Verifying Systems Rules
Using Rule-Directed Symbolic Execution

Heming Cui* Gang Hu*

Jingyue Wu

Junfeng Yang

{heming,ganghu,jingyue,junfeng} @cs.columbia.edu
Columbia University

Abstract

Systems code must obey many rules, such as “opened files must
be closed.” One approach to verifying rules is static analysis, but
this technique cannot infer precise runtime effects of code, often
emitting many false positives. An alternative is symbolic execu-
tion, a technique that verifies program paths over all inputs up to
a bounded size. However, when applied to verify rules, existing
symbolic execution systems often blindly explore many redundant
program paths while missing relevant ones that may contain bugs.

Our key insight is that only a small portion of paths are rele-
vant to rules, and the rest (majority) of paths are irrelevant and do
not need to be verified. Based on this insight, we create WOOD-
PECKER, a new symbolic execution system for effectively check-
ing rules on systems programs. It provides a set of builtin check-
ers for common rules, and an interface for users to easily check
new rules. It directs symbolic execution toward the program paths
relevant to a checked rule, and soundly prunes redundant paths,
exponentially speeding up symbolic execution. It is designed to
be heuristic-agnostic, enabling users to leverage existing powerful
search heuristics.

Evaluation on 136 systems programs totaling 545K lines of
code, including some of the most widely used programs, shows
that, with a time limit of typically just one hour for each verification
run, WOODPECKER effectively verifies 28.7% of the program and
rule combinations over bounded input, whereas an existing sym-
bolic execution system KLEE verifies only 8.5%. For the remaining
combinations, WOODPECKER verifies 4.6 times as many relevant
paths as KLEE. With a longer time limit, WOODPECKER verifies
much more paths than KLEE, e.g., 17 times as many with a four-
hour limit. WOODPECKER detects 113 rule violations, including 10
serious data loss errors with 2 most serious ones already confirmed
by the corresponding developers.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.4.5 [Operating Systems]: Relia-
bility
General Terms Algorithms, Experimentation, Reliability, Verifi-
cation

* These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’13, March 16-20, 2013, Houston, Texas, USA.

Copyright © 2013 ACM 978-1-4503-1870-9/13/03. .. $15.00

Keywords Symbolic execution, Path Slicing, Verification, Error
Detection, Systems Rules

1. Introduction

Systems code must obey a variety of rules. For instance, assertions
must succeed, allocated memory must be freed, opened files must
be closed, file read or write must be done on opened files, and
atomic rename must be used correctly [55, 63]. Violating these
rules may easily lead to critical failures such as program crashes,
resource leaks, data losses, and security breaches.

One approach to verifying rules is static analysis [25, 26, 61].
This technique has high coverage because it analyzes all code a
compiler can see. However, without running code, it has difficul-
ties inferring precise runtime effects of code, such as whether two
pointers point to the same memory location or two branch condi-
tions are equivalent. For soundness, it has to conservatively assume
the worst, often emitting numerous false positives which require
costly manual inspection. Although previous work [26] reduced
false positives with heuristics, it aggressively traded off soundness.
It may thus miss many errors and cannot be applied to verification.

An appealing alternative to verifying rules is symbolic execu-
tion [11, 12, 33, 42], a powerful technique that systematically ex-
plores program paths for errors. Instead of running a program on
concrete input consisting of zeros and ones, it runs the program on
symbolic input initially allowed to have any value. When the execu-
tion branches based on symbolic input, this technique explores both
branches by conceptually forking two executions, each maintaining
constraints on symbolic input required for the program to proceed
down the given path. By systematically exploring paths, this tech-
nique achieves higher statement coverage than manual or random
testing [12]. By actually running code, it sees the precise runtime
effects of code and eliminates false positives (barring limitations of
constraint solving).

