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ABSTRACT
Modern CPUs have instructions that allow basic operations
to be performed on several data elements in parallel. These
instructions are called SIMD instructions, since they apply a
single instruction to multiple data elements. SIMD technol-
ogy was initially built into commodity processors in order
to accelerate the performance of multimedia applications.
SIMD instructions provide new opportunities for database
engine design and implementation. We study various kinds
of operations in a database context, and show how the in-
ner loop of the operations can be accelerated using SIMD
instructions. The use of SIMD instructions has two immedi-
ate performance benefits: It allows a degree of parallelism,
so that many operands can be processed at once. It also
often leads to the elimination of conditional branch instruc-
tions, reducing branch mispredictions.

We consider the most important database operations, in-
cluding sequential scans, aggregation, index operations, and
joins. We present techniques for implementing these using
SIMD instructions. We show that there are significant ben-
efits in redesigning traditional query processing algorithms
so that they can make better use of SIMD technology. Our
study shows that using a SIMD parallelism of four, the CPU
time for the new algorithms is from 10% to more than four
times less than for the traditional algorithms. Superlin-
ear speedups are obtained as a result of the elimination of
branch misprediction effects.

1. INTRODUCTION
Microprocessor performance has experienced tremendous

improvements over the past decades. Multiple execution
pipelines and speculative execution in modern CPUs pro-
vide an ever increasing number of inter-stage and intra-stage
parallel execution opportunities. Another trend is the in-
creasing availability of intra-instruction parallel execution
provided by single-instruction-multiple-data (SIMD) tech-
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nology. SIMD instructions reduce compute-intensive loops
by consuming more data per instruction.

SIMD instructions were designed to accelerate the per-
formance of applications such as motion video, real-time
physics and graphics. Such applications perform repetitive
operations on large arrays of numbers. Database engines
also have this apparent characteristic of applying repetitive
operations to a long sequence of records. Now that the CPU
and memory performance of database systems has become
the performance bottleneck for certain database applications
[4, 11, 28], there is renewed interest in more fully utilizing
available architectures. For example, there has been much
recent work on CPU cache behavior in database systems [3,
6, 11, 18, 21, 22].

In this paper, we argue that SIMD technology provides
new opportunities for database engine design and imple-
mentation. To the best of our knowledge, current database
systems make little or no use of SIMD features. We study
various kinds of operations in a database context, and show
how the inner loop of the operations can be accelerated using
SIMD instructions.

We have implemented various inner loop algorithms, and
have evaluated their performance on a Pentium 4 machine.
The Pentium 4 has a SIMD instruction set that supports
SIMD operations using up to 128-bit registers. Other ar-
chitectures have similar SIMD instruction sets that support
processing of several data elements in parallel, and the tech-
niques presented here are applicable to those architectures
too. We focus on a Pentium because the SIMD instructions
are among the most powerful of mainstream commodity pro-
cessors, including 128-bit SIMD registers and floating point
SIMD operations. Further, these SIMD instructions will be
supported on Intel’s 64-bit IA64 platforms, including the
Itanium processor [16].

The obvious potential gain of SIMD instructions is paral-
lelism. If we can process S elements at a time, we might ex-
pect to get close to a speedup of S. A less obvious benefit of
using SIMD instructions is that in many cases we can avoid
conditional branch instructions by doing arithmetic on the
results of the SIMD operations. Conditional branch instruc-
tions are problematic in modern pipelined architectures, be-
cause if they are mispredicted, the instruction pipeline must
be flushed and various other bookkeeping needs to be done
to ensure consistent operation. The overhead of a branch
misprediction can be significant. By avoiding such mispre-
dictions, we sometimes observe a speedup exceeding S.

Our implementation assumes that the underlying data is
stored columnwise as a contiguous array of fixed-length nu-



meric values. Some systems, such as Sybase IQ [2], Compaq
Infocharger [13] and Monet [5] use this kind of columnwise
approach. More recently, the PAX layout scheme proposes
that each disk page be organized columnwise in a similar
way [3]. As long as each page contains sufficiently many
records, the CPU and memory performance of an operation
on a collection of arrays (one per page) should be compa-
rable to the performance on a single such array. Thus, our
study is applicable to both in-memory databases as well as
disk-based databases.

We consider the most important database operations, in-
cluding sequential scans, aggregation, index operations, and
joins. We present techniques for implementing these using
SIMD instructions. In some cases, the SIMD implementa-
tion is straightforward. In other cases, the SIMD implemen-
tation is novel. We demonstrate that significant speedups
in performance are achievable for each of these operations,
with only moderate implementation effort to rewrite the in-
ner loops for each operation. This rewriting can be done in C

rather than in assembly language, using intrinsics provided
in Intel’s icc compiler.

The rest of this paper is organized as follows. We sur-
vey related work in Section 2. In Section 3, we demonstrate
how SIMD techniques can be used in common data process-
ing operations like scans and aggregation. In Section 4, we
show how to use these SIMD techniques to speed up the per-
formance of common index structures in a database system.
In Section 5, we study joins. Additional SIMD techniques
are briefly discussed in Section 6. We conclude in Section 7.

2. OVERVIEW OF SIMD TECHNOLOGY
SIMD technology lets one microinstruction operate at the

same time on multiple data items. This is especially pro-
ductive for applications that process large arrays of numeric
values, a typical characteristic of multimedia applications.

SIMD technology comes in various flavors on a number
of architectures, including “MMX,” “SSE,” and “SSE2” on
Intel machines, “VIS” on SUN UltraSparc machines, and
“3DNow!”, “Enhanced 3DNow!” and “3DNow! Profes-
sional” on AMD machines. Additional vendors with SIMD
architectures include Hewlett-Packard, MIPS, DEC (Com-
paq), Cyrix, and Motorola. For a detailed comparison of
SIMD technology in different architectures, see [25].

Some of these SIMD technologies are limited; for example,
Sun’s VIS does not support floating point values in SIMD
registers, and provides 64-bit rather than 128-bit registers
[27]. We have performed experiments using Sun’s VIS, but
have found that if we require a minimum of 32-bits for data
values, then the two-way SIMD improvement that is enabled
by having 64-bit SIMD registers is not significant.

We illustrate the use of SIMD instructions using the packed
single-precision floating-point instruction available on Intel
SSE technology chips, and shown in Figure 1. Other archi-
tectures have similar instructions.

