An example Segankast tree. A rectangle represefthis-

ter” and the circles are machines.
3.2 Segankast
: . not all types of contention necessarily can lead to visible
Segank does_ not use_loc_an_on maps. _Instead, It emSegankast cost. For example, suppose three hést3,
ploys a mechanlsm that is S'T“"ar to .mUIt'CaSt: the SYS“andC share a single fast LAN; il andB send reply data

. ;) 86 C'in parallel, whileC' forwards only one reply over a
has the desired data. We call this mechanism Seganka: odem link to a request, even thought and B gen-

Segankast IS d|ffere_nt f“’”_‘ the data Iocan_n mechamsnérate contention on the LAN, the contention is not visible
used in Gnutella [6] in two important ways: it guarantees

. . ; tq R. These two types of potential costs can be traded off
a consistent view of the system as a mobile user reads anﬁg

" + diff t locati f1h work (d bed i ainst each other: for a small amount of data reply, for
writes at different locations of the network (describe Inexample, minimizing the latency of the request is more

Sectlon_4.2); and it carefully contr.olg the order, type, anc%mportant than minimizing the contention of the replies,
par_aIIell_sm of the requests to optimize performance (de'so one may choose to increase the degree of parallelism
scrg)ed mkSect:Eon 3.3). | advant h . in Segankast. These goals make the optimization prob-
_>egankasthas several advantages overthe Use otioqay, ¢5qq by Segankast quite different from that faced by
tion maps for our purposes. The system may freely place, jitional user-level multicast systems [9, 4].

move, replicate, or purge data on any device without The problem of optimizing Segankast performance
having to update location information stored elsewherehalS two sub-problems. One is determining the struc-
Each deV|ce_ 's therefore autonomous. There_ IS 10 1iSk e of the Segankast tree; and the other is deciding how
of data and its map becoming |ncon5|s_tent_ with reSp_eC&ueries are forwarded on the chosen tree. We note that
]EO ea(;h other, almd g]ere tz_ire tno compllcatlonsf result'qnghe following Segankast strategies are only heuristics;
rom, forexamplé, attempling 1o access map INTormationy, o e 5|y tions to the optimal Segankast problem may be

that IS stored farther away than data, or map Inform"’mc_)r}atpplicable to other contexts and they remain a research
that is not reachable although the corresponding data iStocus

Like user-level multicast systems, Segankast requests
are issued over an overlay tree rooted at the current _
reader device. The tree includes only the devices owneg-3-1 Construction of Segankast Trees
by a single user. We do not envision this number of de-Trees are constructed based on probing measurements.
vices in a single tree to be massive. The tree is locationThe measurements and the resulting trees can be
sensitive, so when a device is at a new location, a NeWcached” and reused across sessions to minimize prob_
tree rooted at the device is constructed. Figure 1 showgg. Lighter-weight and simpler probing can then be used
an example Segankast tree. to choose from appropriate existing trees.

o Tree construction proceeds in two steps. Step one
3.3 Optimizing Segankast Performance constructsclusters whose members are close to each

There are two types of potential performance costother and at approximately equal-distance from the sin-
The first is the latency incurred querying devices thatgle reader device at the root. Each cluster is a subtree.
do not contain the desired data. Segankast must car&tep two connects the clusters to form a larger tree. The
fully control the ordering of its queries. For example, if cluster-based two-step approach allows us to simplify the
the desired data is found across a wide-area or a modeiree construction via divide-and-conquer.
link, the extra time spent querying devices on a nearby We use the example in Figure 1 to illustrate the
fast LAN is relatively insignificant. The second type of heuristics used in tree construction. The example in-
potential cost is the network contention resulting fromcludes a DSL-connected home machine in New York,
multiple data replies. It should be noted, however, thatwo LAN-connected clusters in two offices in New York

This approach, however, has its drawbacks. Any date ?home—dsl
ny

\ california

la

A

boston1

sb sd pas!

4

and Boston, and a WAN-connected cluster of machine8.3.2 Forwarding Segankast Requests

in four cities in California (in colleagues’ offices, for ex- . .
ample). Upon receiving a request, each node in a Segankast tree

In step one, we incrementally form clusters by con-has two decisions to make: whether to forward the re-

sidering the non-root nodes in increasing order of theirduest in parallel to its children or sequentially, and the.
latencies from the root node. We begin with a singlelYP€ Of messages to send. In terms of the second deci-

cluster containing only the nodey1) with the lowest ~ SION. there are two choices: a diréetch or atest-and-
latency from the rooti{onme- dsl). Incrementally, we

fetchthat first queries which children (if any) have the
attempt to attach the next node to one of the previouslydesired data and then issues a separate message to re-
added nodes. The position of attachment is determineff'eve dat.a from a chosen chlld._These two deC|S|on_s can
by a “cost” function that we describe below. In the exam-P€ combined to form four possible ways of forwarding:
ple, the costs of attachinyy2 andny3- W Fi to ny1 (_1) parallel fetch, (2) para_IIeI test-and-fetch, (3) sequen-
are low, so all these nodes are declared to be in the sanji?! fétch, and (4) sequential test-and-fetch. Of them, the
cluster Qy). If regardless of where it is attached, the fIrst three possibilities are viable.
“cost” of attaching a node is high (i.e., exceeds a heuris- e use the following strategy to choose how to for-
tic threshold), the node is declared to start a new clustef@rd requests at each node. If the message received from
of its own. For example, the cost of attaching to any the parent is a parallel test-and-fetch, we simply propa-

node in the current set of clusters is high, so it starts gate it in parallel to all children. If simultaneous replies
new cluster. from all children can exceed the bottleneck bandwidth to

We now define the cost function used. kebe the the reader device, we use parallel test-and-fetch. Other-
root node. Let(r — z) be the time spent sending a WIS€, We use parz_illelf_etch. In the near future, we plan to
block fromz to r directly, andt(r «— y —) be the incorporate Ipcatlon hints of target data, and sequential
time spent sending a block fromto r via y. We define fetch, which is not currently used in the prototype, may

the costof attachingr to y to be: become appropriate.
tr —y) —t(r—) 4 Maintaining Consistency
tr —y)

. When data is deleted or overwritten, devices that
The numerator represents the penalty incurred by allPlouse obsolete copies need to be “informed” so the stor
extra hop (which can be negative if the overlay route P

 bete han he ernet 1), and 1 1 nomalzed®%® PCE 59 Be ecmer, Furernire e rust o
against the distance to the intermediate node in the de- 9 y

nominator. At the end of step one, the heuristics producéjf'jlta even when a ”?Ob"e user initiates requests_ from
. - different entrance points of the network. We desire to
the three disconnected clusters in Figure 1.

