
Segank: A Distributed Mobile Storage System

Sumeet Sobti∗ Nitin Garg∗ Fengzhou Zheng∗ Junwen Lai∗ Yilei Shao∗

Chi Zhang∗ Elisha Ziskind∗ Arvind Krishnamurthy† Randolph Y. Wang∗

Abstract

This paper presents a distributed mobile storage sys-
tem designed for storage elements connected by a net-
work of non-uniform quality. Flexible data placement is
crucial, and it leads to challenges for locating data and
keeping it consistent. Our system employs a location-
and topology-sensitive multicast-like solution for locat-
ing data, lazy peer-to-peer propagation of invalidation
information for ensuring consistency, and a distributed
snapshot mechanism for supporting sharing. The com-
bination of these mechanisms allows a user to make the
most of what a non-uniform network has to offer in terms
of gaining fast access to fresh data, without incurring the
foreground penalty of keeping distributed elements on a
weak network consistent.

1 Introduction

In this paper, we study the construction of a mobile
storage system designed to work on distributed storage
elements connected by a network of non-uniform quality.
The target environment of our system is one where all
storage elements are connected with each other, but only
some storage elements, typically those that are close to
each other, enjoy high-quality links.

1.1 The Target Environment

This non-uniformly connected world is the reality to-
day and it is continuing to evolve. There are three aspects
of this development. First, low-cost short-range wireless
technologies, such as 802.11 and Bluetooth, are prolif-
erating. These technologies allow mobile elements in a
small neighborhood to be spontaneously connected with
each other at a level of quality that is quite good. Sec-
ond, when a fast WiFi “gateway” into the Internet is not
available, low quality wireless connectivity may still be
available. Technologies, such as cellular modems, that

∗Department of Computer Science, Princeton Univer-
sity, {sobti, nitin, zheng, lai, yshao, chizhang, eziskind, ry-
wang}@cs.princeton.edu.

†Department of Computer Science, Yale University,
arvind@cs.yale.edu.

Krishnamurthy is supported by NSF grants CCR-9985304, ANI-
0207399, and CCR-0209122. Wang is supported by NSF grants CCR-
9984790 and CCR-0313089.

provide ubiquitous connectivity in the wide area are now
very affordable. Third, stationary storage elements are
becoming increasingly wired, and they are “always on”
the network. These may not only include computers in
offices and server rooms, but also broadband-connected
computers at home and hotels, and an increasing array
of entertainment appliances, such as Tivo-like personal
video recorders. The connectivity quality among these
devices also exhibits a high degree of variance. A typical
DSL-connected home computer, for example, may only
have an up-link capacity around 100 Kbps.

Despite the high variance in connectivity quality, to-
tal disconnection is (or can be) increasingly rare, as those
who own BlackBerry email devices, and those who ex-
periment with Internet access on transcontinental flights
are beginning to realize. While our system has provi-
sions to cope with it, total disconnection isnot our top
focus. Instead, our focus is to cope with a non-uniform
but always-on interconnect linking distributed and mo-
bile storage elements.

1.2 Requirements

We begin by considering some example usage scenar-
ios. A user owns several computers. Perhaps some of
them are in his office, some at his DSL-linked home, and
some in an “off-site” office in a different city, which he
occasionally visits. Some of them are desktop machines,
and others are laptops and PDAs that may accompany the
user when he travels.

When the user arrives at his office, some of his latest
work may have been done on a laptop that he carried
home the night before and is still with him. At this time,
the user should not be forced to wait for all the new data
to propagate from the laptop to the office desktop before
he is allowed to resume work on the desktop. He should
be able to see and operate on the complete and latest view
of his data from his desktop immediately. Also, the user
should not have to remember where the latest copy of a
particular piece of data is.

The next day, the user may run into a colleague on
a train and the two spontaneously decide to share some
files. In this case, the system should try its best to satisfy
the requests using the ad hoc 802.11 link between the two
laptops, and resort to a cellular modem to reach data that

1



is only available at the office or home. On a third day,
when the user is again on the train, and a colleague in the
office tries to read some of his files, the system would
instead attempt to satisfy the colleague’s requests using
a copy stored on the office LAN, on a DSL-linked home
machine, or on the cellular modem-connected laptop on
the train, in that order of preference.

We summarize the requirements of the system. In our
target system, data may be stored on, moved to, and repli-
cated at any device for performance optimization and re-
liability purposes. No device necessarily houses all the
data. A user sees a single image of name space span-
ning all the devices. A user experiences coherent se-
mantics even when he sends read and write requests into
the system from different entrance points of the network.
Data and metadata propagations can happen in the back-
ground; but no foreground propagation is mandatory for
the user to be able to start using a consistent system im-
mediately. An additional requirement that we desire to
fulfill is to provide a storage or file system-level solution
that can transparently cater to most existing applications.

1.3 The Segank System

We call our system Segank (pronouncedsee-gank). It
must solve three key problems: (1) how does the system
locate data that can be stored on any subset of devices
and how does it choose a best replica? (2) without costly
mandatory propagation, how does the system ensure con-
sistency across multiple devices as old data on these de-
vices becomes obsolete? (3) how does the system ensure
a consistent image across all devices for the purpose of
sharing and backup?

Segank solves the first problem using a location- and
topology-sensitive multicast-like solution (Section 3).
The advantage of this solution is that it minimizes global
state, allows autonomous data movement decisions, and
can effectively exploit locality. The system solves the
second problem using lazy peer-to-peer propagation of
invalidation information (Section 4). The combination
of the laziness element and the decoupling of the propa-
gation of invalidation information from that of data mini-
mizes the cost of bringing weakly connected devices up-
to-date. The system solves the third problem using a dis-
tributed snapshot mechanism (Section 5). This solution
allows one to flexibly trade off freshness of data against
performance when facing weak connectivity.

2 Background

2.1 Naive Approaches

Solutions that indiscriminately tax a weak wide area
connection are unlikely to be adequate, at least in the
foreseeable future. The much anticipated 3G wire-
less networks, for example, are designed to ultimately

achieve 384 Kbps, but industry observers agree that wide
availability of such speeds is many years away. Today,
most US 3G users can realistically expect data speeds of
somewhere between 40 to 80 Kbps, a far cry from the hy-
pothetical speeds of 144 Kbps and 192 Kbps [24]. Two
users who meet on a train, for example, are unlikely to
be able to communicate and collaborate productively by
separately connecting to a remote stationary file-server
via weak WAN connections.

The other extreme approach is to avoid using net-
works altogether. Instead, a user would rely exclusively
on a mobile storage device to carry all of his data. This
approach, however, is also unlikely to be adequate for
several reasons. First, despite the capacity improvement
of storage devices, the nature of new applications’ ap-
petite for storage is such that the capacity of a single
portable device is unlikely to be sufficient for all of a
user’s storage needs. The capacity of the mobile devices
is likely to continue to lag behind that of their station-
ary counterparts, and we expect much data, such as TV
programs recorded on a “Tivo,” to continue to reside on
these stationary devices. Second, mobile storage devices
tend to have poorer performance compared to desktop
versions due to considerations such as energy consump-
tion, noise, and form factor. Last, but not least, mobile
storage devices, by themselves, provide little support for
transparent data sharing among collaborating users.

2.2 Existing Systems

To understand the different challenges posed by non-
uniform connectivity and disconnection, let us start by
considering the Bayou system [18, 22]. Each Bayou de-
vice houses a complete replica of a database, and alter-
nates between two distinct states of operation: “discon-
nected” and “merging.” In the disconnected state, the
user of the device only “sees” local state stored on this
device. In the merging state, the device communicates
with a peer device, and new updates made on each are
played onto the other.

While the Bayou model may make sense in a dis-
connected environment, it is less appropriate for a non-
uniform network of storage elements. First, the require-
ment of housing complete replicas on each device may
be unnecessary, expensive, and in some cases, even in-
feasible. Second, being required to work on a device
in a “disconnected” mode is overly restrictive when (po-
tentially fresher) data stored on other devices could have
been made available over a network. In Bayou, the only
way to access data on other devices is to perform a merge
operation with them, play their updates onto the local de-
vice, and then read data from the local device. Merging
can be time-consuming as it propagates both meta-data
and data, and forcing a user to wait until merging fin-
ishes can be inconvenient.

2



While the initial Coda system [11] shares Bayou’s
disconnected model of operation, and is equally prob-
lematic for a non-uniform network, later enhancements
extend the system to work with a weak network [13]. The
more serious problem with Coda is its lack of support
of peer-to-peer interaction. Coda differentiates “clients”
from “servers” and peer clients do not communicate with
each other directly. Each data item has a fixed “home”
on the server and clients are always required to “reinte-
grate” their updates back to the server. Requiring nearby
devices to communicate only with a far-away server be-
comes too strict a constraint when peer-to-peer interac-
tions could have worked well. One additional disadvan-
tage that Coda shares with Bayou is its potential high cost
of “merging:” any updates must be played to a server be-
fore they become visible to other Coda clients.