For this particular instruction, both operands are using
128-bit registers. Each source operand contains four 32-
bit single-precision floating-point values, and the destina-
tion operand contains the results of the operation (OP) per-
formed in parallel on the corresponding values (X0 and Y0,
X1 and Y1, X2 and Y2, and X3 and Y3) in each operand.
SIMD operations include various comparison, arithmetic,
shuffle, conversion and logical operations [14].

Terminology: A basic numeric element (either integer or

Figure 1: Packed Single-Precision Floating-Point
Operation

floating point) is called a word. We let S denote the degree
of parallelism available, i.e., the number of words that fit in
a SIMD register. In Figure 1, S = 4. A memory-aligned
group of S words is called a SIMD unit.

2.1 SIMD versus Vector Processors
Vector processors provide high-level operations that work

on vectors, i.e., linear arrays of numbers [20]. A typical
vector is able to contain between 64 and 512 64-bit elements.
With a single instruction, operations can be performed in
parallel on all elements. Specialized architectures with large
numbers of simple processing elements are required.

Compared to vector registers, SIMD registers can hold
a small number of elements. For example, at most four
32-bit values can be processed using SIMD instructions in
a Pentium 4. Thus SIMD on commodity processors has
a much lower degree of parallelism. On the other hand,
the latency of load-store instructions (compared with vector
processing) is much higher for vector processors than for
SIMD on commodity processors. Further, the small size of
SIMD instructions means they can also take advantage of
pipelined execution in a superscalar processor, overlapping
their work with other instructions.

2.2 The Limitations of Vectorizing Compilers
The goal of vectorizing compilers is to automatically de-

tect opportunities where ordinary code can be transformed
into code exploiting SIMD techniques. For example, icc

does have vectorizing capabilities [15]. However, [15] de-
scribes various reasons why the compiler may fail to ap-
ply vectorization, including: stylistic issues (such as the
use of global pointers or the use of moderately complex ex-
pressions), hardware issues (such as data alignment), and
complexity issues (such as the use of function calls or non-
assignment statements in a loop).

None of the code we wrote for the experiments could be
vectorized by the icc compiler. The code contains several
fundamental obstacles. For example, most of the code con-
tains conditional branches in the inner loop. In other cases,
like for aggregation, the hand-crafted SIMD code uses rel-
atively subtle tricks in manipulating the conditional masks
that would be very difficult for a compiler to produce. Other
compilers for other SIMD architectures (such as Sun’s com-
piler for their VIS instruction set) are similarly limited [27].

Thus, while it would be convenient to rely upon the com-
piler to do the SIMD transformations for us, it is clear that
state-of-the-art compilers cannot do so. As a result, in or-
der to take advantage of the benefits of SIMD, database
programmers must be explicit in their use of SIMD, just as
multimedia programmers are today.



2.3 Comparison Result Format
In Intel and AMD architectures, a SIMD comparison oper-

ation results in an element mask corresponding to the length
of the packed operands. An element mask is a vector in
which each packed element contains either all 1’s or all 0’s.
For example, when OP is a comparison operation in Fig-
ure 1, the result is a 128-bit wide element mask containing
four 32-bit sub-elements, each consisting either of all 1’s
(0xFFFFFFFF) where the comparison condition is true or
all 0’s (0x00000000) where it is false.

In other architectures, like SUN and MIPS, comparison
instructions result in generation of a bit vector, in which a
single bit represents the true/false result of the comparison
between the corresponding elements in two operands. Intel
and AMD architectures also support bit vectors through the
application of one additional instruction that converts an
element mask to a bit vector by selecting the most significant
bits of each word. (We shall use this instruction several
times in this paper; we call this operation SIMD bit vector.)

2.4 Data Organization
The data alignment for SIMD instructions is another is-

sue that must be considered. For example, VIS instructions
operate on 8-byte aligned data. For SSE and SSE2 instruc-
tions which operate on 128-bit registers, data must be on
16-byte boundaries to take maximal advantage of SIMD in-
structions. Although there are move instructions to allow
unaligned data to be copied into and out of SIMD registers
when using unaligned data, such operations are much slower
than aligned accesses.

To better utilize SIMD instructions, it is necessary to
make the source data contiguous, so that a whole SIMD
unit can be loaded at once. One way to achieve this effect
is to use columnwise storage, as discussed in Section 1.

2.5 Branch Misprediction
Conditional branch instructions present a significant prob-

lem for modern pipelined CPUs because the CPUs do not
know in advance which of the two possible outcomes of the
comparison will happen. CPUs try to predict the outcome
of branches, and have special hardware for maintaining the
branching history of many branch instructions. A mispre-
dicted branch incurs a substantial delay; [4] reports that
the branch misprediction penalty for a Pentium II proces-
sor is 17 cycles. For Pentium 4 processors, the minimum
penalty is 17 cycles [1] with a slightly higher average penalty;
the pipeline for a Pentium 4 is 20 stages deep. In our ex-
perimental results that measure the relative importance of
branch misprediction effects, we assume that a branch mis-
prediction incurs a 20 cycle delay. This corresponds to 20/c
seconds in our graphs, where c is the clock rate of our pro-
cessor. To make use of branches may minimize memory ref-
erences or instruction counts, but it may impede progress in
a pipelined architecture. Even a 5% misprediction rate cuts
performance by as much as 20–30% in today’s wide-issue
processors [1].

2.6 SIMD Implementation
The direct way to use SIMD instructions is to inline as-

sembly language into one’s source code. However, this can
be time-consuming, tedious and error-prone. Instead, we use
SIMD intrinsics provided by Intel’s C++ Compiler in this pa-
per. Intrinsics are special coding extensions that allow one

to use the syntax of C function calls and C variables instead
of hardware registers. Generally speaking, direct assembly
coding can outperform the use of intrinsics. Nevertheless,
for fairness of comparison with algorithms coded in C, we
use the provided intrinsics.

Our experimental results use single precision 32-bit float-
ing point values as the element data type, unless otherwise
mentioned. Since SSE and SSE2 registers are 128 bits, this
choice means that S = 4. Our Pentium 4 machine runs at 1.8
GHz, has 1GB of Rambus RDRAM, and uses the RedHat
Linux 7.1 operating system. We use Intel’s C++ compiler
with the highest optimization level. GNU’s g++ compiler
gives similar results for algorithms without SIMD instruc-
tions, but g++ does not have intrinsics for Pentium SIMD
instructions. In this paper, we only report the results for
Intel’s C++ compiler.

