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ABSTRACT
As users interact with the world and their peers through
their computers, it is becoming important to archive and
later search the information that they have viewed. We
present DejaView, a personal virtual computer recorder that
provides a complete record of a desktop computing experi-
ence that a user can playback, browse, search, and revive
seamlessly. DejaView records visual output, checkpoints
corresponding application and file system state, and cap-
tures displayed text with contextual information to index the
record. A user can then browse and search the record for any
visual information that has been displayed on the desktop,
and revive and interact with the desktop computing state
corresponding to any point in the record. DejaView com-
bines display, operating system, and file system virtualiza-
tion to provide its functionality transparently without any
modifications to applications, window systems, or operating
system kernels. We have implemented DejaView and eval-
uated its performance on real-world desktop applications.
Our results demonstrate that DejaView can provide con-
tinuous low-overhead recording without any user noticeable
performance degradation, and allows browsing, search and
playback of records fast enough for interactive use.

Categories and Subject Descriptors: C.2.4 Computer-
Communication-Networks: Distributed Systems–client/ser-
ver; D.4.5 Operating Systems: Reliability–checkpoint/re-
start; D.4.3 Operating Systems: File Systems Management

General Terms: Design, Experimentation, Performance

Keywords: Desktop Search, Virtualization

1. INTRODUCTION
As users spend more time interacting with the world and

their peers through their computers, it is becoming impor-
tant to archive and later search the knowledge, ideas and
information that they have seen through their computers.
However, finding the information one has seen among the
ever-increasing and chaotic sea of data available from a com-
puter remains a challenge. Exponential improvements in
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processing, networking, and storage technologies are not
making this problem easier. Computers are getting faster at
generating, distributing, and storing vast amounts of data,
yet humans are not getting any faster at processing it.

Some tools address aspects of this problem. Web search
engines focus on static information available on the web,
but do not help with a user’s personal repository of data,
dynamically generated and changing content created at the
moment a user has viewed a web page, or hidden databases
a user may have seen but are not available through web
search engines [16]. Similarly, desktop file search tools return
current files that may be of interest, but do not return results
from files that are no longer available, or from information
seen by the user but never actually saved to files.

Vannevar Bush’s Memex vision [4] was to build a device
that could store all of a user’s documents and general in-
formation so that it could be quickly referenced. Building
on that vision, we have created DejaView, a personal vir-
tual computer recorder that provides a complete WYSIWYS
(What You Search Is What You’ve Seen) record of a desktop
computing experience. DejaView enables users to playback,
browse, search, and revive records, making it easier to re-
trieve information they have seen before.

Leveraging continued exponential improvements in stor-
age capacity [30], DejaView records what a user has seen
as it was originally displayed with the same personal con-
text and layout. All viewed information is recorded, be it
an email, web page, document, program debugger output,
or instant messaging session. DejaView enables a user to
playback and browse records for information using functions
similar to personal video recorders (PVR) such as pause,
rewind, fast forward, and play. DejaView enables a user to
search records for specific information to generate a set of
matching screenshots, which act as portals for the user to
gain full access to recorded information. DejaView enables a
user to select a given point in time in the record from which
to revive a live computing session that corresponds to the
desktop state at that time. The user can time travel back
and forth through what she has seen, and manipulate the
information in the record using the original applications and
computing environment.

DejaView transparently provides these features by intro-
ducing lightweight virtualization mechanisms and utilizing
available accessibility interfaces. DejaView virtualizes the
display to capture and log low-level display commands, en-
abling them to be replayed at full fidelity at a later time.
It utilizes accessibility interfaces to simultaneously capture
displayed text and contextual information to automatically
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index the display record so it can be searched. It combines
display and operating system (OS) virtualization to decou-
ple window system and application state from the underlying
system, allowing them to be continuously checkpointed and
later revived, while only saving user desktop state, not the
entire OS instance. Checkpointing at this finer granularity,
shifting expensive I/O operations out of the critical path,
and using various optimizations such as fast incremental and
copy-on-write techniques are crucial to minimize any impact
on interactive desktop application performance. DejaView
combines logging and unioning file system mechanisms to
capture the file system state at each checkpoint. This en-
sures that applications revived from a checkpoint are given
a consistent file system view corresponding to the time at
which the checkpoint was taken.

DejaView’s ability to browse and search display content
and revive live execution provides a unique blend of func-
tionality and performance. By browsing and searching the
display record, the user is able to access content as it was
originally seen, and quickly find information at much faster
rates than if the information had to be generated by replay-
ing execution. By reviving the execution environment, the
user can go beyond a static display of content to fully manip-
ulating and processing information using the same applica-
tion tools available when the information was first displayed.

We have implemented DejaView as a set of loadable mod-
ules for Linux and the X Window System. It provide trans-
parent operation without modifying, recompiling, or relink-
ing applications, window systems, or OS kernels. To demon-
strate its effectiveness, we have evaluated its performance on
a wide-range of real-world desktop applications. Our results
show that DejaView can provide continuous low-overhead
recording without any user noticeable performance degra-
dation of the system. Downtime due to checkpointing when
running desktop application benchmarks is less than 10ms,
a time delay much shorter than what humans can readily
detect [35]. Storage requirements of DejaView records at
highest quality are comparable to PVRs in recording HDTV
resolution media programming. As terabyte storage capac-
ities become commonplace, DejaView enables high quality
WYSIWYS recording to be used for everyday use. Our re-
sults also show that DejaView can provide much faster than
real-time playback of records and supports browsing and
searching of records fast enough for interactive use.

This paper presents the design and implementation of
DejaView. Section 2 describes the DejaView usage model.
Section 3 gives an overview of the DejaView architecture.
Section 4 describes how display virtualization is used to
record, index, playback, and search the visual output of the
display. Section 5 describes how OS virtualization is used
to enable fast continuous checkpointing of live user comput-
ing sessions and the ability to revive user sessions from any
point in time. Section 6 discusses the implementation of our
DejaView prototype in Linux and experimental results using
real-world applications to evaluate the performance of Deja-
View. Section 7 discusses related work. Finally, we present
some concluding remarks and directions for future work.

2. USAGE MODEL
DejaView operates transparently within a user’s desktop,

recording its state and indexing all text as the user inter-
acts with the computer. The user can then later view the
recorded session by playing it back and can interact with

Figure 1: DejaView Screenshot showing widgets for play-
back and search inside a live desktop session. At the top
right, the Search (1) button brings up a dialog to perform
searches. At the bottom, the slider (2) allows the user
to browse through the recording, and the Take me back
(3) button revives the session at that point in time

any previous session state by reviving it. DejaView consists
of a server that runs a user’s desktop environment includ-
ing the window system and all applications, and a viewer
application. The viewer acts as a portal to access the desk-
top, sending mouse and keyboard events to the server which
passes them to the applications. Similarly, screen updates
are sent from the server to the viewer, which displays them
to the user. This functional separation allows the viewer
and server to run on the same or different computers.

The viewer provides three UI widgets to access DejaView’s
recording functionality, shown in Figure 1. A search button
opens a dialog box to search for recorded information, with
results displayed as a gallery of screenshots. A slider pro-
vides PVR-like functionality, allowing the user to rewind or
fast-forward to different points in the record, or pause the
display during live execution to view an item of interest. Fi-
nally, a Take me back button revives the desktop session at
the point in time currently displayed.

DejaView users can choose to trade-off record quality ver-
sus storage consumption to meet their particular environ-
ment and needs. By default, display data is recorded at the
original fidelity, but users can change the resolution and the
frequency at which display updates are recorded. Applica-
tion execution state is recorded according to a configurable
policy that adjusts the rate of checkpointing based on dis-
play output and user input.

DejaView captures displayed text and associates it with
visual output to index the display record for searching. Users
can create additional annotations by simply typing any-
where on the screen, resulting in the automatic indexing
of that text. Furthermore, DejaView allows the user to tag
the current display state by typing text, selecting it with the
mouse and pressing a combination key, to explicitly index
the selected text with a special annotation attribute.