Symbolic execution has been applied to detect serious er-
rors in systems code [12, 13, 64] and generate high-coverage
tests [12]. Moreover, it has been applied to verify program paths
and code [12, 18, 39, 52]. At each dangerous operation such as an
assertion on symbolic input, it checks if any input value may fail the
operation. If it finds no such inputs for a path, it effectively verifies
the path over the symbolic input. If it verifies all paths, it effectively
verifies the entire program over the symbolic input. This verifica-
tion approach is a form of bounded verification [17]. Researchers
have argued and experimentally shown that checking all inputs
within a small scope can effectively detect a high portion of bugs
and achieve high statement and branch coverage [5, 12, 19, 38].

Although it is tempting to verify systems rules using symbolic
execution, this technique faces another difficult challenge of path
explosion: it can rarely explore all paths of a typical program simply
because of the sheer number of paths.

Our key insight is that although the number of program paths
is enormous, only a small portion of the paths are relevant to a
checked rule, and the rest (majority) of the paths are irrelevant
and do not need to be checked. Specifically, a typical rule in-
volves only a small number of instructions, or events, during ex-
ecution. For instance, the rule “opened files must be closed” in-
volves only the events that open and close files, such as fopen()
and fclose () calls. From a verification perspective, paths leading
to the same event sequence are equivalent, and only one of them
need be checked. (See §2 for an example.) Unfortunately, existing
symbolic execution systems are not designed to check rules; they
often blindly explore many redundant paths while missing relevant
ones that may contain bugs.

Based on our key insight, we create WOODPECKER,' a sym-
bolic execution system for effectively checking rules on systems
programs. Similar to most previous symbolic execution systems,
WOODPECKER emits no false positives, and can record and re-
play the program path leading to each error it detects. In addi-
tion, WOODPECKER allows users to easily check rules by writ-
ing custom checkers, and provides a set of builtin checkers to help
users bootstrap the checking process. Given a rule, it performs rule-
directed symbolic execution: instead of blindly exploring all paths,
it first statically “peeks” into the paths and then symbolically exe-
cutes only the paths relevant to the rule, greatly speeding up sym-
bolic execution for both verification and bug detection.

To effectively direct symbolic execution toward a rule, WOOD-
PECKER faces three key algorithmic challenges. First, given a rule,
how can WOODPECKER determine what paths are redundant? Sec-
ond, how can WOODPECKER work with different rules? It would
be impractical if each rule requires a different symbolic execution
algorithm. Third, how can WOODPECKER integrate with the clever
search heuristics in existing symbolic execution systems? These
heuristics absorb much dedicated research efforts and can steer
checking toward interesting paths (e.g., those more likely to have
bugs) when verifying all is not feasible. They have been shown to
effectively increase statement coverage and detect errors [12, 13].

WOODPECKER solves these challenges using two ideas: a sim-
ple but expressive checker interface and a sound, checker- and
heuristic-agnostic search algorithm. A checker implementing the
interface provides methods to inform WOODPECKER (1) which
executed instructions are events and (2) which static instructions
may be events regarding a rule. These methods abstract away the
checker details, enabling WOODPECKER'’s search algorithm to be
checker-agnostic.

Once WOODPECKER finishes exploring a path, it uses the
checker-provided methods to determine which branches off the
path should be pruned. Specifically, if an off-the-path branch can-
not (1) affect any event executed in the path or (2) reach any new
event not in the path, then it cannot lead to a different event se-
quence, so WOODPECKER prunes this branch without missing er-
rors. This pruning is heuristic-agnostic because it is done only at the
end of a path and does not interfere with the search heuristics oth-
erwise. By pruning irrelevant branches, WOODPECKER can speed
up symbolic execution exponentially because each pruned branch
in principle halves the number of paths to explore.

We have implemented WOODPECKER on top of the LLVM
compiler framework [1]. To leverage the powerful search heuris-
tics in existing symbolic execution systems, we carefully integrate
WOODPECKER with KLEE [12]. To prune branches, we leverage a
modified version of path slicing [40] that computes a slice of a path
containing instructions key for reaching an event sequence [23].

I'We name our system after the woodpecker bird because this bird finds
bugs similarly: it uses its acute hearing to locate wood-boring bugs before
hammering into the wood [8].