On a Pentium 4, common access patterns such as sequen-
tial access are recognized by the hardware, and hardware
prefetch instructions are automatically executed ahead of
the current data references, without any explicit instruc-
tions required from the software. Since many of our pro-
posed techniques do have a simple sequential access pattern,
we benefit from this behavior by having reduced cache-miss
latencies.

In some experiments we explicitly measure the number
of branch mispredictions. Pentium machines have hard-
ware performance counters that enable one to measure such
statistics without any loss in performance. To measure these
numbers, we used the Intel VTune Performance Tool.1

3. SCAN-LIKE OPERATIONS
In this section, we study operations that, in one way or

another, process their data sequentially. Examples include
searching on one or more unindexed attributes, creation of
bitmaps based on selection conditions, and scalar aggrega-
tion. Grouped aggregation can be achieved by a combina-
tion of sorting followed by one scalar aggregation per group.
Scan-like operations are also used as components of more
complex operations that we will discuss in Section 4 and
Section 5.

In practice, we need to consider inputs that may be un-
aligned, or where the number of elements may not be a
multiple of S. Special pieces of code can be used for the
first and last few elements, with the remaining “inner” part
of the input array both aligned and of size being a multiple
of S. Since the input is typically much larger than S, the
overhead of these pieces of code to handle the ends is likely
to be small. Thus, we focus below on inputs that are aligned
and have size being a multiple of S.

All scan-like operations described in this section have the
following high-level structure. In this pseudo-code fragment,
N is the number of words, which is a multiple of S, and x and
y are arrays corresponding to columns of our input records.

for i = 1 to N {

if (condition(x[i])) then process1(y[i]);

else process2(y[i]); }

1This tool runs under Microsoft Windows, so we had to
compile the code (again using Intel’s compiler) under Win-
dows rather than Linux to perform this measurement on
the same machine. We verified that the inner loop assem-
bly code generated by the compilers was the same for both
operating systems.



Different operations correspond to different implementa-
tions of the functions condition, process1 and process2.
Of course, a scan operation might need to test multiple
columns, or to process multiple columns; our choice of single
columns is for simplicity of presentation only.

The high-level structure of the corresponding SIMD code
will look like the following.

for i = 1 to N step S {

Mask[1..S] = SIMD_condition(x[i..i+S-1]);

SIMD_Process(Mask[1..S], y[i..i+S-1]); }

SIMD instruction sets typically have rich comparison, log-
ical and arithmetic instructions. For most condition func-
tions containing comparison, logical or arithmetic opera-
tions, there is an equivalent SIMD version SIMD condition

formed by replacing each scalar operation op by its SIMD
version SIMD op. For example, if condition(x) were imple-
mented as (4 < x) && (x <= 8) then SIMD condition(x[1.

.S]) would be (FOUR SIMD < x) SIMD And (x SIMD <= EI-

GHT), where FOUR and EIGHT are SIMD units containing S
copies of 4 and 8 respectively.

Despite the richness of the SIMD instruction set, there
are conditions that are not easy to parallelize via SIMD.
Examples include operations on data types that are variable
length, such as strings. Thus we don’t expect to be able to
parallelize string operations such as the SQL LIKE operation.

Notice that there is no if test in the SIMD algorithm.
If we can implement SIMD Process in a way that avoids if

tests, we avoid conditional branches and their potential for
branch misprediction penalties.

In what follows, we describe various scan-like operations,
and show how to derive implementations for SIMD Process

from those for process1 and process2.

3.1 Return the First Match
The first scan-like operation is to return the first y[i]

such that x[i] satisfies the condition function. That is,
process1(y) is implemented as

process1(y) { result = y; return; }

with process2 empty. The corresponding SIMD process is

SIMD_Process(mask[1..S],y[1..S]) {

V = SIMD_bit_vector(mask);

/* V = number between 0 and 2^S-1 */

if (V != 0) {

for j = 1 to S

if ( (V >> (S-j)) & 1 ) /* jth bit */

{ result = y[j]; return; } }

}

Note that if the selectivity of the condition function is low,
so that mask is mostly zero, the (V != 0) test saves work.

A variation of the first match algorithm, that we call
“unique match,” applies when we know that the underlying
data set contains at most one match for the search key. This
happens in practice; for example, in a conventional B+-tree,
it is common to put just the unique keys in the leaves, with
pointers to a list of records having the key. A unique-match
algorithm would apply to the leaves of such a B+-tree for
exact-match searches of such a tree.

The variation saves work in the case where the (V!=0)

test succeeds, i.e., there is a match among the S words in y.

We take advantage of the fact that we know there is exactly
one match. The SIMD process method is now

SIMD_Process(mask[1..S],y[1..S]) {

V = SIMD_bit_vector(mask);

/* V = number between 0 and 2^S-1 */

if (V != 0) {

result = SIMD_And(mask,y);

for j = 0 to log_2(S)-1

{result = SIMD_Or(result,

SIMD_Rotate(result,2^j));}

return result[1]; }

}

The for loop rotates result by increasing powers of two.
At the end of the for loop, all elements of the SIMD unit
contain the required match result.

Figure 2(a) shows the performance of the original code
and the SIMD-optimized code for a successful first-match
query having a simple equality condition. The time re-
ported is the average over 106 random search keys. The
SIMD version is approximately 3 times faster than the un-
optimized version. Figure 2(b) shows the same results for
small node sizes, including the unique match variant. For
smaller node sizes, where the relative impact of a successful
match is higher, the unique match variant performs slightly
faster.

We measured the number of branch mispredictions, and
found low numbers for all three variants. The explanation
is that the conditional test almost always fails, and is thus
well predicted by the hardware. Thus the speedup is due
primarily to the enhanced parallelism.

3.2 Return All Matches
When one returns all matches, we write the results to an

array called result, indexed by a variable pos that initially
points to the start of the result array. For this operation,
process1 is implemented as

process1(y) { result[pos++] = y; }

SIMD process is similar to the SIMD first-match case; the
only difference being that the very inner loop is given by

{ result[pos++] = y[j]; }

We call this SIMD alternative 1. A second implementation
of SIMD Process takes account of the fact that branch mis-
predictions within the inner loop might be common if the
selectivity is intermediate, i.e., neither close to 0 nor 1. This
alternative (similar to the “no-branch” algorithm of [24]) is
given below.

