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Abstract
Parallel programs are known to be difficult to analyze. A key reason
is that they typically have an enormous number of execution inter-
leavings, or schedules. Static analysis over all schedules requires
over-approximations, resulting in poor precision; dynamic analysis
rarely covers more than a tiny fraction of all schedules. We pro-
pose an approach called schedule specialization to analyze a par-
allel program over only a small set of schedules for precision, and
then enforce these schedules at runtime for soundness of the static
analysis results. We build a schedule specialization framework for
C/C++ multithreaded programs that use Pthreads. Our framework
avoids the need to modify every analysis to be schedule-aware by
specializing a program into a simpler program based on a schedule,
so that the resultant program can be analyzed with stock analy-
ses for improved precision. Moreover, our framework provides a
precise schedule-aware def-use analysis on memory locations, en-
abling us to build three highly precise analyses: an alias analyzer, a
data-race detector, and a path slicer. Evaluation on 17 programs, in-
cluding 2 real-world programs and 15 popular benchmarks, shows
that analyses using our framework reduced may-aliases by 61.9%,
false race reports by 69%, and path slices by 48.7%; and detected
7 unknown bugs in well-checked programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.4.5 [Operating Systems]:
Threads

General Terms Algorithms, Design, Reliability, Verification

Keywords Specialization, parallel programs, multithreading,
control-flow analysis, data-flow analysis, constraint solving

1. Introduction
The computational power provided by multicore hardware and
demanded by the massive number of cloud services has made
parallel programs increasingly pervasive and critical. Yet, these
programs are known to be difficult to get right; they are often
plagued with concurrency errors [25], some of which have caused
critical failures [23, 30, 37].

A key reason for these bugs is that parallel programs are dif-
ficult to analyze using automated tools. These programs typically
have an enormous—asymptotically exponential in the total execu-
tion lengths—number of execution interleavings, or schedules, pre-
sumably to react to various timing factors for performance. Static
analysis over all these schedules requires over-approximations, re-
sulting in poor precision and many false positives. Dynamic analy-
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sis can precisely analyze the schedules that occur, but it rarely cov-
ers more than a tiny fraction of all possible schedules, and the next
execution may well run into an unchecked schedule with errors.

Our first contribution is a new approach we call schedule spe-
cialization that combines the soundness of static analysis and the
precision of dynamic analysis. Our insight is that not all of the ex-
ponentially many schedules are necessary for good performance. A
small set often suffices, as illustrated by recent work on efficient
deterministic multithreading [16, 17, 24, 28]. Based on this insight,
our approach statically analyzes a parallel program over a small set
of schedules, then dynamically enforces these schedules. By focus-
ing on only a small set of schedules, we vastly improve the preci-
sion of static analysis; by enforcing the analyzed schedules dynam-
ically, we guarantee soundness of the analysis results. Our approach
is loosely analogous to previous approaches that combine static
analysis and dynamic checking for memory safety (e.g., [26]), but
ours aims at parallel programs and schedules.

Schedule specialization may be implemented in many ways for
many parallel programming models such as message passing and
multithreading; this paper presents one such implementation for
C/C++ programs using Pthreads [34]. We represent a schedule as a
total order of synchronizations such as lock operations,1 which can
be efficiently enforced [16, 28, 32]. To ensure that schedules are
feasible, we collect them from real executions. To enforce sched-
ules, we leverage our PEREGRINE [17] deterministic multithread-
ing system which can enforce a small set of schedules on a wide
range of inputs. For instance, it can use about a hundred schedules
to cover over 90% of requests in a real HTTP trace for Apache [7].
By reusing schedules, we not only make program behaviors re-
peatable across inputs, but also amortize the static analysis cost in
schedule specialization.2

A key challenge we face in implementing schedule specializa-
tion is how to statically analyze a program w.r.t. a schedule. A naı̈ve
method is to make every analysis involved aware of the schedule,
but this method would be quite labor-intensive and error-prone. It
may also be fragile: if a crucial analysis, such as alias analysis, is
unaware of the schedule, it may easily pollute other analyses.

Solving this challenge leads to our second contribution, a pro-
gram analysis framework with a set of sound and precise algorithms
to specialize a program according to a schedule. The resultant pro-
gram has simpler control and data flow than the original program,
and can be analyzed with stock analyses, such as constant fold-
ing and dead code elimination, for improved precision. In addition,
our framework provides a precise def-use analysis that computes
schedule-aware, must-def-use results on memory locations, which
can be the foundation of many other powerful analyses (§7).

To specialize a program toward a schedule, our framework
works in two steps. It first specializes the control flow by rewrit-
ing the program to map each synchronization in the schedule to a

1 Users can customize the schedule granularity by selecting which synchro-
nizations go into the schedules (§3).
2 A set of previously collected schedules may not cover all inputs. If sound-
ness is required on inputs not covered, we may use dynamic analysis (§3).



unique statement. It then specializes the data flow according to the
schedule through a series of analyses and rewrites. For instance, if
the program loops N (a program variable) times to spawn worker
threads and the schedule dictates three worker threads, our frame-
work specializes N, as well as the other variables where the value
of N flows to, to be three. The simplified control and data flow can
then greatly improve analysis precision.

Our framework has broad applications. For instance, we can
build precise static verifiers (e.g., to verify error-freedom) because
our verifiers need only verify a program w.r.t. the schedules en-
forced. Stock compiler optimizations automatically become more
effective on a specialized program because it has simpler control
and data flow. Our framework can also benefit “read-only” analyses
which do not require enforcing schedules at runtime. For instance,
we can build precise error detectors that check a program against
a set of common schedules to detect errors more likely to occur,
while drastically reducing false positive rates. We can perform pre-
cise, automated post-mortem analysis of a failure by analyzing only
the schedule recorded in a system log to trim down possible causes.

To demonstrate the usefulness of schedule specialization, we
have built three powerful applications with high precision, which
form our third contribution of this paper. We create a schedule-
aware alias analyzer that can distinguish array elements, leveraging
the def-use analysis provided by our framework. Moreover, we
create a precise static race detector to detect only the data races that
may occur when a given schedule is enforced, thus yielding few
false positives. Lastly, we create a schedule-aware path slicer [21]
to remove irrelevant statements from an execution trace. This slicer
can be applied, for instance, to pinpoint the root cause of a failure
or generate filters of bad inputs [15].

We have implemented our framework within the LLVM com-
piler [1] and evaluated it on 17 multithreaded programs, includ-
ing 2 real programs such as a popular parallel compression util-
ity PBZip2 [3] and 15 widely used parallel benchmarks from
SPLASH2 [4] and PARSEC [2]. Our results show that schedule
specialization greatly improves precision: on average, it reduced
may aliases by 61.9%, false race reports by 69%, and path slices by
48.7%. The improved precision also helped detect 7 unknown bugs
in well-checked [19, 25, 29, 38, 39] programs.

This paper is organized as follows. We first present relevant
background on PEREGRINE (§2) and an overview our framework
(§3), then present the key algorithms using an example (§4) and
detailed descriptions (§5). We then discuss implementation issues
(§6), describe the analyses (§7) we build on top of our framework,
and show the evaluation results (§8). We finally discuss related
work (§9) and conclude (§10).

2. Background: The PEREGRINE System
Our framework leverages PEREGRINE [17] to collect and enforce
schedules. This section briefly describes the relevant mechanisms
in PEREGRINE; for details of PEREGRINE, please refer to [16, 17].

Collecting schedules. To ensure that schedules are feasible, we
collect them from real executions. To do so, we first replace all
synchronizations in a program with calls to our synchronization
wrappers. At runtime, when a synchronization wrapper is invoked,
it appends an entry to a central log file, then calls the underlying
synchronization. The synchronization wrappers are properly syn-
chronized so that only one wrapper may run at any time, ensuring
that all synchronizations are totally ordered. After the execution
finishes, the log contains a schedule. To collect a set of schedules,
we repeatedly run a program against representative workloads, and
record the schedule in each execution. Although one could use
clever heuristics to select schedules, such as iterating through many
schedules to pick the fastest one, we currently do not do so.