When the user revives a past session, an additional viewer
window is used to access the revived session, using a model
similar to the tabs commonplace in today’s web browsers.
A revived session operates as a normal desktop session; its
new execution can diverge from the sequence of events that
occurred in the original recording. The ability to revive a
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past session is analogous to how a modern laptop can re-
sume operation after a period of hibernation to disk. Deja-
View extends this concept by allowing simultaneous revival
of multiple past sessions, that can run side-by-side indepen-
dently of each other and of the current session. The user
can copy and paste content amongst her active sessions.

Recording a user’s computer activity raises valid privacy
and security concerns [5], as this information could be ex-
ploited to infringe upon the user’s civil liberties or for crimi-
nal purposes. To mitigate some of the security concerns, user
input is not directly recorded; only the changes it effects on
the display are kept. Standard encryption techniques can
also be used to provide an additional layer of protection.
Addressing the larger privacy and security ramifications of
this computing model is beyond the scope of this paper.

3. ARCHITECTURE OVERVIEW
To support its personal virtual computer recorder usage

model, DejaView needs to record both the display and exe-
cution of a user’s desktop computing environment such that
the record can be played and manipulated at a later time.
DejaView must provide this functionality in a manner that
is transparent, has minimal impact on interactive perfor-
mance, can preserve visual display fidelity, and is space ef-
ficient. DejaView achieves this by using a virtualization ar-
chitecture that consists of two main components: a virtual
display based on THINC [2] and a virtual execution envi-
ronment based on Zap [28, 21]. These components leverage
existing system interfaces to provide transparent operation
without modifying, recompiling, or relinking applications,
window systems, or OS kernels.

DejaView’s virtual display decouples the display state from
the underlying hardware and enables the display output to
be redirected anywhere, making it easy to manipulate and
record. DejaView operates as a client-server architecture
and transparently provides a virtual display by leveraging
the standard video driver interface, a well-defined, low-level,
device-dependent layer that exposes the video hardware to
the display system. Instead of providing a real driver for a
particular display hardware, DejaView introduces a virtual
display driver that intercepts drawing commands, records
them, and redirects them to the DejaView client for display.
DejaView uses the THINC display command set and dis-
play driver, but with enhancements for recording and local
operation. All persistent display state is maintained by the
display server; clients are simple and stateless. By allow-
ing display output to be redirected anywhere, this approach
also enables the desktop to be accessed both locally and re-
motely, which can be done using a wide range of devices
given the client’s simplicity.

DejaView’s virtual execution environment decouples the
user’s desktop computing environment from the underlying
OS, enabling an entire live desktop session to be continu-
ously checkpointed, and later revived from any checkpoint.
Building on Zap, DejaView leverages the standard interface
between applications and the OS to transparently encapsu-
late a user’s desktop computing session in a private virtual
namespace. This namespace is essential to support Deja-
View’s ability to revive checkpointed sessions. By providing
a virtual namespace, revived sessions can use the same OS
resource names as used before being checkpointed, even if
they are mapped to different underlying OS resources upon
revival. By providing a private namespace, revived sessions

from different points in time can run concurrently and use
the same OS resource names inside their respective names-
paces, yet not conflict among each other. This lightweight
virtualization mechanism imposes low overhead as it oper-
ates above the OS instance to encapsulate only the user’s
desktop computing session, as opposed to an entire machine
instance. By using a virtual display and running its vir-
tual display server inside its virtual execution environment,
DejaView ensures that all display state is encapsulated in the
virtual execution environment so that it is correctly saved at
each checkpoint. Furthermore, revived sessions can then op-
erate concurrently without any conflict for display resources
since each has its own independent display state.

Building upon its core virtualization architecture, Deja-
View provides recording tools to save the display and execu-
tion state of the desktop, and playback tools to manipulate
and interact with this recorded state. Two sets of desktop
state are recorded at all times. The first consists of all vi-
sual output generated by the desktop, which allows users to
quickly browse and playback recorded content. The second
consists of all the application and file system state of the
desktop, which allows users to revive their desktop as it was
at any point in the past. Revived sessions behave just like
the main desktop session, and users are free to continue to
interact with them and possibly diverge from the path taken
in the original recording. Multiple sessions can coexist since
sessions are completely isolated from each other.

4. DISPLAY

4.1 Display Recording
DejaView leverages our previous work on the THINC [2]

virtual display architecture to display and record visual out-
put simultaneously. In particular, generated visual output
is duplicated into a stream for display by the viewer, and
a stream for logging to persistent storage. Both streams
use the same set of commands (specifically the THINC dis-
play protocol commands), enabling both efficient storage
and quick playback. Since display records are just collec-
tions of display commands, the display record can be easily
replayed either locally or over the network using a simple
application similar to the normal viewer.

DejaView can easily adjust the recording quality in terms
of both the resolution and frequency of display updates with-
out affecting the output to the user. Using THINC’s screen
scaling ability, the display can be resized to accommodate
a wide range of resolutions. For example, the display can
be resized to fit the screen of a PDA even though the origi-
nal resolution is that of a full desktop screen. The recorded
commands are resized independently, so a user can have the
recorder save display output at full screen resolution even if
she is currently viewing it at a reduced resolution to accom-
modate a smaller access device. The user can then go back
and view the display record at full resolution to see detailed
information that may not have been visible when viewed on
the smaller device. Similarly, the user can reduce the res-
olution of the display commands being recorded to reduce
its storage requirements. The user can also limit the fre-
quency at which updates are recorded by taking advantage
of THINC’s ability to queue and merge display commands
so that only the result of the last update is logged.

DejaView records display output as an append-only log
of THINC commands, where recorded commands specify a
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particular operation to be performed on the current contents
of the screen. DejaView also periodically saves full screen-
shots of the display for the following two reasons. First, it
needs a screenshot to provide the initial state of the dis-
play that subsequent recorded commands modify. Second,
if a user wants to display a particular point in the timeline,
DejaView can start with the closest prior screenshot and
only replay a limited number of commands, thereby enabling
desktop session browsing at real-time speeds. DejaView
records display output in a manner similar to an MPEG
movie where screenshots represent self-contained indepen-
dent frames from which playback can start, and commands
in the log represent dependent frames which encode a change
relative to the current state of the display. Since screenshots
consume significantly more space, and they are only required
as a starting point for playback, DejaView only takes screen-
shots at long intervals (e.g. every 10 minutes) and only if
the screen has changed enough since the previous one.

By using display protocol commands for recording, Deja-
View ensures that only those parts of the screen that change
are recorded, thus ensuring that the amount of display state
saved only scales with the amount of display activity. If the
screen does not change, no display commands are generated
and nothing is recorded. The virtual display driver knows
not only which parts change, but also how they change. For
example, if the desktop background is filled with a solid
color, DejaView can efficiently represent this in the record
as a simple solid fill command. In contrast, regularly
taking snapshots of the full screen would waste significant
processing and storage resources as even the smallest of
changes, such as the clock moving to the next second, would
trigger a new screenshot. It could be argued that the screen-
shots could be compressed on the fly using a standard video
codec, which could convert a sequence of screenshots into
a series of smaller differential changes. However, this ad-
ditional computation significantly increases the overhead of
the system and may not provide a desirable tradeoff be-
tween storage and display quality for the synthetic content
of desktop screens. In contrast, DejaView’s approach knows
precisely what changes, what needs to be saved, and the best
representation to use when saving it.

DejaView indexes recorded command and screenshot data
using a special timeline file that is used to quickly locate the
screenshot associated with a given time. This file consists
of chronologically ordered, fixed-size entries of the time at
which a screenshot was taken, the file location in which its
data was stored, and the file location of the first display
command that follows that screenshot. This organization
allows for fast playback over the recorded data as described
in Section 4.3.