SIMD_Process(mask[1..S], y[1..S]) {

V = SIMD_bit_vector(mask);

/* V = number between 0 and 2^S-1 */

if (V != 0) {

for j = 1 to S {

tmp = (V >> (S-j)) & 1; /* jth bit */

result[pos] = y[j];

pos += tmp; } }

}

Although we do some extra copying, we eliminate many
potential branch mispredictions. Figure 3 shows the per-
formance of the three methods on a simple range query,
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Figure 2: First Match and Unique Match Versus non-SIMD Code.

analogous to “SELECT y FROM R WHERE xlow < x <
xhigh”. The time reported is the average over 5 runs. Fig-
ure 3(a) shows that at selectivity 0.2, the latter version of
SIMD Process is about 2.5 times faster than the original
code. Figure 3(b) shows that the performance of the meth-
ods with branches is sensitive to the selectivity; intermediate
selectivities yield branches that are intrinsically difficult for
the hardware to predict.

Figure 3(c) breaks down the time for the three algorithms
of Figure 3(b) into branch misprediction time (darker shade)
and other time, measured at selectivity 0.2. The perfor-
mance improvement is partially due to branch misprediction
improvements, and partially due to increased parallelism.
The relative benefits of parallelism are smaller here than
for first-match because the cost of storing the matches is
common to all algorithms, and is not done in parallel.

3.2.1 Building Bitmaps
The “find all matches” code could be slightly modified to

generate a bitmap. This code could be used repeatedly to
generate a bitmap index [19]. One would simply leave out
the V!=0 test and store the V values contiguously to form
the bitmap. The performance issues for such an operation
are thus similar to those for finding all matches.

3.3 Scalar Aggregation
Suppose we wish to aggregate column y for rows whose x

values satisfy the given condition. In SQL, this corresponds
to a scalar aggregate, i.e., an aggregation without a GROUP

BY clause, but with a WHERE clause. Grouped aggregation
can be achieved by first sorting the records by the grouping
attributes, then performing several scalar aggregations. We
consider incrementally computable aggregate functions, in-
cluding sum, count, average, minimum and maximum. Av-
erage can be achieved by computing both sum and count.

For the non-SIMD code, the code for process1 computes
the aggregate function. For example, a sum aggregate might
be coded as

process1(y) { result = result + y; }

The coding of other aggregates is analogous. We now con-
sider SIMD versions of scalar aggregation.

Sum and Count
For these operations, we take advantage of the fact that a
word consisting of all zeroes represents zero, both in stan-
dard integer and floating point representations. For exam-
ple, Intel SIMD instructions are compatible with the IEEE

standard for binary floating-point arithmetic [14] that satis-
fies this property. (If this were not the case for some other
architectures, our techniques for sum and count would re-
semble those for min and max given in the next section.)

Suppose that we have a SIMD register called sum that is
initialized to S zero words. SIMD Process then looks like

SIMD_Process(Mask[1..S], y[1..S]) {

temp[1..S] = SIMD_AND( Mask[1..S], y[1..S] );

sum[1..S] = SIMD_+( sum[1..S], temp[1..S] );

}

The idea is to convert non-matched elements to zeroes.
After finishing processing, we need to add the S elements
of sum as the final result. This can be done with log2(S)
SIMD rotate and SIMD addition instructions.

The code for computing the count is identical to that for
sum, except that the second argument to the SIMD AND op-
eration is a SIMD unit of words containing “1”, rather than
y. For count, one can optimize even further if one takes
advantage of the fact that the word consisting of all 1’s cor-
responds to the integer -1 in most signed integer represen-
tations. In that case, we can simply add the masks with a
single SIMD instruction in the inner loop, and negate the
result at the end. (Our performance experiments do not use
this trick.)

Min and Max
Intel’s SIMD instruction set provides a SIMD operation to
compute the pairwise minimum of two SIMD units in paral-
lel, and similarly for maximum. Assume that we initialize a
SIMD unit infinity with the representation of the largest
representable number. A SIMD unit called min is initialized
to infinity. Then the min operation can be implemented
using the following SIMD process operation.

SIMD_process(mask[1..S], y[1..S]) {

temp1[1..S] = SIMD_AND( mask[1..S], y[1..S] );

temp2[1..S] = SIMD_ANDNOT( mask[1..S],

infinity[1..S] );

temp1[1..S] = SIMD_OR( temp1[1..S], temp2[1..S] );

min[1..S] = SIMD_MIN( min[1..S], temp1[1..S] );

}

The idea is to convert nonmatched elements to infinity so
that they do not influence the minimum result. The final
phase is to get the minimal element among the S elements
in min[1 . . . S]. This can also be done by log2(S) shuffle and
SIMD minimum instructions.
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Figure 3: Table Scan (Return All the Matches)

The max operation is identical to the min operation, ex-
cept that we use negative infinity rather than infinity, and
apply a SIMD MAX operation rather than a SIMD MIN opera-
tion.

Figure 4 shows the performance and branch mispredic-
tion impact of a query corresponding to “SELECT AGG(y)
FROM R WHERE xlow < x < xhigh” for different types
of aggregation functions. Table R has 1 million records and
the predicate selectivity is 20%. There are no conditional
branches in the SIMD-optimized algorithms. As a result,
they are faster than the original algorithms by more than a
factor of S (S = 4 in these experiments). 40% of the cost of
the original algorithms is due to branch misprediction.

Table with 1 million records. Predicate selectivity 0.2
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Figure 4: Aggregation and Branch Misprediction
Impact

4. INDEX STRUCTURES
Index structures reduce computation time for answering

queries, while consuming a modest amount of space. Com-
mon index structures include all kinds of tree-structured
indexes, bitmap indexes and hash-based indexes. Various
techniques for organizing index structures to be sensitive to
modern architectures have been proposed, with particular
emphasis on cache performance [21, 22, 11, 6, 17]. These
techniques apply both to memory-resident indexes, as well
as to the layout of a disk page within disk-based indexes.
In this section, we study techniques for employing SIMD
instructions to make index traversal more efficient. SIMD
instructions can be combined with cache-conscious index de-
signs to get the most out of modern CPU architectures.