A class of existing file and storage systems that do
address the missing elements of Coda and Bayou are
the peer-to-peer systems: they do not require any ma-
chine to house a complete replica; they take advantage of
an always-on network; they allow peer-to-peer interac-
tions; and they do not mandate expensive propagations.
They, however, exhibit their own problems when ex-
posed to a mobile environment, a context that they have
not been designed for. A key problem that a system like
Gnutella [6] fails to address is consistency. For exam-
ple, a mobile user may issue read and write requests into
the network of devices from different entrance points,
and the user is not guaranteed a consistent view, as data
copies of different levels of freshness may coexist in dif-
ferent parts of the network. More recent wide-area peer-
to-peer file systems employ distributed hash table-based
(DHT-based) placement algorithms [2, 14, 20]. One
problem with this approach is that the hash algorithms
dictate the placement of data. On the other hand, in our
target environment, we need to be able to control data
placement and replication in a more flexible manner. (We
discuss other issues of DHT-based systems in Section 9.)

Cluster file systems allow data to be stored flexibly
in a fast LAN [1, 12, 23, 16]. These networks, how-
ever, have a simple, homogeneous topology that behaves
more like a storage backplane, allowing these systems
to freely manipulate cohesive distributed data structures.
In our target environment, we must exercise care not to
overuse weak networks. Data structures that are care-
lessly spread across many nodes separated by slow links,
for example, are unacceptable. Also, the work of keep-
ing distributed storage elements consistent needs to be
pushed to the background as much as possible.

2.3 Minimizing Foreground Propagations

Segank allows data stored on distributed devices or
owned by different users to be used without mandating
expensive foreground propagation among different de-

vices. This is one of the key features that differenti-
ates Segank from systems such as Coda and Bayou. A
Bayou client relies exclusively on a single device to sat-
isfy its read requests. Similarly, a Coda client relies on
its hoard (and the server in later enhancements.) In or-
der to “see” new data written by other clients, mandatory
propagation of all updates must occur to bring these de-
vices up-to-date. Such propagation can be expensive on
a weakly connected network. A Segank data consumer,
on the other hand, is not dependent on any single device.
Segank provides a fresh and consistent view of the en-
tire system even when none of the individual devices is
entirely “fresh” by itself.

3 Reading Data Using Segankast

Upon a read request, Segank needs to find out which
devices have the desired data, and it needs to choose a
device to retrieve the data from. In this section, we dis-
cuss the data location mechanism. We consider a single
reader in this section and defer the discussion of multi-
user sharing to Section 5.

A Segank user carries a small device that we call
a MOAD (MObile Air-linked Disk.) Transparent to
the user, the device plays four roles: (1) storing small
amounts of invalidation information that can be quickly
accessed to guarantee a consistent view of the system; (2)
optionally caching and propagating data to improve per-
formance; (3) providing short-range WiFi connectivity to
peer devices (via 802.11 or Bluetooth) whenever possi-
ble; and (4) providing wide-area connectivity to far-away
always-on devices (via a cellular modem) as a last resort
when faster connectivity is not available. We conjecture
that an industrial strength version of the MOAD can be
packaged in a form factor that is not much larger than a
wrist watch. There is, however, nothing special about the
hardware requirements of a MOAD, and a PDA or a lap-
top can serve as a MOAD if it has the required commu-
nication capabilities. In our prototype, a Compaq iPAQ
equipped with an IBM 1 GB Microdrive is used as the
MOAD.

3.1 Drawbacks of Location Maps

One plausible solution to the data location problem
is to maintain a mapping from an object ID to a list of
devices where a replica of the object can be found. The
map itself is too large to be stored on any one device or
to be replicated on all devices, so the map needs to be
distributed. To cope with a non-uniform network, the
system needs to be able to store and replicate pieces of
the map flexibly as it does data; so a higher-level map
of map is needed. This leads to a hierarchical map solu-
tion where the highest level map should be compact and
perhaps easier to manage.

3



This approach, however, has its drawbacks. Any data
movements, such as caching data at, pushing data to,
and evicting cached copies from devices, require reading
and/or updating the multi-leveled location map. These
operations may involve significant complexity as the sys-
tem must exercise care to keep various pieces of dis-
tributed state consistent with each other. These opera-
tions may also introduce extra costs associated with extra
network messages and I/Os. Furthermore, the location
map approach, in itself, does not answer the question of
which copy to actually read when there is more than one
to choose from.

3.2 Segankast

Segank does not use location maps. Instead, it em-
ploys a mechanism that is similar to multicast: the sys-
tem queries a number of devices until it locates one that
has the desired data. We call this mechanism Segankast.
Segankast is different from the data location mechanism
used in Gnutella [6] in two important ways: it guarantees
a consistent view of the system as a mobile user reads and
writes at different locations of the network (described in
Section 4.2); and it carefully controls the order, type, and
parallelism of the requests to optimize performance (de-
scribed in Section 3.3).

Segankast has several advantages over the use of loca-
tion maps for our purposes. The system may freely place,
move, replicate, or purge data on any device without
having to update location information stored elsewhere.
Each device is therefore autonomous. There is no risk
of data and its map becoming inconsistent with respect
to each other, and there are no complications resulting
from, for example, attempting to access map information
that is stored farther away than data, or map information
that is not reachable although the corresponding data is.

Like user-level multicast systems, Segankast requests
are issued over an overlay tree rooted at the current
reader device. The tree includes only the devices owned
by a single user. We do not envision this number of de-
vices in a single tree to be massive. The tree is location-
sensitive, so when a device is at a new location, a new
tree rooted at the device is constructed. Figure 1 shows
an example Segankast tree.

3.3 Optimizing Segankast Performance

There are two types of potential performance cost.
The first is the latency incurred querying devices that
do not contain the desired data. Segankast must care-
fully control the ordering of its queries. For example, if
the desired data is found across a wide-area or a modem
link, the extra time spent querying devices on a nearby
fast LAN is relatively insignificant. The second type of
potential cost is the network contention resulting from
multiple data replies. It should be noted, however, that

la

sb sd pas

boston1

boston2 boston3

home-dsl

ny1

ny2 ny3-WiFi

boston

ny

california

Figure 1: An example Segankast tree. A rectangle representsa “clus-
ter” and the circles are machines.

not all types of contention necessarily can lead to visible
Segankast cost. For example, suppose three hosts,A, B,
andC share a single fast LAN; ifA andB send reply data
to C in parallel, whileC forwards only one reply over a
modem link to a requesterR, even thoughA andB gen-
erate contention on the LAN, the contention is not visible
to R. These two types of potential costs can be traded off
against each other: for a small amount of data reply, for
example, minimizing the latency of the request is more
important than minimizing the contention of the replies,
so one may choose to increase the degree of parallelism
in Segankast. These goals make the optimization prob-
lem faced by Segankast quite different from that faced by
traditional user-level multicast systems [9, 4].

The problem of optimizing Segankast performance
has two sub-problems. One is determining the struc-
ture of the Segankast tree; and the other is deciding how
queries are forwarded on the chosen tree. We note that
the following Segankast strategies are only heuristics;
better solutions to the optimal Segankast problem may be
applicable to other contexts and they remain a research
focus.

3.3.1 Construction of Segankast Trees

Trees are constructed based on probing measurements.
The measurements and the resulting trees can be
“cached” and reused across sessions to minimize prob-
ing. Lighter-weight and simpler probing can then be used
to choose from appropriate existing trees.

Tree construction proceeds in two steps. Step one
constructsclusters, whose members are close to each
other and at approximately equal-distance from the sin-
gle reader device at the root. Each cluster is a subtree.
Step two connects the clusters to form a larger tree. The
cluster-based two-step approach allows us to simplify the
tree construction via divide-and-conquer.

We use the example in Figure 1 to illustrate the
heuristics used in tree construction. The example in-
cludes a DSL-connected home machine in New York,
two LAN-connected clusters in two offices in New York

4



and Boston, and a WAN-connected cluster of machines
in four cities in California (in colleagues’ offices, for ex-
ample).

In step one, we incrementally form clusters by con-
sidering the non-root nodes in increasing order of their
latencies from the root node. We begin with a single
cluster containing only the node (ny1) with the lowest
latency from the root (home-dsl). Incrementally, we
attempt to attach the next node to one of the previously-
added nodes. The position of attachment is determined
by a “cost” function that we describe below. In the exam-
ple, the costs of attachingny2 andny3-WiFi to ny1
are low, so all these nodes are declared to be in the same
cluster (ny). If regardless of where it is attached, the
“cost” of attaching a node is high (i.e., exceeds a heuris-
tic threshold), the node is declared to start a new cluster
of its own. For example, the cost of attachingla to any
node in the current set of clusters is high, so it starts a
new cluster.

We now define the cost function used. Letr be the
root node. Lett(r ← x) be the time spent sending a
block from x to r directly, andt(r ← y ← x) be the
time spent sending a block fromx to r via y. We define
thecostof attachingx to y to be:

t(r ← y ← x) − t(r ← x)

t(r ← y)

The numerator represents the penalty incurred by an
extra hop (which can be negative if the overlay route
is better than the Internet route), and it is normalized
against the distance to the intermediate node in the de-
nominator. At the end of step one, the heuristics produce
the three disconnected clusters in Figure 1.