Step two connects clusters to form trees. We builda<:h|eve these goals without mandating foreground prop-

separate trees to optimize for latency and bandwidth‘?‘gat'ons of either data or metadata. In this section, we

Latency refers to the cost of fetching a single data ob_consider opergtions involvin.g a si_ngle.ownerlwriter, yvho
ject (a file block in our prototype). Bandwidth refers to alwa_ys has h.'s MO.'A.‘D device \.N'th him. We °°r?s'der
the rate at which a stream of blocks are fetched. HintsSharlng (reading/writing by multiple users) in Section 5.
available in softlwares .running on top of Se.gank.can be4'1 Propagating the Invalidation L og
used to determine which tree to use. During this step,
we only consider the root nodes of the cluster subtrees A naive solution is to send invalidation messages to
(ny1, bost onl, andl a in the example), and the root all devices belonging to the owner. Due to the non-
of the tree flone-dsl). To form the Segankast tree uniform network, however, some of the devices may be
designed to optimize latency, we consider the completg@oorly connected, so foreground invalidation is not al-
graph spanning these nodes. We annotate each edge tmways feasible. Lazy invalidation is especially appeal-
the round-trip time of fetching a block between a pair ofing when the quality of connectivity may change sig-
nodes, and compute the shortest-path-tree rooted at theficantly due to mobility. For example, it may be de-
root node. To form the Segankast tree designed to optisirable to delay invalidating obsolete data stored on an
mize bandwidth, we annotate each edge of the completeffice computer until its owner, who has been creating
graph by the inverse of the edge bandwidth, and comnew data away from the office on his weakly connected
pute the minimum-spanning-tree. In Figure 1, we showaptop, returns. Upon his return, however, we should not
how to connect the cluster subtree root nodes with thdorce the user to immediately propagate either data or in-
reader device to form a complete tree designed to optivalidation information to the office computer while he
mize bandwidth. waits. Instead, the user should be able to start using the

system immediately without risking reading obsolete in-any convenient time. Playing a log entry onto the block
formation. We now examine the details of lazy invalida- store means discarding any data that is overwritten by the
tion. operation in the entry. For correctness (especially of the
Each write in Segank is tagged with a monotonically snapshot design described in Section 5.2), log entries are
incrementing counter, or imestamp (This is a lo- played only in strict timestamp order. We defifnesh-
cal counter maintained on the MOAD.) The sequencenessof a device to be the timestamp of the last log entry
of write operations in the increasing timestamp order isplayed onto it. Devices other than the MOAD are not
called theinvalidation log of the system. Specifically, expected to store the log forever. Log fragments may be
the invalidation log entry of a write operation contains discarded at any time after having been played.
the 1D of the object written and the timestamp. Each de- Note that only the invalidation records need to be
vice stores its data in a persistent data-structure that wperopagated in the background and no data exchange is
call ablock store The meta-data stored with each datanecessary to ensure a consistent view of the Segank sys-
object includes the timestamp of the write operation thatem. The amount of the invalidation information should
created the data. be at least three orders of magnitude smaller than that of
Each device also has a persistent data-structure tdata. This is in contrast to existing systems where data
store the invalidation log. Segank, however, does nofind metadata propagations are intertwined in the same
force any device (except a user's MOAD, as we discus$0gs [11, 13, 14, 18, 22].
below) to store the complete invalidation log. In fact, the All the devices in a Segank system are very much
portion of the invalidation log stored on a device may notsimilar to each other. One difference between the MOAD
even be contiguous. and the other devices is that the MOAD is guaranteed to

We assume that the MOAD houses the most complet8ave the most complete invalidation log. (Although as
invalidation log as it follows the user (who is the sole We have said, even this difference is not strictly neces-
writer for the purpose of our present discussion). TheSary.) As long as the MOAD is with the user, it ensures
head of the log can be truncated once it has been sef@st access to the invalidation information, which as we
to all this user's other devices. The size of the log isdescribe in the next section, is sufficient to ensure a con-
bounded by the amount of new data writes performed irsistent view of the system without mandating any type of
a certain period of time, which should be smaller thanforeground propagation.
that of a location map, since a location map must map . —
all the data in the system. Parts of the log can also bé"'z Querying Invalidation L ogs for Reads
stored on other well-connected devices if the capacity on The discussion so far may seem to have implied that
the MOAD becomes a premium. Since the MOAD is it is necessary to bring a device up-to-date by first play-
always with the user and it can communicate using aing invalidation records to it before the system can allow
least the wireless modem link, the entire invalidation logthe device to participate in the Segankast protocol to sat-
should always be reachable. Also, it is easy to turn anysfy reads. Such a requirement would have violated our
other device (a laptop, for example) into a MOAD sim- requirement of avoiding mandatory foreground propaga-
ply by transferring the invalidation log onto it, provided tions. We now explain how this is not the case.
the device has the same communication capabilities as Suppose a user is working on his laptop MOAD de-
the MOAD. Therefore, to simplify the rest of the discus- vice with the most complete invalidation log. We main-
sion, we assume that the device that a user works on is@in a sufficiently long tail of the invalidation log in a
MOAD, and that it contains the entire invalidation log. hash-table like data-structure that supports the following

As the user works on a MOAD device and createsoperation: given an object ID, it locates the last write
data, new entries are appended to the invalidation log oand the corresponding timestamp) to that object in the
the device. This new tail of the log is propagated to othettail. We refer to this portion of the invalidation log as the
devices in the background. Log propagationis a peer-totqueryable log.” Upon a read request, the system queries
peer operation that can happen between any two devicethe queryable log to look for the latest write to the re-

If a device houses a piece of the log that another lacksjuested object. If an entry for the object is found, the
then log propagation can be performed. For efficiencysystem launches a Segankast request, specifically asking
in the normal case, log propagation is performed alondor an object with the timestamp found in the queryable
the edges of the Segankast tree, especially those that cdog. When any device (including the local device) re-
respond to high-quality network links. It must be noted, ceives this Segankast query, without regard to its own
however, that all propagation is performed in the backfreshness value, it queries its block store for the object
ground. with the specified timestamp. When the data is found on

Having received a portion of the log, a device may some device, the read request is satisfied.
decide to “play” the log entries onto its block store at If no entry for the object is found, it implies that the

data has not been overwritten during the entire time peis initially created, agolden copyis established; and a
riod reflected in the queryable log. Suppose the headlevice is not allowed to discard a golden copy without
of the queryable log on the MOAD has a timestamp ofpropagating a replacement golden copy to another de-
to. The system then launches a Segankast request askinge.
only devices with freshness at leagt- 1 to respond.

An invariant of the system is that all the devices5 Sharing with Snapshots

reachable by Segankast at this moment must be at least .
So far, we have only considered system support for a

as fresh agy — 1. This invariant, however, does not im- . | f his devi d data. Wi i
ply that the complete invalidation log must be queryable:Slng € owner o N IS ewce”s ang data. YVe now consider
sharing using a “snapshot” mechanism-srapshotep-

older portions of the invalidation log that are kept for) ¢ < data “f)
currently-unreachable devices need not be queryable. Jesents a consistent state of an owner's data “frozen” at

device can be beyond the reach of Segankast because, fype pointin time.

example, itis currently disconnected, in which case theres 1 Requirements of Sharing
is no danger of reading obsolete data from it. When such
a device later becomes reachable again, the system muﬁtandB are collaborating in a well-connected officé
restore the invariant by either making more of the oldermay wish to promptly see fresh data being continuo.usly
portion of the log queryable, or by playing this older por-

. X roduced on a desktop by. Over night, some of the
tion of the log to the newly connected device to upgradé3
its freshness up t) — 1. This invariant makes it possible data produced by3 may be propagated to a laptop of