Enforcing schedules. Given a schedule, we first compute the pre-
conditions required for reusing the schedule on later inputs (ex-
plained in the next few paragraphs). Then, if an input meeting
these preconditions arrives, we enforce the schedule. Specifically,
we make all threads call synchronization wrappers following the
total order specified in the schedule, and these wrappers are again
properly synchronized so that no two are concurrent. Prior re-
sults [16, 17, 24, 28] including ours [16, 17] show that enforcing
a synchronization order is efficient because most code is not syn-
chronization and can still run in parallel. For instance, this overhead
in PEREGRINE ranges from 68.7% faster to 46.6% slower on a di-
verse set of 18 programs, including the Apache [7].

To compute preconditions for a schedule, we first record a de-
tailed execution trace when recording a schedule. We then perform
a modified version [17] of path slicing [21] on the trace to remove
statement instances that do not affect the feasibility of the schedule,
i.e., the reachability of all synchronizations in the schedule. Our
version of path slicing correctly tracks dependencies (e.g., shared
data accesses) across threads. Once we compute a path slice for
each thread, we symbolically execute each slice, tracking the con-
straints on input data, such as command line arguments and data
read from a file or socket. We then use the conjunction of the con-
straints from each thread as the preconditions of the schedule.

These preconditions have three properties. First, they do not
guarantee program termination because we want to sidestep the dif-
ficult problem of statically establishing termination. This property
is inherited from path slicing [21]. Second, since computing weak-
est preconditions is undecidable, the preconditions PEREGRINE
computes stay on the sound side: if an input satisfies these precon-
ditions, it can be processed by the corresponding schedule (modulo
termination). However, these preconditions may preclude inputs
that can indeed be processed by the schedule. Third, these precon-
ditions avoid data races, which may cause an execution to diverge,
preventing PEREGRINE from enforcing a given schedule. When
computing preconditions, PEREGRINE detects potential races that
did not occur in a recorded trace, but may occur if we reuse the
schedule on different inputs. It computes preconditions sufficient
to avoid these races. PEREGRINE makes the races that occurred in
the recorded trace deterministic using dynamic instrumentation.

Our PEREGRINE results show that a small number of schedules
can cover a wide range of workloads for half of the 18 evaluated
programs. We observe that the synchronizations in these programs
depend mostly on “meta” properties such as the number of pro-
cessor cores, and tend to be loosely coupled with the inputs. For
these programs, the coverage of a schedule can be extremely high.
For instance, consider PBZip2 which divides an input file evenly
among multiple threads to compress. Two schedules are sufficient
to compress any file for PBZip2 as long as the number of worker
threads remains the same. (PBZip2 needs one schedule if the file
size can be evenly divided and another otherwise.) Another data
point: about a hundred schedules are sufficient to cover over 90% of
requests in a real HTTP trace for Apache [7]. This stability [16] not
only makes program behaviors repeatable across inputs, but also re-
duces the runtime overhead of our framework (§3).

3. Framework Overview
This section presents an overview of our schedule specialization
framework by presenting its key definitions and properties.

We assign each statement in a program P a unique static label
lj . An execution trace, or a trace, of P , denoted by T , is a poten-
tially infinite sequence of dynamic statement instances i0, i1, . . .
where each ij is a tuple 〈t, l〉, indicating that ij is an instance of
statement l executed by thread t; and if ij was completed before
the start of in, then j < n (concurrently executed statements can
be ordered either way). Given i = 〈t, l〉, we use i.label to access l.



A schedule, denoted by S, is a sequence of synchronizations
s0, s1, . . . , sN where each sj is a dynamic statement instance
〈t, l〉 and l is a synchronization statement. While we anticipate
our approach will work well with many parallel programming
models, our current framework targets C/C++ programs that use
Pthreads. It includes three types of synchronizations in the sched-
ules: (1) Pthread synchronizations such as pthread create and
pthread mutex lock operations; (2) entries and exits of thread
functions (functions passed to pthread create) and main be-
cause these events are natural synchronization points; and (3) addi-
tional function calls to resolve ambiguity when a synchronization
may be invoked in different calling contexts (explained in §5.1).
We call the first two classes true synchronizations and the last class
derived synchronizations. Unless otherwise specified, we use syn-
chronizations to refer to both true and derived synchronizations.

To ensure that schedules are feasible, we collect them from ter-
minating execution traces. A schedule includes only totally ordered
synchronizations because our runtime ensures that synchroniza-
tions are never concurrent (§2). It need not contain all synchroniza-
tions from a trace, enabling flexible tradeoffs between precision and
analysis time (see the end of this section).

Different traces may map to the same schedule because traces
are more fine-grained than schedules. We use run(P ) to denote
the set of all traces of program P , including non-terminating ones.
These traces cover all possible inputs to P . We use runS(P ) to
denote the subset of traces in run(P ) with schedule S enforced.
Traces in runS(P ) cover only inputs meeting the preconditions of
S. Even though S is collected from a terminating trace, another
trace with S enforced may still be non-terminating because the
preconditions PEREGRINE computes do not guarantee termination
(§2). Thus, runS(P ) may include non-terminating traces with a
prefix of S enforced.

Without schedule specialization, a static analysis has to con-
sider conceptually all traces in run(P ) for soundness. With sched-
ule specialization, a static analysis need consider only traces in
runS(P ) for each enforced schedule S, potentially computing
much more precise results. One method to use this potential is to
modify every analysis to be aware of the schedule and consider a
set of executions closer to runS(P ), but this method has the draw-
backs discussed in §1.

To avoid modifying every analysis to be aware of schedules,
our framework rewrites P into a specialized program PS for each
schedule S so that run(PS) is close to runS(P ). PS can then
be analyzed with many stock analyses for improved precision. To
analyze P over a set of schedules, we can generate a specialized
program for each schedule, then merge the analysis results. In ad-
dition, our framework provides a constraint-based def-use analysis
on PS that computes precise must-def-use chains on memory lo-
cations allowed only by the schedule S. By querying this def-use
analysis, stock or slightly modified advanced analyses such as alias
analysis can then compute schedule-aware results.

Precision. Ideally for full precision, our framework should make
run(PS) = runS(P ), so that static analysis of PS considers only
traces in runS(P ). In our current framework, run(PS) may still
include traces not in runS(P ) because, without enforcing S with
PEREGRINE, an execution of PS may use a different schedule.
Nonetheless, since run(PS) is much smaller than run(P ), stock
analyses on PS should still yield more precise results than on P .
Our def-use analysis excludes def-use chains forbidden by the total
order in S. That is, it considers traces in runS(PS), which our
specialization algorithms (§5) guarantee to be runS(P ). The def-
use results provided by our framework are thus much more precise
than what a stock def-use analysis can compute on PS .

Soundness. Our framework guarantees that static analysis results
on PS hold for all traces in runS(P ), i.e., whenever schedule S
is enforced on program P , because (1) the results from a static
analysis on PS should hold for all traces in run(PS); and (2)
our specialization algorithms guarantee run(PS) ⊇ runS(P ).
In addition, our framework guarantees that the def-use results it
provides hold for runS(PS), which is runS(P ).

Assumptions and non-assumptions. In our current framework,
the soundness of static analysis results is conditioned on that one
of the analyzed schedules is enforced. A finite set of schedules col-
lected by PEREGRINE, however, may not cover all inputs. If an
input cannot be processed by any of the schedules (or it can but our
framework cannot determine this fact), the static analysis results
may no longer hold for the execution on this input. If users want
to retain soundness on such inputs, they may use dynamic analysis.
For instance, if the analysis goal is to verify race freedom, they may
use dynamic data race detection on such inputs. If dynamic analy-
sis is used, the overall runtime overhead of our framework may
depend on the actual workload, or how frequently it can enforce
an analyzed schedule. Fortunately, our PEREGRINE results show
that, for many programs, a small set of schedules can cover a wide
range of the workloads (§2). For these programs and workloads,
our framework rarely needs to use dynamic analysis.