Step two connects clusters to form trees. We build
separate trees to optimize for latency and bandwidth.
Latency refers to the cost of fetching a single data ob-
ject (a file block in our prototype). Bandwidth refers to
the rate at which a stream of blocks are fetched. Hints
available in softwares running on top of Segank can be
used to determine which tree to use. During this step,
we only consider the root nodes of the cluster subtrees
(ny1, boston1, andla in the example), and the root
of the tree (home-dsl). To form the Segankast tree
designed to optimize latency, we consider the complete
graph spanning these nodes. We annotate each edge by
the round-trip time of fetching a block between a pair of
nodes, and compute the shortest-path-tree rooted at the
root node. To form the Segankast tree designed to opti-
mize bandwidth, we annotate each edge of the complete
graph by the inverse of the edge bandwidth, and com-
pute the minimum-spanning-tree. In Figure 1, we show
how to connect the cluster subtree root nodes with the
reader device to form a complete tree designed to opti-
mize bandwidth.

3.3.2 Forwarding Segankast Requests

Upon receiving a request, each node in a Segankast tree
has two decisions to make: whether to forward the re-
quest in parallel to its children or sequentially, and the
type of messages to send. In terms of the second deci-
sion, there are two choices: a directfetch, or a test-and-
fetch that first queries which children (if any) have the
desired data and then issues a separate message to re-
trieve data from a chosen child. These two decisions can
be combined to form four possible ways of forwarding:
(1) parallel fetch, (2) parallel test-and-fetch, (3) sequen-
tial fetch, and (4) sequential test-and-fetch. Of them, the
first three possibilities are viable.

We use the following strategy to choose how to for-
ward requests at each node. If the message received from
the parent is a parallel test-and-fetch, we simply propa-
gate it in parallel to all children. If simultaneous replies
from all children can exceed the bottleneck bandwidth to
the reader device, we use parallel test-and-fetch. Other-
wise, we use parallel fetch. In the near future, we plan to
incorporate location hints of target data, and sequential
fetch, which is not currently used in the prototype, may
become appropriate.

4 Maintaining Consistency

When data is deleted or overwritten, devices that
house obsolete copies need to be “informed” so the stor-
age space can be reclaimed. Furthermore, we must en-
sure that Segankast does not mistakenly return obsolete
data even when a mobile user initiates requests from
different entrance points of the network. We desire to
achieve these goals without mandating foreground prop-
agations of either data or metadata. In this section, we
consider operations involving a single owner/writer, who
always has his MOAD device with him. We consider
sharing (reading/writing by multiple users) in Section 5.

4.1 Propagating the Invalidation Log

A naive solution is to send invalidation messages to
all devices belonging to the owner. Due to the non-
uniform network, however, some of the devices may be
poorly connected, so foreground invalidation is not al-
ways feasible. Lazy invalidation is especially appeal-
ing when the quality of connectivity may change sig-
nificantly due to mobility. For example, it may be de-
sirable to delay invalidating obsolete data stored on an
office computer until its owner, who has been creating
new data away from the office on his weakly connected
laptop, returns. Upon his return, however, we should not
force the user to immediately propagate either data or in-
validation information to the office computer while he
waits. Instead, the user should be able to start using the

5



system immediately without risking reading obsolete in-
formation. We now examine the details of lazy invalida-
tion.

Each write in Segank is tagged with a monotonically
incrementing counter, or atimestamp. (This is a lo-
cal counter maintained on the MOAD.) The sequence
of write operations in the increasing timestamp order is
called theinvalidation logof the system. Specifically,
the invalidation log entry of a write operation contains
the ID of the object written and the timestamp. Each de-
vice stores its data in a persistent data-structure that we
call a block store. The meta-data stored with each data
object includes the timestamp of the write operation that
created the data.

Each device also has a persistent data-structure to
store the invalidation log. Segank, however, does not
force any device (except a user’s MOAD, as we discuss
below) to store the complete invalidation log. In fact, the
portion of the invalidation log stored on a device may not
even be contiguous.

We assume that the MOAD houses the most complete
invalidation log as it follows the user (who is the sole
writer for the purpose of our present discussion). The
head of the log can be truncated once it has been sent
to all this user’s other devices. The size of the log is
bounded by the amount of new data writes performed in
a certain period of time, which should be smaller than
that of a location map, since a location map must map
all the data in the system. Parts of the log can also be
stored on other well-connected devices if the capacity on
the MOAD becomes a premium. Since the MOAD is
always with the user and it can communicate using at
least the wireless modem link, the entire invalidation log
should always be reachable. Also, it is easy to turn any
other device (a laptop, for example) into a MOAD sim-
ply by transferring the invalidation log onto it, provided
the device has the same communication capabilities as
the MOAD. Therefore, to simplify the rest of the discus-
sion, we assume that the device that a user works on is a
MOAD, and that it contains the entire invalidation log.

As the user works on a MOAD device and creates
data, new entries are appended to the invalidation log on
the device. This new tail of the log is propagated to other
devices in the background. Log propagation is a peer-to-
peer operation that can happen between any two devices.
If a device houses a piece of the log that another lacks,
then log propagation can be performed. For efficiency,
in the normal case, log propagation is performed along
the edges of the Segankast tree, especially those that cor-
respond to high-quality network links. It must be noted,
however, that all propagation is performed in the back-
ground.

Having received a portion of the log, a device may
decide to “play” the log entries onto its block store at

any convenient time. Playing a log entry onto the block
store means discarding any data that is overwritten by the
operation in the entry. For correctness (especially of the
snapshot design described in Section 5.2), log entries are
played only in strict timestamp order. We definefresh-
nessof a device to be the timestamp of the last log entry
played onto it. Devices other than the MOAD are not
expected to store the log forever. Log fragments may be
discarded at any time after having been played.

Note that only the invalidation records need to be
propagated in the background and no data exchange is
necessary to ensure a consistent view of the Segank sys-
tem. The amount of the invalidation information should
be at least three orders of magnitude smaller than that of
data. This is in contrast to existing systems where data
and metadata propagations are intertwined in the same
logs [11, 13, 14, 18, 22].

All the devices in a Segank system are very much
similar to each other. One difference between the MOAD
and the other devices is that the MOAD is guaranteed to
have the most complete invalidation log. (Although as
we have said, even this difference is not strictly neces-
sary.) As long as the MOAD is with the user, it ensures
fast access to the invalidation information, which as we
describe in the next section, is sufficient to ensure a con-
sistent view of the system without mandating any type of
foreground propagation.

4.2 Querying Invalidation Logs for Reads

The discussion so far may seem to have implied that
it is necessary to bring a device up-to-date by first play-
ing invalidation records to it before the system can allow
the device to participate in the Segankast protocol to sat-
isfy reads. Such a requirement would have violated our
requirement of avoiding mandatory foreground propaga-
tions. We now explain how this is not the case.

Suppose a user is working on his laptop MOAD de-
vice with the most complete invalidation log. We main-
tain a sufficiently long tail of the invalidation log in a
hash-table like data-structure that supports the following
operation: given an object ID, it locates the last write
(and the corresponding timestamp) to that object in the
tail. We refer to this portion of the invalidation log as the
“queryable log.” Upon a read request, the system queries
the queryable log to look for the latest write to the re-
quested object. If an entry for the object is found, the
system launches a Segankast request, specifically asking
for an object with the timestamp found in the queryable
log. When any device (including the local device) re-
ceives this Segankast query, without regard to its own
freshness value, it queries its block store for the object
with the specified timestamp. When the data is found on
some device, the read request is satisfied.

If no entry for the object is found, it implies that the

6



data has not been overwritten during the entire time pe-
riod reflected in the queryable log. Suppose the head
of the queryable log on the MOAD has a timestamp of
t0. The system then launches a Segankast request asking
only devices with freshness at leastt0 − 1 to respond.

An invariant of the system is that all the devices
reachable by Segankast at this moment must be at least
as fresh ast0 − 1. This invariant, however, does not im-
ply that the complete invalidation log must be queryable:
older portions of the invalidation log that are kept for
currently-unreachable devices need not be queryable. A
device can be beyond the reach of Segankast because, for
example, it is currently disconnected, in which case there
is no danger of reading obsolete data from it. When such
a device later becomes reachable again, the system must
restore the invariant by either making more of the older
portion of the log queryable, or by playing this older por-
tion of the log to the newly connected device to upgrade
its freshness up tot0−1. This invariant makes it possible
to cache the queryable tail of the invalidation log entirely
in memory, minimizing overhead paid on reads. Note
that this protocol handles disconnection without extra
provisions. It also allows the system to flexibly choose
how aggressively the invalidation log should be propa-
gated: a weakly-connected device need not receive such
propagations while still being able to supply consistent
data. The overall effect of this protocol is that a consis-
tent view of the system is always maintained without any
mandatory foreground propagation, even though individ-
ual devices are allowed to contain obsolete information.