; . S .~ B’s. On day 2,B takes his laptop onto a train, where
to cache the queryable tail of the invalidation log entirely ! ; .
. o2 : only a cellular modem is available, and he continues to
in memory, minimizing overhead paid on reads. Note

that this protocol handles disconnection without extramOdIfy some (but not all) c.)f his data. : .
On day 2,4 has a continuum of options available to

provisions. It also allows the system to flexibly choosehim when accessing’s data in terms of how fresh he

hol/v;ggressu\(/Iely the |n\t/a(lj|(?jat|c_)n log S(;]OULd be .pmpa_ghesires the data to be. ()may decide that the data pro-
gated: a weakly-connected device need not receive such . 4 byB on day 1 is fresh enough. In this casks

propagations while still being able to supply consistent e . :
data. The overall effect of this protocol is that a consis-read requests are satisfied entirely/y office deskiop

. . o . without ever using the cellular modem. Again, this is ef-
tent view of the system is always maintained without anyfectively supporting disconnected operation. @Jnay

mandatory foreground propagation, even though individ-

ual devices are allowed to contain obsolete information desire to see a snapshotigk data at, say, noon of day
‘2. For the data thaBB has not modified by noond’s

read requests may be satisfied B office desktop; but
occasionally,A may need to use the cellular modem to
As explained earlier, an important feature of Segankaccess a piece of data produced®pefore noon on day
compared to some existing epidemic exchange-baseg (3) A may desire to see a new snapshof data,
systems is that the propagation of the invalidation recordsgay, every minute4 now uses the cellular modem more
and that of data can be decoupled. Data movemergften.
is mostly a performance optimization, and it is largely ~ \We summarize some requirements. First, consider
decided by policy decisions. At one extreme, an ag-ase (2) above. In order ferto read a piece of data writ-
gressive replication policy effectively can also supportten by B shortly before noon4 should not have to wait
disconnected operation. One goal of the Segank defor B to flush all the data thaB has produced by then.
sign is to allow individual devices or subsets of devices|n fact, we should not even necessarily fofgeo flush
to autonomously make data movement/discard decisionigs invalidation information. A should be able to read
without relying on global state or global coordination. whatever data whenever he desires on demand. In other
There are, however, still some constraints. words, no mandatory propagation of any kind should be
One of them concerns data movement: data is onlyzecessary to guarantee a certain degree of freshness. This
sent from fresher devices to less fresh devices. This conrequirement is not limited to case (2)—it is a general
straint ensures that if the propagated data is overwritterproperty of Segank. Second, facing a non-uniform net-
the corresponding invalidation record is guaranteed tayork, a user should be able to precisely control when and
not have been played to the data receiver prematurelfiow often a new snapshot is created for the shared data
Interestingly, there is no constraint on the relationshipto trade off freshness against performance.
between the timestamp of the propagated data and the
freshness of the receiver device. Another constraint i9-2 Snapshots
that we need to exercise care not to discard a last lone To support snapshots, we rely on a copy-on-write
copy of the data. We adopt a simple solution: when datdeature in the block store. A snapshot is created or

Let us examine an example scenario. On day 1, users

4.3 Data Movement and Discard

deleted simply by appending a snapshot creation or del
tion record to the invalidation log. These operations ar
instantaneous. The in-order propagation of the invalide
tion log among the devices ensures that data overwri

ten in different snapshots is not inadvertently deletec R e R meroe

Each snapshot is identified bysaapshot IDbased on a

monotonically-increasing counter kept persistent on thesigyre 2: Snapshots for write-sharing. (a) Without conglicth) with
MOAD. (This counter is different from the counter used conflicts.

to assign timestamps to write operations.) The snapshot

named by the ID contains the writes that have occurrednent is to split each Segankast into two phases: a first
between the creation of the previous snapshot and thiBhase queries the devices to obtain the target timestamp
snapshot. In the rest of this discussion, the timestamp df the invalidation log fragments, and a second phase re-
a Snapshot is understood to be the timestamp of the Cré[ieves the data as described earlier. (A modified paral-
ation record of the snapshot. Since a snapshot must Hél test-and-fetch strategy given in Section 3.3.2 is best
internally consistent, the decision as to when to create opuited for these foreign reads.) In a more sophisticated
delete a snapshot must be made by higher-level softwargprovement, it is possible to combine these two phases

(e.g., the file system) or the user. into a single one in certain cases. Due to lack of space,
we omit the details of these improvements.
5.3 Read Sharing The mechanism described above ensures that a for-

eign reader can read a snapshot of certain recentness
without having to wait for foreground propagation of ei-

A aforeign reader The foreign reader first chooses a or data or the invalidation loq. However. as we see
shapshot of a desired recentness. To do this, the readg} . n 10g. '
In Section 8, the data-less invalidation log can be propa-

device contacts a device belonging to the writer. To ob- . i
ging ted efficiently in the background on most networks. By

tain the most recent snapshot ID, the reader must conta fault. S K vel tes the invalidati
the MOAD owned by the writer. Ioegau , Segank aggressively propagates the invalidation

Suppose the reader desires to read an object from a
snapshpt With timestanﬁs. In _the cases where either 54 Write Sharing
the devices with the desired object have freshness at least
Ts, or where the reader happens to have a long enough We start by considering two writers (illustrated in
tail of the invalidation log ending af’s, the description Figure 2.) The two users begin with a single consistent
of Section 4.2 still applies. In other cases, more generfile system. To start concurrent write-sharing, they per-
ally, we need to extend the earlier description. form afork operation, which names the initial snapshot

Recall that the read algorithm given in Section 4.2asS,, and allows the two users to concurrently write into
requires the reader to query the invalidation log to entwo new snapshots;; andSs, in isolation. New updates
sure consistency. This querying yields a timestamp oby one user are not visible to the other, until when the
the desired data if it is written in the period covered bytwo users desire to make their new data available to each
the invalidation log, or the timestamp of the head of theother by performing anergeoperation. Prior to the fork,
log. In this earlier discussion, when the reader and théhe invalidation log isL,. Prior to the merge, the two
writer users are the same, the complete invalidation logisers’ new writes result in two separate invalidation log
is available on the single user's MOAD for fast querying. fragments.; andLs.
In the case of a foreign reader, however, this assumption The first step of the merge operation is conflict detec-
no longer holds. A simple solution is to first query the tion. This is an application-specific process that should
invalidation log stored on the remote MOAD owned by be dependent on the nature of the software running on
the writer for the timestamp. Once the reader obtains théop of Segank. The three snapshSts S1, and S, are
timestamp, the rest of the read process remains the sanagailable to the conflict detection process as inputs. In
as described earlier. The disadvantage of this approaabur prototype, we lay a file system on top, and the three
is that the writer's MOAD device may be weakly con- snapshots manifest themselves as three distinct file sys-
nected, and querying it for all reads can be expensive. tems. In theory, a possible way of implementing con-

To overcome the inefficiency, we note that fragmentsflict detection in this case is to recursively traverse the
of the invalidation log may have been propagated to othethree file systems to identify files and directories that
devices (in the background), some of which may be bethave been modified and to determine whether the mod-
ter connected to the reader device. Indeed, some or aifications constitute conflicts. This slow traversal, how-
of the invalidation log fragments may have been propa-ever, is not necessary. As modifications are madg,; to
gated to the reader device itself. One possible improveand.S;, the higher-level software should have recorded

