
Optimizing Read Convoys in Main-Memory Query
Processing

Kenneth A. Ross
∗

Columbia University, New York, NY 10025
kar@cs.columbia.edu

ABSTRACT
Concurrent read-only scans of memory-resident fact tables
can form convoys, which generally help performance because
cache misses are amortized over several members of the con-
voy. Nevertheless, we identify two performance hazards for
such convoys. One hazard is underutilization of the mem-
ory bandwidth because all members of the convoy hit the
same cache lines at the same time, rather than reading sev-
eral different lines concurrently. The other hazard is a form
of interference that occurs on the Sun Niagara T1 and T2
machines under certain workloads. We propose solutions to
these hazards, including a local shuffle method that reduces
interference, preserves the beneficial aspects of convoy be-
havior, and increases the effective bandwidth by allowing
different members of a convoy to concurrently access differ-
ent cache lines. We provide experimental validation of the
methods on several modern architectures.

1. INTRODUCTION
The classic example of a convoy is when traffic on roads

without passing lanes forms clusters, with many cars “stuck”
behind slow cars [2]. Convoys are a well-known phenomenon
in databases [2], occurring when many transactions queue
on a lock request. Once a critical number of requests are
queued, the system can enter a stable state in which all re-
quests pass through the lock repeatedly, in sequence, slowing
down the system.

Even in read-only databases, convoys can occur during
query processing. For example, Zhou at al. [8] describe a
method in which a worker thread is aided by a helper thread
whose job is to preload needed data into the cache. The
worker thread writes memory locations to a data structure
called the work-ahead set. The helper thread reads from
this data structure to find out which addresses to preload.
Since the helper thread suffers cache misses, it often hap-
pens that the helper thread was only just ahead of the

∗Supported by NSF Grants IIS-0534389 and IIS-0915956,
and by a Jim Gray seed grant from Microsoft Corp.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Sixth International Workshop on Data Management on
New Hardware (DaMoN 2010) June 7, 2010, Indianapolis, Indiana.
Copyright 2010 ACM 978-1-4503-0189-3/10/06 ...$10.00.

worker thread (which did more computation, but experi-
enced cache hits). The threads thus form a convoy with
two members. Unfortunately, when the helper thread and
worker thread access the same cache lines in the work-ahead
set (even if they accessed different data elements), an expen-
sive memory-ordering event is generated, slowing down both
threads dramatically. The solution explored in [8] is some-
what counterintuitive: make the helper thread work back-

wards in the work-ahead set structure relative to the worker
thread. This behavior avoided the convoy effect that led to
the expensive memory-ordering events. See Appendix B for
further discussion of backwards processing.

A second kind of convoy occurs when multiple threads
are processing records in the same order, and updating a
common data structure. For example, Cieslewicz et al. [4]
consider many threads cooperating to compute a grouped
aggregate query by scanning fragments of an input table and
updating a shared hash table with data from the processed
records. Threads use atomic operations or latches to pro-
tect against destructive updates for the short period in which
the data in the hash table is updated. Even if the data val-
ues are well distributed, when there is a common reference
pattern in the data stream there is a performance hazard
caused by convoying behavior [4]. Consider a repeated run
distribution in which the group-by column takes the values
1, 2, . . . , n, 1, 2, . . . in a repeating sequence. Because of con-
tention, a thread will slow down when it tries to access and
update an element accessed by another thread. This effect
leads to a convoy in which all threads repeatedly contend for
the same items in the same sequence, dramatically reducing
performance. One solution is to cycle through the input ta-
ble fragments using a different stride1 in each thread, while
still reading each input cache line only once [4]. Because of
the different strides, an occasional contention event does not
lead to repeated contention as before.

In both of these examples there is conflicting read/write
or write/write behavior on a shared data structure. Convoys
can also occur for read scans of data. When there is only
reading of data, the conventional wisdom has been that a
convoy is at worst harmless, and in some cases even helpful
because of improved locality. For example, Qiao et al. [6] de-
scribe how convoys naturally form between multiple threads
scanning a common table. Leading threads progress slowly
due to cache misses, while trailing threads have the opportu-
nity to catch up as they experience cache hits resulting from
the loading of the data by the earlier threads. The resulting

1Each stride must be relatively prime to the number of cache
lines in the input.

convoy improves performance by allowing cache misses to be
amortized over the member threads.

