Learning to Map Sentences to Logical Form:
Structured Classification with Probabilistic Categorial Grammars

1

Luke S. Zettlemoyer and Michael Collins
MIT CSAIL
Isz@csail.mit.edu, mcollins@csail.mit.edu

Abstract

This paper addresses the problem of mapping
natural language sentences to lambda—calculus
encodings of their meaning. We describe a learn-
ing algorithm that takes as input a training set of
sentences labeled with expressions in the lambda
calculus. The algorithm induces a grammar for
the problem, along with a log-linear model that
represents a distribution over syntactic and se-
mantic analyses conditioned on the input sen-
tence. We apply the method to the task of learn-
ing natural language interfaces to databases and
show that the learned parsers outperform pre-
vious methods in two benchmark database do-
mains.

Introduction

The training data in our approach consists of a set of sen-
tences paired with logical forms, as in this example.

This is a particularly challenging problem because the
derivation from each sentence to its logical form is not an-
notated in the training data. For example, there is no di-
rect evidence that the worstatesin the sentence corre-
sponds to the predicatatein the logical form; in gen-
eral there is no direct evidence of the syntactic analysis of
the sentence. Annotating entire derivations underlying the
mapping from sentences to their semantics is highly labor-
intensive. Rather than relying on full syntactic annotations,
we have deliberately formulated the problem in a way that
requires a relatively minimal level of annotation.

Our algorithm automatically induces a grammar that maps
sentences to logical form, along with a probabilistic model
that assigns a distribution over parses under the grammar.
The grammar formalism we use is combinatory categorial
grammar (CCG) (Steedman, 1996, 2000). CCG is a con-
venient formalism because it has an elegant treatment of a

Recently, a number of learning algorithms have been pro_/vide range of linguistic phenomena; in particular, CCG has
posed forstructured classificatiorproblems. Structure

d anintegrated treatment of semantics and syntax that makes

classification tasks involve the prediction of output labelsUS€ Of @ compositional semantics based on the lambda
y from inputsz in cases where the output labels have rich¢@/culus. We use a log-linear model—similar to models
internal structure. Previous work in this area has focusedS€d in conditional random fields (CRFs) (Lafferty et al.,
on problems such as sequence learning, wheiea se- 2001)—for the probabilistic part of the model. Log-linear
quence of state labels (e.g., see (Lafferty, McCallum, gmodels have previously been applied to CCGs_by Clark and
Pereira, 2001; Taskar, Guestrin, & Koller, 2003)), or nat-Curran (2003), but our work represents a major departure
ural language parsing, whegeis a context-free parse tree TOM previous work on CCGs and CRFs, in tisatucture

for a sentence (e.g., see Taskar et al. (2004)). learning(inducing an underlying discrete structure, i.e., the

grammar or CCG lexicon) forms a substantial part of our
In this paper we investigate a new type of structured classigpproach.

fication problem, where the goal is to learn to map natural _ i)]
language sentences to a lambda calculus encoding of thdf@PPing sentences to logical form is a central problem in
semantics. As one example, consider the following send€Signing natural language interfaces. We describe exper-
tence paired with a logical form representing its meaning: mental results on two database domains: Geo880, a set
of 880 queries to a database of United States geography;
and Jobs640, a set of 640 queries to a database of job list-
ings. Tang and Mooney (2001) described previous work on
these data sets. Previous work by Thompson and Mooney
The logical form in this case is an expression representing2002) and Zelle and Mooney (1996) used a subset of the
the set of entities that are states, and that also border Texa8e0880 corpus. We evaluated the algorithm’s accuracy in

Sentence: what states border texas
Logical Form: Az.state(z) A borders(z, texas)

returning entirely correct logical forms for each test sen-&) What states border Texas
tence. Our method achieves over 95% precision on both of Az-state(z) A borders(z, tezas)
these domains, with recall of 79% on each domain. These

are highly competitive results when compared to the previb) What is the largest state
ous work. arg max(Az.state(z), Az.size(x))

¢) What states border the state that borders the most states
Az.state(x) A borders(x, arg max(\y.state(y),
Ay.count(Az.state(z) A borders(y, z))))

2 Background

This section gives background material underlying our

learning approach. We first describe the lambda—calculus Figure 1:Examples of sentences with their logical forms.
expressions used to represent logical forms. We then de-

scribe combinatory categorial grammar (CCG), and the ex-

tension of CCG to probabilistic CCGs (PCCGs) through * Additiong_l quantifiers.: . The expressions involve
log-linear models. the additional quantifying termgount, argmax,

argmin, and the definite operator An example

of a count expression ieunt(Az.state(x)), which
returns the number of entities for whicktate(x)

is true. argmax expressions are of the form
arg max(Azx.state(zr), Ax.size(xz)). The first argu-
ment is a lambda expression denoting some set of en-
tities; the second argument is a function of typer).