When userA reads data created by usBr we call

book-keeping information to aid later merging. two concurrent writers by performing repeated pair-wise
In our prototype, we modify the file system running merging. We note that the process shares some common
on Segank to capture path names of modified files an@oals with the read-sharing mechanism. No foreground
directories. This information is summarized as a treepropagation of data or invalidation is mandatory for the
of modification bits that partially mirrors the hierarchi- concurrent writers to share consistent snapshots. As a
cal name space. A node in this tree signifies #mahe result, in the absence of conflicts, the latencies of all
objects below the corresponding directory are modifiedsnapshot operations can be kept low, enabling collabo-
This tree of modification information is logged sepa- rating users to perform these operations frequently when
rately to the MOAD device and is cached. The conflictthey are well-connected, and to trade off recentness of
detection is implemented by comparing the two trees. Irshared data against performance when they are weakly-
what we believe to be the common case of modificationgonnected.
being restricted to a modest number of subdirectories,
this comparison can be quickly made even on a weal6 Exceptional Events and Limitations
connection. The amount of information exchanged be-])
tween the two nodes should be far smaller than the inval®-1 Disconnected Devices
idation logs. The details of such an application-specific The Segank system is primarily designed for always-
conflict detection mechanism, however, are not central ten but non-uniform connectivity: disconnection is not a
the more general Segank system. main focus. Nevertheless, the handling of disconnected
If no conflict is found (Figure 2(a)), the system au- devices has been mentioned throughout the previous sec-
tomatically creates a merged snapshgt Due to the tions. We now consolidate these descriptions and clarify
lack of conflicts, the ordering af; andL; is irrelevant. the limitations. First, possible disconnection and recon-
The invalidation log resulting ity is logically simply a nection events cannot cause consistency violations. Nei-
concatenation ofg, L1, andL,. However, itis notnec- ther invalidation log entries nor Segankast requests can
essary to physically transfer the log fragments among theeach a disconnected device. Upon reconnection, in or-
devices. Since the ordering of log fragments in the sysder for the previously disconnected device to be eligi-
tem invalidation log is determined by the timestamps ofble to return data, we must first restore an invariant (de-
the head entries of these fragments, a simple exchanggribed in Section 4.2).
and reassignment of timestamps is sufficient to effectthe Second, as explained in Section 4.3, how data is
“logical concatenation”. For instance, the invalidation moved is a policy decision, decoupled from the basic
log for the merged snapshot could be created by retaindata location and consistency mechanisms of Segank.
ing the entries fronL; and assigning timestamps to the An important design goal of the Segank system is to ac-
new entries inL, such that they logically succeed the commodate almost arbitrary policies. Under an aggres-
tail entry of L;. The outcome of the merging process is sive data replication policy tailored for disconnected en-
a consistent snapshot and a merged invalidation log thatironments, a Segankast should reach alternative replicas
both users can now use to satisfy their read requests iniastead of being limited by disconnected copies. Third,
way similar to what is described in Section 5.3. if there is not enough time to replicate the freshest data,
If conflicts are found (Figure 2(b)), an application- the snapshot mechanisms described in Section 5 may al-
specific resolver or user intervention is required. Thelow an older consistent snapshot of the system to be read
user is, again, given the three distinct file systems. Withinstead. If one exhausts these options, data on a discon-
out loss of generality, suppose the user starts @itand nected device would be unavailable until reconnection.
performs a sequence of manual file system modification<hough the Segank system is designed to allow flex-
to it, incorporating some desired modifications fréi ible data movement and replication policies, this paper
and ending up with a new snapshsy, the result of re- does not provide a systematic study of specific policies
solving conflicts. These new modifications result in adesigned to minimize potential disruption caused by dis-
new invalidation log fragmenks. AlthoughZ; and L, connection and to optimize performance for various us-
contain invalidation log entries resulting from conflicting age scenarios and environments. We plan to address this
updates, their ordering is still unimportant, because anyimitation in future research.
such entries should be superseded by entridsinThe .
outcome of this process is a single consistent invalida8-2 Inaccessible MOAD
tion log that is logically the concatenation b§, L1, Lo, We intend to have the small MOAD device accom-
andL3z. Again, no physical transfer of log fragments is pany its owner at all times if the owner desires access
necessary to enable either user to read from a consiste§ the Segank system. Now suppose we would like to
snapshobs. loosen this restriction so that the user is still allowed ac-
The above process can be generalized to more thacess at one of the Segank computers without his MOAD

device. The MOAD is like one of the many computers examining the state recorded on all backup devices is an
managed by the Segank system, so in terms of the issu@bvious alternative. More details of the backup/restore
of data consistency and data accessibility, the above denechanism can be found in a technical report [5]. Note
scriptions (Section 6.1) apply to the MOAD as well. The that the set of “backup devices” are not fundamentally
MOAD, however, is special compared to the remainingdifferent from the other storage devices managed by the
peer Segank devices, in that it houses the most comple®egank system, so for example, even in absence of tape
invalidation log, and access to this log is necessary fodrives, one can designate an arbitrary subset of the regu-
ensuring data consistency. lar Segank devices as “backup devices,” from which we
As discussed in Section 4.1, one way of increasing the&an recover from the loss of remaining devices (such as
availability of the complete invalidation log is to replicate the potentially more vulnerable MOAD).
it on other well-connected devices so that the single for-
gotten MOAD does not become a problem. One can als§4 Other Issues

designate an alternate device (such as a laptop) to be the pye to lack of space, we describe the following is-
replacement MOAD by copying the invalidation log onto syes only briefly; more details can be found in a tech-
it and starting to append new invalidation log entries to it. nical report [5]. Crash recovery in Segank is simple.
If the complete invalidation log is not sufficiently repli- Communications that can result in modification of per-
cated to be accessible and only an older portion of the logjstent storage are made atomic. Itis sufficient to recover
is reachable, one may use this partial log and the snaghe block store on a crashed device locally, without con-
shot mechanism (described in Section 5) to access daigrns of causing inconsistent distributed data structures.
in an older snapshot. Failing these options, one would b&egank appears to the file system built on top as a disk
unable to access the Segank system. and provides only crash-consistent semantics. The file
system must run its own recovery code (sucli ask).
6.3 Backup and Restore A)éding or removing devices, Iocgting na(mes of de)vices
At least two factors complicate the handling of device belonging to a particular user, and access control utilize
losses. First, because the Segank system can function a&nple or existing mechanisms whose details we omit in
a low-level storage system, the loss of a device can resuthis paper.
in the loss of a fraction of data blocks managed by the
system, making maintaining high-level system integrity7 | mplementation
challenging. Second, the mobile and weakly connected
environments within which Segank operates mean thatit This section gives some implementation details that
may not be always possible to dictate replication of datefre less fundamental: alternative choices could have been
on multiple devices. Therefore, our goal is not necesimade. For example, while the current implementation
sarily guaranteeing the survival of each data item at allvorks principally at the storage level, an entirely file
times, which is not always possible; instead, our goal isSystem-level solution could have worked too.
to maintain system integrity and preserving as much dat
as possible when we face device losses. We rely on Z'l Volumes
backup and restore mechanism for achieving these goals. We have developed the system on Linux. The owner
The same snapshot mechanism (Section 5) that winitially makes a slightly modified “ext2” file system on
use to enable sharing can be used to create consis-virtual disk backed by Segank and mounts it. Separate
tent backup snapshotthat are incrementally copied to file systems are mounted for each of the other users’ data
backup devices. Backup devices can be introduced intvhose access has been granted. We call each of these file
the Segank system in a flexible manner that is very muclsystems aolume
similar to how regular devices are incorporated. At We use a pseudo block device driver that redirects
one extreme, each device or each site can have its owthe requests sent to it to a user-level process via up-calls.
backup device; at another extreme, we can have a singlEhe user-level process implements the bulk of the Segank
backup device (such as a tape) that is periodically transfunctionalities. The unit of data managed by Segank
ported from site to site to backup all devices onto a sindis a block, so it is principally a storage-level solution.
gle tape; an intermediate number of backup devices ar&he object IDs used in Segank are 64-bit block IDs, and
of course possible as well. Data belonging to a backugach block is 4KB. The timestamps are also 64-bit. The
shapshot can be deleted in a piecemeal fashion as thext2 file system uses the lower 32 bits of a block ID, to
are copied onto backup devices. During restore, onavhich a prefix consisting of bits representing users and
needs to restore the latest snapshot that has all its paattributes is added by Segank. Maodifications to the ext2
ticipating devices completely backed up. There are varfile system are needed for data sharing scenarios in terms
ious ways of finding out the name of this shapshot andf acquiring and releasing snapshots, flushing in-kernel