Nevertheless, there remain performance hazards for read
convoys, as we demonstrate in this paper. We identify two
distinct kinds of hazard. The first hazard is caused by the
fact that in a convoy of many threads, all threads end up
synchronized, waiting on the same cache line. Since mod-
ern processors allow multiple outstanding memory requests,
it seems that the machine is being underutilized. If several
cache lines were being requested concurrently, the convoy
could be making faster progress through the input data.
Prefetching (either in software or in hardware) does not
solve this problem, because all threads end up concurrently
prefetching the same cache lines too, and memory transfer
rates are limited to what one thread can sustain.

The second hazard is more surprising, because it involves a
read-only convoy on a shared data stream that performs sig-
nificantly worse than threads working on independent data
streams. In other words, there is interference between read-
only threads. We demonstrate such a hazard on the Sun
Niagara T1 and T2 machines, which are, respectively, 32-
thread and 64-thread symmetric multithreading processors.
The kinds of workloads that cause this effect are common
ones, involving multiple threads scanning a common input
table and performing a limited amount of processing on each
record in sequence.

After demonstrating the convoy-related performance haz-
ards, we investigate the two prior solutions mentioned above
for avoiding convoys by changing the order of record access
in some threads. We also demonstrate how prefetching can
avoid the second hazard, even though it does not change
the order of access. To our knowledge, this is the first use
of prefetching as a convoy-avoidance technique.

We then propose a new way of reordering accesses called
the local shuffle that solves both hazards. The main idea
is to preserve the cache sharing behavior of the convoy by
retaining a common global access pattern across threads.
However, each thread will have a different local access pat-
tern, where different threads trigger cache loads for different
parts of the input data.

We verify that the local shuffle solves the second perfor-
mance hazard on the Niagara machines, and performs even
better than prefetching. We also study the local shuffle on
two additional platforms, the Intel Core i7 (Nehalem) pro-
cessor and the AMD Opteron (Barcelona) processor. The
local shuffle improves performance on the Nehalem, but not
the Barcelona. The Barcelona performance is unchanged
due to its unusual cache architecture: the lower level caches
are victim caches and prefetched data is sent directly to the
L1 cache, meaning that there is little opportunity for threads
to share prefetched data.

The remainder of this paper is structured as follows. Sec-
tion 2 outlines the context of the paper, and discusses related
work. In Section 3 we identify and characterize read inter-
ference between threads in convoys on the Sun T2 machine;
we also implement and evaluate several methods to overcome
this interference. In Section 4 we develop a new scheme for
scan-like operations that preserves the global convoying be-
havior, while changing the local access pattern to improve
performance. Additional query types are discussed in Sec-
tion 5. We conclude in Section 6. Information about the
experimental configurations used in the paper can be found
in Appendix A.

2. FRAMEWORK AND RELATED WORK
Our memory-resident database consists of a fact table and

a collection of small dimension tables. The tables are stored
as arrays as they might be stored by an in-memory database
system [1, 3]. The fact table is stored columnwise as a collec-
tion of arrays, one per column. Fact table entries for a given
column may be interpreted as foreign keys into a particular
dimension table; a value of i in the fact table column means
that the fact table record is referencing the ith record of
the dimension table. The dimension tables could be stored
row-wise or column-wise, but for the purposes of this paper,
where the entire dimension tables will be L1-cache resident,
this choice is unimportant. We assume a fact table that is
larger than the lowest-level cache of the machine, which on
current architectures is typically 2–8MB.

The class of queries we have in mind are those that can be
answered with a single scan of the fact table while (a) doing
minimal computation and (b) holding just a small amount
(less than the L1 cache) of state. The state would include
accessed dimension tables, as well as any intermediate struc-
tures such as hash tables for grouped aggregation. Because
they do minimal computation, such queries are likely to be
memory-bound rather than compute-bound. Further, since
the state is L1-resident, the memory bottleneck will typically
be the lowest-level cache misses on the fact table.