4.3 Data Movement and Discard

As explained earlier, an important feature of Segank
compared to some existing epidemic exchange-based
systems is that the propagation of the invalidation records
and that of data can be decoupled. Data movement
is mostly a performance optimization, and it is largely
decided by policy decisions. At one extreme, an ag-
gressive replication policy effectively can also support
disconnected operation. One goal of the Segank de-
sign is to allow individual devices or subsets of devices
to autonomously make data movement/discard decisions
without relying on global state or global coordination.
There are, however, still some constraints.

One of them concerns data movement: data is only
sent from fresher devices to less fresh devices. This con-
straint ensures that if the propagated data is overwritten,
the corresponding invalidation record is guaranteed to
not have been played to the data receiver prematurely.
Interestingly, there is no constraint on the relationship
between the timestamp of the propagated data and the
freshness of the receiver device. Another constraint is
that we need to exercise care not to discard a last lone
copy of the data. We adopt a simple solution: when data

is initially created, agolden copyis established; and a
device is not allowed to discard a golden copy without
propagating a replacement golden copy to another de-
vice.

5 Sharing with Snapshots

So far, we have only considered system support for a
single owner of his devices and data. We now consider
sharing using a “snapshot” mechanism—asnapshotrep-
resents a consistent state of an owner’s data “frozen” at
one point in time.

5.1 Requirements of Sharing
Let us examine an example scenario. On day 1, users

A andB are collaborating in a well-connected office.A

may wish to promptly see fresh data being continuously
produced on a desktop byB. Over night, some of the
data produced byB may be propagated to a laptop of
B’s. On day 2,B takes his laptop onto a train, where
only a cellular modem is available, and he continues to
modify some (but not all) of his data.

On day 2,A has a continuum of options available to
him when accessingB’s data in terms of how fresh he
desires the data to be. (1)A may decide that the data pro-
duced byB on day 1 is fresh enough. In this case,A’s
read requests are satisfied entirely byB’s office desktop
without ever using the cellular modem. Again, this is ef-
fectively supporting disconnected operation. (2)A may
desire to see a snapshot ofB’s data at, say, noon of day
2. For the data thatB has not modified by noon,A’s
read requests may be satisfied byB’s office desktop; but
occasionally,A may need to use the cellular modem to
access a piece of data produced byB before noon on day
2. (3) A may desire to see a new snapshot ofB’s data,
say, every minute.A now uses the cellular modem more
often.

We summarize some requirements. First, consider
case (2) above. In order forA to read a piece of data writ-
ten byB shortly before noon,A should not have to wait
for B to flush all the data thatB has produced by then.
In fact, we should not even necessarily forceB to flush
its invalidation information. A should be able to read
whatever data whenever he desires on demand. In other
words, no mandatory propagation of any kind should be
necessary to guarantee a certain degree of freshness. This
requirement is not limited to case (2)—it is a general
property of Segank. Second, facing a non-uniform net-
work, a user should be able to precisely control when and
how often a new snapshot is created for the shared data
to trade off freshness against performance.

5.2 Snapshots
To support snapshots, we rely on a copy-on-write

feature in the block store. A snapshot is created or

7



deleted simply by appending a snapshot creation or dele-
tion record to the invalidation log. These operations are
instantaneous. The in-order propagation of the invalida-
tion log among the devices ensures that data overwrit-
ten in different snapshots is not inadvertently deleted.
Each snapshot is identified by asnapshot IDbased on a
monotonically-increasing counter kept persistent on the
MOAD. (This counter is different from the counter used
to assign timestamps to write operations.) The snapshot
named by the ID contains the writes that have occurred
between the creation of the previous snapshot and this
snapshot. In the rest of this discussion, the timestamp of
a snapshot is understood to be the timestamp of the cre-
ation record of the snapshot. Since a snapshot must be
internally consistent, the decision as to when to create or
delete a snapshot must be made by higher-level software
(e.g., the file system) or the user.

5.3 Read Sharing

When userA reads data created by userB, we call
A a foreign reader. The foreign reader first chooses a
snapshot of a desired recentness. To do this, the reader
device contacts a device belonging to the writer. To ob-
tain the most recent snapshot ID, the reader must contact
the MOAD owned by the writer.

Suppose the reader desires to read an object from a
snapshot with timestampTS. In the cases where either
the devices with the desired object have freshness at least
TS , or where the reader happens to have a long enough
tail of the invalidation log ending atTS , the description
of Section 4.2 still applies. In other cases, more gener-
ally, we need to extend the earlier description.

Recall that the read algorithm given in Section 4.2
requires the reader to query the invalidation log to en-
sure consistency. This querying yields a timestamp of
the desired data if it is written in the period covered by
the invalidation log, or the timestamp of the head of the
log. In this earlier discussion, when the reader and the
writer users are the same, the complete invalidation log
is available on the single user’s MOAD for fast querying.
In the case of a foreign reader, however, this assumption
no longer holds. A simple solution is to first query the
invalidation log stored on the remote MOAD owned by
the writer for the timestamp. Once the reader obtains the
timestamp, the rest of the read process remains the same
as described earlier. The disadvantage of this approach
is that the writer’s MOAD device may be weakly con-
nected, and querying it for all reads can be expensive.

To overcome the inefficiency, we note that fragments
of the invalidation log may have been propagated to other
devices (in the background), some of which may be bet-
ter connected to the reader device. Indeed, some or all
of the invalidation log fragments may have been propa-
gated to the reader device itself. One possible improve-

L0 S0

S1

S2

S3

L1

L2

fork merge

(a) (b)

L0 S0

S1

S2

S3
L1

L2

fork

L3

merge

Figure 2: Snapshots for write-sharing. (a) Without conflicts, (b) with
conflicts.

ment is to split each Segankast into two phases: a first
phase queries the devices to obtain the target timestamp
in the invalidation log fragments, and a second phase re-
trieves the data as described earlier. (A modified paral-
lel test-and-fetch strategy given in Section 3.3.2 is best
suited for these foreign reads.) In a more sophisticated
improvement, it is possible to combine these two phases
into a single one in certain cases. Due to lack of space,
we omit the details of these improvements.

The mechanism described above ensures that a for-
eign reader can read a snapshot of certain recentness
without having to wait for foreground propagation of ei-
ther data or the invalidation log. However, as we see
in Section 8, the data-less invalidation log can be propa-
gated efficiently in the background on most networks. By
default, Segank aggressively propagates the invalidation
log.

5.4 Write Sharing

We start by considering two writers (illustrated in
Figure 2.) The two users begin with a single consistent
file system. To start concurrent write-sharing, they per-
form a fork operation, which names the initial snapshot
asS0, and allows the two users to concurrently write into
two new snapshots,S1 andS2, in isolation. New updates
by one user are not visible to the other, until when the
two users desire to make their new data available to each
other by performing amergeoperation. Prior to the fork,
the invalidation log isL0. Prior to the merge, the two
users’ new writes result in two separate invalidation log
fragmentsL1 andL2.

The first step of the merge operation is conflict detec-
tion. This is an application-specific process that should
be dependent on the nature of the software running on
top of Segank. The three snapshotsS0, S1, andS2 are
available to the conflict detection process as inputs. In
our prototype, we lay a file system on top, and the three
snapshots manifest themselves as three distinct file sys-
tems. In theory, a possible way of implementing con-
flict detection in this case is to recursively traverse the
three file systems to identify files and directories that
have been modified and to determine whether the mod-
ifications constitute conflicts. This slow traversal, how-
ever, is not necessary. As modifications are made toS1

andS2, the higher-level software should have recorded

8



book-keeping information to aid later merging.
In our prototype, we modify the file system running

on Segank to capture path names of modified files and
directories. This information is summarized as a tree
of modification bits that partially mirrors the hierarchi-
cal name space. A node in this tree signifies thatsome
objects below the corresponding directory are modified.
This tree of modification information is logged sepa-
rately to the MOAD device and is cached. The conflict
detection is implemented by comparing the two trees. In
what we believe to be the common case of modifications
being restricted to a modest number of subdirectories,
this comparison can be quickly made even on a weak
connection. The amount of information exchanged be-
tween the two nodes should be far smaller than the inval-
idation logs. The details of such an application-specific
conflict detection mechanism, however, are not central to
the more general Segank system.

If no conflict is found (Figure 2(a)), the system au-
tomatically creates a merged snapshotS3. Due to the
lack of conflicts, the ordering ofL1 andL2 is irrelevant.
The invalidation log resulting inS3 is logically simply a
concatenation ofL0, L1, andL2. However, it is not nec-
essary to physically transfer the log fragments among the
devices. Since the ordering of log fragments in the sys-
tem invalidation log is determined by the timestamps of
the head entries of these fragments, a simple exchange
and reassignment of timestamps is sufficient to effect the
“logical concatenation”. For instance, the invalidation
log for the merged snapshot could be created by retain-
ing the entries fromL1 and assigning timestamps to the
new entries inL2 such that they logically succeed the
tail entry ofL1. The outcome of the merging process is
a consistent snapshot and a merged invalidation log that
both users can now use to satisfy their read requests in a
way similar to what is described in Section 5.3.