In this case therg max operator would return the set

of items for whichstate(x) is true, and for which
size(z) takes its maximum valuearg min expres-
sions are defined analogously. Finally, the definite op-
erator creates expressions such@s:.state(z)). In

this case the argument is a lambda expression denot-
ing some set of entities(\z.state(x)) would return
Figure 1 shows several sentences from the geography the unique item for whichtate(x) is true, if a unique
(Geo880) domain, together with their associated logical item exists. If no unique item exists, it causes a pre-
form. Each logical form is an expression from the lambda supposition error.

calculus. The lambda—calculus expressions we use are

formed from the following items:

2.1 Semantics

The sentences in our training data are annotated with ex-
pressions in a typed lambda—calculus language similar to
the one presented by Carpenter (1997). The system has
three basic types, the type of entitiest, the type of truth
values; and, the type of real numbers. It also allows func-
tional types, for examplée, ¢), which is the type assigned

to functions that map from entities to truth values. In spe-
cific domains, we will specify subtype hierarchies for

For example, in a geography domain we might distinguish
different entity subtypes such as cities, states, and rivers.

2.2 Combinatory Categorial Grammars

° Constar_1ts: Constants can eithe_r be entities, _num_bers,The parsing formalism underlying our approach is that of
or functions. For exampléexasis an entity (i.e., it oo hinatory categorial grammar (CCG) (Steedman, 1996,
is of typee). state is a function that maps entities 0 5400y A CCG specifies one or more logical forms—of the

truth values, and is of typee, ?). size is @ function 450 gescribed in the previous section—for each sentence
that maps entities to real numbers, and is therefore that can be parsed by the grammar.

type (e, r) (in the geography domairsjze(x)returns
the land-area aof). The core of any CCG is a lexicon,. In a purely syntactic
version of CCG, the entries ifi consist of a word (lexical
e Logical connectors: The lambda—calculus expres- item) paired with a syntactic type. A simple example of a
sions include conjunction/(), disjunction {/), nega- CCG lexicon is as follows:
tion (—), and implication {).

Utah = NP
e Quantification: The expressions include universal Idaho := NP
guantification) and existential quantificatiord. borders := (S\NP)/NP

For exampledz.state(z) A borders(z, texas) is true _ . _
if and only if there is at least one state that borders!n this lexiconUtahandldahohave the syntactic typd P,

Texas. Expressions involvingtake a similar form. andbordershas the more complex tyde&\N P)/NP. A
syntactic type can be either one of a numbepomitive

e Lambda expressions:Lambda expressions represent categorieqin the example N P or S), or it can be aom-
functions. For exampledz.borders(x,texas) is a plex typeof the form A/B or A\ B where bothA and B
function from entities to truth values, which is true of can themselves be a primitive or complex type. The prim-
those states that border Texas. itive categoriesV P and.S stand for the linguistic notions

a) Utah borders Idaho b) What states border Texas
NP (S\NP)/NP NP (S/(S\NP))/N N (S\NP)/NP NP
utah Az.\y.borders(y,z) idaho Af g Az . f(x) Ag(z) Ax.state(x) Ax.Ay.borders(y,xz) texas

(S\NP) : S/(S\NP) i (S\NP)

Ay.borders(y, idaho)

Mg Az.state(x) A g(x)

Ay.borders(y, texag

S
borders(utah idaho)

S
Az.state(x) A borders(x,texas

Figure 2:Two examples of CCG parses.

of noun-phrase and sentence respectively. Note that a siapplication rules are then extended as follows:

gle word can have more than one syntactic type, and hen
more than one entry in the lexicon.

In addition to the lexicon, a CCG has a setofmbinatory

C

&) The functional application rules (with semantics):
a.A/B:f B:g = A:f(g)
b.B:g A\B:f = A:f(g9)

ruleswhich describe how adjacent syntactic categories irhule 2(a) now specifies how the semantics of the category

a string can be recursively combined. The simplest suc
rules are rules dunctional applicationdefined as follows:

(1) The functional application rules:
a.A/B B = A
b.B AAB = A

Intuitively, a category of the formd / B denotes a string that
is of type A but is missing a string of typ® to its right;
similarly, A\ B denotes a string of typd that is missing a
string of typeB to its left.

The first rule says that a string with typ¥/ B can be com-
bined with a right-adjacent string of tyge to form a new
string of typeA. As one example, in our lexicobprders
(which has the typ€S\ N P)/N P) can be combined with
Idaho (which has the typéV P) to form the stringoorders
Idaho with type S\ N P. The second rule is a symmetric
rule applying to categories of the ford\ B. We can use
this to combindJtah (type N P) with borders Idahqtype
S\ N P) to form the stringJtah borders Idahavith the type
S. We can draw a parse tree (or derivation)Js@h borders
Idahoas follows:

Utah borders Idaho
NP (S\NP)/NP NP
(S\NP)
S

Note that we use the notatien> and—< to denote appli-
cation of rules 1(a) and 1(b) respectively.