When large fact tables are processed sequentially, it pays
to process the data in batches of records [5, 9, 3]. Within a
batch of records, data should be processed one column at a
time [3]. The payoff for such a choice is a tighter inner loop,
better opportunities for compression, and better instruction
cache locality. Batch sizes are typically chosen to be about
1024 records. We follow such an approach and choose a
batch size of 1024 rows.

Given a scan query Q, we run Q on every thread in the sys-
tem in parallel. Further, when Q completes on a thread, we
immediately restart Q over again. After a sufficient number
of instances of Q have been run, convoys will form in which
each thread accesses the same fact table elements as other
members of the convoy at the same time.

We choose this pattern (the same query repeated over
and over) to make the analysis of the convoy phenomena
straightforward. When different scan queries with different
rates of progress are run on different threads, one would
expect to see additional more complex phenomena such as
convoy splitting and merging, phenomena that are beyond
the scope of the present analysis.

Qiao et al. argue that one can achieve better throughput
than convoying scans by grouping queries into batches that
are explicitly coordinated to progress together through the
fact table [6]. Nevertheless, such an approach may give poor
response time, since all queries in a batch progress only as
fast as the slowest query in the batch. In contrast, if queries
progress independently, slow queries will naturally drop out
of a convoy while fast queries make rapid progress.

3. READ INTERFERENCE ON THE T2
Our discovery of read interference on the Sun Niagara

machine was serendipitous. We were measuring the perfor-
mance of scan-like queries that aggregated values found in
foreign-key dimension tables. When the dimension cardi-
nality was small, so that dimension tables were L1 cache
resident, the throughput curve had several unexpected dis-

continuities when plotted against the number of concurrent
threads.

To isolate the problem, we progressively simplified the
query, while observing whether the discontinuities persisted
in the simplified query. We found that the problem was
apparent even for a scalar aggregate of a single fact table
column, without dimension table references. The perfor-
mance discontinuities are shown in Figure 1 for this simple
scalar-sum aggregate.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

bi
lli

on
 v

al
ue

s/
se

c)

Number of threads

Figure 1: Throughput discontinuities for a single-

column scalar aggregate on the Sun Niagara T2.

There are several interesting features of this graph. The
first feature is the sudden change in slope from the region
with 6 or fewer threads to the region from 7 to 28 threads.
Since there are 8 cores on the machine, and threads are
distributed among cores by the operating system, this tran-
sition does not seem to coincide with a natural core/thread
boundary. The second interesting feature is the sudden im-
provement in performance from 28 to 31 threads. After that,
performance improves slowly again until 48 threads. From
49 to 64 threads, performance improves about twice as fast
as from 32 to 48 threads. This last feature is surprising be-
cause on a simultaneous multithreading (SMT) machine like
the T2, the value one gets from the last threads is generally
less than from the earlier threads.

We repeated the experiment on several other machines,
and did not see any similar effects on an Intel Nehalem pro-
cessor or an AMD Opteron processor. However, we did see
similar behavior (with different transition points) on a Sun
Niagara T1 machine having 32 threads. We concluded that
the observed phenomena might depend on some specific as-
pect of the Niagara architecture.

To further illuminate the performance issue, we used Sun’s
cpc performance counter libraries to measure various per-
formance related architectural events. The L2 miss events,
shown in Figure 2, were particularly informative.

As the fact table is scanned, data is brought into the L2
cache in 64-byte L2 cache lines. Thus, in the absence of
any shared misses, one would expect to see one L2 cache
miss for each sixteen 4-byte data values. As Figure 2 shows,
we do encounter one cache miss per cache line for 1 to 6
threads. We can thus infer that there is little sharing or
convoy formation in this range.

However, when we hit 7 threads, the L2 miss count per
cache line jumps to about 4, and stays above 3 for the rest

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60L2
 c

ac
he

 m
is

se
s

pe
r

ca
ch

e
lin

e
(1

6
va

lu
es

)

Number of threads

Figure 2: L2 misses per fact table cache line for a

single-column scalar aggregate on the Sun Niagara

T2.

of the graph. This discontinuity corresponds to the sudden
change in throughput from 6 to 7 threads in Figure 1. There
does not seem to be a sudden change in L2 miss behavior to
explain the jump at 28 threads. A slight drop in L2 misses
at the right of the graph seems to be associated with the
improved throughput in the range.