If conflicts are found (Figure 2(b)), an application-
specific resolver or user intervention is required. The
user is, again, given the three distinct file systems. With-
out loss of generality, suppose the user starts withS1 and
performs a sequence of manual file system modifications
to it, incorporating some desired modifications fromS2,
and ending up with a new snapshotS3, the result of re-
solving conflicts. These new modifications result in a
new invalidation log fragmentL3. AlthoughL1 andL2

contain invalidation log entries resulting from conflicting
updates, their ordering is still unimportant, because any
such entries should be superseded by entries inL3. The
outcome of this process is a single consistent invalida-
tion log that is logically the concatenation ofL0, L1, L2,
andL3. Again, no physical transfer of log fragments is
necessary to enable either user to read from a consistent
snapshotS3.

The above process can be generalized to more than

two concurrent writers by performing repeated pair-wise
merging. We note that the process shares some common
goals with the read-sharing mechanism. No foreground
propagation of data or invalidation is mandatory for the
concurrent writers to share consistent snapshots. As a
result, in the absence of conflicts, the latencies of all
snapshot operations can be kept low, enabling collabo-
rating users to perform these operations frequently when
they are well-connected, and to trade off recentness of
shared data against performance when they are weakly-
connected.

6 Exceptional Events and Limitations

6.1 Disconnected Devices

The Segank system is primarily designed for always-
on but non-uniform connectivity: disconnection is not a
main focus. Nevertheless, the handling of disconnected
devices has been mentioned throughout the previous sec-
tions. We now consolidate these descriptions and clarify
the limitations. First, possible disconnection and recon-
nection events cannot cause consistency violations. Nei-
ther invalidation log entries nor Segankast requests can
reach a disconnected device. Upon reconnection, in or-
der for the previously disconnected device to be eligi-
ble to return data, we must first restore an invariant (de-
scribed in Section 4.2).

Second, as explained in Section 4.3, how data is
moved is a policy decision, decoupled from the basic
data location and consistency mechanisms of Segank.
An important design goal of the Segank system is to ac-
commodate almost arbitrary policies. Under an aggres-
sive data replication policy tailored for disconnected en-
vironments, a Segankast should reach alternative replicas
instead of being limited by disconnected copies. Third,
if there is not enough time to replicate the freshest data,
the snapshot mechanisms described in Section 5 may al-
low an older consistent snapshot of the system to be read
instead. If one exhausts these options, data on a discon-
nected device would be unavailable until reconnection.
Although the Segank system is designed to allow flex-
ible data movement and replication policies, this paper
does not provide a systematic study of specific policies
designed to minimize potential disruption caused by dis-
connection and to optimize performance for various us-
age scenarios and environments. We plan to address this
limitation in future research.

6.2 Inaccessible MOAD

We intend to have the small MOAD device accom-
pany its owner at all times if the owner desires access
to the Segank system. Now suppose we would like to
loosen this restriction so that the user is still allowed ac-
cess at one of the Segank computers without his MOAD

9



device. The MOAD is like one of the many computers
managed by the Segank system, so in terms of the issues
of data consistency and data accessibility, the above de-
scriptions (Section 6.1) apply to the MOAD as well. The
MOAD, however, is special compared to the remaining
peer Segank devices, in that it houses the most complete
invalidation log, and access to this log is necessary for
ensuring data consistency.

As discussed in Section 4.1, one way of increasing the
availability of the complete invalidation log is to replicate
it on other well-connected devices so that the single for-
gotten MOAD does not become a problem. One can also
designate an alternate device (such as a laptop) to be the
replacement MOAD by copying the invalidation log onto
it and starting to append new invalidation log entries to it.
If the complete invalidation log is not sufficiently repli-
cated to be accessible and only an older portion of the log
is reachable, one may use this partial log and the snap-
shot mechanism (described in Section 5) to access data
in an older snapshot. Failing these options, one would be
unable to access the Segank system.

6.3 Backup and Restore

At least two factors complicate the handling of device
losses. First, because the Segank system can function as
a low-level storage system, the loss of a device can result
in the loss of a fraction of data blocks managed by the
system, making maintaining high-level system integrity
challenging. Second, the mobile and weakly connected
environments within which Segank operates mean that it
may not be always possible to dictate replication of data
on multiple devices. Therefore, our goal is not neces-
sarily guaranteeing the survival of each data item at all
times, which is not always possible; instead, our goal is
to maintain system integrity and preserving as much data
as possible when we face device losses. We rely on a
backup and restore mechanism for achieving these goals.

The same snapshot mechanism (Section 5) that we
use to enable sharing can be used to create consis-
tent backup snapshotsthat are incrementally copied to
backup devices. Backup devices can be introduced into
the Segank system in a flexible manner that is very much
similar to how regular devices are incorporated. At
one extreme, each device or each site can have its own
backup device; at another extreme, we can have a single
backup device (such as a tape) that is periodically trans-
ported from site to site to backup all devices onto a sin-
gle tape; an intermediate number of backup devices are
of course possible as well. Data belonging to a backup
snapshot can be deleted in a piecemeal fashion as they
are copied onto backup devices. During restore, one
needs to restore the latest snapshot that has all its par-
ticipating devices completely backed up. There are var-
ious ways of finding out the name of this snapshot and

examining the state recorded on all backup devices is an
obvious alternative. More details of the backup/restore
mechanism can be found in a technical report [5]. Note
that the set of “backup devices” are not fundamentally
different from the other storage devices managed by the
Segank system, so for example, even in absence of tape
drives, one can designate an arbitrary subset of the regu-
lar Segank devices as “backup devices,” from which we
can recover from the loss of remaining devices (such as
the potentially more vulnerable MOAD).

6.4 Other Issues

Due to lack of space, we describe the following is-
sues only briefly; more details can be found in a tech-
nical report [5]. Crash recovery in Segank is simple.
Communications that can result in modification of per-
sistent storage are made atomic. It is sufficient to recover
the block store on a crashed device locally, without con-
cerns of causing inconsistent distributed data structures.
Segank appears to the file system built on top as a disk
and provides only crash-consistent semantics. The file
system must run its own recovery code (such asfsck).
Adding or removing devices, locating names of devices
belonging to a particular user, and access control utilize
simple or existing mechanisms whose details we omit in
this paper.

7 Implementation

This section gives some implementation details that
are less fundamental: alternative choices could have been
made. For example, while the current implementation
works principally at the storage level, an entirely file
system-level solution could have worked too.

7.1 Volumes

We have developed the system on Linux. The owner
initially makes a slightly modified “ext2” file system on
a virtual disk backed by Segank and mounts it. Separate
file systems are mounted for each of the other users’ data
whose access has been granted. We call each of these file
systems avolume.

We use a pseudo block device driver that redirects
the requests sent to it to a user-level process via up-calls.
The user-level process implements the bulk of the Segank
functionalities. The unit of data managed by Segank
is a block, so it is principally a storage-level solution.
The object IDs used in Segank are 64-bit block IDs, and
each block is 4KB. The timestamps are also 64-bit. The
ext2 file system uses the lower 32 bits of a block ID, to
which a prefix consisting of bits representing users and
attributes is added by Segank. Modifications to the ext2
file system are needed for data sharing scenarios in terms
of acquiring and releasing snapshots, flushing in-kernel

10



caches, capturing the path names of modified files and di-
rectories for detecting conflicting write-sharing, and allo-
cating Inode numbers and block IDs in a way that ensures
that IDs allocated by different users do not collide.

Segank allows flexible data replication and migration
policies. We have implemented some simple ones. Each
owner may define several volumes, each with its ownat-
tributes: a volume can bemobile, shared, or stationary.
If the volume is defined mobile, the owner hints to the
system that she would like to have this data follow her,
and Segank attempts to propagate the data in the volume
to as many devices as possible. If the volume is defined
shared, the owner hints to the system that others may
need the data, and Segank attempts to propagate the data
to a well-connected device and to cache a copy on the
MOAD if possible. If the volume is defined stationary,
the user hints to the system that the data is most likely
to be needed only on this creator device, so no automatic
propagation is attempted. We recognize that these sim-
ple policies are unlikely to be adequate for many usage
contexts; and more sophisticated policies are part of our
ongoing research.

7.2 Block Store

The block store is a log-structured logical disk [3].
Because of the use of 64-bit block IDs (forming a sparse
address space), the block store employs an in-memory B-
tree to map logical addresses to physical addresses. The
block store accesses the physical disk using raw I/O via
the Linux /dev/raw/raw* interface, bypassing the
buffer cache. The invalidation log is stored in a desig-
nated subspace of the 64-bit address space of the block
store.