CCGs typically include aemantic typeas well as a syn-
tactic type, for each lexical entry. For example, our lexicon
would be extended as follows:

Utah = NP :utah
Idaho = NP :idaho
borders := (S\NP)/NP : Az \y.borders(y,z)

We use the notatiod : f to describe a category with syn-
tactic typeA and semantic typg. ThusUtah now has syn-
tactic type N P, and semantic typatah. The functional

h

A is compositionally built out of the semantics fdr/ B
andB. Our derivations are then extended to include a com-
positional semantics. See Figure 2(a) for an example parse.
This parse shows thattah borders Idahdnas the syntactic
type S and the semantidsorders(utah, idaho)

In spite of their relative simplicity, CCGs can capture a
wide range of syntactic and semantic phenomena. As one
example, see Figure 2(b) for a more complex parse. Note
that in this case we have an additional primitive categbry,
(for nouns), and the final semantics is a lambda expression
denoting the set of entities that are states and that border
Texas. In this case, the lexical itewhat has a relatively
complex category, which leads to the correct analysis of
the underlying string.

A full description of CCG goes beyond the scope of this
paper. There are several extensions to the formalism: see
(Steedman, 1996, 2000) for more details. In particular,
CCG includes rules of combination that go beyond the sim-
ple function application rules in 1(a) and 1(bpdditional
combinatory rules allow CCGs to give an elegant treatment
of linguistic phenomena such as coordination and relative
clauses. In our work we make use of standard rules of
application, forward and backward composition, and type-
raising. In addition, we allow lexical entries consisting of
strings of length greater than one, for example

the Mississippi NP : mississippi_river

This leads to a relatively minor change to the formalism,
which in practice can be very useful. For example, it is eas-
ier to directly represent the fact thiite Mississipprefers

'One example of a more complex combinatory rule is that of
forward composition

A/B:f B/C:g9g= A/C: Xz.f(g(x))
Another rule which is frequently used is thattgpe-raising
NP:f = S/(S\NP): Ag.g(f)

This would allow NP : Utah to be type-raised to a category
S/(S\NP) : Ag.g(Utah).

to the Mississippi river with the lexical entry above than it tures of this type. While these features are quite simple, we

is to try to construct this meaning compositionally from the have found them to be quite successful when applied to the

meanings of the determinéne and the wordMississippj Geo880 and Jobs640 data sets. More complex features are

which refers to the state of Mississippi when used withoutcertainly possible (e.g., see (Clark & Curran, 2003)). In the

the determiner. future, we would like to explore more general features that
have been shown to be useful in other parsing settings.

2.3 Probabilistic CCGs

.) 2.4 Parsing and Parameter Estimation
We now describe how to generalize CCGs to probabilis-

tic CCGs (PCCGs). A CCG, as described in the previoushVe now turn to issues of parsing and parameter estimation.
section, will generate one or more derivations for each senParsing under a PCCG involves computing the most prob-
tenceS that can be parsed by the grammar. We will de-able logical formL for a sentence,

scribe a derivation as a pail., T'), where L is the final

logical form for the sentence (e.@grders(utah,idaho) argmax P(L|S;0) = arg maXZ P(L,T|S;0)

in figure 2(a)), and’ is the sequence of steps taken in de- g b

riving L. We will frequently refer toT" as a parse tree.

A PCCG defines a conditional distributig?(L, T|S) over where thearg max is taken over all logical form& and the
possible(L, T) pairs for a given sentence hidden syntaxX” is marginalized out by summing over all
’ parses that produck. We use dynamic programming al-

In general, various sources of ambiguity can lead to a sergorithms for this step, which are very similar to CKY-style
tenceS having more than one valilL, T') pair. This is algorithms for parsing probabilistic context-free grammars
the primary motivation for extending CCGs to PCCGs: (PCFGs)? Dynamic programming is feasible within our
PCCGs deal with ambiguity by ranking alternative parsesapproach because the feature-vector definitifs 7, S)

for a sentence in order of probability. One source of am-nvolve local features that keep track of counts of lexical
biguity is lexical items having more than one entry in jtems in the derivatiod”.3

the lexicon. For exampleNew Yorkmight have entries
NP : new_york_city and NP : new_york_state. An-
other source of ambiguity is where a single logical fakm
may be derived by multiple derivatiods This latter form
of ambiguity can occur in CCG, and is often referred to a
spurious ambiguitythe termspuriousis used because the
different syntactic parses lead to identical semantics.

In parameter estimation, we assume that we hatvaining
examples{(S;,L;) : ¢ = 1...n}. S; is thei'th sentence

in training data, and.; is the lambda expression associ-
sated with that sentence. The task is to estimate the param-
eter valueg) from these examples. Note that the training
set does not include derivatiofi$, and we therefore view

o N derivations as hidden variables within the approach. The
In defining PCCGs, we make use of a conditional log-|og-likelihood of the training set is given by:

linear model that is similar to the model form in condi-

tional random fields (CRFs) (Lafferty et al., 2001) or log- _ " -
linear models applied to parsing (Ratnaparkhi, Roukos, o) = ZlogP(Li|Si’9)
& Ward, 1994; Johnson, Geman, Canon, Chi, & Rie- =1
zler, 1999). Log-linear models for CCGs are described in R~ _ g
(Clark & Curran, 2003). We assume a functiBmapping o z_; log (zT: P(Li, T|S5; 9)>
(L, T, S) triples to feature vectors iR’. This function ‘
is defined byd individual features, so that(L,T,S) = Differentiating with respect té; yields:
(fi(L,T,5),..., fa(L,T,S)). Each featuref; is typi-
cally the count of some sub-structure witkiib, 7', S). The 00 i _
model is parameterized by a vectbe R?. The probabil- a0, Z > fiLa, T, i) P(T|S;, Ly 0)
ity of a particular (syntax, semantics) pair is defined as plnT