What is causing these extra L2 cache misses? A critical
clue comes from the fact that the number of misses per cache
line jumps from 1 to almost exactly 4. The L1 cache of the
T2 has a 16-byte cache line, and so one expects four L1
misses for each L2 cache line.2 To find out why these L1
misses might result in additional L2 misses, we consulted
the Niagara micro-architecture specification [7]. We found
in Section 5.3.3 the following description of the load miss
queue (LMQ):

The LMQ checks for common addresses for
load misses across threads to prevent duplication
of tags in the dcache. The LMQ compares an in-
coming load from any thread against all valid en-
tries in the LMQ. If there is a match, the incom-
ing load is termed a secondary miss. Secondary
misses cause a request to the L2, but they are
marked as non-cacheable to prevent cache pollu-
tion.

Based on this description, it appears that two threads that
access the same address within the timespan of an L2 cache
miss can interfere with each other, even if both are reading.
In particular, the L2 line is marked non-cacheable. If this
event occurs repeatedly, an L2 miss occurs for each of the
four L1 accesses. Note that it takes the special coordination
evident in a convoy to generate this kind of access pattern
in which many threads touch the same cache line within a
very narrow timeframe.

Returning to the throughput graph, we can now explain
the transition from 6 to 7 threads. The relative speedup at
the right of the graph can be explained based on the fact
that when cores become close to fully loaded with threads,
each thread slows down slightly as they take turns being

2In contrast, the Nehalem and Opteron machines have 64-
byte L1 cache lines.

processed. This decrease in speed reduces the rate at which
conflicting accesses of the sort mentioned above are gener-
ated, leading to a slight improvement in the L2 miss rate
and throughput. The transition between 28 and 31 threads
remains mysterious, and will be explained later, once addi-
tional information is at hand.

Eliminating Read Interference
To address the read interference problem, we must somehow
reduce the contention between threads for the same fact ta-
ble items. We first apply the technique of [8] in which half of
the threads progress forwards through the array, while half
of the threads progress backwards. The results are shown in
Figure 3. It appears that the performance problems remain,
but that the thresholds are simply deferred until twice the
number of threads.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

bi
lli

on
 v

al
ue

s/
se

c)

Number of threads

All forward
Half backward

Figure 3: Throughput with half the threads pro-

gressing backwards.

Figure 3 also suggests an explanation for the performance
jump at 28 threads in Figure 1. The performance of the
“all forward” technique matches the performance of the“half
backward” technique from 31 threads to 48 threads, suggest-
ing that the “all forward” technique undergoes a change of
dynamics at that point, splitting into two independent con-
voys.

We next apply a solution motivated by [4], where cache
lines were accessed with different strides in different threads.
Instead of using cache lines as the striding unit, we will use
batches of 1024 values as the unit. Each thread gets a dif-
ferent prime stride that is relatively prime to the number of
batches in the data set. Threads wrap around when they
reach the end of the data, until every batch has been pro-
cessed. The results are shown in Figure 4. Performance is
significantly better than before, by more than a factor of two
in some regions, and the performance curve does not show
any discontinuities. This performance improves because the
convoying behavior has been destroyed, eliminating the in-
terference.

Our final solution for this section is prefetching. The dis-
covery of this solution was also serendipitous. When making
a small, apparently inconsequential change3 the performance

3The change was putting slightly different aggregate com-
putations inside a case statement. Only the first block of
the case statement showed improved performance.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

bi
lli

on
 v

al
ue

s/
se

c)

Number of threads

Common stride
Variable stride

Prefetch

Figure 4: Throughput with varied batch stride, and

with prefetching.

seemed to dramatically improve. Investigation of the gener-
ated assembly code revealed that the compiler had optimized
the inner loop by inserting a prefetch statement to load the
fact table data into the L2 cache ahead of its use.4

In a convoy, one might suspect that the same conflict pat-
tern would remain even with prefetching, since threads are
synchronized. However, as the Niagara micro-architecture
specification [7] explains:

Once the [prefetch] packet is sent to the PCX,
lsu complete can be signaled and the entry in the
LMQ retired.