10

caches, capturing the path names of modified files an ?Wifi-winceton-edu ?Wifi-princeton-edu
rectories for detecting conflicting write-sharing, and a lan.princeton.edu lan.princeton.edu
cating Inode numbers and block IDs inaway thatens .,
that IDs allocated by different users do not collide.

Segank allows flexible data replication and migrat
policies. We have implemented some simple ones. E
owner may define several volumes, each with its avr
tributes a volume can benobilg shared or stationary
If the volume is defined mobile, the owner hints to | Figure 3: Segankast trees. (a) The tree for optimizing legeith) the
system that she would like to have this data follow | tree for optimizing bandwidth.
and Segank attempts to propagate the data in the vo
to as many devices as possible. If the volume is def
shared, the owner hints to the system that others
need the data, and Segank attempts to propagate thi
to a well-connected device and to cache a copy on
MOAD if possible. If the volume is defined stational
the user hints to the system that the data is most lil
to be needed only on this creator device, so no auton
propagation is attempted. We recognize that these
ple policies are unlikely to be adequate for many us
contexts; and more sophisticated policies are part of
ongoing research.

cmu

caltech

AA ucsd ucla

intel-seattle intel-seattle

(@) (b)

mla
caltech

work interface and a wired ethernet interface can partic-
ipate in Segankasts. We have used an existing Mobile
IP implementation: Dynamics HUT Mobile IP version
0.8.1. For point-to-point communication channels during
Segankasts, the implementation supports TCP and UDP
sockets and SUN-style RPCs. The experimental results
are based on TCP sockets.

8 Experimental Results

We first examine Segankast performance under a sin-
gle user. We then study performance of data sharing by

72 Block Store multiple users.

The block store is a log-structured logical disk [3]. 8.1 Segankast Performance

Because of the use of 64-bit block IDs (forming asparse \We now Study the performance of reading data us-
address space), the block store employs anin-memory Bng Segankast under two usage scenarios. In the first
tree to map logical addresses to physical addresses. Tk@enario, the user is at work accessing data on a mo-
block store accesses the physical disk using raw 1/O Viajle device. The mobile device is connected to the wired
the Linux/dev/raw raw* interface, bypassing the network through an ad hoc 802.11 link. The user owns
buffer cache. The invalidation log is stored in a desig-three other devices that are located in his office LAN, and
nated subspace of the 64-bit address space of the blo@{ght other devices located at five different cities that are
store. at varying distances from his current location. The mo-
bile device along with the eleven other storage devices
comprise the personal storage system for the user. We
A responsibility of the connectivity layer is to route will refer to this scenario a8V Fi - Wor k. In the sec-
to the MOAD regardless where it is and what physi-ond scenario (referred to &SL- Hone), the user comes
cal communication interface it uses. A MOAD can be home and connects to the Internet using a DSL connec-
reached via: (1) an ad hoc wireless network encompasgion. The eleven other devices are accessible over the
ing both the requester and the target MOAD, (2) the In-DSL connection, but data accesses incur a substantially
ternet which connects to a remote ad hoc network withirhigher latency.
which the target MOAD is currently located, or (3) the ~ The mobile device we use in our experiments is a Dell
target MOAD’s cellular modem interface. In our im- Inspiron Laptop with a 650 MHz, Intel Pentium Il pro-
plementation, the first two cases of communication to acessor, 256 MB of memory, and a 10 GB, IBM Travelstar
MOAD use an identical and fixed IP address, while the20GN disk. The remaining devices are PlanetLab [19]
third case uses its own IP address. nodes, which are either Dell Precision 340 workstations
To reach a MOAD in the first two cases, we needor Dell Poweredge 1650 servers. Table 1 lists for each
a combination of an ad hoc routing mechanism anddata source, the average latency for the reader to access
“Mobile IP.” We have implemented our own version a single 4 KB block from the source and the average
of the “Ad hoc On-demand Distance Vector” (AODV) bandwidth attained by the reader in accessing a stream
routing algorithm based on the draft 9 specification ofof blocks from the same source under the two usage sce-
AODV [17]. The implementation runs at user-level narios.
and can support multiple network interfaces. For ex- Figure 3 shows the trees determined by our tree build-
ample, a computer equipped with both an ad hoc neting algorithm for optimizing latency and bandwidth in

7.3 Connectivity

11

Scenario | Data Source| Latency | Bandwidth tive. Thel an. pri ncet on. edu device is, therefore,
_ (ms) (MB/s) the sole child of the reader, and the overlay paths from
- princeton 15 0.49 the reader to other devices could be more expensive than
WiFi-Work | cmu 45 0.42 the direct connection.
intel-seattle 157 0.32 . .
caltech 160 0.37 Wt_a evaluatg Sega_nkast_by running two experiments.
ucsd 173 0.36 The first experiment is designed to benchmark the per-
ucla 177 0.32 formance of reading small and large files. The dataset
princeton 140 0.068 consists of 25,000 small files each of size 4 KB and a
DSL-Home | cmu 160 0.065 single large file of size 50 MB. The files are initially cre-
intel-seattle 189 0.065 ated at the device that is farthest from the reader. We
caltech 198 0.063 measure the cost of reading the files using Segankast un-
ucsd 223 0.063 der the following data distribution settings. (1) Remote:
ucla 243 0.062 only theucl a device, which is farthest from the reader,