4.2 Text Capture
In addition to visual output, DejaView records contex-

tual information by capturing all text that is displayed on
the screen and using it as an index to the display record.
Contextual information includes data such as the on-screen
text, the window that it came from, the duration in which
the text was on the screen, etc. Because there is a wide
array of application-specific mechanisms used for rendering
text, capturing textual information from display commands
is often not possible. We considered using optical character
recognition (OCR) on display records, but found currently
available OCR technology to be slow and inaccurate for typ-

ical desktop screen contents. Instead, DejaView leverages
ubiquitous accessibility mechanisms provided by most mod-
ern desktop environments and widely used by screen readers
to provide desktop access for visually-impaired users [14].
These mechanisms are typically incorporated into standard
GUI toolkits, making it easy for applications to provide basic
accessibility functionality. DejaView uses this infrastructure
to obtain both the text displayed on the screen and use-
ful context, including the name and type of the application
that generated the text, window focus, and special proper-
ties about the text (e.g. if it is a menu item or an HTML
link). By using a mechanism natively supported by applica-
tions, DejaView has maximum access to textual information
without requiring any application or desktop environment
modifications.

DejaView uses a daemon to collect the text on the desk-
top and index it in a database that is augmented with a
text search engine. At the most basic level, the daemon be-
haves very similarly to a screen reader, as both programs
have similar functional requirements. At startup time, the
daemon registers with the desktop environment and asks it
to deliver events when new text is displayed or existing text
on the screen changes. As events are received, the daemon
wakes up, collects the new text and state from the applica-
tion, and inserts this information into the database.

Throughout the data collection process, DejaView’s dae-
mon needs to be mindful of any overhead it creates on the
interactive performance of the desktop. In particular, two
aspects of the accessibility mechanism need to be handled
with care. First, events are delivered synchronously, mean-
ing that applications block until event delivery is finished.
Second, the accessible components of applications are stored
as trees. These trees can grow as UI complexity increases,
and are extremely expensive to traverse; only one component
in the tree can be accessed at any point in time, and access-
ing each component requires continuous context switching
between the daemon and the application.

DejaView’s daemon minimizes both event processing time
and the number of queries to applications by keeping a num-
ber of data structures that exactly mirror the accessible state
of the desktop. At startup, the daemon traverses all the ap-
plications, and builds its own mirror tree. This tree is used
to keep an exact replica of the state of the desktop, which
can be traversed at a tiny fraction of the cost of traversing
the real accessible tree; the latter can take a couple sec-
onds and destroy interactive responsiveness. To minimize
event processing time, a hash table maps accessible compo-
nents to nodes in the mirror tree. As events are received,
the daemon can quickly query the corresponding node and
determine which parts of the tree need to be updated.

Keeping an exact replica of the text state of the desktop
also yields data that is valuable in providing searching ca-
pabilities to the recorded content. As events are generated,
the full contents of the tree are inserted and indexed into the
database. By indexing the full state of the desktop’s text
over time, DejaView is able to access the temporal relation-
ships and state transitions of all displayed text as database
queries. Consider, for example, a user that is looking for the
time when she started reading a paper, but all she recalls is
that a particular web page was open at the same time. If
text was only indexed when it first appeared on the screen,
this temporal relationship between the web page and the pa-
per would never have been recorded and the user would be
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unable to access the content of interest. DejaView’s indexing
strategy also allows it to infer text persistence information
that can be used as a valuable ranking tool. For example,
a user could be less interested in those parts of the record
when certain text was always visible, and more interested in
the records where the text appeared only briefly.

A limitation of our approach is that not every applica-
tion may provide an accessibility interface. For example,
while DejaView can capture text information from PDF doc-
uments that are opened using the current version of Adobe
Acrobat Reader, other PDF viewers used in Linux do not yet
provide an accessibility interface. However, our experience
has been that most applications do not suffer from this prob-
lem, and there is an enormous impetus to get accessibility
interfaces into all desktop applications to provide universal
access. The needs of visually impaired users will continue
to be a driving force in ensuring that applications increas-
ingly provide accessibility interfaces, enabling DejaView to
extract textual information from them.

4.3 Playback
Visual playback and search are performed by the Deja-

View client. Various time-shifting operations are supported,
such as skipping to a particular time in the display record,
and fast forward or rewind from one point to another. To
skip to any time T in the record, DejaView uses fast binary
search over the timeline index file to look for the entry
with the maximum time less than or equal to T. Once the
desired entry is found, DejaView uses the entry’s screen-
shot information to access the screenshot data and use it as
the starting point for playback. Subsequently, it uses the
entry’s command information to locate the command that
immediately follows the recovered screenshot. Starting with
that command, DejaView processes the list of commands up
to the first command with time greater than T. DejaView
builds a list of commands that are pertinent to the contents
of the screen by discarding those that are overwritten by
newer ones, thus minimizing the time spent in the playback
operation. The list is ordered chronologically to guarantee
correct display output. After the list has been pared of the
irrelevant commands, each command on the list is retrieved
from the corresponding files and displayed.

To play the display record from the current display until
time T, DejaView simply plays the commands in the com-
mand file until it reaches a command with time greater than
T. DejaView keeps track of the time of each command and
sleeps between commands as needed to provide playback at
the same rate at which the session was originally recorded.
DejaView can also playback faster or slower by scaling the
time interval between display commands. For example, it
can provide playback at twice the normal rate by only al-
lowing half as much time as specified to elapse between com-
mands. To playback at the fastest rate possible, DejaView
ignores the command times and processes them as quickly
as it can. Except for the accounting of time, the playback
application functions similarly to the DejaView viewer in
processing and displaying the output of commands.

To fast forward from the current display to time T, Deja-
View reads the timeline index file and plays each screen-
shot in turn until it reaches a screenshot with time greater
than T. It then finds the tuple in the timeline file with
the maximum time less than or equal to T, which corre-
sponds to the last played screenshot, and uses the tuple to

find the corresponding next display command in the com-
mand file. Starting with that command, DejaView plays all
subsequent commands until it reaches a command with time
greater than T. Rewind is done in a similar manner except
going backwards in time through the screenshots.

4.4 Search
In addition to standard PVR-like functionality, DejaView

provides a mechanism that allows users to quickly search
recorded display output. DejaView search uses the index
built from captured text and contextual information to find
and return relevant results. In the simplest case, DejaView
allows users to perform simple boolean keyword searches,
which will locate the times in the display record in which
the query is satisfied. More advanced queries can be per-
formed by specifying extra contextual information. A useful
query users have at their disposal is the ability to tie key-
words to applications they have used or to the whole desk-
top. For example, a user may look for a particular set of
words limited to just those times when they were displayed
inside a Firefox window, and further narrow the search by
adding the constraint that a different set of words be visible
somewhere else on the desktop or on another application.
Users can also limit their searches to specific ranges of time
or to particular actions. For example, a user may search for
results only on a given day and only for text in applications
that had the window focus. A full study of how desktop
contextual information can be used for search is beyond the
scope of this paper.

Another search mechanism is provided through annota-
tions. At the most basic level, annotations can be simply
created by the user by typing text in some visible part of
the screen since the indexing daemon will automatically add
it to the record stream. However, the user may have to
provide some unique text that will allow the annotation to
stand out from the rest of the recorded text. To help users
in this case, DejaView provides an additional mechanism
which takes further advantage of the accessibility infrastruc-
ture. To explicitly create an annotation, the user can write
the text, select it with the mouse, and press a combination
key that will message the indexing daemon to associate the
selected text with an attribute of annotation. The indexing
daemon is able to provide this functionality transparently
since both text selection and key strokes events can be de-
livered by the accessibility infrastructure.

Search results are presented to the user in the form of a
series of text snippets and screenshots, ordered according
to several user-defined criteria. These include chronological
ordering, persistence information (ie. how long the text was
on the screen), number of times the words appear, and so
on. The search is conducted by first passing a query into
the database that results in a series of timestamps where
the query is satisfied. These timestamps are then used as
indices into the display stream to generate screenshots of the
user’s desktop. The operation is very similar to the visual
playback described in Section 4.3, with the difference being
that it is done completely offscreen, which helps speed up
the operation. DejaView also caches screenshots for search
results, using a LRU scheme, where the cache size is tunable.
This provides significant speedup in cases where the user has
to continuously go back to specific points in time.