The LMQ entry for the prefetched location is retired once
the prefetch instruction is complete, well before the prefetched
data is actually retrieved. As a result, read interference is
avoided. The performance of the prefetching method (im-
plemented by simply using the case statement variant men-
tioned above) is shown in Figure 4. The prefetch-based
method performs even better than the variable stride method,
because it eliminates the interference without destroying the
convoying behavior. Convoying does have benefits, namely
the amortization of cache misses across threads.

4. THE LOCAL SHUFFLE
As outlined in Section 1, even an interference-free convoy

may be underutilizing the available bandwidth of the ma-
chine. In this section, we aim to improve the performance
of convoys by allowing threads to read different data items
concurrently. However, unlike the variable-stride method in
Section 3, we wish to preserve the convoying behavior so
that cache misses are amortized over many threads.

The essence of the idea is to think of the scan at two
levels: a coarse granularity and a fine granularity. At the
coarse granularity, all threads progress in the same sequence,
moving from segment to segment together as a convoy. At
the fine granularity, however, threads iterate within the seg-
ment using different access sequences. If the segment size

4In general, we could not predict when the compiler will
generate code with prefetch instructions, and the compiler
options to “force” prefetch optimization were only partially
effective. Manually inserting prefetch instructions is possi-
ble, but requires significant tuning.

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

bi
lli

on
 v

al
ue

s/
se

c)

n

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60

L2
 m

is
se

s
pe

r
L2

 c
ac

he
 li

ne
 (

16
 v

al
ue

s)

n

(a) Throughput (b) L2 misses

Figure 5: Local shuffle on the T2 with 64 threads, for various n.

is small relative to the lowest-level cache, then all threads
in the convoy should be able to benefit from other threads’
cache misses within the segment. They remain in the convoy
because any thread that gets too far ahead will suffer cache
misses, while the trailing threads encounter cache hits.

Like the variable stride method, we again use a batch of
1024 values as the unit of access. By using a reasonably
large unit, we allow processors with hardware prefetching to
benefit from fixed-stride access. We define shuffle groups to
be disjoint sets of n contiguous batches of array values. For
example, the first shuffle group would contain the first 1024n

values, the second would contain the next 1024n values, and
so on.

Threads all move from shuffle group to shuffle group in the
same sequence. Within a shuffle-group, threads proceed in a
fashion similar to the variable-stride method using different
strides, each relatively prime to n. The start batch within
the shuffle group is set to i mod n for thread i.

The value n must satisfy several constraints. It must
be small enough that 1024n values can fit well within the
lowest-level cache. For example, with 4-byte values and a
4MB cache, n can be at most 1024. n should be large enough
that threads are spread across different regions within the
shuffle group. Nevertheless, once n reaches a certain point,
the memory bandwidth will be saturated, and additional
spreading will not improve performance.

For the Sun T2, we tried various n for the 64-thread case,
and obtained the performance shown in Figure 5(a) for the
scalar sum query. It appears that n ≥ 16 performs well in
practice. The cache misses per input cache line are given
in Figure 5(b). The low miss rates verify that convoys are
forming and that misses are being shared between threads.

We set n = 16 and generate performance graphs for the
local shuffle method at various numbers of threads. The
results are shown in Figure 6, together with the prefetching
and variable-stride results. The local shuffle performs well,
exceeding the performance of even the prefetch method.

We repeated the local shuffle analysis for the Nehalem
machine. With 16 threads on the Nehalem, the best perfor-
mance was achieved with n in the range 3 to 5. We set n = 3
and measured the performance of the local shuffle method
on the Nehalem, together with the basic forward scan and
the variable-stride method. The results are shown in Fig-

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

bi
lli

on
 v

al
ue

s/
se

c)

Number of threads

Local shuffle
Variable stride

Prefetch

Figure 6: T2 throughput of the local shuffle method

for various numbers of threads.

ure 7. Note that since the Nehalem machine does hardware
prefetching for fixed-stride access to memory, the forward
scan on the Nehalem is analogous to the prefetch method
on the T2. Further, the local shuffle performance benefits
from hardware prefetching on the Nehalem, unlike on the
T2.