We also create five checkers, including the assertion, memory leak,
open-close, file access, and data loss checkers, to check the five
rules mentioned in the first paragraph of this paper.

We evaluated WOODPECKER on 136 systems programs, total-
ing 545K lines, including some of the most widely used programs
such as file, shell, and text utilities in GNU coreutils, user and
group management utilities in shadow, tar, sed, CVS, and git.
Our results show that

1. With a time limit of typically just one hour for each verification
run, WOODPECKER effectively verifies 111 out of 387 (28.7%)
program and rule combinations over bounded input. These ver-
ification processes often finish within tens of minutes. In con-
trast, KLEE verifies only 33 out of 387 (8.5%) combinations.

2. For the remaining combinations, WOODPECKER verifies 4.6
times as many relevant paths as KLEE. This speedup is unsur-
prising as 86.8% of the paths KLEE explores are redundant.

3. With a longer time limit, WOODPECKER verifies even more
relevant paths than KLEE. For instance, WOODPECKER verifies
17 times as many paths as KLEE for coreutils within 4 hours.

4. WOODPECKER detects total 113 rule violations. It detects 10
serious data loss errors. Nine of these errors may corrupt source
code repositories and the other one may cause new user ac-
counts to have wrong (security) settings. The 2 most serious
ones have been confirmed by the corresponding developers.
This paper makes three main contributions. Our first contribu-

tion is the rule-directed symbolic execution approach which checks
systems rules and uses them to direct symbolic execution. Our
second contribution is the WOODPECKER system with a simple
yet expressive checker interface, a set of builtin checkers, and a
sound, checker- and heuristic-agnostic search algorithm that lever-
ages path slicing to prune redundant paths and speed up symbolic
execution. Our last contribution is our experimental evaluation that
verifies rules on real-world programs and detects serious errors.

The remainder of this paper is organized as follows. We first
show an example (§2) and overview (§3) of WOODPECKER. We de-
scribe its checker interface (§4), search algorithm (§5), and builtin
checkers (§6). We present its implementation (§7) and evaluation
(§8). We finally discuss related work (§9) and conclude (§10).

2. An Example

To illustrate how WOODPECKER works and its key benefits, we
show an example in Figure 1. Although simple, this program im-
plements the core functionality of cat in GNU coreutils. It iter-
ates through the command line arguments, opens each argument as
afile, and prints the file to the standard output. If an argument is “-”
or no argument is present, it reads from the standard input. It con-
verts non-printable characters before printing them (lines 15-17),
emulating what “cat -v” does.

2.1 Difficulties in Existing Approaches

Suppose we want to automatically verify the open-close rule on this
program, i.e., fopen() at line 9 and fclose() at line 22 always
pair up. If this rule is violated, each iteration of the outer loop
(lines 5-23) leaks a file pointer, so this program may exhaust all
file descriptors on a long list of input files. Fortunately, this rule
holds because the true branch of line 21 is taken if and only if the
true branch of line 8 is taken. However, automatically verifying this
fact using existing approaches can be quite challenging.

Static analysis is not good at computing precise constraints on
values, so it may have difficulties computing that the conditions at
lines 8 and 21 are, despite their syntactic differences, semantically
equivalent. It is not good at precisely tracking where pointers point
to either, so it may even have difficulties determining that variable
infile must point to the same element of argv at lines 8 and 21 in
the same iteration of the outer loop. Alias analysis is the standard

1 : int main(int argc, char **argv) {

2 FILE *input_desc;

3 int argind = 1;

4 : const char *infile = "-";

5 : do { / iterate over input files and print one by one
6 : if(argind < argc)

7 infile = argv[argind];

8 if(stremp(infile, "-")) / input is a file

9: input_desc = fopen(infile, "r");

10: else // input is stdin

11: input_desc = stdin;

12 if(linput_desc) continue;

13: int c;

14: while((c = fgetc(input_desc)) = EOF) {
15: if(c < 32 && ¢ != "\n"’) { / non-printable char
16: putchar(’ ~7);