We focus in particular on tree-based index structures.
SIMD operations can be useful for other index designs too.

For example, they can speed up building hash indexes by
allowing the computation of hash values in parallel.

Tree-based index structures proposed for use in database
systems include ISAM, B+ trees [7], and multi-dimensional
indexes like Quad trees [10], K-D-B trees [23], and R-trees
[12]. Searching over these indexes requires repetitively search-
ing internal nodes from the root to the leaf nodes. Within
each internal node, one must perform some computation to
determine which child node to traverse. In the leaf nodes,
similar searching is required.

We describe how SIMD techniques can be employed to
efficiently search both internal nodes and leaf nodes. The
first benefit we hope to achieve is that fewer instructions
will be needed to locate the correct child, because SIMD in-
structions can compare multiple keys at the same time. The
second benefit is that we will be able to employ simple arith-
metic manipulations of the results of the SIMD instructions
to determine the next step of the algorithm, as opposed to
an explicit if test. As a result, we do not need any condi-
tional branch instructions. Branch misprediction penalties
are high, and index comparisons are likely to be a “worst-
case” workload for the branch prediction hardware because
each comparison is likely to be true roughly 50% of the time,
in an unpredictable way. We may thus achieve significant
time savings by replacing conditional branches by simple
computation.

We first present techniques used in internal nodes of in-
dex structures in Section 4.1. In Section 4.2, we present
techniques for leaf nodes. We use the B+ tree as the basic
structure in each section, and then discuss different process-
ing techniques for different index structures.

4.1 Internal Nodes
A B+-tree is a balanced index structure that is commonly

used in commercial systems. A B+-tree organizes its nodes
(usually equal in size to disk pages) into a tree. Both internal
and leaf nodes are at least half full.

An internal node stores an ordered sequence of keys. If
n keys are used in a node, then there will be n + 1 child
pointers. Leaf nodes consist of a sequence of entries for
index key values. Each key value entry references the set of
rows with that value. Traditionally, indexes have referenced
each row via a Row IDentifier, or RID. A sequence of RIDs,
known as an RID-list, is held in each distinct key value’s
entry in the B+-tree leaf. We assume that keys are fixed
length values; in our experiments we shall assume 32-bit
keys. For variable length keys such as strings, one can obtain



many of the benefits of fixed length keys by storing a fixed
length “poor man’s normalized key” for each key [11].

Following [11], we physically organize an internal node
as in Figure 5. The keys and child pointers are separately
stored in ordered arrays. We require that the keys (and
pointers) are properly aligned on a 16-byte address bound-
ary to take maximal advantage of SIMD instructions. A
page header inside each node stores the number of keys, key
type, key size, empty space and other necessary information.
The design of a leaf node is similar.

Key1 Key2

   P1 P2 P3

Page Header

Keys

Pointers

PID

#key, key size , key type, free space, etc.

(16−byte aligned)

Figure 5: An example of B+-tree internal node

For B+ tree internal nodes, suppose our keys are in an ar-
ray of the form key1, key2, . . . , keyn where keyi is an element
of an ordered data type, n is a constant, and keyi ≤ keyi+1.
These n keys determine n + 1 branches, and we assign each
branch a branch number between 0 and n. Given a search-
ing key K, the smallest i such that keyi ≤ K is the branch
number; if no such i exists then the branch number is 0.
B+-Trees can use the branch number as an index into the
array of child pointers.

Among different algorithms for searching within a page,
binary search is preferable [26]. However, binary search in-
volves a conditional test at every step. On some architec-
tures such as the Pentium, the cost of branch mispredictions
is high. Further, the kinds of comparisons needed for binary
search represent a worst-case workload for branch prediction
hardware because a branch will be taken roughly 50% of the
time. As a result, we cannot expect the hardware to achieve
less than a 50% misprediction rate.

4.1.1 Naive SIMD Binary Search
A first potential optimization is to use SIMD instructions

in binary search. Instead of comparing one element at a
time, we compare the key with S consecutive elements in
one SIMD instruction. We start with the middle of the
array, and proceed left or right as in binary search. If the
SIMD comparison yields all zeroes, we move left; if all ones,
we move right. If the comparison yields an intermediate
value, we know the key is covered by the current SIMD unit
of the array. The branch number can be computed directly
by applying SIMD bit vector to the comparison result.

Naive SIMD binary search does not eliminate all branches,
but it does shorten the comparison code by decreasing the
number of comparisons required.

4.1.2 Sequential Comparison with SIMD
Some indexes, such as those designed for cache-locality,

have a node size that is a small multiple of the cache line
size. For these indexes, it may be more efficient to sim-

ply compare all keys in a node with the search key in a
brute-force fashion. When implemented via SIMD instruc-
tions, such a method does not contain any complex branch
instructions (thus avoiding branch mispredictions), and can
take full advantage of the parallelism of SIMD. The basic
idea is simple. We compare each SIMD unit with the search-
ing key K. Then we count the number m of keys that are
less than or equal to the searching key K. The implementa-
tion is identical to that for count aggregates in Section 3.3.
Our experiments show that in some situations, sequential
comparison works amazingly fast.

A variant of this method (we call it sequential search 2)
checks each comparison result. If any comparison shows
there is any key larger than the search key, we stop: There
is no need to process the rest of the keys because they are
all larger than the search key. The advantage of this variant
is that it processes fewer keys (50% fewer on average) and
performs fewer key comparison instructions. The disadvan-
tage is that we need an extra conditional test in the inner
loop to see if we have reached a key larger than the search
key. We shall experimentally compare these two variants.

4.1.3 Hybrid Search
Consider an abstract search model, in which a logarith-

mic structure (such as a binary tree or binary search) is
used to locate a particular sequence of elements, and then
that sequence is sequentially scanned to find the particular
search key. Suppose that all of these leaf-level sequences
have length L. Then the overall complexity would be ap-
proximately a log2(n/L)+bL+c for some constants a, b, and
c. a would be the effective cost of processing a single com-
parison in the tree or binary search. b would be the effective
cost of processing a single comparison in the sequential scan.