The variable-stride method performance levels off at about
8 billion values per second, which corresponds precisely with
the 32GB/sec memory bandwidth rating of the machine.
Since there is no convoying in the variable-stride method,
the bandwidth wall limits the aggregate throughput. The
forward scan performs better. Because of convoying, some
of the memory accesses help service multiple threads, al-
lowing an apparent processing rate that is higher than the
machine’s rated bandwidth. The local shuffle does even bet-
ter, ensuring that all of the machine’s memory bandwidth is
effectively used.

In a final set of experiments, we repeated the perfor-
mance comparison on the Opteron, and found essentially no
difference in performance between the local-shuffle and all-
forward methods. The Opteron performance is unchanged
due to its cache design: the lower level caches are victim
caches and prefetched data is sent directly to the L1 cache.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

bi
lli

on
 v

al
ue

s/
se

c)

Number of threads

All forward
Variable stride

Local shuffle
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

bi
lli

on
 v

al
ue

s/
se

c)

Number of threads

All forward
Variable stride

Local shuffle
 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

bi
lli

on
 v

al
ue

s/
se

c)

Number of threads

All forward
Variable stride

Local shuffle

(a) Scalar aggregate of dimension (b) Count aggregate with simple (c) Grouped count aggregate
table value local selection

Figure 8: Scan query variants on the Nehalem.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

bi
lli

on
 v

al
ue

s/
se

c)

Number of threads

All forward
Variable stride

Local shuffle

Figure 7: Nehalem scalar aggregate throughput of

three methods for various numbers of threads.

There is less opportunity for threads to share prefetched
data because the L1 caches are private to each thread.

5. MORE GENERAL QUERIES
So far, our performance results have focused on a single-

column scalar aggregate query. This query is a good can-
didate for convoying behavior because it does only one op-
eration per value, and needs just a single register for state.
While a complete study of more general queries is beyond
the scope of this paper, we also considered the following
query variants:

1. The value being aggregated comes from an L1-resident
dimension table referenced via a foreign key.

2. A simple equality filter with selectivity 0.1 is applied
to fact table rows before a count aggregate.

3. Grouped count aggregation is performed, with group-
by values used directly as offsets into a array of counts,
so that no hashing is required. The group-by cardinal-
ity was 10.

Results for these queries on the Nehalem are shown in Fig-
ure 8. There was still an improvement for the local shuffle
method relative to the other methods, but the gap was sig-
nificantly smaller, and all methods performed slightly below
the bandwidth rating of the machine. For all methods, there

was little improvement after 8 threads. Since there is more
work being performed for each record, the memory transfer
cost represents a smaller fraction of the overall work done
by the query.

6. CONCLUSIONS
We have demonstrated that even for read-only workloads,

there are performance hazards associated with convoys. The
two hazards identified here are interference on the Niagara
architecture, and an underutilization of the memory band-
width. We have demonstrated solutions to these problems,
proposing the local shuffle method to preserve the global
convoying behavior while spreading out the local access pat-
tern.

As the number of cores per chip increases in future, issues
such as convoys will become even more significant. Dealing
with associated performance hazards will be critical for the
efficient parallel utilization of the available resources.

7. REFERENCES

[1] D. Abadi, S. Madden, and M. Ferreira. Integrating
compression and execution in column-oriented database
systems. In SIGMOD ’06, pages 671–682, 2006.

[2] M. Blasgen, J. Gray, M. Mitoma, and T. Price. The
convoy phenomenon. SIGOPS Oper. Syst. Rev.,
13(2):20–25, 1979.

[3] P. A. Boncz, M. Zukowski, and N. Nes.
MonetDB/X100: Hyper-pipelining query execution. In
CIDR, pages 225–237, 2005.

[4] J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye.
Automatic contention detection and amelioration for
data-intensive operations. In SIGMOD, 2010.

[5] S. Padmanabhan, T. Malkemus, R. C. Agarwal, and
A. Jhingran. Block oriented processing of relational
database operations in modern computer architectures.
In ICDE, pages 567–574, 2001.