Each screenshot generated is a portal through which users
can either quickly glance at the information they were look-
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ing for, or, by simply pressing a button, revive their desktop
session as it was at that particular point in time. In addition,
when the query is satisfied over a contiguous period of time,
the result is displayed in the form of a first-last screenshot,
which, borrowing a term from Lifestreams [10], represents a
substream in the display record. Substreams behave like a
typical recording, where all the PVR functionality is avail-
able, but restricted to that portion of time.

5. LIVE EXECUTION

5.1 Record
DejaView’s virtual execution environment decouples the

user’s desktop computing session from the underlying OS
instance so that it can be recorded by continuously check-
pointing all the OS state associated with the session. Deja-
View’s checkpoints are time stamped, enabling a user to
select a point in time from the display record to revive the
corresponding checkpoint.

DejaView checkpointing must satisfy two key requirements.
First, it must provide a coordinated and consistent check-
point of the execution environment and the many processes
and threads that constitute a desktop environment and its
applications; this is quite different from just checkpoint-
ing a single process. Second, it must have minimal impact
on interactive desktop performance. To address these re-
quirements, DejaView takes a globally consistent checkpoint
across all processes in the user’s desktop session while all
processes are stopped so that nothing can change, but then
minimizes the type and cost of operations that need to occur
while everything is stopped.

5.1.1 Consistent User Desktop Checkpointing
DejaView runs a privileged process outside of the user’s

virtual execution environment to perform a consistent check-
point of the session in four basic steps. First, the session is
quiesced and all its processes are forced into a stopped state,
to ensure that the saved state is globally consistent across
all processes in the session. Second, the execution state of
the virtual execution environment and all processes is saved.
Third, a file system snapshot is taken to provide a version
of the file system consistent with the checkpointed process
state. Fourth, the session is resumed.

Using a separate process makes it easier to provide a
globally consistent checkpoint across multiple processes in
a user’s session by simply quiescing all processes then tak-
ing the checkpoint; this avoids the complexity of having to
synchronize the checkpoint execution of multiple processes,
should they checkpoint themselves independently. Further-
more, if a process cannot run, for example if it is stopped
waiting for the completion of the vfork system call, it can-
not perform its own checkpoint. DejaView’s design allows
it to checkpoint at any time, even when not all processes
are runnable. Further details on how DejaView checkpoints
process state consistently across multiple processes are pre-
sented in previous work by two of the authors [21].

DejaView needs to capture a snapshot of the file system
state at every checkpoint since the process execution state
depends on the file system state. For example, if a process
in a user’s session is using the file /tmp/foo and is check-
pointed at time T, it would be impossible to revive the user’s
session from time T if the file was later deleted and could
not be restored to its state at time T. Furthermore, Deja-

View needs to be able to save the file system state quickly
without interrupting the user’s interaction with the system.

Approaches such as rsync [38], LVM [24], or logging file
system related system calls could be considered for saving
the file system state, but these have various performance
or functionality limitations. DejaView takes a simpler and
more efficient approach by leveraging file systems that pro-
vide native snapshot functionality, in which operations never
overwrite the state of an existing snapshot. Specifically,
DejaView uses a log structured file system [20], in which
all file system modifications append data to the disk, be
it meta data updates, directory changes or syncing data
blocks. Thus, every modifying transaction results in a file
system snapshot point. DejaView creates a unique associ-
ation between file system snapshots and checkpoint images
by storing a counter that is incremented on every check-
point in both the checkpoint image’s meta data and the file
system’s logs. To restore the file system, DejaView simply
selects the snapshot identified by the counter found in the
checkpoint image, and creates an independent writable view
of that snapshot.

5.1.2 Optimizing for Interactive Performance
DejaView checkpoints interactive processes without im-

pacting the user’s perception of the system by minimizing
downtime due to processes being stopped in two ways. First,
it shifts expensive I/O operations outside of the window of
time when processes are stopped so that they can be done
without blocking user interactivity. Second, it employs var-
ious optimizations to minimize the cost of operations that
do occur while processes are stopped.

DejaView employs three optimizations to shift the latency
of expensive I/O operations before and after the window
of time when processes are stopped. First, DejaView per-
forms a file system synchronization before the session is qui-
esced. While file system activity can occur between this
pre-snapshot and the actual file system snapshot, it greatly
reduces, and many times eliminates, the amount of data
needed to be written while the processes are unresponsive.

Second, before DejaView quiesces the session by sending
all the processes a stop signal, DejaView attempts to ensure
that the processes are able to handle the signal promptly,
which we call pre-quiescing. If a process is blocked in an
uninterruptible state, such as when performing disk I/O,
it will not handle the signal until the blocking operation
is complete. Meanwhile the rest of the processes will have
already been stopped, which may be noticeable to the user.
Therefore, DejaView waits to quiesce the session until either
all the processes are ready to receive signals or a configurable
time has elapsed.

Third, since disk throughput is limited, DejaView defers
writing the persistent checkpoint image to disk until after
the session has been resumed. Instead, the checkpoint is first
held in memory buffers that DejaView preallocates. Deja-
View estimates the size of the buffer based on the average
amount of buffer space actually used for recent checkpoints.

DejaView employs three optimizations to reduce down-
time while processes are stopped. First, to reduce down-
time due to copying memory blocks as well as the amount
of memory required for the checkpoint, DejaView leverages
copy-on-write (COW) techniques to enable it to defer the
memory copy until after the session has resumed. Instead
of creating an explicit copy of the memory while the session
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is quiesced, DejaView marks the memory pages as COW.
Since each memory page is automatically copied when it is
modified, DejaView is able to get a consistent checkpoint
image, even after the session has been resumed.

Second, to avoid the overhead of saving the contents of un-
linked files that are still in use, DejaView relinks such files
within the same file system before the file system snapshot is
performed. Since deleted files are removed from their parent
directory, their contents are not readily accessible on revive
for DejaView to open. However, their contents remain intact
for as long as the files remain in use. Relinking ensures that
these contents remain accessible without explicitly saving
them to the checkpoint image. To avoid namespace con-
flicts, the files are relinked within a special directory that is
not normally accessible within the virtual execution environ-
ment. When the session is revived, DejaView temporarily
enables the files to be accessible within the user’s session,
opens the files and immediately unlinks them, restoring the
state to what it was at the time of the checkpoint.

Third, since the memory state of the processes dominates
the checkpoint image, DejaView provides an incremental
checkpoint [8] mechanism that reduces the amount of mem-
ory saved by only storing the parts of memory that have
been modified since the last checkpoint. This optimiza-
tion reduces processing overhead since less pages need to
be scanned and saved to memory, and reduces storage re-
quirements since fewer pages need to be written to disk. For
DejaView to operate transparently and efficiently, we lever-
age standard memory protection mechanisms available on
all modern operating systems. The basic mechanism used
by DejaView is to mark saved regions of memory as read-
only and then intercept and process the signals generated
when those regions are modified.

During a full checkpoint, all the process’s writable mem-
ory regions are made read-only. DejaView marks these re-
gions with a special flag to distinguish them from regular
read-only regions. After the process is resumed, any at-
tempts to modify such regions will cause a signal to be sent
to the process. DejaView intercepts this signal and inspects
the region’s properties. If it is read-only and marked with
the special flag, then DejaView removes the flag, makes the
region writable again, and resumes the process without de-
livering the signal. If the flag is not present, the signal is
allowed to proceed down the normal handling path. During
the next incremental checkpoint, only the subset of memory
regions that have been modified is saved. DejaView is careful
to handle exceptions that occur when writing a marked re-
gion during system call execution to ensure that the system
call does not fail in this case. This case cannot be handled
by user-level checkpointing techniques [23, 33, 31] since, in-
stead of a signal being passed to the process, an error is
returned to the caller of the system call function. However,
using user-level interposition to monitor such system calls is
non-atomic and thus subject to race conditions [11].