has all the data, (2) Nearby: in additionuol a, one of
the nearby nodes &tan. pri ncet on. edu has all of
the files, and (3) Randonucl| a has data, and each one
of the files is replicated at three other randomly chosen
theW Fi - Wr k scenario. The tree built for optimizing locations.
latency is built using the shortest-path-tree calculation on For the second experiment, we use a disk trace col-
a complete overlay graph, where each edge is annotatdécted on a Dell Dimension 8100 workstation running
with the cost of fetching a block between the correspondWindows 2000. During the monitoring process that
ing pair of nodes. The overlay paths from the mobilelasted many days, the user was performing activities that
node through an intermediatean. pri ncet on. edu are typical to personal computer users, such as read-
device perform better than the direct paths, and hencing email, web browsing, document editing, and play-
the mobile node has only one child. The resulting treeng multimedia files. We used some simple tools (such
is still shallow since it is built to optimize for latency astracel og andtr acednp) from Microsoft's Win-
with the intermediate nodes capable of operating withdows 2000 resource Kits to collect these traces. We use a
large fan-outs due to the small payloads associated witportion of this trace comprising of 787,175 I/O requests
fetching a block. On the other hand, the tree for opti-accessing a total of about 9.2 GB of data. We execute the
mizing bandwidth is built using the minimum-spanning- first 760,000 requests on eleven devices in a round-robin
tree algorithm and is designed to minimize contentionfashion with a switch granularity of 20,000 requests. We
and maximize the use of high bandwidth links. The re-then measure the performance of the read operations con-
sulting tree organizes the devices into more levels. Atained in the last 27,175 requests by executing them on
parallel test-and-fetch strategy is used for propagating rethe twelfth device that is connected to the remaining de-
quests within thé an. pri ncet on. edu and thecnu vices using a 802.11 connection (tWéFi - Wor k sce-
clusters since the nodes in the two clusters compete forario) or a DSL connection (tHBSL- Hone scenario).
bandwidth on a local area network. A parallel fetch strat- For both experiments, we also measure the cost of
egy is used for the other connections since the cumulareading the files if there was an Oracle that provided the
tive bandwidth of the corresponding WAN flows was de- location of the closest device that contains a replica of
termined to be less than the bottleneck bandwidth of thehe desired data, so that the reader can directly fetch the
parent nodes. data. This allows us to bound the performance of alter-
The Segankast trees for tRSL- Hone scenario are native mechanisms such as location maps that track the
similar to the ones constructed for theFi - Wor k sce- location of the objects in the system. Recall that a lookup
nario. The reader achieves the lowest latency and thef the location map could involve communication if the
highest bandwidth to ban. pri ncet on. edu device. entire location map is not locally available at the reader
Therefore, thé an. pri ncet on. edu device is desig- and that location maps require protocol traffic to main-
nated as its child in both trees. Furthermore, given thdain consistency as the data objects are propagated or dis-
high latency and the low bottleneck bandwidth for thecarded. Since these costs are not included in our Oracle
DSL connection, the reader can not sustain more thamechanism, the resulting read performance is a generous
one child; if the reader has multiple children, two si- upper-bound on the performance of an implementation
multaneous replies to a parallel fetch of a single 4 KBthat uses location maps.
block would be sufficient to overwhelm the bottleneck The results of the two experiments are shown in Ta-
bandwidth, while the round-trip message overhead assdles 2, 3, and 4. The performance measurements reveal
ciated with a parallel test-and-fetch is equally unattrac-that the overhead introduced by Segankast is minimal for

Table 1: Performance of accessing data blocks directly from
devices at different locations.

12

Data Segankast Oracle Scenario | Segankasq Oracle
Layout | sread (s)| Iread (s) | sread (s)| Iread (s) WiFi-Work 499 496
Remote 563 132 552 122 DSL-Home 1763 ‘ 1714
Nearby 76 109 74 108
Random 234 107 226 105 Table 4: Execution time in seconds of a trace collected on a
personal computer.
Table 2. Read performance for thé¥ Fi - Wor k scenario.
§r ead refers to reading the small filed.r ead is the large | LAN | WiFi | WAN | Modem
file read. BW(MB/S) | 11| 05| 22| 001
RTT (ms) ‘ 0.2 ‘ 14 ‘ 10 ‘ 110
Data Segankast Oracle
Layout | sread (s)| Iread (s)| sread (s)| Iread (s) Table 5: Observed bandwidth and latency characteristics of the
Remote 1266 711 1096 702 network links used. LAN refers to a 100 Mb/s Ethernet. WiFi
Nearby 781 689 778 687 refers to using two wireless 802.11 cards in the ad-hoc mode
Random 1126 693 1019 688 at 11 Mb/s bit-rate. WAN corresponds to a wired connection

between two machines in Princeton and Yale Universities re-
spectively. Modem refers to connecting one of the machiaes v

a dial-up modem.

reading large files even when the file is fetched from a

remoteucl a node through two intermediate hops. The _ _)

cost of routing data through higher latency overlay p‘.Jl,ms“refresh” operation to express its desire to read frpm the
and the overheads of forwarding requests and replieB8W Snapshot. Subsequently, a read-benchmarkis run at
are amortized by pipelining the block fetches. In thethe readerto read data from the new snapshot.

W Fi - Wr k Setting, the cost of performing small file In the initialization phase, two identical, but distinct,
reads is only marginally worse than a direct fetch. How-directory trees are created. We name thenmand75.

ever, in theDSL- Home setting, the tree designed to op- Each tree is 5 levels deep, where each non-leaf directory
timize |atency has some Over|ay paths that are more e)@()ntains 5 sub-directories. In each directory, 10 files are
pensive than the direct connections and the reads incur@€ated, each of size 8 KB. Thus, each tree has a total of
10-15% overhead when a copy of the required data is nof81 directories and 7810 files, comprising about 64 MB

Table 3: Read performance for tHeBSL- Hone scenario.

available at a nearhyan' pr i ncet on. edu device. of data. The data and invalidation |Og created during the
_ _ initialization are at the reader only.
8.2 Sharing Experiments The update phase at the writer overwrites all files in

We now examine the performance of Segank Wher{he.firstK Ieyels in Tl. We perform three sets of ex-
users share data. In the first set of experiments, the setugffiments withK' taking values 3, 4 and 5. We name
consists of a writer node sharing a Segank volume with gn€seé experiments “Small”, “Medium™ and “Large” re-
reader node. We measure the performance of the readéPectively.
as the writer creates new data in the volume and exports The read-benchmark run at the reader involves read-
a new read-only snapshot of the volume to the readefng 1000 randomly-selected files from eithEr or T>.

We define the “snapshot refresh latency” at the reader td hus, it reads about 7.8 MB of file data, in addition to
be the difference between the time when the reader ex€ading some directory data and meta-data. In the rest
presses the desire to read from the new snapshot for tH¥ this section, “reading” a particular tree means running
first time and the time when it is actually able to perform the read-benchmark for the given tree at the reader.

its first operation on the new snapshot. A key resultis The left portion of Table 7 summarizes the results
that the refresh latency is solely a function of the networkfrom this set of experiments. For the results in this ta-
latency between the writer and the reader. In particularble, each experiment is repeated 3 times, and the median
it is independent of the amount of new data created byalues are reported.

the writer in the new snapshot. We perform several ex- The refresh latency (column 3) is observed to be de-
periments where we vary (1) the type of the network linktermined only by the network latency between the reader
(Table 5), and (2) the amount of new data written by theand the writer, and not by the amount of new data or in-
writer before creating the new snapshot (Table 6). validation log created in the new snapshot. As shown

Each experiment proceeds in three phases. The firsh column 9, complete data propagation can take several
phase initializes the Segank volume at the reader. In theéens of seconds or even minutes on slow networks. Thus,
second phase, the writer performs a number of updatesompared to alternatives which mandate complete data
on the volume and then, creates a new read-only snapshptopagation and replay before allowing access to new
of the volume. In the final phase, the reader performs alata, Segank incurs significantly lower user-perceived la-

13

Experiment| Data (MB) | Log (KB) in non-conflicting ways. So, the system is able to merge