A straightforward analysis of this formula shows that the
overall cost is minimized when L = a/(b ln 2). Interestingly,
this minimum is independent of n. In an abstract model,
one might imagine that a ≈ b since each is performing a
single comparison. Such an analysis would suggest that one
might as well have sequences of length L = 1, i.e., ordinary
trees or arrays.

However, when one re-examines this trade-off in light of
modern architectures, a different story emerges. In particu-
lar, suppose that the sequential scan is implemented using
SIMD instructions as in Section 3. Then the relative sizes
of a and b are impacted by two reinforcing effects. Firstly,
since S comparisons can be done in parallel for the sequen-
tial scan, the effective value of b is reduced by close to a
factor of S. Secondly, each binary search comparison has
a 50% chance of incurring a branch misprediction penalty,
while there are few (if any) branch mispredictions for the
sequential search. This increases the relative cost of a by
a factor equal to roughly half of the branch misprediction
penalty. We shall see experimentally that the net result is an
optimum L value of about 60 for our machine. It would be
relatively easy to run a short configuration script to deter-
mine the appropriate L value for other machines at system
initialization time.

Thus we propose a method called the “hybrid” method.
We group the data into sequential segments of length L. Bi-
nary search is performed on the last element of all segments,
until the correct segment is located. Finally, the correct seg-
ment is scanned sequentially.
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Figure 6: Comparison of Search Methods

4.1.4 Experiments
We perform a simulation that corresponds to the traver-

sal of a single internal node of a B+-Tree. Thus a node
contains just a key array and a pointer array, and those
keys are ordered. By studying just the cost of traversing a
single internal node we can isolate the improvement in the
component of the cost for traversing an internal node.

We varied the number of keys per node from 4 to 512.
Lookup keys are generated (randomly) in advance, so that
we don’t measure key generation time. Keys are 32-bit
single-precision floating point numbers. Each traversal ends
with the generation of the branch number for the node. We
measure the searching time of 10,000 searches. We repeat
each test five times and report the average time. Note that
there are no cache misses after the first traversal, enabling
us to concentrate on the computation cost that is the focus
of this section.

After curve-fitting binary search and sequential search to
compute a and b, we compute the optimum L for hybrid
search as approximately 62.6. Figure 6(b) shows the perfor-
mance of hybrid search within a node with 512 keys, vary-
ing the unit size. Performance is minimized when L ≈ 60,
matching our prediction.

Figure 6(a) shows the comparison of the different imple-
mentation techniques. Naive SIMD search is always bet-
ter than binary search. SIMD-Sequential search is better
than both algorithms when the number of keys is smaller
than around 250. However, the cost of sequential search
increases linearly with the number of keys and it becomes
worse when dealing with a large number of keys. The second
version of SIMD-Sequential search differs from the original
sequential search in that it checks, after each unit compari-
son, whether it is necessary to compare more keys. The two
variants are both linear, but with different slopes and inter-
cepts. As a result, there is a transition point at which the
preferred method of the two switches from the first to the
second. However, both variants are asymptotically worse
than binary search or naive SIMD search whose costs are
logarithmic. Figure 6 also shows hybrid search with L = 64.
Hybrid search combines the best of binary search and se-
quential search and performs well in all the cases. We advo-
cate the use of sequential search when there is always a small
number of keys (less than the optimal L value); otherwise
use Hybrid search.

Figure 7 identifies the branch misprediction cost for the
algorithms in Figure 6 at node size 128 and 512 keys. Not
surprisingly, sequential search experiences the lowest branch

misprediction penalty. On the other hand, on a 512-key
node, it scans all 512 keys and the final cost is high. Se-
quential search 2 has nearly the same overall performance
as sequential search; it searches fewer data elements but in-
curs more branch mispredictions. Hybrid search has fewer
mispredictions than binary search and naive search; this dif-
ference explains most of the performance gap.

4.1.5 Quad Trees and R-Trees
An internal node of a quad tree in k dimensions has 2k

children. Searching an internal node involves determining
which child “quadrant” to follow. A straightforward imple-
mentation of a node traversal would require k conditional
tests.

Take a two-dimensional quad tree as an example. We
number the four quadrants from 0 to 3 and store 4 pointers
to different quadrants in an array. Instead of comparing with
the x-axis and y-axis and combining the results, we can finish
this operator with two SIMD instructions whenever k ≤ S.

Figure 8 shows how to compare both the x-axis and y-axis
at the same time, make a bit vector out of the result mask
and easily get the quadrant number (and thus the offset to
the quadrant pointer). There is no branch misprediction
penalty at all.

X0Y0

1111.....10000....0

10X0

Y0

0 1

2 3
y x

Figure 8: SIMD Search Within A Quad Tree Node

Internal nodes of an R-tree consist of many bounding
boxes. Searching an R-Tree needs to check which bounding
box contains the searching point. Normally, this requires
up to two comparison and conditional tests per dimension.
With SIMD operations, one can perform multiple tests in a
single operation. In S dimensions, for example, we can com-
pare the lower bounds in one test, and the upper bounds in
another, resulting in two rather than 2S comparisons.

4.2 Leaf Nodes
Leaf nodes are similar to internal nodes except there are

only N pointers corresponding to N keys. Also, for an exact-
match search, we need to find an exact match in leaf nodes
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Figure 7: Branch Misprediction Impact

rather than looking for the smallest key greater than or equal
to the search key. The performance issues for leaf node
design are very similar to those for internal node design,
and the performance graphs are also similar. As a result,
we expect that sequential search is the method of choice for
leaf node sizes less than L, while hybrid search is preferred
for larger leaves.

An interesting benefit of using sequential search in leaves
is that leaves do not need to be stored in order. This makes
the code for insertions, deletions and key modification sim-
pler because much less copying needs to be done in the
leaves.

4.2.1 Leaves in Multi-Dimensional Index Structures
Leaf nodes in multi-dimensional index structures are all

similar. Instead of one key array in leaf nodes, we advocate
storing each dimension in a separate array. The RID pointer
array is the same. SIMD instructions enable us to compare
S keys at a time in each dimension. After comparing S keys
in every dimension and SIMD ANDing the results, we get a
mask for S elements. The rest of the leaf node design can
be done as for B+ trees.