[6] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M.
Lohman. Main-memory scan sharing for multi-core
CPUs. Proc. VLDB Endow., 1(1):610–621, 2008.

[7] Sun Microsystems. Opensparc T2 core
microarchitecture specification, 2007.

[8] J. Zhou et al. Improving database performance on
simultaneous multithreading processors. In VLDB,
2005.

Sun T2 Dual Intel Nehalem Xeon X5550 Dual AMD Opteron 2350
Chips 1 2 2
Cores 8 8 8
Threads 64 16 8
Clock Frequency (GHz) 1.2 2.66 2
RAM (GB) 32 24 16
RAM type 667 MHz DDR2 ECC 1333 MHz DDR3 ECC 667 MHz DDR2 ECC
Cache line size (bytes) 16 (L1), 64 (L2) 64 64
Lowest-level cache size 4MB (L2) 8MBx2 (L3) 2MBx2 (L3)
Associativity 16 16 32
Latency (cycles) 20 39–49 38–43
Middle-level cache size 256KBx8 (L2) 512KBx8 (L2)
Associativity 8 8
Latency (cycles) 10–11 12–15
L1 data cache size 8KBx8 32KBx8 64KBx8
Associativity 4 8 2
Latency (cycles) 2 4 3

Table 1: Characteristics of test platforms. Cache latency ranges indicate that different measurements have

been reported by different sources.

[9] J. Zhou and K. A. Ross. Buffering database operations
for enhanced instruction cache performance. In
SIGMOD, 2004.

APPENDIX

A. EXPERIMENTAL CONFIGURATION
We test the performance of our algorithms using three

modern machines: the Sun Niagara T2, the Intel Xeon (Ne-
halem), and the AMD Opteron (Barcelona). The charac-
teristics of these machines are summarized in Table 1. The
same code base was used on all platforms, compiled with
g++

5 under maximum optimization and using pthreads for
parallelism. All experimental measurements are computed
as the average over ten runs at each data point.

The underlying fact table is stored as an array of 4-byte
integer values. The size of the arrays used in the experiments
was 8 million values, four times larger than the largest of the
lowest-level caches of our target machines. Larger inputs did
not significantly change the performance graphs, and would
have been more time-consuming to run for a given number
of passes through the input.

On the Nehalem, with 16 threads, we repeated each query
about 250 times in each thread. A budget of 16*250 passes
was allocated, and each time a thread started over, it decre-
mented this budget. It was therefore possible for some threads
to do a few more passes than others. On the T2, with 64
threads, we repeated each query about 25 times in each
thread. We noticed that it sometimes took several passes
of the data before convoys reliably formed. When we used
only 5 passes per thread, there was some variability in the
performance results presumably due to occasional instances
where convoys formed late.

B. BACKWARDS PROCESSING
In [8], the authors use a helper thread to preload data into

the cache for the main worker thread. The work-ahead-set
contains information about all of the pending computations

5Version 4.3.3 on the Nehalem, version 4.2.4 on the Opteron,
and version 4.0.4 on the T2.

that the main thread has in flight. One can think of a pend-
ing computation as a single stage of a multistage operator,
applied to a single row. The main thread is responsible for
adding and removing items to/from the work-ahead set in
a first-in first-out fashion. The helper thread traverses the
work-ahead set with the aim of making the data needed by
the pending computations cache-resident.

When the helper thread proceeded ahead of the main
thread, there were cases where the main thread caught up
to the helper thread. This is a convoying effect: the helper
thread suffers cache misses while the main thread encoun-
ters cache hits, so that the main thread progresses faster
through the data. As a result, the helper thread and main
thread read/wrote the same cache line, triggering the ex-
pensive memory-ordering pipeline flush.

By making the helper thread proceed backwards, the con-
voy effect was avoided. As long as the work-ahead-set’s ac-
tive data was smaller than the cache size, it still helped to
preload data that was going to be accessed relatively far into
the future. The main thread encountered some cache misses
for the segment of the input that the helper thread had not
yet reached. Nevertheless, the helper thread was able to
take a substantial fraction of the cache miss burden away
from the main thread.