Small 2.6 5.2 the two snapshots automatically. We define “merge la-
Medium 12.9 25.8 tency” as the difference between the time when the two
Large 62.1 124.1

users express the desire to merge their versions, and the
Table 6: Amount of data and invalidation log generated at the ime when the system has successfully merged both ver-
writer in experiments of each type. sions so that the users can see each other’s updates.
Results from this set of experiments are presented in
the right portion of Table 7. The merge latency (col-
tency. umn 10) in this case is observed to be independent of
The columns labeled “Read Time” are listed to showthe amount of data. Note that the merge latency in-
the overhead of lack of invalidation log propagation oncludes the time it takes for the system to detect if there
read performance of the reader. The base case, label@de any conflicts between the two versions. Since in
“LL” (for “Local” log and “Local” data), is the time for ~ our experiments, updates of A and B are restricted to
reading any of the two trees immediately after the initial- Separate directories, it takes only a constant number of
ization phase. Here, the complete invalidation log and alnetwork messages to detect that there are no conflicts.
the data to be read are present locally at the reader. THeegank does not require any log or data propagation
column labeled “DD” (for “Distributed” log and “Dis- during automatic merging, unless there are conflicts in
tributed” data) lists the time for reading the updated treewhich case user intervention or application-specific con-
Ty immediately after the refresh operation. In this caseflict resolvers are needed.
the reader neither has the complete log, nor all the data. Columns labeled “DL" and “DD” are times for read-
The “DL" case is for reading the non-updated tieem- ing 71 and7; at A after the merge. Note that A does not
mediately after the refresh operation. The “LD” case ishave the complete log after the merge, so all reads result
for readingT} after the new log (but not the new data) in network communication. These columns are similar
has been propagated from the writer to the reader. to the “DL” and “DD” columns for the read-sharing case.
Comparing LL with DL, and LD with DD, we con- The results for reading the trees at node B after merge are
clude that not propagating the log adds significant oversimilar, and therefore, omitted.
head to the read performance for all network types except
the LAN. When the complete log is present locally, net-9 Related Wor k
work communication is needed only when the required
data is not present locally. When the complete log is We have discussed some existing systems in Sec-
not present locally, each read request invariably resultsion 2.2. In addition to the issues already explored
in network communication. As column 8 illustrates, the about Bayou [18, 22], another important difference is
log propagation can usually be achieved in significantlythat Bayou is an application construction framework de-
less time than data propagation. This validates Segank'signed for application-specific merging and conflict res-
default policy of being highly aggressive in propagatingolution, while Segank is a storageffile system level so-
the log, although the propagation is only performed injution. Segank allows many existing applications to run
the background. transparently, but it provides little support for merging
A second set of experiments is performed to evaluatand conflict resolution. An ongoing research topic is
Segank in a scenario where multiple users write to theo investigate how the techniques that Segank employs
same Segank volume concurrently. The setup consists @b exploit a non-uniform network can be applied to a
two nodes A and B. As in the single-writer case above Bayou-like system to eliminate some of its limitations
each experiment here proceeds in three phases. In ti{guch as its requiring full replicas).
first phase, the volume is initialized to contain two trees vy [14] is a DHT-based peer-to-peer file system.
Ty andT3. The complete log and the data is propagatedSegank is similar to Ivy in querying logs of multiple
to both A and B. Then, in the second phase, both A andisers and using snapshots to support sharing. Segank’s
B write to the volume concurrently. Node A overwrites logs contain only object invalidation records, while lvy’s
files in the first few levels o} while B does the same in |ogs contain NFS operations and their associated data.
T5. To allow this, the system creates two snapshots, onPlaying the invalidation logs and creating snapshots in
for each writer. During concurrent writing, new updates Segank are light weight. Ivy effectively stores data twice,
performed by a node are visible only to that node. Inonce in its NFS operation logs, and once again when the
phase three, the two nodes decide to merge their privategs are played to create snapshots. Segank allows more
snapshots. After the merge, each writer is able to reaflexible data placement, movement, and replication than
the new data created by the other in the second phase. Ivy's DHT-based approach. This level of flexibility is es-
In our experiments, nodes A and B update the volumesential for the non-uniform network that it targets. As

14

Read Sharing Write Sharing

Link Expt. Refresh Read Time (s) Log-Prop. | Data-Prop.|| Merge | Read Time (s)
Type Type (ms) | LL DD | DL LD Time (s) Time (s) (ms) | DD DL
Small 17 | 17 18 0.002 2 18 17
LAN Medium 04| 16 16| 17 16 0.004 3 0.8 15 16
Large 21| 16 21 0.014 8 19 23
Small 27| 25 19 0.014 6 29 30
WiFi Medium 29| 16 29| 25 21 0.049 26 6.0 34 32
Large 44 | 25 42 0.236 119 45 35
Small 70 | 69 18 0.042 2 72 70
WAN Medium 20| 16 72| 69 28 0.086 6 40 70 71
Large 78 | 69 68 0.131 43 79 79
Small 465 | 393 83 0.63 273 473 415
Modem | Medium 130 | 16| 664 | 398 | 347 2.6 1356 355 | 643 394
Large 1306 | 403 | 1212 12.3 6478 1312 402

Table 7: Timing results for the read-sharing and the write-sharixgeriments.

a result of not maintaining precise location information, an “asymmetric” solution: Segankast for reads and log-
however, Segank may query a number of devices beforbased lazy invalidation for writes. We believe that this

reaching a device with the desired data. Segankast atelayed and batched propagation of invalidation records
tempts to minimize the cost of extra queries. DHT-baseds more appropriate for a more dynamic and non-uniform
guerying may involve multiple network hops as well but network. In addition, Segank relies on no centralized

it is more scalable than Segankast, although due to theomponents and has little distributed state.

way it searches multiple users’ logs, Ivy is not meantto Although we have called Segankast a “multicast-like”
support a large number of users who share the same datolution, it is actually quite different from overlay multi-
Fluid Replication [10], an extension based on Coda,ast systems [9, 4]. Typically, the goal of existing mul-
introduces an intermediate level between mobile clientsicast systems is to deliver data to all machines in the
and their stationary servers, called “WayStations,” whichtarget set. In contrast, the goal of a Segankast is to re-
are designed to provide a degree of data reliabilitytrieve a single copy from several possible locations: the
while minimizing the communication across the wide- Segankast request need not always reach all possible lo-
area used for maintaining replica consistency. We haveations, and one or more data replies may return. To ac-
explained that one useful feature provided by Segankomplish this efficiently, we must carefully manage the
compared to Coda is its treatment of all devices as equal@rdering of requests, and determine what requests to send
This treatment allows more flexible direct device-to-in parallel and what to send sequentially.
device interactions without relying on any server-based The PersonalRAID system [21] can be seen as a first
infrastructure. For example, two arbitrary devices ONstep towards realizing many of Segank’s goals, namely,
a Speeding train should be allowed to interact Spontadecoup”ng data and meta-data propagation’ and provid_
neOUS|y and direCtly. Fluid Replica’[ion is a middle pOin’[, |ng a Sing|e uniform name space across mu|t|p|e de-
in the sense that WayStations are equals to each othgfces. Segank, however, significantly differs from Per-
and this intermediate level allows clients to interact with sgnalRAID in many respects. (1) PersonalRAID is de-
each other without requiring them to connect to a singlesigned to manage disconnectedet of devices, which
server. However, clients do not communicate with eaclorces it to maintain complete replicas at all devices (ex-
other directly under Fluid Replication. cept the mobile device.) Segank, on the other hand, is
Distributed databases [7, 15], like Bayou, use updateible to use connectivity among devices to improve per-
logs to keep replicas consistent. The purpose of the invalformance and availability. (2) PersonalRAID is primar-
idation logs in Segank is not to replicate data. The invally a single user system with no support for data shar-
idation log in Segank contains only invalidation recordsing among multiple users. Segank includes a distributed
and the system does not need to propagate data to quickihapshot mechanism to support sharing. (3) In Personal-
bring other devices up-to-date. RAID, when two devices are brought together, the sys-
JetFile uses multicasts to perform “best-effort” inval- tem requires complete meta-data propagation to finish
idation of obsolete data [8]. The mobile environment tar-before the user is allowed to operate. Segank mandates
geted by Segank is different from the wide-area stationno such propagation. (4) The use of a MOAD-like mo-
ary environment targeted by JetFile. Instead of using @ile device is critical in PersonalRAID, since it is the sole
“symmetric” solution for reads and writes, Segank useameans of data and meta-data propagation. In Segank,

15

however, the use of MOAD is largely a convenience and [9]

ap

data redundancy, while Segank does not. Segank falls
back on backup/restore in case of a device loss.