Moreover, even if we cannot use a small set of schedules to
cover a wide range of workloads, schedule specialization is still
useful for many applications. These applications include all read-
only applications such as error detection and post-mortem analysis
which do not require soundness on the inputs not covered by ana-
lyzed schedules. They also include optimizations because we can
simply run the original program on the inputs not covered.

At the algorithmic level, we do not assume data-race-free pro-
grams because we intend to keep our framework general and ap-
plicable to not just optimizations, but other applications, such as
verification and error detection. In particular, data races cannot pre-
vent us from enforcing a schedule (§2). Nonetheless, if optimiza-
tion is the only goal, we can easily modify our algorithms to exploit
this assumption for better results. At the implementation level, our
current framework leverages the LLVM compiler, which may in-
deed assume race freedom. This assumption may be removed by
re-implementing the LLVM components we leverage.

Our framework does not require that a schedule collected from
a trace includes all synchronizations in the trace. Instead, users can
customize the schedule granularity, or which synchronizations go
into the schedules, by blacklisting certain synchronization state-
ments. This design enables users to make flexible three-way trade-
offs between precision, analysis time, and schedule reuse-rate. In
general, fine-grained schedules have lower reuse-rates and lead to
larger specialized programs and longer analysis time, but make the
analysis results more precise. One exception is that users should
typically blacklist synchronizations hidden behind an abstraction
boundary, such as a memory allocator interface, because these syn-
chronizations rarely improve precision but worsen analysis time
and reuse-rate. For instance, we blacklisted the lock operations in
the custom memory allocator in cholesky (§6). An interesting re-
search question is how to optimally make this three-way tradeoff,
which we leave for future work.

4. An Example and Algorithm Overview
This section illustrates how our framework operates using an exam-
ple based on two programs in our evaluation benchmarks: aget, a
parallel wget-like utility; and fft, a parallel scientific benchmark.

Figure 1 shows the example program. As can be seen from the
code, each thread accesses a disjoint partition of results. Suppose
we want to build a precise alias analysis to compute this fact, so that
we can for example avoid wrongly flagging accesses to results



1 : int results[MAX];
2 : struct {int first; int last;} ranges[MAX];
3 : int global id = 0;
4 : int main(int argc, char *argv[ ]) {
5 : int i;
6 : int p = atoi(argv[1]), n = atoi(argv[2]);
7 : for (i = 0; i < p; ++i) {
8 : ranges[i].first = n * i / p;
9 : ranges[i].last = n * (i + 1) / p;
10: }
11: for (i = 0; i < p; ++i)
12: pthread create(&child[i], 0, worker, 0);
13: for (i = 0; i < p; ++i)
14: pthread join(child[i], 0);
15: return 0;
16: }
17: void *worker(void *arg) {
18: pthread mutex lock(&global id lock);
19: int my id = global id++;
20: pthread mutex unlock(&global id lock);
21: for (int i = ranges[my id].first; i < ranges[my id].last; ++i)
22: results[i] = compute(i);
23: return 0;
24: }
Figure 1: An example showing how schedule specialization works. Variable
n and p are two inputs that specify the size of the global array results
and the number of worker threads, respectively. The code first partitions
results evenly by the number of worker threads p and saves the range
of each thread to ranges (lines 7–10); it then starts p worker threads to
process the partitions (lines 11–12). Each worker enters a critical section to
set its instance of my id and increment global id (lines 18–20), and then
computes and saves the results to its partition (lines 21–22).

Thread 0 Thread 1 Thread 2

program entry

pthread_create
thread entry

pthread_create
thread entry

pthread_lock

pthread_unlock
pthread_lock

pthread_unlock

thread exit
thread exit

pthread_join

pthread_join

program exit

Figure 2: A possible schedule of the example in Figure 1 when p is 2.

as races for a static race detector. Unfortunately, doing so requires
solving a variety of difficult problems. For instance, since p, the
number of threads, is determined at runtime, static analysis often
has to approximate these dynamic threads as one or two abstract
thread instances. It may thus collapse distinct accesses to results
from different threads as one access, computing imprecise alias
results. Even if an analysis can (1) distinguish the accesses to
results by different threads and (2) infer bounds on integers
such as array indices using range analysis [33], it may still fail
to compute that these accesses are disjoint. The reason is that
the array partition each worker accesses depends on its instance
of my id, which further depends on the schedule (or the order in
which worker threads enter the critical section at lines 18–20). In
short, if a static analysis has to consider all possible schedules of
this program, it would be very difficult to compute precise results.

Fortunately, these difficult problems are greatly simplified by
schedule specialization. Suppose whenever p is 2, we always en-
force the schedule shown in Figure 2. Since the number of threads
is fixed, distinguishing them becomes easy. In addition, since the

1 : . . . // same global declarations as in Figure 1
2 : int main(int argc, char *argv[ ]) {
3 : int i;
4 : int p = atoi(argv[1]), n = atoi(argv[2]);
5 : for (i = 0; i < p; ++i) {
6 : ranges[i].first = n * i / p;
7 : ranges[i].last = n * (i + 1) / p;
8 : }
9 : i = 0; assume(i < p);
10: pthread create(&child[i], 0, worker CLONE1, 0);
11: ++i; assume(i < p);
12: pthread create(&child[i], 0, worker CLONE2, 0);
13: ++i; assume(i >= p);
14: i = 0; assume(i < p);
15: pthread join(child[i], 0);
16: ++i; assume(i < p);
17: pthread join(child[i], 0);
18: ++i; assume(i >= p);
19: return 0;
20: }
21: void *worker CLONE1(void *arg) {
22: pthread mutex lock(&global id lock);
23: int my id = global id++;
24: pthread mutex unlock(&global id lock);
25: for (int i = ranges[my id].first; i < ranges[my id].last; ++i)
26: results[i] = compute(i);
27: return 0;
28: }
29: void *worker CLONE2(void *arg) {
30: pthread mutex lock(&global id lock);
31: int my id = global id++;
32: pthread mutex unlock(&global id lock);
33: for (int i = ranges[my id].first; i < ranges[my id].last; ++i)
34: results[i] = compute(i);
35: return 0;
36: }
Figure 3: The resultant program after control-flow specialization. The loops
at lines 11–12 and lines 13–14 in Figure 1 are unrolled because they
contain synchronizations in the schedule, while the other loops are not.
Thread function worker is cloned twice, making it easy for an analysis
to distinguish the two worker threads. The algorithm adds special assume
calls to pass constraints on variables to the data-flow specialization step.

order in which threads enter the critical section at lines 18–20 is
fixed, each worker thread always gets a fixed my id and thus ac-
cesses a fixed partition of results.

To practically take advantage of these observations, our frame-
work specializes a program toward a schedule. It does so in two
steps. In the first step, it specializes the control flow of the pro-
gram by “straightening” the program so that each synchronization
in the schedule maps to a unique statement, and the synchroniza-
tions within each thread are control-equivalent. Specifically, it first
constructs a super control flow graph (CFG) of the program, which
includes function call and return edges. It then iterates through each
pair of consecutive synchronizations (s1, s2) in a thread, and clones
the statements between s1 and s2 in the CFG. Figure 3 shows
the result after specializing control flow. Loops containing syn-
chronizations such as pthread create are unrolled, and thread
functions are cloned, making it easy for an analysis to distinguish
threads. Note that such cloning and unrolling are selectively done
only to functions that may do synchronizations, so they would not
explode the size of a specialized program.

In the second step, our framework specializes the data flow
through a series of analyses. For instance, it constructs an advanced
def-use graph for variables and memory locations according to the
schedule, and replaces variables with constant values when it can.