— ef(L’T’S)'é - fJ(L7Ta SZ)P(L7T|SZ7é)

P(L,T|S;0) = 1) ;;

Z(L) ef(L.T,S)-0

The sum in the denominator is over all valid parsesdor The two terms in the derivative involve the calculation
under the CCG grammar. of expected values of a feature under the distributions

In this paper we make use exical featuresalone. For °CKY-style algorithms for PCFGs (Manning & Schutze,
each lexical entry in the grammar, we have a featfire 1999) are relqted to the Vltgrbl algorithm for hidden Markov r_nod-

. . ._els, or dynamic programming methods for Markov random fields.
that cpunts the number Qf tlme§ that the lexical gntry IS" 5\\e use beam—search during parsing, where low-probability
used in7'. For example, in the simple grammar with en- syp-parses are discarded at some points during parsing, in order
tries forUtah, Idahoandborders there would be three fea- to improve efficiency.

P(T|S;, Li;0) or P(T, L|S;;0). Expectations of this type The first problem can be thought of as a formstiucture
can again be calculated using dynamic programming, usearning, and is a major focus of the current section. The
ing a variant of the inside-outside algorithm (Baker, 1979),second problem is a more conventiopalameter estima-
which was originally formulated for probabilistic context- tion problem, which roughly speaking can be solved using
free grammars. the gradient descent methods described in section 2.4.

Given this derivative, we can use it directly to maximize The remainder of this section describes an overall strat-
the likelihood using a stochastic gradient ascent algorithnegy for these two problems. We show how to interleave
(LeCun, Bottou, Bengio, & Haffner, 1998)which takes a structure-building step, GENLEX, with a parameter esti-

the following form: mation step, in a way that results in a PCCG with a compact
~ lexicon and effective parameter estimates for the weights of
Setf to some initial value the log-linear model. Section 3.1 describes the main struc-
fork=0...N—-1 tural step, GENLEXS, L), which generates a set of candi-
fori=1...n) date lexical items that may be useful in derivihdrom S.
0=0+ o 9log Pégﬂsi%@) In section 3.2 we describe the overall learning algorithm,

which prunes the lexical entries suggested by GENLEX

wheret = i+ k x n is the total number of previous updates, and estimates the parameters of a log-linear model.
N is a parameter that controls the number of passes over the
training data, and, andc are learning-rate parameters. 3.1 Lexical Learning

. We now describe the function GENLEX, which takes a sen-

3 Learning tenceS and a logical formL and generates a set of lexical
items. Our aim is to define GENLEX, L) in such a way

In the previous section we saw that a probabilistic Com-that the set of lexical items that it generates allows at least
binatory Categorial Grammar (PCCG) is defined by a lex-one parse of that results in_.
icon A, together with a parameter vectér In this sec-
tion, we present an algorithm that learns a PCCG. On
input to the algorithm is a training set of examples,
{(Si,L;) : i = 1...n}, where each training example is
a string.S; paired with a logical forni;. Another input to
the algorithm is an initial lexiconh.®

éAs an example, consider the parse in Figure 2(a). When
presented with the input sentent#ah borders Idaho
and logical formborders(utah,idaho), we would like
GENLEX to produce a lexicon that includes the three
lexical items that were used in this parse, namely

Note that the training data includes neither direct evidence Utah = NP :utah
about the parse trees mapping eatho L;, nor the set Idaho := NP :idaho
of lexical entries which are required for this mapping. We borders := (S\NP)/NP : Az.\y.borders(y,x)

treat the parse trees as a hidden variable within our model.
The set of possible parse trees for a sentence depends on fBer definition of GENLEX will also producespurious

lexicon, which is itself learned from the training examples.lexical items, such a$orders := NP : idaho and
Thus, at a high level, learning will involve the following borders utah := (S\NP)/NP : \x.\y.borders(y,x).
two sub-problems: Later, we will see how these items can be pruned from the

lexicon in a later stage of processing.

e Induction of a lexiconA, which defines a set of parse To compute GENLEX, we make use of a functi@iiL),
trees for each training senteng that maps a logical form to a set of categories (Such &s:
utah, or NP : idaho). GENLEX is then defined as
e Estimation of parameter values, which define a distri-
bution over parse trees for any sentence. GENLEX(S,L) ={z:=y |z e W(S),y € C(L)}

“The EM algorithm could also be used, but would require WherelV(.S) is the set of all subsequences of wordssin

some form of gradient ascent for the M—step. Because of this, w . . .
found it simpler to use gradient ascent for the entire optimization.erhe functionC(L) is defined through a set of rules that