10

designed to manage storage elements distributed over a

erformance optimization. (5) PersonalRAID provides

Conclusion

(10]

11
We have constructed a mobile storage system that i[s]

non-uniform network. Like some systems for a wired[12]
network, it needs to allow flexible placement and con-

sistent access of distributed data. Like systems designed

for

disconnected operation and/or weak connectivity, it

tem must account for a possible simultaneous coexis-

ten

ce of a continuum of connectivity conditions in the

mechanisms that the system uses to locate data, to ke
data consistent, and to manage sharing. It allows a mo-
bile storage user to make the most of what a non-uniform

network has to offer without penalizing him with unnec- L

essary foreground propagation costs.

Acknowledgments

We thank Charles Coglianese and Adam Wells for

kel

(16]

their contributions to the initial Segankast design and im417]

ple

mentation. We also thank our shepherd Guillermo Al-

varez and other FAST reviewers for their comments orn18]
this paper.

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

ANDERSON T., DAHLIN, M., NEEFE, J., RRTTERSON, D.,
RoOSELLI, D.,AND WANG, R. Serverless Network File Systems.
ACM Transactions on Computer Systems IL4Feb. 1996), 41—
79.

DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R.,
AND STOICA, |. Wide-Area Cooperative Storage with CFS. In
Proceedings of the ACM Eighteenth Symposium on Operating
Systems Principlectober 2001), pp. 202-215.

DE JONGE, W., KAASHOEK, M. F., AND HSIEH, W. C. The
Logical Disk: A New Approach to Improving File Systems. In
Proc. of the 14th ACM Symposium on Operating Systems Princi-
ples(December 1993), pp. 15-28.

DEERING, S. E., BSTRIN, D., FARINACCI, D., JACOBSON, V.,
Liu, C.-G.,AND WEI, L. An Architecture for Wide-Area Mul-
ticast Routing. IrProc. of SIGCOMM’'94(London, UK, August
1994), pp. 126-135.

GARG, N., SHAO, Y., ZISKIND, E., SOBTI, S., ZHENG, F.,
LAl, J., KRISHNAMURTHY, A., AND WANG, R. Y. A Peer-to-
Peer Mobile Storage System. Tech. Rep. TR-664-02, Computer
Science Department, Princeton University, October 2002.

Gnutella. http://gnutella.wego.com/.

GORELIK, A., WANG, Y., AND DEPPE M. Sybase Replication
Server. InProc. ACM SIGMOD Confereng®lay 1994), p. 468.

GRONVALL, B., WESTERLUND, A., AND PINK, S. The design
of a multicast-based distributed file systemQperating Systems
Design and Implementatiof1999), pp. 251-264.

16

(19]

(20]

[21]

(22]

(23]

[24]

JANNOTTI, J., GFFORD, D. K., JOHNSON, K. L., KAASHOEK,
M. F., AND O'TOOLE, J. W. Overcast: Reliable Multicasting
with an Overlay Network. IrProc. the Fourth Symposium on
Operating Systems Design and Implementaidotober 2000).

Kim, M., Cox, L. P.,AND NOBLE, B. D. Safety, Visibility, and
Performance in a Wide-Area File System.Rroc. First Confer-
ence on File and Storage Technolog{@anuary 2002).

KISTLER, J.,AND SATYANARAYANAN , M. Disconnected Oper-
ation in the Coda File SystenACM Transactions on Computer
Systems 10 (Feb. 1992), 3-25.

LEE, E. K., AND THEKKATH, C. E. Petal: Distributed Virtual
Disks. InSeventh International Conference on Architectural Sup-
port for Programming Languages and Operating Systé@wo-

ber 1996), pp. 84-92.

; . : 13] M L. B., EBLING, M. R., AND S, ,
needs to avoid over-using weak links. The Segank sy MUMMERT BriN AND SALYARARAYARAR

M. Exploiting Weak Connectivity for Mobile File Access. In
Proceedings of the ACM Fifteenth Symposium on Operating Sys
tems PrinciplegDecember 1995).

MUTHITACHAROEN, A., MORRIS, R., GIL, T. M., AND CHEN,

B. lvy: A Read/Write Peer-to-Peer File System.Rroc. of the
Fifth Symposium on Operating Systems Design and Implementa
tion (December 2002).

ORACLE CORPORATION Oracle7 Server Distributed Systems:
Replicated Datal994.

PEASE, D. A., MENON, J., REES, B., DUYANOVICH, L. M.,
AND HILLSBERG, B. L. IBM Storage Tank - A heterogeneous
scalable SAN file systemIBM Systems Journal 42 (2003),
250-67.

PERKINS, C., BELDING-ROYER, E.,AND DAS, S. Ad Hoc On
Demand Distance Vector (AODV) Routing, 2001.

PETERSEN K., SPREITZER M. J., TERRY, D. B., THEIMER,
M. M., AND DEMERS, A. J. Flexible Update Propagation for
Weakly Consistent Replication. Froc. the 16th ACM Sympo-
sium on Operating Systems Principl@ctober 1997), pp. 288—
301.

PETERSON L., ANDERSON T., CULLER, D., AND ROSCOE

T. A Blueprint for Introducing Disruptive Technology intbe
Internet. InProc. First Workshop on Hot Topics in Networks
(HotNets-I)(October 2002).

ROWSTRON A., AND DRUSCHEL, P. Storage management and
caching in PAST, a large-scale, persistent peer-to-pesags
utility. In Proceedings of the ACM Eighteenth Symposium on
Operating Systems Principlé®ctober 2001).

SOBTI, S., ARG, N., ZHANG, C., YU, X., KRISHNAMURTHY,
A., AND WANG, R. Y. PersonalRAID: Mobile Storage for Dis-
tributed and Disconnected Computers.Pioc. First Conference
on File and Storage Technologié¥anuary 2002).

TERRY, D. B., THEIMER, M. M., PETERSON K., DEMERS,
A.J., PREITZER M. J.,AND HAUASER, C. H. Managing Up-
date Conflicts in Bayou, a Weakly Connected Replicated §éora
System. IrProc. the 15th ACM Symposium on Operating Systems
Principles(December 1995), pp. 172-183.

THEKKATH, C. A., MANN, T., AND LEE, E. K. Frangipani: A
Scalable Distributed File System. Bioceedings of the ACM Six-
teenth Symposium on Operating Systems Princi@es. 1997).

WAGNER, J. Getting to Know Your 3G.
http://www.internetnews.com/wireless/article/-

0,,10692964581,00.html, January 2002.