. . . // same global declarations as in Figure 1
int main(int argc, char *argv[ ]) {

int p = atoi(argv[1]), n = atoi(argv[2]);
ranges[0].first = 0;
ranges[0].last = n / 2;
ranges[1].first = n / 2;
ranges[1].last = n;
pthread create(&child[0], 0, worker CLONE1, 0);
pthread create(&child[1], 0, worker CLONE2, 0);
pthread join(child[0], 0);
pthread join(child[1], 0);
return 0;

}
void *worker CLONE1(void *arg) {

pthread mutex lock(&global id lock);
global id = 1;
pthread mutex unlock(&global id lock);
for (int i = 0; i < ranges[0].last; ++i)

results[i] = compute(i);
return 0;

}
void *worker CLONE2(void *arg) {

pthread mutex lock(&global id lock);
global id = 2;
pthread mutex unlock(&global id lock);
for (int i = ranges[1].first; i < ranges[1].last; ++i)

results[i] = compute(i);
return 0;

}
Figure 4: The resultant program after data-flow specialization. Variable p
and my id are replaced with constants, the loop at lines 5–8 in Figure 3 is
unrolled, and some dead code is removed.

It does these analyses by collecting constraints from the program
and querying a constraint solver. For instance, from lines 9, 11,
and 13 in Figure 3, it infers that p must be 2, so it replaces p with
2. Similarly, it computes a precise def-use chain for the accesses
to global id, and infers that each my id instance has a constant
value. Once variables are replaced with constants, we can apply
techniques such as constant folding, dead code elimination, and
loop unrolling to further specialize the program. Moreover, these
stock techniques and our analyses can run iteratively, until the
program cannot be specialized any more. Figure 4 shows the result
of specializing data flow.

Benefits of schedule specialization. The specialized program in
Figure 4 has much simpler control and data flow than the original
program in Figure 1, enabling stock analyses to compute more pre-
cise results. For instance, range analysis can now compute thread-
sensitive results because the worker function is cloned; it can also
compute precise bounds for the loop index i in the worker clones
because the indice to ranges are now constant, not my id which
can have a large range if no schedule is enforced.

Our framework guarantees that static analysis results on Fig-
ure 4 hold for the set of all traces with the schedule in Figure 2
enforced. This set is fairly large because this schedule can be en-
forced as long as the number of threads p is 2, regardless of the
data size n or the contents of other input data. A small set of such
schedules, including one for each number of threads, can practi-
cally cover all inputs because (1) most parallel programs we evalu-
ate achieve peak performance when the number of worker threads
is identical or close to the number of processor cores and (2) the
number of cores a machine has is typically small (e.g., smaller than
100). This example illustrates the best case of our approach: by an-
alyzing only a small set of schedules, we enjoy both precision and
soundness for practically all inputs.

s1

e3

s2

s3

(a) Intra-procedural ambiguity

callcall

ret

caller
callee

s1

s2

(b) Inter-procedural ambiguity

Figure 5: Two types of ambiguity. The black nodes are synchronizations.
The hatched nodes are the statements between s1 and s2 computed by
the reachability analysis. The gray “call” node is a derived synchronization
marked to resolve inter-procedural ambiguity.

5. Algorithms
This section describes our algorithms to specialize the control flow
(§5.1) and data flow (§5.2) of a program toward a schedule.

5.1 Specializing Control Flow
To ease the description of our algorithms, we define a segment, de-
noted by G, as the maximal portion of the CFG between two syn-
chronization statements l1 and l2 that is free of other synchroniza-
tion statements. A segment between l1 and l2 includes any state-
ment s.t. (1) l1 can reach this statement in the CFG without reach-
ing any other synchronization statements and (2) this statement can
reach l2 without reaching any other synchronization statements. We
denote the set of statements in G by G.L, and the set of control-
flow edges in G by G.E.

To specialize the control flow, we clone the segment between
every two consecutive synchronizations within a thread, and then
join all cloned segments together to form the specialized program.
One difficulty to find all statements between two consecutive syn-
chronizations is ambiguity: there may be multiple ways from one
synchronization to another. For instance, Figure 5a shows an am-
biguous case caused by multiple paths in the CFG. The loop body
shown has two paths, only one of which contains synchronization
s2. This loop has to be transformed so that s1 and s2 become
control-equivalent. Our algorithm to specialize control flow auto-
matically handles this case, described later in this subsection.

Figure 5b shows another ambiguous case caused by multiple
paths in the call graph. From s1 to s2, we can go through either
call. To resolve call-stack ambiguity, we instrument calls to func-
tions that may transitively do synchronizations, and include these
derived synchronizations in the schedule as well. The result is that
we can compute exactly one call stack for each synchronization in
a schedule. Our evaluation shows that the number of derived syn-
chronizations is small, and they incur negligible overhead (§8.2).

Algorithm 1 shows how we specialize the control flow of
a program. We first explain the helper function SpecializeCon-
trolFlowThread, which takes the original program P , a schedule
S, and a thread t, and outputs a subprogram P ′t specialized ac-
cording to t’s synchronizations in S. For every two consecutive
synchronizations of t, this function does a forward and a backward
depth-first search to find the segment between the two synchroniza-
tions. It then clones the segment, copying and renaming functions
as necessary, and appends the segment clone to P ′t .

Function DFS traverses the CFG from statement l1 to l2 and
saves the visited portion of the CFG to output parameter Gout. It
backtracks whenever it meets a synchronization. During the traver-
sal, it maintains the current call stack in cs so that it can compute
where to return (lret). When it reaches l2, it saves the call stack to
output parameter csout, which SpecializeControlFlowThread will
pass to BackwardDFS (in the same iteration) and DFS (in the next
iteration). If there are multiple paths from l1 to l2, DFS may reach



Algorithm 1: Control-Flow Specialization
Input : the original program P and a schedule S
Output: the specialized program
SpecializeControlFlow(P , S)

foreach thread t do
P ′t ← SpecializeControlFlowThread(P , S, t)

foreach P ′t do
foreach statement l in P ′t do

if l is a pthread create then
ct← child thread created by l
set thread function of l to P ′ct

return ∪tP
′
t

SpecializeControlFlowThread(P , S, t)
P ′t ← ∅ // the specialized subprogram for thread t
cs← ∅ // the call stack of the current synchronization
St← the sub-schedule of S for thread t
for (si, si+1) in St do

G← ({si.label}, ∅) // segment between si & si+1

// G and the second cs below are output parameters.
DFS(cs, si.label, si+1.label, cs, G)
BackwardDFS(cs, si+1.label, si.label, G)
P ′t ← P ′t ∪ Clone(G)

return P ′t
DFS(cs, l1, l2, csout, Gout) // l1 and l2 may be the same

if l1 is a derived synchronization then
l← entry of l1’s callee function
TryDFS(cs + l1, l1, l, l2, csout, Gout)

else if l1 is a return statement then
lret← the top of cs
l← lret’s intra-procedural successor
TryDFS(cs - lret, l1, l, l2, csout, Gout)

else
foreach intra-procedural successor l of l1 do

TryDFS(cs, l1, l, l2, csout, Gout)
TryDFS(cs, l1, l, l2, csout, Gout)

Gout.E← Gout.E ∪ {(l1, l)}
if l = l2 then

csout← cs
if l /∈ Gout.L then

Gout.L← Gout.L ∪ {l}
if l is not a synchronization then

DFS(cs, l, l2, csout, Gout)

l2 multiple times in one traversal, but each time the call stack must
always be identical because call-stack ambiguity is resolved.

The results of DFS may include statements and CFG edges
that cannot reach si+1.label. BackwardDFS prunes these state-
ments and edges by traversing G, not the full CFG, backward from
si+1.label to si.label. It is similar to DFS except it is backward
and need not output a call stack, so we omit it from Algorithm 1.

We now explain the main function of this algorithm, Spe-
cializeControlFlow. It first invokes SpecializeControlFlowThread
to compute a specialized program based on the synchroniza-
tions of each thread. It then replaces the thread function in each
pthread create callsite with the cloned thread function. It finally
merges all the specialized programs together.