17: putchar(c + 64);

18: } else // printable char

19: putchar(c);

20: }

21: if(infile[0] != 7 -’ || infile[1] != O)

22: fclose(input_desc); // input is a file
23: } while (++argind < argc);

24: return 0;

25: }

Figure 1: A simple program based on cat from coreutils.

method to compute whether two pointers point to the same location,
but it often collapses results from multiple loop iterations into one,
especially when the loop bound cannot be statically determined,
such as this outer loop. It may thus imprecisely compute that
infile may point to different locations at lines 8 and 21. Due to
these difficulties, static analysis may conservatively consider lines
8,9, 21, and 23 a feasible path fragment and lines 8, 11, 21, and 22
another one, emitting false positives that require manual inspection.

Symbolic execution avoids false positives by exploring only fea-
sible paths, but it faces another difficult challenge of path explosion.
Consider the program in Figure 1. Although simple, it may still
have too many paths for symbolic execution to completely explore,
even if we bound the input to be small. In particular, the symbolic
branch instruction at line 15 doubles the number of paths for each
input byte.

We ran KLEE on this program with a small input bound: three
command line arguments, each with two bytes, and two files, each
with eight bytes. Although KLEE explored 698,116 paths® in an
hour, it unsurprisingly did not explore all paths. Worse, of all the
paths it explored, 99.84% are redundant regarding the rule. For
instance, all paths forked at lines 14 and 15 are redundant to each
other because they affect neither fopen nor fclose operations, so
only one of them need be checked.

2.2 Bounded Verification with WOODPECKER

Since WOODPECKER already comes with an open-close checker,
users simply specify this checker to check the rule. To check new
rules, users can write their own checkers. To prepare the program
in Figure 1, users compile it to bitcode, the well-defined, easy-to-
analyze RISC-like LLVM assembly code [1]. Users then specify
the symbolic input and start checking. For instance, they can mark
command line arguments and input files symbolic, and specify their
maximum sizes.

2 Since KLEE works on LLVM assembly programs with Libc linked in, it
sees much more paths than static analysis.

3: argind = 1;

4: infile = “-7;

6:true argind < argc

7: infile = argv[argind];

8:true strcmp(infile, “-”)

9: input_desc = fopen(infile);
12: if(input_desk) continue;
Ldtrue—feo=footoFnputdesa—l=E0R
15:-falca <32 && ¢cl= ‘\n’

19: putcharl{c);

infile[@]!=¢-> || infile[1] !'= o

21:true

22: fclose(input_desc);
23:false ++argind < argc

24 return n;

Figure 2: A path explored by WOODPECKER and its pruning results. Each
executed instruction is tagged with its static line number. Branch instruc-
tions are also tagged with their outcome (true or false). Events (green) con-
cerning the rule are the fopen () and fclose () calls tagged with 9 and 22.
Crossed-out (gray) instructions are elided from the slice, so their off-the-
path branches are not explored by WOODPECKER. Only the off-the-path
branches of lines 6, 8, and 23 (italic, blue), are explored by WOODPECKER.

To explore paths, WOODPECKER conceptually forks executions
upon a symbolic branch instruction with both branches allowed by
the current constraints. For instance, it forks executions when it first
executes lines 6, 8, 14, 15, and 23. It does not fork at line 21 because
the constraints collected from line 8 makes only one branch of
line 21 feasible. By exploring only feasible paths, WOODPECKER
avoids emitting false positives.

Given all forked paths, WOODPECKER can prioritize how they
are explored using various heuristics. To leverage existing heuris-
tics, we have carefully integrated it with KLEE. We will describe
this integration and WOODPECKER’s search algorithm in §5; in the
remainder of this section we illustrate how WOODPECKER prunes
redundant paths using our example.?

