
Research Statement Junfeng Yang
My goal is to make software systems reliable and secure. Today’s software systems are large, complex, and plagued

with errors, some of which have caused critical system failures. My research has been focused on creating effective tools
to improve the reliability and security of real software systems.

My approach combines fundamental systems insights and formal program analysis techniques. Both are crucial:
formal techniques provide strength over ad hoc approaches, giving my research an unusual depth; constructing the tools
and applying them to real systems distills the essence of the formal techniques, measures the actual effectiveness of
the tools, produces practical impact, and exposes new research problems and directions that matter most. This rare
combination has resulted in advances to software systems research, a best paper award, and improved reliability of widely
deployed open-source and commercial software systems.

An example of this approach is my work on thoroughly checking storage systems. These systems, including file
systems and databases, are often trusted with the only copy of data, so their unrecoverable data-loss errors are among the
worst errors. Unfortunately, building correct storage systems is incredibly difficult because developers must anticipate all
possible failure scenarios and correctly recover from all of them. Yet, there is a lack of effective tools to help developers
detect storage system errors.

To address this challenge, we created EXPLODE, a lightweight model checker for finding serious errors in real storage
systems. EXPLODE employs a novel in situ architecture that interlaces the mechanism required for model checking
within the checked system, enabling users to check live systems and drastically reduce the manual effort to model-check
a system from months to minutes. This architecture made model checking so easy that we applied EXPLODE to many
popular storage systems, and found serious errors in every system. My research along this line won an OSDI best paper
award, spurred a body of new work on storage system reliability and another on model checking real systems, led to
numerous patches to the Linux kernel, and was praised as “a very valuable service” by file system developers.

Driven by the cloud computing trend, many storage systems (and other software systems) are now distributed. we thus
created MODIST, a model checker to extend the in situ architecture to distributed systems. To mitigate the state-space
explosion problem, a key challenge facing model checking, my collaborators and I invented a sound algorithm to avoid
checking redundant states, speeding up MODIST by up to 105 times. MODIST is also a practical success: it found serious
protocol errors in real systems such as Berkeley DB replication and Microsoft SQL Azure, and is now being transferred
to Microsoft product groups.

The massive number of services powered by cloud computing and the rise of multicore hardware have caused multi-
threaded programs to become increasingly pervasive and critical. Yet, these programs are extremely difficult to get right; a
key reason is that different runs of a multithreaded program may show different behaviors, depending on how the threads
interleave. This nondeterminism makes it difficult to write, test, debug, and verify multithreaded programs, resulting in
many difficult-to-debug “heisenbugs” in widespread multithreaded programs.

To eliminate heisenbugs and problems caused by nondeterminism, we created TERN, a compiler and runtime system
to make threads deterministic. It works by memoizing past thread interleavings, or schedules, and reusing them on
future inputs if possible. By reusing schedules, we improve understandability, predictability, and repeatability (even
across different inputs) of multithreaded programs. We subsequently created PEREGRINE to efficiently make threads
deterministic even if there are data races. The insight is that although most multithreaded programs have races, these
races occur rarely, so we only have to enforce expensive memory access orders for the “racy” portions of an execution.
PEREGRINE also largely removed the manual annotations required by TERN, using novel program analysis algorithms.
Our results show that PEREGRINE is efficient and deterministic, can frequently reuse schedules, and is easy to use.
FUTURE PLAN. TERN and PEREGRINE are just two examples in this fertile research direction of deterministic execution
and reliable parallel programs; the bulk of work still lies ahead. In the shorter term, I plan to extend the ideas and
approaches of reusing schedules to increase confidence in testing, optimize deterministic replay and replication, and
tolerate unknown concurrency errors (e.g., by running diversified schedules at program replicas).

In the intermediate term, I plan to work on optimizing and verifying parallel programs. One idea is an efficient oper-
ating system scheduler that optimizes thread scheduling and placement based on memoized schedules, as these schedules
can effectively “predict” the future. Another promising idea is to verify a parallel program according only to a small set
of schedules, then enforce these schedules at runtime. By focusing only on a small set of schedules, not all possible ones,
we improve precision and simplify verification; by enforcing these schedules at runtime, we guarantee soundness of the
verification.

In the longer term, I will continue creating systems and algorithms to make reliable software systems. If successful,
this research will result in drastically improved software reliability and security, benefiting every computer user.