Discussion. We note three subtleties of Algorithm 1. First, it auto-
matically handles the ambiguity in Figure 5a. Suppose the schedule
is s1s2s3. We do not know the loop bound because one path in the
loop body calls s2 and the other does not. However, our algorithm
can still specialize the CFG into Figure 6. This feature is critical

s1

s2

e3s3

s1

s2

l

e3s3

Figure 6: The specialized CFG of
Figure 5a with schedule s1s2s3.

Figure 7: Example illustrating
the need to traverse CFG edges.

in some cases. For example, if s2 is pthread create, this feature
clones the thread functions, providing thread-sensitivity.

Second, DFS traverses into the body of a function only when the
call to this function is a derived synchronization, i.e., this function
may transitively do synchronization. Thus, the Gout it computes
includes only CFG portions from such functions, and is not a full
segment. The effect is that only these CFG portions are cloned,
possibly multiple times, and each clone is unique to a segment in
the resultant program; other functions are copied verbatim to the
resultant program. By doing so, we capture the information from
the schedule without exploding the size of a specialized program.

Lastly, to compute a segment, we cannot simply compute only
the statements in the segment and copy all edges from the original
CFG. To illustrate, consider Figure 7. Suppose the schedule is
s1s2s3. The segment between s1 and s2 should include statements
s1, s2, and l, but exclude the CFG edge from s2 to l.

5.2 Specializing Data Flow
Given a control-flow-specialized program, we specialize its data
flow using a series of constraint-based analyses leveraging the
STP [5] integer constraint solver. We collect constraints on two
types of program constructs: the LLVM virtual registers and mem-
ory locations. LLVM virtual registers are already in static-single-
assignment (SSA) form, so collecting constraints on them is rel-
atively straightforward. Table 1 lists how we collect constraints
for some LLVM instructions; the remaining instructions are similar
and omitted for space. We handle loops by exploiting LLVM’s loop
structure: most of the loops in our evaluated programs are canoni-
calized by LLVM so that we can easily collect range constraints on
the loop indices.

Our algorithm to collect constraints on memory locations mim-
ics classic def-use analysis. It collects two forms of constraints on
memory locations: (1) the value loaded by an LLVM load instruc-
tion is the same as the value stored by a store instruction and (2) the
value loaded by a load is the same as the value loaded by another
load. That is, we treat an LLVM load instruction as a “use” and an
LLVM load or store instruction as a “def.” Treating loads as defs
shortens the def-use chains and reduces analysis time.

Collecting precise def-use constraints on memory locations is
challenging for multithreaded programs. Fortunately, schedule spe-
cialization enables two key refinements over classic def-use analy-
sis so that our algorithm can collect more precise constraints. First,
we compute def-use chains spanning across threads because mul-
tiple threads may indeed access the same shared memory location.
Without schedule specialization, it would be hopeless to track pre-
cise inter-thread def-use chains because the defs and uses may pair
up in numerous ways depending on the schedules.

Second, we compute must-def-use, instead of may-def-use, re-
sults. Our insight is that by fixing the schedule, we often fix the
def-use chains of key shared data, such as the global id in Fig-
ure 1. It is thus most cost-effective to focus on these must-def-use
chains because (1) they essentially capture the information (and
hence the precision; see results in §8.1) from the schedule and (2)



Instruction type LLVM instruction STP constraint Note
binary a = b op c a = b op c “op” is a binary operator
integer comparison a = icmp pred, b, c a = (b pred c) “pred” is an integer comparison predicate

such as < and 6=
pointer arithmetic a = gep b, i1, . . ., ik a = b + i1× sizeof(*b) + the offset

of ik-th field of ik−1-th field of . . .
of i2-th field of b

“gep” calculates the location of a specific
field in an array/structure

select instruction a = select b, v1, v2 b = 0→ a = v1
b = 1→ a = v2

If b = 0, a = v1; otherwise a = v2

Φ instruction a = Φ(v1, . . ., vk) a = v1 or . . . or a = vk a may have any incoming value
call and return a = func(b1, . . . , bk)

func(f1, . . . , fk) {return r;}
b1 = f1, . . . , bk = fk
a = r

Capture the equalities between the actual
and formal parameters/return values

Table 1: Collecting constraints from LLVM instructions on virtual registers.

there are typically much fewer must-def-use constraints than may-
def-use constraints, so the constraint-solving cost is low.

To practically implement these refinements, we compute def-
use chains only on the instructions unique to each segment. In ad-
dition, we look for defs of a use only from its inter-thread dom-
inators which always execute before the use once the schedule is
enforced. These dominators are dominators on the CFG augmented
with edges representing the total order of synchronizations in a
schedule. We explain our algorithm as well as these refinements
in the next few paragraphs.

Algorithm 2 shows the pseudo code to collect def-use con-
straints for memory locations. It operates on a control-flow special-
ized program with each synchronization in the schedule mapped to
a unique instruction. It references several symbols defined on the
instructions and segments (§5.1) in this program:
• value(l): the value loaded if l is a load instruction, or the value

stored if l is a store;
• loc(l): the memory location accessed by instruction l;
• segment(l): the unique (explained in the next paragraph) seg-

ment containing instruction l, or None;
• thread(G): the thread containing segment G;
• begin(G): the synchronization at the beginning of segment G;
• end(G): the synchronization at the end of segment G;
• reach(l1, l2): the set of instructions on all simple paths from l1

to l2 in the CFG. A simple path has no repeated instructions.
Each segment has some unique instructions cloned by Algo-

rithm 1; segment(l) returns the containing segment for these in-
structions, or None otherwise. We define a partial order over these
instructions as follows: l1 happens-before l2, or l1 ≺ l2, if (1) both
l1 and l2 are synchronizations, and l1 comes earlier than l2 in the
schedule; (2) segment(l1) = segment(l2), and l1 comes ear-
lier in the segment; or (3) ∃l3, s.t. l1 ≺ l3 and l3 ≺ l2. We say
G1 ≺ G2 if end(G1) ≺ begin(G2). Two instructions (segments)
are concurrent if there is no happens-before between them.

At the top level, Algorithm 2 is similar to classic def-use anal-
ysis. CaptureConstraints takes a use u, calls PotentialDefs to get
a set of potential defs, and, for each live def not killed, adds an
equality constraint between the value used and the live def.

PotentialDefs illustrates how we implement the refinements
enabled by schedule specialization. It processes a use u only if
segment(u) is not None, i.e., u is unique to a segment. It searches
for defs only in the instructions unique to each segment. To account
for shared data access, it searches each thread td for a def of u. If td
is the thread containing u, we search backwards from u for the lat-
est dominator in CFG that accesses the same location. Otherwise,
we search backwards from the latest synchronization s in td that
happens-before u, and locate the latest dominator of s in CFG that
accesses the same location. This dominator of s is essentially an
inter-thread dominator of u. The result of PotentialDefs contains at
most one def from each thread. In addition, it contains at most one
store and possibly many loads (because we treat loads as defs).

Algorithm 2: Capture Constraints on Memory Locations

CaptureConstraints(u)
foreach d ∈ PotentialDefs(u) do

if not MayBeKilled(d, u) then
AddConstraint(“value(u) = value(d)”)

PotentialDefs(u)
defs← ∅
Gu← segment(u)
p← loc(u)
if Gu 6= None then

foreach thread td do
if thread(Gu) = td then

defs← defs ∪ LatestDef(u, p)
else

Gd← latest segment of td s.t. Gd ≺ Gu

defs← defs ∪ LatestDef(end(Gd), p)
return defs

LatestDef(l, p) // returns the latest intra-thread definition
d← l
repeat

d← ImmediateDominator(d);
until d = None or MustAlias(p, loc(d))
if d 6= None then return {d}
else return ∅

MayBeKilled(d, u)
Gd← segment(d)
Gu← segment(u)
if Gd = Gu then

return MayStore(reach(d, u), u)
foreach segment G s.t. begin(G) ≺ end(Gu) and
begin(Gd) ≺ end(G) and G 6= Gd and G 6= Gu do

if MayStore(G, u) then return true
return MayStore(reach(d, end(Gd)), u) or
MayStore(reach(begin(Gu), u), u)

MayStore(L, u)
foreach store l ∈ L do

if MayAlias(loc(l), loc(u)) then return true
return false

Function MayBeKilled checks whether def d is killed by any in-
struction that may store to loc(u) and execute after d and before u.
It considers all instructions, not just the unique ones, for soundness.
If d and u are in the same segment, MayBeKilled simply checks the
instructions between d and u in the CFG. Otherwise, it checks in-
structions in any segment that may (1) begin no later than the end of
u’s segment Gu and (2) end no earlier than the begin of d’s segment
Gd. Note that these segments include not only the ones concurrent
to Gu or Gd, but also any segment G s.t. Gd ≺ G ≺ Gu.