WOODPECKER prunes redundant paths when it finishes explor-
ing a path. Suppose it explores a path as shown in Figure 2. (The
paths explored depend on the heuristic used.) As discussed in the
previous subsection, without directing symbolic execution with the
rule, KLEE would have to explore the off-the-path branches at lines
14 and 15. Fortunately, WOODPECKER prunes these branches be-
cause it determines that they have no effect on the event sequence
(lines 9 and 22) in this path.

To do so, WOODPECKER leverages a previous path slicing algo-
rithm that computes a slice that captures instructions key to reach
the exact event sequence in a path [23]. The resultant slice con-
tains the instructions not crossed out in Figure 2. It includes the
events (9 and 22) and all instructions that the events transitively
control- or data-depend upon. For instance, it includes 8:true be-
cause if the false branch is taken, the execution will not reach 9;
it includes 7, 6:true, 4, and 3 because they set the infile used
by 8:true. It includes 23:false because if the true branch is taken,
the execution will reach new instances of fopen() and fclose()
calls. It excludes all instructions in the inner loop (lines 14-20)
and the return instruction (line 24) because they do not affect the
event sequence. WOODPECKER then explores only the off-the-path
branches included in the slice, and prunes the other ones, i.e., those
at lines 14 and 15.

3 For clarity, this paper presents WOODPECKER’s algorithm at the source
level, instead of the bitcode level.

(1) (5)
Bitcode Program
& i (@)
> Symbolic
O a-a
& Execution (2 State Path Slicing
5 Y Queue (7) I
= e .

Figure 3: WOODPECKER architecture.

We ran WOODPECKER on this example with the same input
bound as KLEE. WOODPECKER completely explored all 1,802
paths that may lead to different event sequences, verifying that our
example has no open-close errors over the bounded input. This veri-
fication process took only 212.7 seconds. We observed similar ben-
efits of WOODPECKER on the real programs evaluated (§8).

3. WOODPECKER Overview

Figure 3 shows WOODPECKER’s architecture. We explain this ar-
chitecture as well as how the components interact; the numbered
labels in the figure correspond to the numbers in the list below

(1) WOODPECKER checks programs in bitcode, the LLVM assem-
bly language [1]. Given a bitcode program, WOODPECKER in-
vokes KLEE to execute (more precisely, interpret) bitcode in-
structions.

(2) If executing one instruction (e.g., a symbolic branch instruc-
tion) on a program state leads to new states, WOODPECKER
adds them to the state queue for future exploration.

(3) It passes the executed instruction and its operands to the
checker for errors.

(4) If the instruction executed is at the end of a path, WOOD-
PECKER applies path slicing to compute redundant branches
that do not affect the event sequence in the path.

(5) As part of the computation to determine if a branch is redun-
dant, WOODPECKER statically visits the off-the-path instruc-
tions a branch may reach.

(6) For each instruction visited, it queries the checker to determine
whether the instruction may be an event.

(7) Given the redundant branches, it searches a branch tree (§5)
to find the corresponding states forked from the branches, and
removes the states from the queue.

WOODPECKER then removes a state from the state queue and

repeats these steps until it explores all paths or reaches a given time

limit. This process essentially implements WOODPECKER’s search
algorithm (§5) with steps (3) and (6) invoking the checker through
the checker interface (§4).

Assumptions. WOODPECKER often effectively prunes paths for

rules involving a small number of events. Most systems rules, in-

cluding all the rules we check, have this property. If a rule involves
many instructions such as all load instructions, WOODPECKER may
not be as effective.

WOODPECKER’s effectiveness may also depend on specific
search heuristics and programs. For instance, if all program paths
are of the same length, depth-first search may work better because
it reaches the end of a path and triggers pruning sooner. If some
program paths are very short, breadth-first search may work better
because it reaches the end of a short path sooner. We explicitly de-
signed WOODPECKER to give users flexibility to choose heuristics.

Our current design of WOODPECKER checks one rule at a time
because our anecdotal experience with statically checking system
rules is that developers often prefer to focus on one type of bug
before context-switching to a different type. WOODPECKER can be

class Checker {
// Clones internal checker state.
Checker *Clone();

// Called by WOODPECKER after it executes instruction Ki.