5In our experiments the initial lexicon includes lexical items €xamineL and produce categories based on its structure.
that are derived directly from the database in the domain; for exFigure 3 shows the rules that we use. Each rule consists
ample, we have a list of entridé/tah := NP : utah, Idaho := of a trigger that identifies some sub-structure within the
NP : idaho, Nevada := NP : nevada, ...} including every —|o4ica) form L. For each sub-structure ib that matches

U.S. state in the geography domain. It also includes lexical item - .
that are domain independent, and easily specified by hand: for eihe trigger, a category is created and added'td). As

ample, the definition for “what” in Figure 2(b) would be included, One example, the second row in the table defines a rule that
as it would be useful across many domains. identifies all arity-one predicateswithin the logical form

[Rules Categories produced from logical form

[Input Trigger [Output Category] arg max(Az.state(z) A borders(z, texas), A\x.size(x))
constant NP:c NP :texas
arity one predicatg; N : dz.pi(x) N : Az.state(x)
arity one predicat@ S\NP : Az.p1(z) S\NP : hz.state(x)
arity two predicatep (S\NP)/NP : Ax.\y.p2(y,) (S\NP)/NP : Ax.\y.borders(y, x)
arity two predicatep, (S\NP)/NP : Ax.\y.p2(z,y) (S\NP)/NP : Ax.\y.borders(z,y)
arity one predicat@; N/N : Ag. z.pi(z) A g(x) N/N : Ag.\z.state(z) A g(x)
literal with arity two predicat
and constan?secor?d argume)ezm N/N : Ag.Az.pa(z,c) A g(z) N/N : Ag.\z.borders(z, texas) A g(z)
arity two predicatep (N\N)/NP : Ax.\g.\y.p2(x,y) A g(x) (N\N)/NP : Ag.Mx.\y.borders(z,y) A g(z)
anarg max / min with second .)
argugmem a/rity one functio NP/N : A\g. arg max / min(g, Az.f(z)) NP/N : Ag. arg max(g, Az.size(x))
an arity one S/NP : Xz.f(x) S/NP : \z.size(x)

numeric-ranged functioff

Figure 3:The rules that define GENLEX. We use the tgsradicateto refer to a function that returns a truth valdienctionto refer

to all other functions; andonstantto refer to constants of type Each row represents a rule. The first column lists the triggers that
identify some sub-structure within a logical forlp and then generate a category. The second column lists the category that is created.
The third column lists example categories that are created when the rule is applied to the logical form at the top of this column.

as triggers for creating a categaly : Az.p(x). Giventhe amples. Step 2 is then used to re-estimate the parameters
logical form Az.major(x) A city(z), which has the arity- of the lexical items that are selected in step 1.
one predicatesmajor andcity, this rule would create the

categoriesV : Az.major(z) andN : Az.city(x). In the t'th application of step 1, each sentence in turn

is parsed with the current parameteéfs! and a spe-
Intuitively, each of the rules in Figure 3 corresponds to acial, sentence—specific lexicon which is definedAgsu
different linguistic sub-category such as noun, transitiveGENLEX(S;, L;). This will result in one or more highest-
verb, adjective, and so on. For example, the rule in the firsscoring parses that have the logical fop.® Lexical

row generates categories that are noun phrases, and the sé#ems are extracted from these highest-scoring parses alone.
ond rule generates nouns. The end result is an efficient wayhe result of this stage is to generate a small subget

to generate a large set of linguistically plausible categorie®f GENLEX(S;, L;) for each training example. The out-

C(L) that could be used to construct a logical fofm put of step 1, at iteration, is a subset of*, defined as
A=A UU N
3.2 The Learning Algorithm Step 2 re-estimates the parameters of the membets, of

. : . I using stochastic gradient descent. The starting point for
Figure 4 shows the learning algorithm used within our ap- X P
! . . radient descent when estimatifgis 6'~1, i.e., the pa-
proach. The output of the algorithm is a PCCG, defined b
. = . rameter values at the previous iteration. For any lexical
a lexiconA and a parameter vectér As input, the algo-

. L . . . item that is not a member of;, the associated parameter
rithm takes a training set of sentences paired with IoglcaIn ft is set to be the same as the corresponding parameter in
forms, together with an initial lexicon\. P gp

6*~1 (i.e., parameter values are simply copied across from
At all stages, the algorithm maintains a parameter vectothe previous iteration).
6 which stores a real value associated with every possibl

lexical item. The set of possible lexical items is Ei‘he motivation for cycling between steps 1 and 2 is as fol-

lows. In step 1, keeping only those lexical items that occur

n in the highest scoring parse(s) leadingip results in a
A" =ApU U GENLEX(S;, L;) compact lexicon. This step is also guaranteed to produce
i=1 a lexiconA; C A* such that the accuracy on the training

. A1y)
In our experiments, the parameters were initialized to bedata when running the PCC(3,, 0 ') is at least as ac

H * nt—1
0.1 for all lexical items inAg, and0.01 for all other lexical curate as applying the PCC@*, 6"). In other words,

. : runing the lexicon in this way cannot hurt parsing perfor-
items. These values were chosen through experiments on L . . .)