DejaView’s incremental checkpoint implementation does
not restrict applications from independently invoking sys-
tem calls that affect the memory protection and the memory
layout of a process (e.g. mprotect, mmap, munmap, mremap).
DejaView intercepts those calls to account for the changes
they impose on the layout. For example, if the application
unmaps or remaps a region, that region is removed or ad-
justed in the incremental state. Likewise, if it changes the
protection of a region from read-write to read-only then that

region is unmarked to ensure that future exceptions will be
propagated to the application.

Checkpoints are incremental by default to conserve space
and reduce overhead, but full checkpoints are taken peri-
odically when the system is otherwise idle. This is for re-
dundancy and to reduce the number of incremental check-
point files needed to revive a session. For example, if full
checkpoints are on average ten times larger than incremen-
tal checkpoints, a full checkpoint every thousand incremen-
tal ones only incurs an additional 1% storage overhead.

5.1.3 Checkpoint Policy
DejaView needs to record enough state to enable a user

to revive any session that can be accessed from the display
record, while maintaining low overhead. Given the bursty
nature of desktops, where user input may trigger a barrage
of changes followed by long idle times, the naive approach
of taking checkpoints at regular intervals is suboptimal. It
would miss important updates that occurred in the interval,
while wastefully recording during periods of inactivity.

Instead, DejaView checkpoints in response to actual dis-
play updates. Since checkpointing is more expensive than
recording the display, DejaView minimizes overhead in two
ways. First DejaView reduces runtime overhead by limiting
the checkpoint rate to at most once per second by default.
The rate can be limited because display activity consists of
many individual display updates, but the user only notices
their aggregate effect.

Second, to reduce storage requirements, DejaView uses a
default checkpoint policy that employs three optimizations.
First, it disables checkpointing in the absence of user input
when certain applications are active in full screen mode. For
instance, DejaView skips checkpoints when the screensaver
is active or when video is played in full screen mode since
checkpoints are either unlikely to be of interest or do not
add any useful information beyond the display record.

Second, even if the display is modified, DejaView skips
checkpoints if display activity remains below a user defined
threshold, for example, if only a small portion of the display
is affected (by default, at most 5% of the screen). This
is useful to disregard trivial display updates that are not of
much interest to the user, such as the blinking cursor, mouse
movements, or clock updates.

Third, even when display activity may be low, DejaView
still enables checkpoints in the presence of keyboard input
(e.g. text editing), to allow users to return to points in
time at which they generated their data. In this case the
policy reduces the rate to once every ten seconds to match
the expected amount of data generated by the user, which
is limited by her typing speed. For an average person who
types 40 words per minute [29], this checkpoint rate trans-
lates to a checkpoint roughly every 7 words. This is more
than sufficient to capture most document word processing
of interest.

Note that the checkpoint policy is flexible in that the user
may tune any of the parameters. The policy is also exten-
sible and can include additional rules. For example, a user
may add a control that would disable checkpoints when the
load of the computer rises above a certain level.

5.2 Revive
DejaView allows a user to browse and search the display

record and revive the desktop session that corresponds to
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that point in time. To revive a specific point in time, Deja-
View searches for the last checkpoint that occurred before
that point in time. Since the desktop session is revived at
a slightly earlier time than the selected display record, it
is possible that some differences exist in the live display of
the revived desktop and the static display record. While
one could log all events during execution to support deter-
ministic replay of the desktop, DejaView does not do this
because of the extra complexity and overhead. More impor-
tantly, such visual differences are not noticeable by the user
since checkpoints rate can reach once per second if neces-
sary. When the session is revived, if the display was chang-
ing slowly, there will be minimal visual differences. On the
other hand, if the display was changing rapidly, the display
will continue to change, making any initial differences incon-
sequential.

Reviving a checkpointed desktop session’s consists of the
following steps. First, a new virtual execution environment
is created. Second, the file system state is restored as de-
scribed below. Third, a forest of processes is created to
match the set of processes in the user’s session when it was
checkpointed, and the processes then execute to restore their
state from the checkpoint image. This state includes pro-
cess run state, program name, scheduling parameters, cre-
dentials, pending and blocked signals, CPU registers, FPU
state, ptrace information, file system namespace, list of
open files, signal handling information, and virtual memory.
Once all processes have been restored, they are resumed and
allowed to continue execution. DejaView then signals the
viewer application to create a new connection to the revived
session, which is displayed in a new window in the viewer.

For the incremental checkpoints, reviving the user’s ses-
sion requires accessing a set of incremental checkpoint files
instead of a single checkpoint image file. To revive the ses-
sion, DejaView starts by reading in data from the current
(time selected) checkpoint image. When the restoration pro-
cess encounters a memory region that is contained in another
file, as marked by its list of saved memory regions, it opens
the appropriate file and retrieves the necessary pages to fill in
that portion of memory. This process then continues reading
from the current checkpoint image, reiterating this sequence
as necessary, until the complete state of the desktop session
has been reinstated.

Standard snapshotting file systems only provide read-only
snapshots, which may be useful for backup purposes, but are
ill-suited for supporting a revived session that requires read-
write semantics for its normal operation. To provide a read-
write file system view, DejaView leverages unioning file sys-
tems [46] to join the read-only snapshot with a writable file
system by stacking the latter on top of the former. This cre-
ates a unioned view of the two: files system objects, namely
files and directories, from the writable layer are always vis-
ible, while objects from the read-only layer are only visible
if no corresponding object exists in the other layer.

While operations on objects from the writable layer are
handled directly, operations on objects from the read-only
layer are handled according to the their specific nature. If
the operation does not modify the object, it is passed to the
read-only layer. Otherwise, DejaView first creates a copy of
the object in the writable layer, then handles the operation
there. While copying an entire file can degrade file system
performance when done often with large files, desktop appli-
cations typically do not modify large files; more commonly,

they overwrite files completely, which obviates the need to
copy the file between the layers.

DejaView’s combination of unioning and file system snap-
shots provides a branchable file system to enable DejaView
to create multiple revived sessions from a single checkpoint.
Since each revived session is encapsulated in its own virtual
execution environment and has its own writable file system
layer, multiple revived sessions can execute concurrently.
This enables the user to start with the same information,
but to process it in separate revived sessions in different
directions. Furthermore, by using the same log structured
file system for the writable layer, the revived session retains
DejaView’s ability to continuously checkpoint session state
and later revive it.

Analogous to resuming a hibernated laptop, the user does
not expect external network connections to remain valid af-
ter DejaView revives a session since the state of the peers
can not be guaranteed. Thus, when reviving a session, Deja-
View drops all external connections of stateful protocols,
such as TCP, by resetting the state of their respective sock-
ets; internal connections that are fully contained within the
user’s session, e.g. to localhost, remain intact. For the ap-
plication, this appears as a dropped network connection or
a disconnect initiated by the peer, both of which are sce-
narios that applications can handle gracefully. For instance,
a web browser that had an open TCP connection to some
web server would detect that the connection was dropped
and attempt to initiate a new connection. The browser will
be able to load new pages as the user clicks on hyperlinks
in a manner that is transparent to the user. Similarly, a
revived secure shell (ssh) will detect the loss of connection,
and report an error to the user. On the other hand, sock-
ets that correspond to stateless protocols, such as UDP, are
always restored precisely since the underlying operating sys-
tem does not maintain any protocol specific state that makes
assumptions about, or requires the cooperation of a remote
peer.

By default, network access is initially disabled in a re-
vived session to prevent applications from automatically re-
connecting to the network and unexpectedly losing data as a
result of synchronizing their state with outside servers. For
example, a user who revived a desktop session to read or re-
spond to an old email that had been deleted on the outside
mail server would not want her email client to synchronize
with that server and lose the old email. However, the user
can re-enable network access at any time, either for the en-
tire session, or on a per application basis. Alternatively,
the user can configure a policy that describes the desired
network access behavior per application, or select a preset
one. For new applications that the user launches within the
revived session, network access is enabled by default.