// struct Klnstruction contains instruction operands.

// Returns false if an error is detected, and true otherwise.

// s is program state after ki is executed.

// evmask outputs whether the instruction is an event and,

// if so, what operands matter.

bool OnExecution(const ExecutionState *s,
const Klnstruction *ki, Bitmask& evmask);

// Called by WOODPECKER to check
// whether a static instruction may be an event.
bool MayBeEvent(const Instruction *i);

b

Figure 4: The WOODPECKER checker interface.

extended to check multiple rules simultaneously, to further amor-
tize the cost of symbolic execution. However, WOODPECKER’s
path slicing needs to be modified so that events from different rules
are analyzed separately. We leave this for future work.

At the implementation level, WOODPECKER requires bitcode or
source (so we can compile it to bitcode) programs. WOODPECKER
aborts a path upon inline x86 assembly or a call to an external func-
tion it does not know. For soundness, developers have to lift x86
assembly to bitcode and provide summaries for external functions.
(The external function problem is alleviated because KLEE links
in a Libc implementation.) Moreover, the underlying components
that WOODPECKER leverages make assumptions as well. For in-
stance, KLEE requires constraint solving, which can be quite expen-
sive and sometimes intractable. Path slicing requires alias analysis,
and the one used in WOODPECKER makes several assumptions [6];
a “sounder” alias analysis [35] would remove these assumptions.
Our slicing is conservative: it never marks a relevant branch as re-
dundant, but it may mark redundant branches as relevant [23].

Although WOODPECKER is similarly limited by its underly-
ing components such as KLEE, the general ideas in WOODPECKER
can benefit other symbolic execution systems. For instance, it can
be combined with systems such as S2E [13] and its search tech-
niques [9, 43] to soundly reduce the number of paths to explore.

4. Checker Interface

Figure 4 shows WOODPECKER'’s checker interface. It consists of
three key methods. The Clone method clones a checker’s internal
state. Whenever WOODPECKER clones a program state for later
exploration, it also clones the checker state, so that the program
and checker states are always consistent.

WOODPECKER calls OnExecution after executing each in-
struction. This method does three things. First, it updates the in-
ternal state of the checker. For instance, if the instruction is a call
fp = fopen(), the open-close checker updates its internal state to
map file pointer £p to the opened state. Second, this method detects
whether the executed instruction causes an error. If so, it returns
false, so WOODPECKER can invoke KLEE to generate a testcase that
reproduces the error. Lastly, this method outputs variable evmask,
which indicates whether the executed instruction is an event. This
information helps WOODPECKER compute relevant branches (§5).

Variable evmask is a bitmask instead of a boolean flag because
OnExecution also uses it to indicate which operands matter to
the checked rule. If an operand does not matter, WOODPECKER
does not include instructions affecting it in the slice. For instance,

Algorithm 1: WOODPECKER’s search algorithm

Input : program prog, initial state sg, checker checker
Global: state queue g, branch tree briree
RuleDirectedSE(prog, so, checker)
q.add({so, prog.entry))
while g not empty and time limit not reached do
(s,1) +— g.remove()
if 4 is not a symbolic branch statement or only one branch
is feasible then
(s',4") < run(s, 7)
HandleNewState(s, 1, s’, i, checker)
else // fork states and add constraints
Strue < § + {i.cond = true}
Sfalse < § + {i.cond = false}

* brtree.add(i, Strue, Sfaise)
HandleNewState(s, 7, Strye, i.true_br, checker)
HandleNewState(s, i, S tq15e, 7.false_br, checker)

HandleNewState(s, i, s’, i’, checker) // Note: s’ is updated

* if not checker.OnExecution(s, i, evmask) then

* return // error detected!