4.3 Overall Tree Performance
Using the techniques described above, we implemented a

3-level B+-tree containing 10 million keys. Each node is a
4K page and is able to contain up to 500 pairs consisting of
a 32-bit floating-point value and a 32-bit pointer. We use
hybrid search in both internal nodes and leaf nodes. All the
B+ nodes have been preloaded in memory; we don’t count
the I/O cost.

For searching, there is around a 10% performance gain
over the B+-Tree with binary search. The speedup is not
as much as for the CPU cost alone, because there are other
costs incurred, such as cache miss penalties. Since insertion,
deletion and update all perform an initial search, they also
perform faster.

5. JOIN PROCESSING ALGORITHMS
The nested loop algorithm is the most general way of han-

dling joins. It can handle both equi- and non-equi-joins. A
nested loop join compares every record of one table against
every record of the second table according to the join pred-
icate(s). With SIMD techniques, there are three ways to
implement the nested-loop join.

Duplicate-outer In the outer loop, fetch one join key from
the outer relation and duplicate it S times to make
a SIMD unit. In the inner loop, scan all the keys
in the inner relation to find the matches. Using the
techniques of Section 3.2, compare the unit with S
join keys from the inner relation each time. If matches
are found, produce join results accordingly.

Duplicate-inner In the outer loop, fetch S join keys from
the outer relation to make a SIMD unit. In the in-
ner loop, fetch one join key from the inner relation
and duplicate it S times to make another SIMD unit.
Compare both SIMD units, check the result, and pro-
duce join results accordingly.

Rotate-inner In the outer loop, fetch S join keys from the
outer relation to make a SIMD unit. In the inner loop,
fetch S join keys from the inner relation to make an-
other SIMD unit. Compare the two units S times,
rotating the inner unit by one word between compar-
isons. Check the comparison results and produce join
results accordingly.

Rotate-inner can be evaluated in a slightly more efficient
way if we have enough (more than S) SIMD registers: Pre-
compute the S rotations of the outer records outside of the
inner loop, and perform four separate comparisons (and no
rotations) in the inner loop. As in Section 3, we assume
that the join predicate is easily transformed into SIMD form
using logical and arithmetic operations supported by the
SIMD instruction set.

For our first study, we use the following four queries to
show the performance of different algorithms (The key is
integer type for the first query and floating-point type for
the other three queries). The first two are equijoins over
integer and floating point values, respectively. The fourth is
a band join, in which records from one table must be within
a constant-sized window of records from the other table [8].
The third is like a band join, except that the width of the
band window varies from record to record.

Q1: SELECT ... FROM R, S WHERE R.Key = S.Key

Q2: SELECT ... FROM R, S WHERE R.Key = S.Key

Q3: SELECT ... FROM R, S

WHERE R.Key < S.Key < 1.01 * R.Key

Q4: SELECT ... FROM R, S

WHERE R.Key < S.Key < R.Key + 5



The outer relation R has 106 tuples and the inner relation
S has 104 tuples. By making S the inner relation, we avoid
cache thrashing since S fits entirely within the L1 cache of
our processor. The join selectivity for the first two queries is
around 0.0001. Queries 3 and 4 have join selectivity around
0.005. The result of the join is pairs of outer and inner
RIDs of matching tuples. Subsequent tuple reconstruction
is equal for all algorithms, and we do not include that in our
comparison.

Outer Relation 1 million tuples. Inner Relation 10 K tuples

0

20

40

60

80

100

120

Original Duplicate-outer Duplicate-inner Rotate-inner

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

Query 1
Query 2
Query 3
Query 4

Figure 9: Nested-Loop Join

Figure 9 shows the elapsed time for the original join algo-
rithm and three SIMD algorithms. All three methods take
advantage of parallelism in SIMD instructions and are faster
than the original nested-loop join. The duplicate-inner

method is slower than the other two SIMD methods be-
cause the duplication of the inner keys happens in the inner
loop, and must be performed 106 · 104/4 times. In contrast,
the duplicate-outer method performs duplication just 106

times. The rotate-inner method is the fastest. It takes
advantage of loading S SIMD variables outside the inner
loop. None of the SIMD methods have a significant number
of branch mispredictions.

For the simple integer and floating point join predicates,
the SIMD algorithms are almost four times faster than the
original algorithm. For queries 1 and 2, the number of
branch mispredictions was small.

For queries 3 and 4, we see a factor of 9 improvement.
Figure 10 shows the branch misprediction component of the
cost for different algorithms for queries 3 and 4. There are
two conditional tests in the predicates. As a result, roughly
40% of the time is consumed by branch misprediction effects
in the original code. In contrast, none of the SIMD methods
display significant numbers of branch mispredictions. The
SIMD code directly processes the masks generated by SIMD
compare instructions, without requiring an if test for each
row. Further, when we directly implemented query 3 using
just one slot of a SIMD register, we obtained an elapsed
time of 44 seconds. Even if one discounts the branch mis-
prediction overhead for the original code, 44 seconds is sub-
stantially smaller than the 60 seconds for the original code.
The reason for this difference is that the Pentium 4’s na-
tive floating point arithmetic instructions are significantly
slower than its SIMD floating point arithmetic instructions.
Thus, of the roughly 86 seconds saved, 30 were due to par-
allelism, 16 were due to faster processing of SIMD floating
point arithmetic than native floating point, and 40 were due
to avoiding branch mispredictions.

5.1 Optimizing for the Common Case
In practice, join selectivities are typically very small, mean-

ing that a very small fraction of all record comparisons result
in a match. Therefore, the (V != 0) tests on the bit-vector
V representing the match results are worthwhile. Almost all
of the time V will be zero, and we can avoid the work of
checking the individual matches.

We can take this observation even further. Suppose that
our SIMD architecture allows SIMD operations on smaller
datatypes. On a Pentium 4, for example, there are SIMD
operations for 8, 16, 32, and 64 bit datatypes, with corre-
sponding S values of 16, 8, 4, and 2 respectively. Let f be
a mapping from datatypes of size d bits to datatypes of size
d′ bits, where d′ < d. Let p(x, y) be a join predicate over
size-d datatypes, and p′(x, y) be another join predicate over
size-d′ datatypes. We say that the pair (f, p′) is a filter for
p if p(x, y) implies p′(f(x), f(y)) for all x and y.