6. EXPERIMENTAL RESULTS
We have implemented a DejaView prototype system for

Linux desktop environments. The server prototype con-
sists of a virtual display driver for the X window system
that provides display recording, a set of user-space utilities
and loadable kernel modules for off-the-shelf Linux 2.6 ker-
nels that provide the virtual execution environment and the
ability to checkpoint and revive user sessions, and a snap-
shotable and branchable file system based on NILFS [20] and
UnionFS [46] that guarantees consistency between check-
points and file system state. For capturing text informa-
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Name Description

web Firefox 2.0.0.1 running iBench web browsing
benchmark to download 54 web pages

video MPlayer 1.0rc1-4.1.2 playing Life of David Gale
MPEG2 movie trailer at full-screen resolution

untar Verbose untar of 2.6.16.3 Linux kernel source tree
gzip Compress a 1.8 GB Apache access log file
make Build the 2.6.16.3 Linux kernel
octave Octave 2.1.73 (MATLAB 4 clone) running

Octave 2 numerical benchmark
cat cat a 17 MB system log file

desktop 16 hr of desktop usage by multiple users, including
Firefox 2.0.0.1, GAIM 1.5, OpenOffice 2.0.1, Adobe
Acrobat Reader 7.0, etc.

Table 1: Applications scenarios

tion, DejaView uses the accessibility infrastructure of the
GNOME desktop environment [14]. Indexing and search-
ing text is performed using the Tsearch extension [39] for
the PostgreSQL database system. A simple client viewer is
used to access the DejaView desktop locally or remotely and
provides display browse and search functions.

Using this prototype, we present experimental data that
quantifies the performance of DejaView when running a va-
riety of common desktop applications. We present results
for both application benchmarks and real user desktop us-
age. We focus on quantifying the storage requirements and
performance overhead of using DejaView in terms of the
cost of continuously recording display and execution. For
the application benchmark experiments, we did full fidelity
display recording and checkpoint once per second to pro-
vide a conservative measure of performance. For the real
user desktop usage experiments, we did full fidelity display
recording and checkpoint according to the policy described
in Section 5.1.3 to provide a corresponding real world mea-
sure of performance. We also measured the overhead of our
virtual display mechanism and virtual execution environ-
ment and found it to be quite small; we omit these results
due to space constraints.

We used the desktop application scenarios listed in Ta-
ble 1. We considered several individual application scenar-
ios running in a full desktop environment, including sce-
narios that created lots of display data (web, video, un-

tar, make, cat) as well as those that did not and were
more compute intensive (gzip, octave). These scenarios
measure performance only during periods of busy applica-
tion activity, providing a conservative measure of DejaView
performance since real interactive desktop usage typically
consists of many periods during which the computer is not
utilized fully. For example, our web scenario downloads a
series of web pages in rapid fire succession instead of hav-
ing delays between web page downloads for user think time
to stress DejaView and measure its worst-case performance.
To provide a more representative measure of performance,
we measured real user desktop usage (labeled as desktop in
the graphs) by aggregating data from multiple graduate stu-
dents using our prototype for all their computer work over
many hours.

For all our experiments the DejaView viewer and server
ran on a Dell Dimension 5150C with a 3.20 GHz Intel Pen-
tium D CPU, 4GB RAM, a 500GB SATA hard drive and
connected to a public switched Fast Ethernet network. The
machine ran the Debian Linux distribution with kernel ver-
sion 2.6.11.12 using X.org 7.1 as the window system, and

GNOME 2.14 as the desktop environment. The display res-
olution was 1024x768 for the application benchmarks and
1280x1024 for real desktop usage measurements. For our
web application scenario, we also used an IBM Netfinity
4500R server with dual 933 MHz Pentium III CPUs and
512MB RAM as the web server, running Linux kernel ver-
sion 2.6.10 and Apache 1.3.34.

Figure 2 shows the performance overhead of running Deja-
View for each application scenario. We ran each scenario
without recording, with each of the individual recording
components only, and with full recording, including display,
text indexing, and checkpoints once per second. Perfor-
mance is shown normalized to the execution time without
any recording. The results show that there is some overhead
for recording, but in practice there were no visible interrup-
tions in the interactive desktop experience and real-time in-
teraction was not affected. Full recording overhead is small
in almost all scenarios, including those that are quite display
intensive such as cat and full-screen video playback. In all
cases other than web browsing, the overhead was less than
20%. For video, the most time-critical application scenario,
the overhead of full recording is less than 1% and does not
cause any of the video frames to be dropped during display.
For web browsing, the overhead was about 115% because
the average download latency per web page was slightly
more than half a second with full recording while it was
.28 seconds without recording. We discuss the reasons for
this overhead below. However, real users do not download
web pages in rapid fire succession as the benchmark does,
and the page download latencies with full recording are well
below the typical one second threshold needed for users to
have an uninterrupted browsing experience [25]. The web
performance of DejaView with full recording is fast enough
in practice for interactive web browsing. We did not mea-
sure the performance overhead of the desktop scenario given
the lack of precise repeatability with real usage.

Figure 2 shows also how the DejaView recording com-
ponents individually affect performance. Both display and
checkpoint recording overhead are small in all scenarios, in-
cluding those that are quite display intensive such as cat

and full-screen video playback. The largest display recording
overhead is 9% for the rapid fire web page download, which
changes almost all of the screen continuously and causes the
web browser and DejaView server and viewer to compete
for CPU and I/O resources. The display overhead for all
other cases is less than 2%. As expected, gzip and octave

have essentially zero display recording overhead since they
produce little visual output. Interestingly, video has one of
the smallest display recording overheads of essentially zero.
Even though it changes the entire display for each video
frame, it requires only one command for each video frame,
resulting in 24 commands per second, a relatively modest
rate of processing. For checkpoint recording, the largest
overhead is for make, which is 13%. For other applications,
the checkpoint overhead is less than 5%. In practice, the
overhead is not typically noticeable to the user. Note that
these checkpoint overheads were for once per second check-
pointing and represent a conservative measure; the use of
the checkpoint policy in practice would reduce checkpoint
overhead even further.

Figure 2 additionally shows the index recording overhead,
which is small in all scenarios except for the web bench-
mark. The overhead is less than 4% for all cases except
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for the web benchmark. For the web benchmark, the index-
ing overhead is 99%, which accounts for almost all of the
overhead of full recording. Unlike the other applications,
the Firefox web browser creates its accessibility information
on demand, rather than simply updating existing informa-
tion. This dynamic generation of accessibility information
coupled with a weakness in the current Firefox accessibility
implementation results in much higher overhead when Deja-
View indexing records text information. We expect that this
overhead will decrease over time as its accessibility features
improve [9].

Figure 3 shows the average checkpoint times for each of
the application scenarios. The times are broken down into
five parts: pre-checkpoint, which includes pre-snapshot and
pre-quiesce time, quiesce, capture, which is the time it takes
to perform a copy-on-write capture of all memory and state,
file system snapshot, and writeback, which is the time to
write the data out to disk. Downtime due to checkpoint-
ing is the sum of quiesce, capture, and file system snapshot
times. Overall, the results show that application downtime
due to checkpoints is small enough that DejaView can per-
form full recording of live execution state without a notice-
able degradation in interactive application performance.

Figure 3 shows that application downtime for DejaView
checkpointing is minimal, less than 10ms for all application
benchmarks and roughly 20ms on average for real desktop
usage. Average downtime is higher for the real usage cases
because the users often ran multiple applications at once,
and the DejaView checkpoint policy results in fewer check-
points, so each checkpoint can take longer due to an in-
creased amount of changed state. Though an application
is unresponsive while it is stopped, these results show that
even the largest application downtimes are less than the typ-
ical system response time thresholds of 150ms needed for
supporting most human computer interaction tasks without
noticeable delay [35]. For instance, for video the applica-

tion downtime was only 5ms, which is small enough to avoid
interfering with the time-critical display of video frames.