The above algorithm to collect constraints on memory locations
needs alias analysis to determine whether two pointers must or
may alias. We answer these queries again using STP. The question
“whether v1 and v2 may alias” is rephrased as “whether v1 = v2
is satisfiable,” and “whether v1 and v2 must alias” is rephrased as
“whether v1 = v2 is provable.” Since constraint solving may take
time, we also ported bddbddb [36], a faster but less precise alias
analysis to our framework, by writing an LLVM front end to collect
program facts into the format bddbddb expects. We always query
bddbddb first before STP.

Once constraints are captured, we perform a series of analyses
based on these constraints. One analysis infers which LLVM virtual
register has constant values (recall that these registers are in SSA
form). It first queries STP for an assignment of value vj to each
variable aj . For each aj , it then adds aj = vj to the current
constraints, and checks whether STP can prove the new constraints.
If so, it replaces aj with vj , such as replacing variable p in Figure 1
with constant 2. Once variables are replaced with constants, we
perform stock LLVM analyses, such as constant folding, dead code
elimination, and loop unrolling, which automatically gain precision
due to schedule specialization. These analyses may further simplify
a program, so we iteratively run data-flow specialization and these
stock analyses until the specialized program converges.

6. Implementation
We implement our framework within LLVM [1]. The specialization
algorithms described in the previous section are implemented as
an LLVM pass that specializes the LLVM bitcode representation
of an original program into a new bitcode program. These passes
are of 11,754 lines of C/C++ code, with 2,586 lines for control-
flow specialization and 9,168 lines for data-flow specialization. The
remaining of this section discusses several implementation issues.

6.1 Constructing Call Graph
For clarity, Algorithm 1 assumes a simple call graph where each
function call has a unique callee and unique return address. How-
ever, the programs we analyze do use function pointers and excep-
tions, invalidating this assumption. To resolve a call to a function
pointer, we query our alias analysis and call TryDFS on each possi-
ble callee. To handle exceptions, we pair up the LLVM instruction
that unwinds the stack (UnwindInst) with the call instruction that
sets an exception handler (InvokeInst).

6.2 Optimizing Constraint Solving
Data-flow specialization (§5.2) frequently queries STP, and these
queries can be quite expensive. We thus create four optimizations to
speed up constraint solving. First, when identifying which variables
are constants, we avoid querying STP for each variable. Specifi-
cally, when we query STP to prove that a variable is constant, we
remember the value assignment STP returns even if STP cannot
prove the query. If a variable has two different values in these as-
signments, then this variable cannot be constant, so we do not need
to query STP whether this variable is constant. This optimization
alone speeds up our framework by over 10 times.

Second, we cache extensively. Recall that data-flow specializa-
tion runs Algorithm 2 and other analyses iteratively. Within each
iteration, we cache all alias results to avoid redundantly querying
STP. Across iterations, we cache “must” and “must-not” alias re-
sults and the def-use results because each iteration only adds more
constraints and does not invalidate these precise results.

Third, we use a union-find algorithm to speed up equality con-
straints solving. The def-use constraints we collect are all equality
constraints. When the number of STP variables involved in these
constraints increases, the STP queries tend to run slower. To reduce
the number of STP variables, we put program variables that must

be equal in one equivalent class represented by a union-find data
structure, and assign only one STP variable to each class.

Lastly, we parallelize constraint solving. The STP queries is-
sued by our framework are mostly independent. Specifically, each
run of Algorithm 2 on a use is completely independent of another.
In addition, checking whether one variable is constant is often in-
dependent of checking another. We have built a parallel version of
STP that speeds up our framework by roughly 3x when running on
a quad-core machine.

6.3 Manual Annotations
Our framework supports three types of annotations to increase pre-
cision and reduce analysis time. First, users can provide a black-
list of synchronization statements to customize which synchroniza-
tions go into the schedules (§3). Second, users can write regular
assertions to enable our framework to collect more precise con-
straints. For instance, they can write “assert(lower bound <=
index && index <= upper bound)” to inform our framework
the range constraints on index. Third, users can provide function
summaries to reduce analysis time. Some functions in the evalu-
ated programs are quite complex and contain many load and store
instructions, causing our framework to collect a large set of con-
straints. However, these functions often have simple shared mem-
ory access patterns which users can easily summarize to speed up
constraint solving. These summaries can be quite coarse-grained,
such as “function foo writes an unconstrained value to variable x.”
Users write summaries by writing fake functions, which our frame-
work analyzes instead of the original functions. By supporting an-
notations in forms of assertions and fake functions, we avoid the
need to support an annotation language.

Of the 17 programs evaluated, we annotated only 4 pro-
grams. We blacklisted the lock operations in the custom
memory allocator in cholesky. We annotated two loops in
raytrace with assertions because they are not in LLVM-
canonical form. (Currently our framework handles only canon-
ical loops.) We summarized five functions: image segment
and image extract helper in ferret, TraverseBVH -
with StandardMesh and TraverseBVH with DirectMesh in
raytrace, and LogLikelihood in bodytrack. These summaries
range from 8 to 18 lines.

7. Applications
To demonstrate the precision of our framework, we build three
powerful analyses. The first is a precise schedule-aware alias an-
alyzer, built on top of our def-use analysis (§5.2). We chose to
build an alias analyzer because alias analysis is crucial to many pro-
gram analyses and optimizations. Our analyzer provides a standard
MayAlias(p, q) query interface, making it effortless to switch ex-
isting analyses to our our alias analyzer. Under the hood, MayAlias
first queries a coarse-grained, existing alias analysis; if this coarse-
grained analysis returns true, MayAlias then queries our def-use
analysis for precise answers. The existing alias analysis we used is
the C version3 of bddbddb ported to LLVM.

The second tool is a precise static race detector that detects races
that may occur only when a schedule is enforced. The detection
logic appears identical to classic race detectors: two memory ac-
cesses are a race if (1) they may alias, (2) at least one of the ac-
cesses is a store, and (3) they are concurrent. There are two key
differences. First, ours uses schedule-aware alias analysis. Second,
ours detects concurrent accesses w.r.t. a total synchronization order
(§5.2), more stringent than the execution order constraints dictated
by the synchronizations. These two differences enable our detector
to emit no or extremely few false positives (§8.1). Multiple races

3 The alias analysis we use makes several assumptions about the C programs
it analyzes for soundness; these assumptions are described in [9].



flagged on a specialized program may map to the same race in the
original program because control-flow specialization clones state-
ments. Our race detector emits only one report in this case.

The third tool is a thread-sensitive path slicer. Intuitively, given
a program path, path slicing removes from the path the statements
irrelevant to reach a given target statement [21]. The algorithm
for doing so tracks control- and data-dependencies between state-
ments, and removes statements that the target does not control-
or data-depend upon. As previous work describes, path slicing
can be applied to many problems, such as post-mortem analy-
sis [21], counter-example generation [21], and malicious-input fil-
tering [15]. Our path slicer improves upon existing path slicing
work [21] by tracking dependencies across threads. Dependencies
may arise across threads due to data or control flow. For example,
if thread t0 stores to pointer p, and t1 then loads from q which may
alias p, then the load in t1 data-depends on the store in t0. Simi-
larly, if different branches of a branch statement in t0 may cause
t1 to load different values from a shared variable, then the load in
t1 control-depends on the branch statement in t0. Our path slicer
correctly tracks these dependencies by leveraging our precise alias
analyzer. Another feature of our path slicer is that it can slice to-
ward multiple targets.