) . 2 mance on training data in comparison to using all possible
the development data; they give a small initial bias toward%)(ical entried

using lexical items from\, and favor parses that include

more lexical items. BT . . o
Note that this set of highest-scoring parses is identical to the

The goal of the algorithm is to provide a relatively com- set.produce.d.by parsing witk*, rather than the sentence-specific
pact lexicon, which is a small subset of the entire set ofexicon. This is becaus&, U GENLEX(S;, L;) contains all lex-
possible lexical items. The algorithm achieves this by al-c@! tems that can possibly be used to derfye

. . "To see this, note that restricting the lexicon in this way cannot
ternating between two steps. The goal of step 1 is to searchy ;. ,de any of the highest-scoring parsesdpthat lead ta... In

for a relatively small number of lexical entries, which are practice, it may exclude some parses that lead to logical forms for
nevertheless sufficient to successfully parse all training exs; that are incorrect. Because the highest-scoring correct parses

Step 2 also has a guarantee, in that the log-likelihood on the
training data will improve (assuming that stochastic gradi-
ent descent is successful in improving its objective). Step 2
is needed because after each application of step 1, the pa-
rametersd’—! are optimized forA,_; rather thanA,, the
current lexicon. Step 2 derives new parameter valjes
which are optimized fon,.

In summary, steps 1 and 2 together form a greedy, itera-
tive method for simultaneously finding a compact lexicon
and also optimizing the log-likelihood of the model on the
training data.

4 Related Work

This section discusses related work on natural language in-
terfaces to databases (NLIDBs), in particular focusing on
learning approaches, and related work on learning CCGs.

There has been a significant amount of work on hand engi-
neering NLIDBs. Androutsopoulos, Ritchie, and Thanisch
(1995) provide a comprehensive summary of this work.
Recent work in this area has focused on improved pars-

Inputs:

e Training example® = {(S;,L;) : i = 1...n} where
eachsS; is a sentence, eadl is a logical form.

e An initial lexicon Ao

Procedures:

e PARSHS, L, A, 0): takes as input a sentenSea logical

form L, a lexiconA, and a parameter vectr Returns the
highest probability parse fdf with logical form L, whenS

is parsed by a PCCG with lexicah and parameter8. If
there is more than one parse with the same highest proba-
bility, the entire set of highest probability parses is returned.
Dynamic programming methods are used when implement-
ing PARSE, see section 2.4 of this paper.

o ESTIMATE(A, E, §): takes as input a lexicoA, a train-

ing setE, and a parameter vectér Returns parameter val-
uesf that are the output of stochastic gradient descent on the
training setE’ under the grammar defined By The input)

is the initial setting for the parameters in the stochastic gra-
dient descent algorithm. Dynamic programming methods
are used when implementing ESTIMATE, see section 2.4.

e GENLEX(S, L): takes as input a sentenSeand a logical
form L. Returns a set of lexical items. See section 3.1 for a
description of GENLEX.

ing techniques and designing grammars that can be portednitialization: Defined to be a real-valued vector of arith*|,

easily to new domains (Popescu, Armanasu, Etzioni, Ko, &
Yates, 2004).

Zelle and Mooney (1996) developed one of the earliest ex-
amples of a learning system for NLIDBs. This work made
use of a deterministic shift-reduce parser and develope
a learning algorithm, called @LL, based on techniques
from Inductive Logic Programming, to learn control rules
for parsing. The major limitation of this approach is that
it does not learn the lexicon, instead assuming that a lex-
icon that pairs words with their semantic content (but not
syntax) has been created in advance. Later, Thompson and
Mooney (2002) developed a system that learns a lexicon
for CHILL that performed almost as well as the original
system. Most recently, Tang and Mooney (2001) devel-
oped a statistical shift-reduce parser that significantly out-
performed these original systems. However, this system,
again, does not learn a lexicon.

A number of previous learning methods (Papineni, Roukos,
& Ward, 1997; Ramaswamy & Kleindienst, 2000; Miller,

whereA* = Ao U J;_, GENLEX(S:, L;). 0 stores a pa-
rameter value for each potential lexical item. The initial pa-
rameters)® are taken to b@.1 for any member of\, and
0.01 for all other lexical items.

dAlgorithm:

eFort=1...T

Step 1: (Lexical generation)
e Fori=1...n:
— Set\ = Ao UGENLEX(S;, L;).
— Calculater = PARSHS;, L, A, 0°1).
— Define); to be the set of lexical entries in
e SetA; = Ag U U?:l Ai
Step 2: (Parameter Estimation)
o Setf® = ESTIMATE(A¢, E,0" 1)

Output: LexiconAr together with parametefs .

Figure 4: The overall learning algorithm.