Application downtime is primarily due to the copy-on-
write capture of memory state, though file system snapshot
time can account for up to half of the downtime as in the case
of untar, which is more file system intensive. The downtime
is minimized due to the incremental and COW checkpoint-
ing mechanisms, the pre-checkpoint operations, and defer-
ring the writing of the checkpoint image to disk after the
session has been resumed. For comparison purposes, we at-
tempted the same experiments without these optimizations
for minimizing downtime, but could not run them. The un-
optimized mechanism was too slow to checkpoint at the once
a second rate DejaView uses; it took too long to even write
the checkpoint data to disk.

Figure 3 shows that pre-checkpoint and writeback account
for most of the total average checkpoint time, which is under
100ms in most cases but is as high as 180ms for the more
complex user desktop. Since pre-checkpoint and writeback
overlap with application execution, they do not result in
downtime that would interfere with interactive performance.
The large majority of pre-checkpoint time is consumed by
the file system pre-snapshot. Pre-quiesce is on average very
small, but is essential because it has high variability and can
be as large as 100ms.

Figure 4 shows the storage space growth rate DejaView
experiences for each of the application scenarios. We decom-
pose the storage requirements into the amount of increased
storage DejaView imposes for display state, display index-
ing, process checkpoint and file system snapshot state. For
display, indexing, and process checkpoint state, we measure
the size of the files created to store them. However, for
file system snapshot state we report the difference between
the entire snapshot file system usage and what is visible
to the user at the end of the scenario, as the visible size
is independent of DejaView. We approximate the visible
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size by creating an uncompressed tar archive of the visible
state, resulting in a somewhat overestimate of the file sys-
tem storage growth rate. Since process checkpoint state is
easily compressible, we show both the storage growth rate
for uncompressed checkpoints and compressed checkpoints
by overlaying the latter on the former in the figure.

For all of the application scenarios except video and un-

tar, DejaView storage usage is dominated by checkpoint
sizes. Figure 4 shows that the storage growth rate for the
scenarios range from 2.5MB/s for gzip to 20MB/s for oc-

tave, assuming uncompressed checkpoints. Using gzip to
compress the checkpoints, the storage growth rate for oc-

tave drops to just over 4MB/s. With compressed check-
points, the storage growth rate of all the applications ex-
cept video and untar drops below 6MB/s. For video, dis-
play recording accounts for most of the storage growth at
4MB/s. Video requires more extensive display storage since
each event changes the entire display, even though it does
not create a high rate of display events. Video also has a
relatively high percentage of display state versus checkpoint
state because it is primarily a single process application that
does not create much new process state during its execution.
For untar, file system storage accounts for most of the stor-
age growth at 9MB/s. It requires more extensive file system
storage due to the extraction of a tar archive containing the
Linux kernel source tree, which contains lots of small files.
Since DejaView’s log structured file system needs to be able
to recreate any point in the checkpoint history, it includes
more overhead for file creation. This can be viewed in oppo-
sition to gzip where, despite having its large file continually
snapshotted, the file system usage is small.

More importantly, typical usage does not have as high of
a growth rate, resulting in much lower storage requirements
in practice. As shown in Figure 4, the storage space growth
rate for real user desktop usage is much more modest at
only 2.5MB/s with uncompressed checkpoints and 0.6MB/s
with compressed checkpoints. In comparison, HDTV PVRs
require roughly 9GB of storage per hour of recording, or
2.5MB/s. While DejaView storage requirements are greater
than HDTV PVRs during periods of intense application ac-
tivity, the desktop scenario results indicate that in practice
they are comparable to HDTV PVRs. Also, as disk storage
densities continue to double each year and multi-terabyte
drives become commonplace in PCs [30], the storage re-
quirements of DejaView will become increasingly practical
for many users.

The storage space growth rate of DejaView is low primar-
ily because of the checkpoint policy. To quantify its effec-
tiveness, we examined the checkpoint logs recorded during
the desktop usage. We found that DejaView skipped the
majority of the checkpoints, taking checkpoints on average
only 20% of the time. In the remaining time the policy
deferred checkpointing for 13% of the time due to lack of
display activity, 69% due to low display activity, and 18%
due to reduced checkpoint rate during period of text edit-
ing. We estimate that with no policy, the storage growth
rate would exceed 3MB/s for the compressed case. If we
also account for idle time (during which the screensaver is
running and DejaView skips checkpoints) the storage rate
would exceed 6MB/s.

We also conducted experiments that show DejaView’s ef-
fectiveness at providing access to recorded content, by mea-
suring its search, browse, and revive performance. We mea-

sured DejaView search performance by first indexing all dis-
played text for our application tests and desktop usage,
each in its own respective database, then issuing various
queries. For each application benchmark, we report the av-
erage query time for five single-word queries of text selected
randomly from the respective database. For real desktop
usage, we report the average query time for ten multi-word
queries, with a subset limited to specific applications and
time ranges, to mimic the expected behavior of a DejaView
user. Figure 5 shows that on average, DejaView is able to
return search results in no more than 10ms for the appli-
cation benchmarks and in roughly 20ms for real desktop
usage. These results demonstrate that the query times are
fast enough to support interactive search. Another impor-
tant measure of search performance is the relevance of the
query results, which we expect to measure based on a user
study; this is beyond the scope of this paper.

We measured browsing performance by using the display
content recorded during our application benchmarks and ac-
cessing it at regular intervals. However, we were careful not
to skew results in DejaView’s favor, by eliminating points in
the recording where less than 100 display commands were
issued from the previous point. Eliminating these points
makes sense since they belong to periods in which the system
was not actively used, and hence are unlikely to be of inter-
est to the user. Figure 5 shows that on average, DejaView
can access, generate, and display the contents of the stream
at interactive rates, ranging from 40ms browsing times for
video to 130ms for web. For real desktop usage, browsing
times are roughly 200ms. These results demonstrate that
DejaView provides fast access to any point in the recorded
display stream, allowing users to efficiently browse their con-
tent.

To demonstrate how quickly a user can visually search the
record, we measured playback performance of all the appli-
cation scenarios and measured how long it would take to play
the entire visual record. Figure 6 demonstrates that Deja-
View is able to playback an entire record at many times the
rate at which it was originally generated. For instance, Fig-
ure 6 shows that DejaView is able to playback regular user
desktops at over 200 times the speed it was recorded. While
some benchmarks, in particular ibench, do not show as much
of a speedup, we attribute this to the fact that they are con-
stantly changing data at the rate of display updates. Even in
the worst case, DejaView is able to display the visual record
at over 10 times the speed at which it was recorded. These
results demonstrate that DejaView can browse through dis-
play records at interactive rates.

For each of the application scenarios, Figure 7 shows the
time it takes to revive the user’s desktop session from when
a user clicks on “Take Me Back” to when the desktop session
is ready for use. Results are shown for using checkpoint files
that are not cached as well as for cached. For the uncached
case, revive times are all several seconds and are dominated
by I/O latencies. For the cached case, revive times are all
well under a second and commonly around half a second.
These times provide a more direct measure of the actual
processing time required to revive a session. Reviving using
checkpoint files that have been cached due to recent file ac-
cess more commonly occurs when users revive a session at a
time relatively close to the current time.

We show the time to revive the user’s session from five dif-
ferent points in time evenly spaced throughout the applica-
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tion’s execution. For each application, the bars in the graph
are ordered chronologically from left to right. The revive
times from uncached checkpoint data show an increase over
time, while those from cached checkpoint data are relatively
constant across each application benchmark. Since incre-
mental checkpointing is used, the revive times from check-
points later in the application executions involve accessing
more checkpoint files. However, the cost of accessing mul-
tiple files is not the reason for the increase in revive times
here; reviving from non-incremental checkpoints would show
a similar increase. The increase is instead largely due to in-
creased memory usage by the applications as they execute.
For reviving from uncached checkpoint files, the first revive
time is often significantly faster than the others because the
applications are not yet fully loaded. Subsequent uncached
revive times reflect moderate growth for most applications
because memory usage tends to increase over time, result-
ing in more saved memory state that needs to be read in
from disk to revive the session. The web benchmark shows
a substantial increase in revive times, growing by more than
a factor of two from the second to the last revive. The
reason for this is that the Firefox web browser is an applica-
tion whose memory usage grows more dramatically during
the benchmark, by more than a factor of two over its en-
tire course. The uncached performance could be improved
by demand paging; the current revive implementation re-
quires reading in all necessary checkpoint data into memory
before reviving. Reviving near the end of the application’s
execution is sometimes faster (e.g. untar) because the ap-
plication is doing more work in the middle of its execution
and using more memory than near the end. Overall, our
results show that the cost of accessing multiple incremental
checkpoint files while reviving a session is not prohibitive,
and is outweighed by its ability to reduce more frequent and
performance critical checkpoint times.