8. Evaluation
We evaluated our schedule specialization framework on a diverse
set of 17 programs, including PBZip2 1.1.5, a parallel compression
utility; aget 0.4.1, a parallel wget-like utility; parallel implemen-
tations of 15 computation-intensive algorithms, 8 in SPLASH2 and
7 in PARSEC. We excluded 4 programs from SPLASH2 and 6 from
PARSEC because we cannot compile them down to LLVM bitcode
code, they use OpenMP [13] instead of Pthreads [34], data-flow
specialization runs out of time on them, the compiled code does
not run correctly in 64-bit environment, or our current prototype
cannot handle them due to an implementation bug. All of the pro-
grams were widely used in previous studies [19, 25, 29, 38, 39].

We generated schedules for the programs evaluated using the
following workloads: for SPLASH2 programs, we used the default
arguments except that we ran them with four threads. These pro-
grams finish within 100 ms. For PBZip2, we compressed a 10 MB
randomly generated text file. For aget, we downloaded a file of
1 MB from the internet. Unless otherwise specified, we ran all
programs using four threads. This machine is a 2.8GHz Intel 12-
core machine with 64 GB memory running 64-bit Linux 2.6.38. We
compiled all programs using Clang and LLVM 2.9 with the default
optimization level (often -O2 or -O3) of each program.

In the remainder of this section, we first focus on two evaluation
questions: (1) how much more precise the analyses become with
schedule specialization (§8.1); and (2) what the overhead of our
framework is (§8.2). We then present the bugs we detected with the
precision provided by schedule specialization (§8.3).

8.1 Precision
We measured how our framework can improve the precision on the
three analyses we built, the alias analyzer, the race detector, and
the path slicer (§7). Our methodology is to apply these analyses on
an original program, the control-flow specialized program, and the
data-flow specialized program, and then compare the results.

Alias analysis precision. We quantified alias analysis precision by
measuring alias percentage, the percentage of alias queries that
return “may”, instead of “must” and “must-not”, responses because
the latter two responses are precise. We selected the two pointers
in each query from different threads to stress-test our alias analyzer
because these pointers may appear to point to the same global array
or the “same” thread-private heap or stack location, but are actually
not aliases because most programs we evaluated access distinct
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Figure 8: Precision of the schedule-aware alias analysis. Y axis represents
the percentage of alias queries that return “may” responses. Lower bars
mean more precise results. Each cluster in the figure corresponds to the
results from one program. The three columns in a cluster represent the alias
percentage when applying our analysis on the original program, the control-
flow specialized program, and the data-flow specialized program.

memory locations in different threads. The total number of such
queries can be large for programs that do many memory accesses,
so we sampled some percentage of the queries to bound the total
query time. The sampling ratio for aget, PBZip2 and fft is 1

50
; for

water-spatial, 1
5000

; and for barnes, water-nsquared, and
ocean, 1

50000
. For all other programs, we processed all queries.

Figure 8 shows the alias precision results. For 12 pro-
grams (aget, PBZip2, fft, lu-contig, radix, blackscholes,
swaptions, streamcluster, canneal, bodytrack, ferret,
and raytrace), control-flow and data-flow specialization com-
bined greatly improved precision. For instance, they reduced the
alias percentage down to below 0.1% for aget. For 7 (PBZip2,
fft, swaptions, streamcluster, canneal, bodytrack, and
raytrace) of these 12 programs, control-flow specialization im-
proved the alias analysis precision significantly. For instance, it re-
duced the alias percentage of PBZip2 from 28.04% to 8.30%, a
70.4% reduction. The reason is that these programs allocate a fair
amount of thread-private heap or stack data. Since the control-flow
specialization clones thread functions and thus automatically pro-
vides thread sensitivity, our alias analyzer distinguishes accesses
from different threads, achieving high precision. Although control-
flow specialization alone did not significantly improve precision
for the other 6 programs (aget, PBZip2, lu-contig, radix,
blackscholes, and ferret) of the 12 programs, it created op-
portunities for data-flow specialization to improve precision. For
the remaining 5 programs (cholesky, barnes, water-spatial,
water-nsquared, and ocean), the reduction was not significant.
This small reduction could be caused by the imprecision in our an-
alyzer (e.g., it is not path-sensitive), or real bugs in the original
programs (§8.3). The mean reduction over all programs is 61.9%.

Race detection precision. We report the precision of our race
detector here, and describe the detected bugs in §8.3. To evaluate
its precision, we compared the number of false positives it emitted
to a baseline race detector we built. This baseline detector uses the
same definition of concurrent accesses (§7), except that it queries
our bddbddb port instead of our alias analysis because our precise
alias results can only be computed assuming a given schedule will
be enforced. Since the total number of concurrent memory access
pairs may be large, we used sampling for some benchmarks. The
sampling ratio was 1

50
for PBZip2, fft, barnes, water-spatial,

and ocean; and 1
5000

for water-nsquared. For all other programs,
we checked all concurrent access pairs.
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Figure 9: Path slicing ratio on the original program, after control-flow
specialization, and after data-flow specialization.

Program FPours FPbaseline Races
aget 0 72 1

PBZip2 0 125 32
fft 0 96 0

lu-contig 18 18 0
cholesky 7 31 0
radix 14 53 0

barnes ∗ 369 370 n/a
water-spatial ∗ 1799 2447 n/a
water-nsquared ∗ 333 354 n/a

ocean ∗ 292 331 n/a
blackscholes 0 3 0
swaptions 0 165 0

streamcluster 0 4 0
canneal 0 21 0

bodytrack 0 4 0
ferret 0 6 0

raytrace 0 215 0

Table 2: Precision of the race detector. FPours and FPbaseline show the
number of false positives for our detector and the baseline, respectively.
Races show the true races detected. The four starred programs have a larger
number of reports, so we conservatively treated all reports as false positives.

We counted the number of false positives for our detector, de-
noted by FPours, by inspecting its reports. Since the number of re-
ports for barnes, water-spatial, water-nsquared, and ocean
is large, we inspected a random selection of 20 reports, and found
that they were all false positives. We thus conservatively treated
all reports from these programs as false positives. We counted
the number of false positives for the baseline detector, denoted by
FPbaseline, by computing Rbaseline − Rours + FPours where R
is the number of reports. This formula works because our detector
is more precise than the baseline detector, and a report flagged only
by the baseline detector must be a false positive.

Table 2 shows the false positive comparison results for all 17
programs. For 10 of them, the precision of framework enabled
our detector to reduce the number of false positives to 0. The
reduction for cholesky and radix is also large. For lu-contig,
barnes, water-nsquared, water-spatial, and ocean, our race
detector reported slightly fewer races than the baseline; some of
these results are expected based on our alias precision results. The
mean reduction over all programs is 69.0%.

Table 2 also shows the number of true but benign races detected.
(We present the harmful races in §8.3.) Our detector found 1 race
on variable bwritten in aget and 32 races on variable AllDone,
NumBlocks, and OutputBuffer in PBZip2. Without the precision
of our framework, users may have to inspect hundreds of reports
before finding the true races.