Stallard, Bobrow, & Schwartz, 1996; He & Young, 2004) There have been several pieces of previous work on learn-

have been applied to the ATIS domain, which involves aing CCGs. Clark and Curran (2003) developed a method

natura! language interface to a travel database of flight ing leaning the parameters of a log-linear model for syntac-
formation. In the future we plan to test our method on this

) . . tic CCG parsing given fully annotated normal—form parse
domain. Miller et al. (1996) describe an approach that as: ees. Watkinson and Manandhar (1999) presented an un-

sur;(;s full annotauondoprl)a_rsdg tre?s.zgggmenl etal. (19$] upervised approach for learning CCGs that, again, does
and ramaswamy an eindienst () use approac ot perform any semantic analysis. We know of only one

based on methods originally developed for machine trans-

) . . revious system (Bos, Clark, Steedman, Curran, & Hock-
lation. _He and _Young (2004) describe an ap_proa_\ch using aﬁnmaier, 2004) that learns CCGs with semantics. However,
extension of hidden Markov models, resulting in a model

ith some of the bower of context-frae models this approach requires fully—annotated CCG derivations as
Wi pow X ' supervised training data. As such, the techniques they em-

are still allowed, parsing performance cannot deteriorate. ployed are not applicable to learning in our framework.

Figure 5:The results for our method, and the previous work of river
CocKTAIL, when applied to the two database query domains. the highest
is precision in recovering entire logical fornB,is recall. the longest

N : Az.river(z)
NP/N : \f.arg max(f, \z.elev(x))
NP/N : Af.argmax(f, A\x.len(zx))

states = N :)z.state(x)
Geo8s0 Jobs640 major = N/N : Af. x.major(z) A f(x)
P R P R population := N : Az.population(z)
Our Method | 96.25| 79.29 | 97.36 | 79.29 cities = N :z.city(x)
COCKTAIL | 89.92 79.40| 93.25| 79.84 rivers = N :z.river(z)
runthrough := (S\NP)/NP : \z.\y.traverse(y, x)
thelargest := NP/N:\f. argmax(f, \z.size(z))

Figure 6: Ten learned lexical items that had highest associated
5 Experiments parameter values from a randomly chosen development run in the
Geo880 domain.

We evaluated the learning algorithm on two domains:

Geo880, a set of 880 queries to a database of U.S. geograig better understand these results, we examined perfor-
phy; and Jobs640, a set of 640 queries to a database of jghance of our method through cross-validation on the train-

listings. The data were originally annotated with Prologing set. We found that the approach creates a compact
style semantics which we manually converted to equivalenfexicon for the training examples that it parses. On the

statements in the lambda calculus. Geo880 domain, the initial number of lexical items created

We compare the structured classifier results to the G by GENLEX was on average 393.8 per training example

TAIL system (Tang & Mooney, 2001). ThedCKTAIL After pruning, on average only 5.1 lexical items per train-

experiments were conducted by performing ten—fold crosid €xample remained. The Jobs640 domain showed a re-
validation of the entire data set. We used a slightly differ—d“Ct'on from an average of 697.1 lexical items per training

ent experimental set-up, where we made an explicit splifX@mple, t0 6.6 items.

between training and test data sét¥he Geo880 data set To investigate the disparity between precision and recall,
was divided into 600 training examples and 280 test exwe examined the behavior of the algorithm when trained in
amples; the Jobs640 set was divided into 500 training anehe cross-validation (development) regime. We found that
140 test examples. The parameters of the training algoon average, the learner failed to parse 9.3% of the training
rithm were tuned by cross-validation on the training setexamples in the Geo880 domain, and 8.7% of training ex-
We did two passes of the overall learning loop in Figure 4.amples in the Jobs640 domain. (Note that sentences which
Each time we used gradient descent to estimate parameannot be parsed in step 1 of the training algorithm are ex-
ters, we performed three passes over the training set witbluded from the training set during step 2.) These parse
the learning-rate parameters = 0.1 andc = 0.001. failures were caused by sentences whose semantics could
not be built from the lexical items that GENLEX created.
For example, the learner failed to parse complex sentences
such asThrough which states does the Mississippi b
cause GENLEX does not create lexical entries that allow
the verbrun to find its argument, the prepositidhrough
Figure 5 shows the results of the experiments. Our apwhen it has moved to the front of the sentence. This prob-
proach has higher precision tharo€KTAIL on both do- |em is almost certainly a major cause of the lower recall
mains, with a very small reduction in recall. When eval- on test examples. Exploring the addition of more rules to
uating these results, it is important to realize thata®- GENLEX is an important area for future work.

TAIL is provided with a fairly extensive lexicon that pairs
words with semantic predicates. For example, the wor
borderswould be paired with the predicaberders(z,y).
This prior information goes substantially beyond the initial
lexicon used in our own experimerfts.

We give precision and recall for the different algorithms,
defined asPrecision = # correct/total # parsed,
Recall = # correct/total # examples. Sentences are
correct if the parser gives a completely correct semantics.

Jrigure 6 gives a sample of lexical entries that are learned
by the approach. These entries are linguistically plausible
jand should generalize well to unseen data.