7.3 Connectivity

A responsibility of the connectivity layer is to route
to the MOAD regardless where it is and what physi-
cal communication interface it uses. A MOAD can be
reached via: (1) an ad hoc wireless network encompass-
ing both the requester and the target MOAD, (2) the In-
ternet which connects to a remote ad hoc network within
which the target MOAD is currently located, or (3) the
target MOAD’s cellular modem interface. In our im-
plementation, the first two cases of communication to a
MOAD use an identical and fixed IP address, while the
third case uses its own IP address.

To reach a MOAD in the first two cases, we need
a combination of an ad hoc routing mechanism and
“Mobile IP.” We have implemented our own version
of the “Ad hoc On-demand Distance Vector” (AODV)
routing algorithm based on the draft 9 specification of
AODV [17]. The implementation runs at user-level
and can support multiple network interfaces. For ex-
ample, a computer equipped with both an ad hoc net-

cmu

lan.princeton.edu

wifi.princeton.edu

intel-seattle

uclaucsd
caltech

cmu

lan.princeton.edu

wifi.princeton.edu

intel-seattle
ucsd

caltech

ucla

(a) (b)

Figure 3: Segankast trees. (a) The tree for optimizing latency, (b) the
tree for optimizing bandwidth.

work interface and a wired ethernet interface can partic-
ipate in Segankasts. We have used an existing Mobile
IP implementation: Dynamics HUT Mobile IP version
0.8.1. For point-to-point communication channels during
Segankasts, the implementation supports TCP and UDP
sockets and SUN-style RPCs. The experimental results
are based on TCP sockets.

8 Experimental Results

We first examine Segankast performance under a sin-
gle user. We then study performance of data sharing by
multiple users.

8.1 Segankast Performance

We now study the performance of reading data us-
ing Segankast under two usage scenarios. In the first
scenario, the user is at work accessing data on a mo-
bile device. The mobile device is connected to the wired
network through an ad hoc 802.11 link. The user owns
three other devices that are located in his office LAN, and
eight other devices located at five different cities that are
at varying distances from his current location. The mo-
bile device along with the eleven other storage devices
comprise the personal storage system for the user. We
will refer to this scenario asWiFi-Work. In the sec-
ond scenario (referred to asDSL-Home), the user comes
home and connects to the Internet using a DSL connec-
tion. The eleven other devices are accessible over the
DSL connection, but data accesses incur a substantially
higher latency.

The mobile device we use in our experiments is a Dell
Inspiron Laptop with a 650 MHz, Intel Pentium III pro-
cessor, 256 MB of memory, and a 10 GB, IBM Travelstar
20GN disk. The remaining devices are PlanetLab [19]
nodes, which are either Dell Precision 340 workstations
or Dell Poweredge 1650 servers. Table 1 lists for each
data source, the average latency for the reader to access
a single 4 KB block from the source and the average
bandwidth attained by the reader in accessing a stream
of blocks from the same source under the two usage sce-
narios.

Figure 3 shows the trees determined by our tree build-
ing algorithm for optimizing latency and bandwidth in

11



Scenario Data Source Latency Bandwidth
(ms) (MB/s)

princeton 15 0.49
WiFi-Work cmu 45 0.42

intel-seattle 157 0.32
caltech 160 0.37
ucsd 173 0.36
ucla 177 0.32
princeton 140 0.068

DSL-Home cmu 160 0.065
intel-seattle 189 0.065
caltech 198 0.063
ucsd 223 0.063
ucla 243 0.062

Table 1: Performance of accessing data blocks directly from
devices at different locations.

theWiFi-Work scenario. The tree built for optimizing
latency is built using the shortest-path-tree calculation on
a complete overlay graph, where each edge is annotated
with the cost of fetching a block between the correspond-
ing pair of nodes. The overlay paths from the mobile
node through an intermediatelan.princeton.edu
device perform better than the direct paths, and hence
the mobile node has only one child. The resulting tree
is still shallow since it is built to optimize for latency
with the intermediate nodes capable of operating with
large fan-outs due to the small payloads associated with
fetching a block. On the other hand, the tree for opti-
mizing bandwidth is built using the minimum-spanning-
tree algorithm and is designed to minimize contention
and maximize the use of high bandwidth links. The re-
sulting tree organizes the devices into more levels. A
parallel test-and-fetch strategy is used for propagating re-
quests within thelan.princeton.edu and thecmu
clusters since the nodes in the two clusters compete for
bandwidth on a local area network. A parallel fetch strat-
egy is used for the other connections since the cumula-
tive bandwidth of the corresponding WAN flows was de-
termined to be less than the bottleneck bandwidth of the
parent nodes.

The Segankast trees for theDSL-Home scenario are
similar to the ones constructed for theWiFi-Work sce-
nario. The reader achieves the lowest latency and the
highest bandwidth to alan.princeton.edu device.
Therefore, thelan.princeton.edu device is desig-
nated as its child in both trees. Furthermore, given the
high latency and the low bottleneck bandwidth for the
DSL connection, the reader can not sustain more than
one child; if the reader has multiple children, two si-
multaneous replies to a parallel fetch of a single 4 KB
block would be sufficient to overwhelm the bottleneck
bandwidth, while the round-trip message overhead asso-
ciated with a parallel test-and-fetch is equally unattrac-

tive. Thelan.princeton.edu device is, therefore,
the sole child of the reader, and the overlay paths from
the reader to other devices could be more expensive than
the direct connection.

We evaluate Segankast by running two experiments.
The first experiment is designed to benchmark the per-
formance of reading small and large files. The dataset
consists of 25,000 small files each of size 4 KB and a
single large file of size 50 MB. The files are initially cre-
ated at the device that is farthest from the reader. We
measure the cost of reading the files using Segankast un-
der the following data distribution settings. (1) Remote:
only theucla device, which is farthest from the reader,
has all the data, (2) Nearby: in addition toucla, one of
the nearby nodes atlan.princeton.edu has all of
the files, and (3) Random:ucla has data, and each one
of the files is replicated at three other randomly chosen
locations.

For the second experiment, we use a disk trace col-
lected on a Dell Dimension 8100 workstation running
Windows 2000. During the monitoring process that
lasted many days, the user was performing activities that
are typical to personal computer users, such as read-
ing email, web browsing, document editing, and play-
ing multimedia files. We used some simple tools (such
astracelog andtracedmp) from Microsoft’s Win-
dows 2000 resource kits to collect these traces. We use a
portion of this trace comprising of 787,175 I/O requests
accessing a total of about 9.2 GB of data. We execute the
first 760,000 requests on eleven devices in a round-robin
fashion with a switch granularity of 20,000 requests. We
then measure the performance of the read operations con-
tained in the last 27,175 requests by executing them on
the twelfth device that is connected to the remaining de-
vices using a 802.11 connection (theWiFi-Work sce-
nario) or a DSL connection (theDSL-Home scenario).

For both experiments, we also measure the cost of
reading the files if there was an Oracle that provided the
location of the closest device that contains a replica of
the desired data, so that the reader can directly fetch the
data. This allows us to bound the performance of alter-
native mechanisms such as location maps that track the
location of the objects in the system. Recall that a lookup
of the location map could involve communication if the
entire location map is not locally available at the reader
and that location maps require protocol traffic to main-
tain consistency as the data objects are propagated or dis-
carded. Since these costs are not included in our Oracle
mechanism, the resulting read performance is a generous
upper-bound on the performance of an implementation
that uses location maps.

The results of the two experiments are shown in Ta-
bles 2, 3, and 4. The performance measurements reveal
that the overhead introduced by Segankast is minimal for

12



Data Segankast Oracle
Layout sread (s) lread (s) sread (s) lread (s)
Remote 563 132 552 122
Nearby 76 109 74 108
Random 234 107 226 105

Table 2: Read performance for theWiFi-Work scenario.
sread refers to reading the small files.lread is the large
file read.

Data Segankast Oracle
Layout sread (s) lread (s) sread (s) lread (s)
Remote 1266 711 1096 702
Nearby 781 689 778 687
Random 1126 693 1019 688

Table 3: Read performance for theDSL-Home scenario.

reading large files even when the file is fetched from a
remoteucla node through two intermediate hops. The
cost of routing data through higher latency overlay paths
and the overheads of forwarding requests and replies
are amortized by pipelining the block fetches. In the
WiFi-Work setting, the cost of performing small file
reads is only marginally worse than a direct fetch. How-
ever, in theDSL-Home setting, the tree designed to op-
timize latency has some overlay paths that are more ex-
pensive than the direct connections and the reads incur a
10-15% overhead when a copy of the required data is not
available at a nearbylan.princeton.edu device.

8.2 Sharing Experiments

We now examine the performance of Segank when
users share data. In the first set of experiments, the setup
consists of a writer node sharing a Segank volume with a
reader node. We measure the performance of the reader
as the writer creates new data in the volume and exports
a new read-only snapshot of the volume to the reader.
We define the “snapshot refresh latency” at the reader to
be the difference between the time when the reader ex-
presses the desire to read from the new snapshot for the
first time and the time when it is actually able to perform
its first operation on the new snapshot. A key result is
that the refresh latency is solely a function of the network
latency between the writer and the reader. In particular,
it is independent of the amount of new data created by
the writer in the new snapshot. We perform several ex-
periments where we vary (1) the type of the network link
(Table 5), and (2) the amount of new data written by the
writer before creating the new snapshot (Table 6).