7. RELATED WORK
DejaView is created in the spirit of Vannevar Bush’s Mem-

ex [4] vision to build a device that could store all of a user’s
documents and general information so that they could be
quickly referenced. Inspired by the Memex vision, MyLife-
Bits [12] is centered around digitally capturing a lifetime
of Gordon Bell’s information with a focus on indexing and
annotating individual documents. Lifestreams [10] was de-
signed to minimize the time a user spends managing data
by creating a time-ordered stream of documents in one’s life
as a replacement of the current desktop metaphor. All of
these projects are complementary to DejaView. Neither ap-
proach provides DejaView’s ability to record and index a
user’s computing experience such that it can be revived to
consult the information it contains using its original native
applications.

Desktop search tools, such as those from Google [15], Mi-
crosoft [44], and Yahoo [48], enable a user to search one’s
desktop files. Connections [36] improves a user’s ability to
search by extracting information that links what files were
used with what programs and at what times to enable a
user to perform a more contextualized search. The closest of
these systems to DejaView is Stuff I’ve Seen (SIS) [6], which
also uses information about what a user has seen in the con-
text of search. While DejaView leverages the accessibility
framework already built into GUI toolkits and applications,
SIS requires writing gatherers and filters to extract contex-

tual information for each application and data type that is
used. Other projects such as Microsoft’s WinFS [45] are
attempts at replacing the traditional file system with a spe-
cialized document store that can be searched using natural
language search mechanisms. All of these approaches focus
only on searching files and typically only work for files in
certain formats. They are largely orthogonal to DejaView.

Apple’s Time Machine [1] enables a user to peruse and
recover previous states in the file system. While Apple’s
Time Machine focuses solely on storage state, DejaView’s
wider scope includes display recording and playback, and
allowing the user to search for state that has been seen but
not committed to disk. Moreover, DejaView enables a user
to revive and interact with a complete desktop session, not
just manipulate old file data.

Screencasting provides a recording of a desktop’s screen
that can be played back at a later time [41, 47]. There have
also been VNC-based approaches to recording desktop ses-
sions [22], but most of them are tailored towards improving
remote group collaboration. Screencasting works by screen-
scraping and taking screenshots of the display many times
a second. It requires higher overhead and more storage and
bandwidth than DejaView’s display recording, and the com-
mon approach of also using lossy JPEG or MPEG encoding
to compensate further increases recording overhead, and de-
creases display quality. DejaView goes beyond screencasting
by not only recording the desktop state, but by also extract-
ing contextual information from it to enable display search.
More recently, OpenMemex [26] is another system being in-
dependently developed that extends VNC-based screencast-
ing to provide display search by using offline OCR to ex-
tract text from the recorded data. DejaView’s use of avail-
able accessibility tools provides further contextual informa-
tion, such as the application that generated the text, which
is not available through OCR. Furthermore, DejaView pro-
vides the ability to revive and interact with a session instead
of only viewing the display.

Virtual machines (VMs) have been used to log or snapshot
entire OS instances and their applications to roll back exe-
cution to some earlier time [3, 7, 42, 43, 18]. Some of these
approaches simply recreate the execution state at a previous
point in time. Others deterministically replay execution ex-
actly in uniprocessor environments and simpler VM models
to enable debugging or intrusion analysis. However, imple-
menting deterministic replay in practice without incurring
prohibitive overhead remains a difficult problem especially
for multiprocessor systems [40]. Moreover, this form of re-
play requires re-executing everything for playback, which
may be desirable for debugging purposes but is expensive
for PVR-functionality for information retrieval. In contrast,
DejaView’s display recording and playback provides deter-
ministic replay of only display events for fast browsing and
playback, while its revive functionality allows recreation of
execution state at specific points in time. Unlike VM ap-
proaches, DejaView does not incur the higher overhead of
logging or checkpointing entire machine instances, which is
crucial to avoid degrading interactive desktop performance.

OS virtualization approaches like Capsules [34], Zap [28,
21] and OpenVZ [27] decouple processes from the underlying
OS instance so that applications can be transparently check-
pointed and restarted from secondary storage. DejaView dif-
fers from these approaches in reducing application downtime
from checkpointing by up to two orders of magnitude, mak-
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ing continuous checkpointing of interactive desktops possible
without degrading interactive performance. DejaView also
differs in enabling desktops to be revived from any previous
checkpoint, not just the most recent one. These benefits are
achieved by correctly and completely supporting incremen-
tal and COW checkpoints of multithreaded and multiprocess
cooperating desktop applications, moving potentially expen-
sive file system, quiescing, and writeback operations out of
the critical path to minimize application downtime, and pro-
viding file system snapshotting consistent with checkpoint-
ing to enable isolated execution from multiple checkpoints.
Previous incremental process checkpointing approaches [32,
13, 17, 19] rely on the hardware’s page protection mecha-
nism exported by the OS to determine when a page has been
written. DejaView uses the same approach but handles OS
interactions not covered by other approaches. Previous pro-
cess migration mechanisms introduced pre-copying [37] and
lazy-copying [49] for reducing downtime due to copying vir-
tual memory. DejaView builds on these ideas but applies
them to checkpoint-restart and introduces them for reduc-
ing downtime due to saving non-memory OS resources and
quiescing OS resources for checkpoint consistency.

8. CONCLUSIONS AND FUTURE WORK
DejaView introduces a new personal virtual computer re-

corder model to the desktop that enables What You Search
Is What You’ve Seen (WYSIWYS) functionality to help
users find, access, and manipulate information they have
previously seen. The unique blend of functionality for dis-
play recording, playback, browsing, search, and reviving live
desktop execution from any point in time are all transpar-
ently provided without any modifications to applications,
window systems, or OS kernels. The key innovations that
make this possible are (1) a virtual display mechanism to
record and playback user-viewable interaction, (2) a text
capture and indexing mechanism that makes novel use of
accessibility interfaces so that recorded visual output can be
searched, (3) checkpoint optimizations for recording appli-
cation execution state without affecting interactive desktop
performance, and (4) a coordinated checkpoint and file sys-
tem mechanism that combines log structured and unioning
file systems in a unique way to enable fast file system snap-
shots consistent with checkpoints, allowing checkpoints to
be later revived for simultaneous read-write usage.

We have implemented a DejaView prototype and evalu-
ated its performance on common desktop application work-
loads and with real desktop usage. Our results demonstrate
that DejaView recording adds negligible overhead, capturing
the display and execution state of interactive applications
with only a few milliseconds of interruption, which is typi-
cally not noticeable to end users even for more time-sensitive
applications such as movie playback. We show that Deja-
View’s playback can enable users to quickly view display
records at up to 270 times faster than real-time, and that
browsing and searching display information is fast enough
to be done at interactive rates. These results demonstrate
that DejaView’s personal virtual computer recorder provides
WYSIWYS functionality fast enough for interactive use and
without user noticeable performance degradation.

DejaView provides a new approach for information stor-
age and retrieval and opens up new directions for future
research. Some areas of future work include (1) conducting
user studies to explore usage patterns to better understand

how DejaView will be exploited by users over extended pe-
riods of time and how the user interface can be enhanced to
better fit daily usage needs, (2) quantifying and improving
the relevance and presentation of search results by explor-
ing the use of desktop contextual information such as time,
persistence, or the relationships among desktop objects, and
(3) addressing the privacy and security ramifications of this
emerging computing model.
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