For example, if p and p′ were both equality predicates,
then any hash function f would enable (f, p′) to be a filter
for p. As another example, suppose that p and p′ were bit-
wise comparison operations (possibly involving bitwise logi-
cal operations as subexpressions) that were identical except
that p′ operates on shorter datatypes. Then any function f
that selected some d′ bits out of a d bit word would enable
(f, p′) to be a filter for p.

Our basic idea is to perform an initial join comparison
between S′ smaller values, where S′ > S. If some key-pair
among the S′ pairs matches, then we execute the S-way
join as before for these records. However, if there is no
match, then we skip to the next group of S′ records. If it
is common that none of the S′ records matches, then we
will have a net win because we can process S′ records per
comparison rather than S. Before performing the join, we
materialize the results of the f function as a column of each
input relation.

Example 1. Suppose that we were performing an equijoin
on 32-bit keys. Let f8 be a hash function that maps 32 bit
keys to 8-bit values, and let f16 be a hash function mapping
32 bit keys to 16-bit values. If we use multiplicative hashing,
we can assume that the probability of a collision in fn is
2−n since this scheme has been shown to be universal [9].
Let us assume that our join selectivity s was very small,
say less than 0.0001, as is common. Then the probability
that an m-way comparison of n-bit values is nonzero would
be approximately ms + 1 − (1 − 2−n)m. For m = 16 and
n = 8, this probability is approximately 0.06. For m = 8
and n = 16, this probability is less than 0.001.

Thus, we could perform an initial test on 16-bit hash val-
ues, and less than one time in 1000 would we need to actually
look at the original 32-bit values. The rest of the time we
would be proceeding twice as fast through the data as we
would with 32-bit comparisons. Similarly, we could proceed
four times as fast through the data 94% of the time with
8-bit hash values, and need to check the original 32-bit data
6% of the time. The relative cost of handling nonmatches
versus handling matches needs to be considered when deter-
mining the right trade-off. Figure 11(a) shows the measured
performance for a simple join like query Q1 above. The join
selectivity is varied by varying the domain cardinalities of
the join attributes. Note that the smaller (inner) table fits
within the cache, so that we do not expect the cache miss
cost to be significant.
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Figure 10: Branch Misprediction Impact

The results show that the 8-way SIMD code is the most
efficient for small selectivities. That the 8-way code is bet-
ter than the 4-way code follows from the doubling of the
effective rate that data is processed, while incurring the ex-
pense of an explicit match of eight full keys just 0.1% of the
time. More interestingly, the 8-way code beats the 16-way
code even though the 16-way code is twice as fast as the
8-way code most of the time. However, 6% of the time the
16-way method has to perform an explicit match of 16 full
keys. The cost of the explicit match is high enough that this
difference is dominant.

When join selectivities increase, the probability that an
explicit match of the full keys is needed increases, thus af-
fecting the trade-off among the methods. Note that the
query optimizer has enough information to choose the pre-
ferred method as long as it has a join selectivity estimate;
given the use of multiplicative hashing, the only other statis-
tics that need to be gathered for cost estimation are not
data-dependent.

The following example demonstrates that there are realis-
tic scenarios where this approach helps for nonequijoins. For
nonequijoins such as this, the only practical method for per-
forming the join in modern database systems is the nested
loop join.

Example 2. Suppose have two tables wants(Client,

Facility) and supplies(Location, Facility). For each
client, we want to find every location that has all the facil-
ities that client wants. An SQL formulation of the query
is

SELECT Client, Location

FROM wants C, supplies S

WHERE (SELECT Facility FROM supplies G

WHERE G.Location = S.Location)

Contains

(SELECT Facility FROM wants H

WHERE H.Client = C.Client)

Now suppose that there are many clients and suppliers,
but the number of facilities is limited. To optimize the per-
formance of this query, we encode the facilities via bitmaps.
If the number of distinct facilities is smaller than d, we may
use d-bit integers to represent either facilities required or fa-
cilities available. Then we have two new tables wants(Client,

bitmap) and supplies(Location,bitmap) with one row per
client and location respectively. The query can then be writ-
ten as

SELECT Client, Location

FROM wants C, supplies S

WHERE (C.bitmap & S.bitmap = C.bitmap)

(Different vendors express bit operations in different ways,
but bit operations are supported in all major commercial re-
lational database systems.) A filter for this join consists of
taking the low order bits of the facilities bitmap, and using
those for the comparison in the WHERE clause. Figure 11(b)
shows the performance of this bitwise join. The keys for the
inner table are bitmaps corresponding to the binary repre-
sentations of the numbers 1 to 10,000. The range of keys for
the outer table is varied to achieve different join selectivities.
The 8-way SIMD version is the best.

The join selectivity for both of these examples is suffi-
ciently small that branch misprediction does not play a role
in the performance. The performance gain is primarily due
to the enhanced parallelism.

6. ADDITIONAL SIMD TECHNIQUES
There are several specialized SIMD instructions designed

for multimedia instructions. For example, a Pentium 4 has
an operation to compute the sum of the absolute differences
of two vectors of numbers in a single instruction. Such oper-
ations might be useful for nearest-neighbor query processing.
Other operations, such as the Euclidean distance between
two points, can be computed more efficiently in SIMD, even
though there is no explicit instruction to do so.

There are SIMD instructions that we might wish for in
future SIMD designs. For example, the first-match and all-
matches code could be improved if we had a shuffle instruc-
tion that performed its shuffle in a data-dependent way. A
shuffle instruction moves the words in the source SIMD unit
into another order in the destination unit, with duplica-
tion or omission allowed. (The Pentium 4 supports only
fixed shuffles, so that data-dependent shuffles have to be
programmed.)

A SIMD indirect pointer lookup would also be potentially
useful, allowing one to retrieve data from multiple locations
at the same time. This would enable SIMD processing of
indirectly referenced data.
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Figure 11: Nested-Loop Join with Filters.

7. CONCLUSION
Many database applications have become CPU bound, as

I/O bandwidth and RAM capacities have increased. We
have shown that designing database algorithms to utilize
SIMD technology significantly improves their CPU perfor-
mance. The two main reasons for the performance im-
provement are the inherent parallelism of SIMD, and the
avoidance of branch misprediction effects. Programming
SIMD inner loop code can be done in a high-level language,
with relatively small code fragments required. Thus, we
argue that it is relatively easy for implementors of high-
performance database systems to take advantage of such
techniques.
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