— . . 6 Discussion and Future Work
This allowed us to use cross-validation experiments on the

training setto optimize parameters, and more importantly to de-

velop our algorithms while ensuring that we had not implicitly In this paper, we presented a learning algorithm that cre-

tuned our approach to the final test set. ates accurate structured classifiers for natural language in-
°Note that the work of (Thompson & Mooney, 2002) does de-terfaces. A major focus for future work is to apply the algo-

scribe a method which automatically learns a lexicon. Howeveryiihm to a range of larger data sets. Larger data sets should

results for this approach were worse than results fenC (Zelle . th I f d all to devel
& Mooney, 1996), which in turn were considerably worse than 'MProve the recall periormance and allow us 1o develop a

results for ®CKTAIL on the Geo250 domain, a subset of the ex- more comprehensive set of rules for GENLEX, ultimately
amples in Geo880. creating a robust system that can quickly learn interfaces

for new, unseen domains with little human assistance. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).

Although the experiments in this paper only learned natural ﬁ:%?:egﬁiaese%?nles:;??hgeallgggg(tlol)d 0;;;232;;64009_
language interfaces to databases, there are many other nat- ' 9 T '
ural language interfaces that the techniques can be gendylanning, C. D., & Schutze, H. (1999%oundations of sta-

alized to handle. In particular, we will explore building in- tistical natural language processinghe MIT Press.
terfaces to dialogue systems. These interfaces must handigiller, S., Stallard, D., Bobrow, R. J., & Schwartz, R. L.
a much wider range of semantic phenomena (for example, (1996). A fully statistical approach to natural lan-

anaphora and ellipses). Extending the current algorithm to guage interfaces. IRroceedings of the Association
address these challenges will greatly increase the range of for Computational Linguisticgp. 55-61.

possible interfaces that are successfully learned. Papineni, K. A., Roukos, S., & Ward, T. R. (1997). Feature-
based language understanding. Rroceedings of

Acknowledgements European Conference on Speech Communication
and Technology

We would like to thank Rohit Kate and Raymond Mooney -

for their help with obtaining the Geo880 and Jobs640 datd OPescu, A.-M., Armanasu, A., Etzioni, O., K(,)’ D., &

sets. We also gratefully acknowledge the support of a ND- Yates. A. (2004). Modern natural language interfaces

SEG graduate research fellowship and the National Science to da_tabases: _(?omposmg Stz_it'St'Cal parsing with se-

Foundation under grants 0347631 and 0434222, ma!"“c tractability. InProceedings 9f the Z.Oth -Int_er—
national Conference on Computational Linguistics

Ramaswamy, G., & Kleindienst, J. (2000). Hierarchi-

References cal feature-based translation for scalable natural lan-
guage understanding. Proceedings of 6th Interna-
Androutsopoulos, 1., Ritchie, G., & Thanisch, P. (1995). tional Conference on Spoken Language Processing
Natural language interfaces to databases—an introRatnaparkhi, A., Roukos, S., & Ward, R. T. (1994). A max-
duction.Journal of Language Engineering(1), 29— imum entropy model for parsing. IRroceedings of
8l. the International Conference on Spoken Language
Baker, J. (1979). Trainable grammars for speech recogni- Processing
tion. In Speech Communication Papers for the 97thSteedman, M. (1996).Surface Structure and Interpreta-
Meeting of the Acoustical Society of America tion. The MIT Press.
Bos, J., Clark, S., Steedman, M., Curran, J. R., & Hock-Steedman, M. (2000).The Syntactic ProcessThe MIT
enmaier, J. (2004). Wide-coverage semantic repre- Press.
sentations from a CCG parser. Rroceedings of Tang, L. R., & Mooney, R. J. (2001). Using multiple clause
the 20th International Conference on Computational constructors in inductive logic programming for se-
Linguistics pp. 1240-1246. mantic parsing. liProceedings of the 12th European

Carpenter, B. (1997)Type-Logical SemanticsThe MIT Conference on Machine Learningp. 466-477.

Press. Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin
markov networks. IMNeural Information Processing
Systems

Taskar, B., Klein, D., Collins, M., Koller, D., & Manning,
C. (2004). Max-margin parsing. IRroceedings
of the SIGDAT Conference on Empirical Methods in

He, Y., & Young, S. (2004). Semantic processing using Natural Language Processing

the hidden vector state mod&@omputer Speech and Thompson, C. A., & Mooney, R. J. (2002). Acquiring

Clark, S., & Curran, J. R. (2003). Log-linear models for
wide-coverage CCG parsing. Rroceedings of the
SIGDAT Conference on Empirical Methods in Natu-
ral Language Processing

Language word-meaning mappings for natural language inter-
Johnson, M., Geman, S., Canon, S., Chi, Z., & Riezler, S. faces.Journal of Artificial Intelligence Research8.
(1999). Estimators for stochastic “unification-based” watkinson, S., & Manandhar, S. (1999). Unsupervised
grammars. InProceedings of the Association for lexical learning with categorial grammars using the
Computational Linguisticspp. 535-541. LLL corpus. InProceedings of the 1st Workshop on
Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi- Learning Language in Logi@p. 16-27.
tional random fields: Probabilistic models for seg- Zelle, J. M., & Mooney, R. J. (1996). Learning to parse
menting and labeling sequence data. Froceed- database queries using inductive logic programming.
ings of the 18th International Conference on Ma- In Proceedings of the 14th National Conference on

chine Learning Artificial Intelligence