Program LOC Sched Cons Use CF (s) DF (s)
aget 866 219 2667 720 1.4 1551.7

PBZip2 9869 158 1382 480 3.1 973.1
fft 877 98 1122 277 1.5 113.8

lu-contig 904 48 824 229 1.4 65.0
cholesky 3962 42 1550 1302 2.3 1967.9
radix 919 112 1016 330 1.5 42.5
barnes 2234 5555 1605 19280 5.4 1968.1

water-spatial 1958 1037 14572 5008 2.8 313.4
water-nsquared 1620 4768 48023 14530 4.1 468.8

ocean 2958 5709 66253 18580 6.8 1795.0
blackscholes 1264 51 482 130 1.2 38.3
swaptions 1094 15 215 105 1.3 9.7

streamcluster 1765 90 840 216 1.5 834.6
canneal 2794 31 535 311 5.4 96.9

bodytrack 7696 381 998 240 1.7 20.9
ferret 10765 153 439 118 1.0 35.3

raytrace 13226 87 13468 417 1.4 5397.8

Table 3: Specialization time. LOC shows the lines of code in each program.
The LOC of PBZip2 includes the bzip2 compression library. We show the
time spent in specializing control flow (CF) and data flow (DF). Since
specialization time are affected by the schedule, constraints, and queries, we
also show the schedule length (Sched), the number of constraints (Cons),
and the number of uses in the def-use analysis (Use).
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Figure 10: True vs. derived synchronizations in schedules.

Path slicer precision. To quantify the precision of our path
slicer, we measured slicing ratio, the percentage of statements
that remain in an execution trace. Figure 9 compares the preci-
sion of path slicing on the original programs and the specialized
programs.4 Control-flow specialization largely reduced the slic-
ing ratio for PBZip2, aget, swaptions, water-spatial, and
water-nsquared. For instance, it reduced the slicing ratio for
PBZip2 from 43.84% to 4.40%, a 89.97% reduction. Data-flow
specialization further reduced the ratio for PBZip2, swaptions,
blackscholes, streamcluster, fft, lu-contig and radix.
For instance, it reduced the slicing ratio for fft from 64.25% to
8.95%, a 86.08% reduction. The ratio reduction for cholesky,
barnes, and ocean was relatively small because our alias anal-
ysis sometimes reports may-alias for pointers accessed in different
threads, causing more instructions than necessary to be included in
the slices. The mean reduction over all programs is 48.7%.

8.2 Overhead
Table 3 shows the time specializing the control and data flow for
each program. Control-flow specialization is much faster than data-
flow specialization because it does not require expensive constraint-
based analysis. Data-flow specialization typically finishes within
minutes or hours. This time is correlated with the size of the
schedule, the number of constraints collected, and the number of
constraint-solving queries.

We also measured the number of derived synchronizations, i.e.,
the calls to functions may transitively do synchronizations to re-

4 We obtained the slicing results from an earlier prototype of our framework.



Program Position Bug Effect
aget Download.c:

87-95
rbuf may not have the byte sequence \r\n\r\n. aget needs an extra
bound check.

race, program crash, or large data corruption

aget Download.c:
98-99

The bound check should be td->offset + dr - i > foffset, not
dr - i > foffset. The size passed to pwrite should be foffset
- td->offset, not foffset - i.

race, or program crash

aget Download.c:
99,101,113,115

aget should check the return value of pwrite. race, program crash, or small data corruption

aget Download.c:111 aget should check the return value of recv. race, program crash, or small data corruption
radix radix.C:148 radix should check variable radix against its upper bound 4096. race, program crash.
radix radix.C:159 radix should check num keys against its upper bound 262144. race, or program crash
fft fft.C:162 fft should check log2 line size against its upper bound 4. program crash (before a race may occur)

Table 4: Bugs found.

solve call-stack ambiguity (§5.1). If this number is large, the over-
head to record schedules and specialize programs may increase.
Figure 10 shows that, for every program evaluated, the majority
of the synchronizations in the schedule are still true synchroniza-
tions. Therefore, including derived synchronizations in the sched-
ules does not incur significant overhead.

8.3 Bugs Found
The precision of our framework helped detect 7 previously un-
known bugs in the evaluated programs. This result is particularly
interesting considering that the evaluated programs have been well
checked in previous work [19, 25, 29, 38, 39].

These bugs were typically detected as follows. Our analyses
flagged two memory accesses from different threads as poten-
tial aliases or races, even though they should not be. We initially
thought these “false positives” were due to the imprecision of our
analyses and inspected them. Specifically, we queried STP for a
solution to make the two pointers accessed identical.

Surprisingly, many of these “false positives” turned to be real
bugs. A common cause is that an input variable is used as an array
index without being checked against the upper or lower bounds of
the array or the partition of the array assigned to a thread. Such
off-bound accesses may indeed cause different threads to race, and
our analyses thus flagged them. We detected 7 such bugs in aget,
radix, and fft, which are shown in Table 4. These bugs may cause
races, program crashes, or, worse, file data corruption. We manually
verified these effects by running the buggy benchmarks on the bug-
inducing inputs generated by STP. (The results presented in the
previous two subsections are from the patched programs because
we do not want these bugs to pollute our evaluation.)

9. Related Work

Slicing. Slicing techniques can remove irrelevant statements or
instructions. Program slicing [35] does so on programs, dynamic
slicing [6, 40] on dynamic execution traces, and path slicing [21]
on (potentially infeasible) paths. Precondition slicing [15] is similar
to path slicing with improved precision by incorporating dynamic
information into the analysis.

Our technique to specialize a program toward a schedule dif-
fers from these slicing techniques because it takes as input both
a program and a schedule, and outputs a specialized program that
can actually run. Moreover, our technique does not merely remove
statements; instead, it may transform a program by cloning state-
ments when specializing the control flow of the program, replacing
variables with constants when specializing the data flow, etc.

Deterministic multithreading. Several recent systems [8, 10–
12, 16–18, 24, 28] eliminate nondeterminism due to thread inter-
leaving; our TERN [16] and PEREGRINE [17] further reduce input
nondeterminism. These DMT systems are not designed to facili-
tate static analysis. For instance, all existing DMT systems except
TERN and PEREGRINE compute schedules online without storing
them explicitly, making it difficult to analyze a program w.r.t. these

implicit schedules. Moreover, although several DMT systems con-
strain a program to always use the same schedule for the same in-
put, they may force the program to use a different schedule when
the input changes slightly. This instability [16] not only aggra-
vates input nondeterminism, but also largely prevents amortizing
the static analysis cost in schedule specialization.

Nonetheless, our framework may use one of these systems to
enforce schedules. Indeed, our framework leverages our PERE-
GRINE system, which explicitly stores and reuses schedules. Al-
though PEREGRINE used a technique similar to the specialization
algorithms described in §5, our PEREGRINE paper [17] described
the technique mainly from a user’s perspective, and presented no
schedule specialization framework nor detailed algorithms.

Program specialization. Program specialization can specialize a
program according to various goals [14, 20, 22, 27, 31]. For in-
stance, it can specialize according to common inputs [14, 27]. The
specialized programs can then be better optimized. Unlike previous
work, our framework specializes a program toward a set of sched-
ules, thus allowing stock analyses and optimizations to run on the
specialized programs. To the best of our knowledge, we are the first
to specialize a program toward schedules.

10. Conclusion and Future Work
We have presented schedule specialization, an approach to analyze
a multithreaded program over a small set of schedules for preci-
sion, and then enforce these schedules at runtime for soundness.
We have built a framework that specializes a program into a sim-
pler program based on a schedule, so that the resultant program can
be analyzed with stock analyses. Our framework provides a precise
schedule-aware def-use analysis, enabling many powerful applica-
tions. Our results show that our framework can drastically improve
the precision of alias analysis, path slicing, and race detection.

In our future work, we plan to leverage the precision provided
by our framework to build precise error detectors, post-mortem
analyzers, verifiers, and optimizers for multithreaded programs. In
addition, we believe a similar specialization approach can improve
analysis precision for sequential programs, too. In general, static
analysis over all possible executions may be imprecise. To improve
precision, we may perform static analysis over only a small set of
executions (e.g., the most common executions) and, if necessary,
resort to dynamic analyses for the other executions. We believe
this direction will face many interesting precision, soundness, and
overhead tradeoffs, which we will investigate.
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