Each experiment proceeds in three phases. The first
phase initializes the Segank volume at the reader. In the
second phase, the writer performs a number of updates
on the volume and then, creates a new read-only snapshot
of the volume. In the final phase, the reader performs a

Scenario Segankast Oracle
WiFi-Work 499 496
DSL-Home 1763 1714

Table 4: Execution time in seconds of a trace collected on a
personal computer.

LAN WiFi WAN Modem
BW (MB/s) 11 0.5 2.2 0.01
RTT (ms) 0.2 1.4 10 110

Table 5: Observed bandwidth and latency characteristics of the
network links used. LAN refers to a 100 Mb/s Ethernet. WiFi
refers to using two wireless 802.11 cards in the ad-hoc mode
at 11 Mb/s bit-rate. WAN corresponds to a wired connection
between two machines in Princeton and Yale Universities re-
spectively. Modem refers to connecting one of the machines via
a dial-up modem.

“refresh” operation to express its desire to read from the
new snapshot. Subsequently, a read-benchmark is run at
the reader to read data from the new snapshot.

In the initialization phase, two identical, but distinct,
directory trees are created. We name themT1 andT2.
Each tree is 5 levels deep, where each non-leaf directory
contains 5 sub-directories. In each directory, 10 files are
created, each of size 8 KB. Thus, each tree has a total of
781 directories and 7810 files, comprising about 64 MB
of data. The data and invalidation log created during the
initialization are at the reader only.

The update phase at the writer overwrites all files in
the first K levels inT1. We perform three sets of ex-
periments withK taking values 3, 4 and 5. We name
these experiments “Small”, “Medium” and “Large” re-
spectively.

The read-benchmark run at the reader involves read-
ing 1000 randomly-selected files from eitherT1 or T2.
Thus, it reads about 7.8 MB of file data, in addition to
reading some directory data and meta-data. In the rest
of this section, “reading” a particular tree means running
the read-benchmark for the given tree at the reader.

The left portion of Table 7 summarizes the results
from this set of experiments. For the results in this ta-
ble, each experiment is repeated 3 times, and the median
values are reported.

The refresh latency (column 3) is observed to be de-
termined only by the network latency between the reader
and the writer, and not by the amount of new data or in-
validation log created in the new snapshot. As shown
in column 9, complete data propagation can take several
tens of seconds or even minutes on slow networks. Thus,
compared to alternatives which mandate complete data
propagation and replay before allowing access to new
data, Segank incurs significantly lower user-perceived la-

13



Experiment Data (MB) Log (KB)
Small 2.6 5.2

Medium 12.9 25.8
Large 62.1 124.1

Table 6: Amount of data and invalidation log generated at the
writer in experiments of each type.

tency.
The columns labeled “Read Time” are listed to show

the overhead of lack of invalidation log propagation on
read performance of the reader. The base case, labeled
“LL” (for “Local” log and “Local” data), is the time for
reading any of the two trees immediately after the initial-
ization phase. Here, the complete invalidation log and all
the data to be read are present locally at the reader. The
column labeled “DD” (for “Distributed” log and “Dis-
tributed” data) lists the time for reading the updated tree
T1 immediately after the refresh operation. In this case,
the reader neither has the complete log, nor all the data.
The “DL” case is for reading the non-updated treeT2 im-
mediately after the refresh operation. The “LD” case is
for readingT1 after the new log (but not the new data)
has been propagated from the writer to the reader.

Comparing LL with DL, and LD with DD, we con-
clude that not propagating the log adds significant over-
head to the read performance for all network types except
the LAN. When the complete log is present locally, net-
work communication is needed only when the required
data is not present locally. When the complete log is
not present locally, each read request invariably results
in network communication. As column 8 illustrates, the
log propagation can usually be achieved in significantly
less time than data propagation. This validates Segank’s
default policy of being highly aggressive in propagating
the log, although the propagation is only performed in
the background.

A second set of experiments is performed to evaluate
Segank in a scenario where multiple users write to the
same Segank volume concurrently. The setup consists of
two nodes A and B. As in the single-writer case above,
each experiment here proceeds in three phases. In the
first phase, the volume is initialized to contain two trees
T1 andT2. The complete log and the data is propagated
to both A and B. Then, in the second phase, both A and
B write to the volume concurrently. Node A overwrites
files in the first few levels ofT1 while B does the same in
T2. To allow this, the system creates two snapshots, one
for each writer. During concurrent writing, new updates
performed by a node are visible only to that node. In
phase three, the two nodes decide to merge their private
snapshots. After the merge, each writer is able to read
the new data created by the other in the second phase.

In our experiments, nodes A and B update the volume

in non-conflicting ways. So, the system is able to merge
the two snapshots automatically. We define “merge la-
tency” as the difference between the time when the two
users express the desire to merge their versions, and the
time when the system has successfully merged both ver-
sions so that the users can see each other’s updates.

Results from this set of experiments are presented in
the right portion of Table 7. The merge latency (col-
umn 10) in this case is observed to be independent of
the amount of data. Note that the merge latency in-
cludes the time it takes for the system to detect if there
are any conflicts between the two versions. Since in
our experiments, updates of A and B are restricted to
separate directories, it takes only a constant number of
network messages to detect that there are no conflicts.
Segank does not require any log or data propagation
during automatic merging, unless there are conflicts in
which case user intervention or application-specific con-
flict resolvers are needed.

Columns labeled “DL” and “DD” are times for read-
ing T1 andT2 at A after the merge. Note that A does not
have the complete log after the merge, so all reads result
in network communication. These columns are similar
to the “DL” and “DD” columns for the read-sharing case.
The results for reading the trees at node B after merge are
similar, and therefore, omitted.

9 Related Work

We have discussed some existing systems in Sec-
tion 2.2. In addition to the issues already explored
about Bayou [18, 22], another important difference is
that Bayou is an application construction framework de-
signed for application-specific merging and conflict res-
olution, while Segank is a storage/file system level so-
lution. Segank allows many existing applications to run
transparently, but it provides little support for merging
and conflict resolution. An ongoing research topic is
to investigate how the techniques that Segank employs
to exploit a non-uniform network can be applied to a
Bayou-like system to eliminate some of its limitations
(such as its requiring full replicas).

Ivy [14] is a DHT-based peer-to-peer file system.
Segank is similar to Ivy in querying logs of multiple
users and using snapshots to support sharing. Segank’s
logs contain only object invalidation records, while Ivy’s
logs contain NFS operations and their associated data.
Playing the invalidation logs and creating snapshots in
Segank are light weight. Ivy effectively stores data twice,
once in its NFS operation logs, and once again when the
logs are played to create snapshots. Segank allows more
flexible data placement, movement, and replication than
Ivy’s DHT-based approach. This level of flexibility is es-
sential for the non-uniform network that it targets. As

14



Read Sharing Write Sharing
Link Expt. Refresh Read Time (s) Log-Prop. Data-Prop. Merge Read Time (s)
Type Type (ms) LL DD DL LD Time (s) Time (s) (ms) DD DL

Small 17 17 18 0.002 2 18 17
LAN Medium 0.4 16 16 17 16 0.004 3 0.8 15 16

Large 21 16 21 0.014 8 19 23
Small 27 25 19 0.014 6 29 30

WiFi Medium 2.9 16 29 25 21 0.049 26 6.0 34 32
Large 44 25 42 0.236 119 45 35
Small 70 69 18 0.042 2 72 70

WAN Medium 20 16 72 69 28 0.086 6 40 70 71
Large 78 69 68 0.131 43 79 79
Small 465 393 83 0.63 273 473 415

Modem Medium 130 16 664 398 347 2.6 1356 355 643 394
Large 1306 403 1212 12.3 6478 1312 402

Table 7: Timing results for the read-sharing and the write-sharing experiments.

a result of not maintaining precise location information,
however, Segank may query a number of devices before
reaching a device with the desired data. Segankast at-
tempts to minimize the cost of extra queries. DHT-based
querying may involve multiple network hops as well but
it is more scalable than Segankast, although due to the
way it searches multiple users’ logs, Ivy is not meant to
support a large number of users who share the same data.

Fluid Replication [10], an extension based on Coda,
introduces an intermediate level between mobile clients
and their stationary servers, called “WayStations,” which
are designed to provide a degree of data reliability
while minimizing the communication across the wide-
area used for maintaining replica consistency. We have
explained that one useful feature provided by Segank
compared to Coda is its treatment of all devices as equals.
This treatment allows more flexible direct device-to-
device interactions without relying on any server-based
infrastructure. For example, two arbitrary devices on
a speeding train should be allowed to interact sponta-
neously and directly. Fluid Replication is a middle point,
in the sense that WayStations are equals to each other
and this intermediate level allows clients to interact with
each other without requiring them to connect to a single
server. However, clients do not communicate with each
other directly under Fluid Replication.

Distributed databases [7, 15], like Bayou, use update
logs to keep replicas consistent. The purpose of the inval-
idation logs in Segank is not to replicate data. The inval-
idation log in Segank contains only invalidation records
and the system does not need to propagate data to quickly
bring other devices up-to-date.

JetFile uses multicasts to perform “best-effort” inval-
idation of obsolete data [8]. The mobile environment tar-
geted by Segank is different from the wide-area station-
ary environment targeted by JetFile. Instead of using a
“symmetric” solution for reads and writes, Segank uses

an “asymmetric” solution: Segankast for reads and log-
based lazy invalidation for writes. We believe that this
delayed and batched propagation of invalidation records
is more appropriate for a more dynamic and non-uniform
network. In addition, Segank relies on no centralized
components and has little distributed state.

Although we have called Segankast a “multicast-like”
solution, it is actually quite different from overlay multi-
cast systems [9, 4]. Typically, the goal of existing mul-
ticast systems is to deliver data to all machines in the
target set. In contrast, the goal of a Segankast is to re-
trieve a single copy from several possible locations: the
Segankast request need not always reach all possible lo-
cations, and one or more data replies may return. To ac-
complish this efficiently, we must carefully manage the
ordering of requests, and determine what requests to send
in parallel and what to send sequentially.

The PersonalRAID system [21] can be seen as a first
step towards realizing many of Segank’s goals, namely,
decoupling data and meta-data propagation, and provid-
ing a single uniform name space across multiple de-
vices. Segank, however, significantly differs from Per-
sonalRAID in many respects. (1) PersonalRAID is de-
signed to manage adisconnectedset of devices, which
forces it to maintain complete replicas at all devices (ex-
cept the mobile device.) Segank, on the other hand, is
able to use connectivity among devices to improve per-
formance and availability. (2) PersonalRAID is primar-
ily a single user system with no support for data shar-
ing among multiple users. Segank includes a distributed
snapshot mechanism to support sharing. (3) In Personal-
RAID, when two devices are brought together, the sys-
tem requires complete meta-data propagation to finish
before the user is allowed to operate. Segank mandates
no such propagation. (4) The use of a MOAD-like mo-
bile device is critical in PersonalRAID, since it is the sole
means of data and meta-data propagation. In Segank,

15



however, the use of MOAD is largely a convenience and
a performance optimization. (5) PersonalRAID provides
data redundancy, while Segank does not. Segank falls
back on backup/restore in case of a device loss.

10 Conclusion

We have constructed a mobile storage system that is
designed to manage storage elements distributed over a
non-uniform network. Like some systems for a wired
network, it needs to allow flexible placement and con-
sistent access of distributed data. Like systems designed
for disconnected operation and/or weak connectivity, it
needs to avoid over-using weak links. The Segank sys-
tem must account for a possible simultaneous coexis-
tence of a continuum of connectivity conditions in the
mechanisms that the system uses to locate data, to keep
data consistent, and to manage sharing. It allows a mo-
bile storage user to make the most of what a non-uniform
network has to offer without penalizing him with unnec-
essary foreground propagation costs.

Acknowledgments

We thank Charles Coglianese and Adam Wells for
their contributions to the initial Segankast design and im-
plementation. We also thank our shepherd Guillermo Al-
varez and other FAST reviewers for their comments on
this paper.

References

[1] A NDERSON, T., DAHLIN , M., NEEFE, J., PATTERSON, D.,
ROSELLI, D., AND WANG, R. Serverless Network File Systems.
ACM Transactions on Computer Systems 14, 1 (Feb. 1996), 41–
79.

[2] DABEK , F., KAASHOEK, M. F., KARGER, D., MORRIS, R.,
AND STOICA, I. Wide-Area Cooperative Storage with CFS. In
Proceedings of the ACM Eighteenth Symposium on Operating
Systems Principles(October 2001), pp. 202–215.

[3] DE JONGE, W., KAASHOEK, M. F., AND HSIEH, W. C. The
Logical Disk: A New Approach to Improving File Systems. In
Proc. of the 14th ACM Symposium on Operating Systems Princi-
ples(December 1993), pp. 15–28.

[4] DEERING, S. E., ESTRIN, D., FARINACCI , D., JACOBSON, V.,
L IU , C.-G.,AND WEI, L. An Architecture for Wide-Area Mul-
ticast Routing. InProc. of SIGCOMM’94(London, UK, August
1994), pp. 126–135.

[5] GARG, N., SHAO, Y., ZISKIND , E., SOBTI, S., ZHENG, F.,
LAI , J., KRISHNAMURTHY, A., AND WANG, R. Y. A Peer-to-
Peer Mobile Storage System. Tech. Rep. TR-664-02, Computer
Science Department, Princeton University, October 2002.

[6] Gnutella. http://gnutella.wego.com/.

[7] GORELIK, A., WANG, Y., AND DEPPE, M. Sybase Replication
Server. InProc. ACM SIGMOD Conference(May 1994), p. 468.

[8] GRONVALL , B., WESTERLUND, A., AND PINK , S. The design
of a multicast-based distributed file system. InOperating Systems
Design and Implementation(1999), pp. 251–264.

[9] JANNOTTI , J., GIFFORD, D. K., JOHNSON, K. L., KAASHOEK,
M. F., AND O’TOOLE, J. W. Overcast: Reliable Multicasting
with an Overlay Network. InProc. the Fourth Symposium on
Operating Systems Design and Implementation(October 2000).

[10] K IM , M., COX, L. P.,AND NOBLE, B. D. Safety, Visibility, and
Performance in a Wide-Area File System. InProc. First Confer-
ence on File and Storage Technologies(January 2002).

[11] K ISTLER, J.,AND SATYANARAYANAN , M. Disconnected Oper-
ation in the Coda File System.ACM Transactions on Computer
Systems 10, 1 (Feb. 1992), 3–25.

[12] LEE, E. K., AND THEKKATH , C. E. Petal: Distributed Virtual
Disks. InSeventh International Conference on Architectural Sup-
port for Programming Languages and Operating Systems(Octo-
ber 1996), pp. 84–92.

[13] MUMMERT, L. B., EBLING , M. R., AND SATYANARAYANAN ,
M. Exploiting Weak Connectivity for Mobile File Access. In
Proceedings of the ACM Fifteenth Symposium on Operating Sys-
tems Principles(December 1995).

[14] MUTHITACHAROEN, A., MORRIS, R., GIL , T. M., AND CHEN,
B. Ivy: A Read/Write Peer-to-Peer File System. InProc. of the
Fifth Symposium on Operating Systems Design and Implementa-
tion (December 2002).

[15] ORACLE CORPORATION. Oracle7 Server Distributed Systems:
Replicated Data, 1994.

[16] PEASE, D. A., MENON, J., REES, B., DUYANOVICH , L. M.,
AND HILLSBERG, B. L. IBM Storage Tank - A heterogeneous
scalable SAN file system.IBM Systems Journal 42, 2 (2003),
250–67.

[17] PERKINS, C., BELDING-ROYER, E., AND DAS, S. Ad Hoc On
Demand Distance Vector (AODV) Routing, 2001.

[18] PETERSEN, K., SPREITZER, M. J., TERRY, D. B., THEIMER,
M. M., AND DEMERS, A. J. Flexible Update Propagation for
Weakly Consistent Replication. InProc. the 16th ACM Sympo-
sium on Operating Systems Principles(October 1997), pp. 288–
301.

[19] PETERSON, L., ANDERSON, T., CULLER, D., AND ROSCOE,
T. A Blueprint for Introducing Disruptive Technology into the
Internet. InProc. First Workshop on Hot Topics in Networks
(HotNets-I)(October 2002).

[20] ROWSTRON, A., AND DRUSCHEL, P. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage
utility. In Proceedings of the ACM Eighteenth Symposium on
Operating Systems Principles(October 2001).

[21] SOBTI, S., GARG, N., ZHANG, C., YU, X., KRISHNAMURTHY,
A., AND WANG, R. Y. PersonalRAID: Mobile Storage for Dis-
tributed and Disconnected Computers. InProc. First Conference
on File and Storage Technologies(January 2002).

[22] TERRY, D. B., THEIMER, M. M., PETERSON, K., DEMERS,
A. J., SPREITZER, M. J.,AND HAUASER, C. H. Managing Up-
date Conflicts in Bayou, a Weakly Connected Replicated Storage
System. InProc. the 15th ACM Symposium on Operating Systems
Principles(December 1995), pp. 172–183.

[23] THEKKATH , C. A., MANN , T., AND LEE, E. K. Frangipani: A
Scalable Distributed File System. InProceedings of the ACM Six-
teenth Symposium on Operating Systems Principles(Oct. 1997).

[24] WAGNER, J. Getting to Know Your 3G.
http://www.internetnews.com/wireless/article/-
0,,10692964581,00.html, January 2002.

16