* s’ path.push_back(4)

* if evmask # 0 then

* s’ .events.push_back((i, evmask))
if s’ is not end of path then g.add((s’,’))
* else Prune(s’, checker)// s’ is end of path

Prune(s, checker)
slice < Slice(s.path, s.events, checker)
foreach symbolic branch 7 in s.path but not in slice do
br < branch of ¢ not executed in s.path
pruned < brtree.find_states(br)
g.remove(pruned)
brtree.remove(s) // because s is end of path
Slice(path, events, checker)
slice < empty sequence
for i € reverse(path) do
if any e € events transitively depends on 7 then
slice.push_front(¢)
else if 7 is a branch instruction then
for j € instructions ¢ reaches off path do
if checker.MayBeEvent(j) then
slice.push _front(z)
break
return slice

consider the open-close checker. The arguments to fopen () do not
matter, whereas the argument to fclose () does. Implementation-
wise, the most significant bit of evmask indicates whether the
instruction is an event, and the ' bit indicates whether the i*"
operand matters. (We show an example on how WOODPECKER
uses evmask in §5.)

WOODPECKER calls MayBeEvent to check whether a static in-
struction, if executed, may be an event of the checked rule. WOOD-
PECKER uses this information to compute which branches may lead
to new events (§5).

5. Search Algorithm

This section describes WOODPECKER’s checker- and heuristic-
agnostic search algorithm (Algorithm 1) and how it integrates with
existing search heuristics.

Functions RuleDirectedSE and HandleNewState together
without the starred lines implement a typical search process in ex-
isting symbolic execution systems and model checkers. This search
process maintains a queue of program state and instruction-to-
execute pairs, initialized to contain the initial state and the program
entry. It removes a state and instruction pair from the queue, ex-

ecutes the instruction on the state, adds the resultant states to the
queue, and repeats until the state queue is empty or a time limit is
reached. Different search heuristics can be implemented by varying
the order in which states are added to or removed from the queue.
For instance, depth-first search would remove the state last added,
and breadth-first search would remove the state first added.

The starred lines and the additional functions Prune and Slice
together give WOODPECKER the power of checking rules and prun-
ing redundant paths without restricting search heuristics. This ad-
ditional code does four things. First, in HandleNewState, it calls
the checker’s OnExecution to check for rule violations and set
evmask (§4).

Second, it maintains a program path and an event sequence in
the resultant state s, later used by Prune to prune redundant states.
Specifically, it appends each executed instruction to the path field
of s’. It appends the instruction to the events field of s’ if evmask
is nonzero, i.e., the instruction is an event.

Third, whenever WOODPECKER reaches the end of a program
path, it calls Prune to remove redundant states from the queue.
Prune first calls Slice to compute from the current path a slice
that, if preserved, guarantees the same event sequence. If a sym-
bolic branch instruction is in the path but not the slice, taking either
of its branches should lead to the same event sequence, so WOOD-
PECKER prunes the states reached from the off-the-path branch.

Fourth, to find the states reached from a branch, WOODPECKER
uses a branch tree to track forked branches and states on the queue.
The leaf nodes of this tree are all states to explore, and the inter-
nal nodes are all branch instructions. At each fork, WOODPECKER
replaces the node representing the current state with a node repre-
senting the branch instruction, and adds the two forked states as two
child nodes. At the end of a path, WOODPECKER removes the node
representing the current state from the tree, as well as its parents if
they become childless. To find states given a branch br, function
find_states simply returns the leaf nodes in the subtree rooted
from br. The subtree rooted from br may have more than one states
because the search heuristic may first probe br and its child states
without reaching the end of a path, and then switch to explore br’s
sibling branch to the end of a path.

Function Slice implements an improved version of path slic-
ing [40]. Given a trace of instructions and a target instruction in the
trace, path slicing traverses the trace backwards and computes a
slice capturing the instructions sufficient for the execution to reach
the target. Intuitively, these instructions include “branches whose
outcome matters” to reach the target and “mutations that affect the
outcome of those branches” [21]. For instance, it takes a branch in-
struction into the slice if the instruction’s off-the-path branch may
cause the execution not to reach the target. The resultant slice in-
cludes all instructions that the target transitively control- and data-
depends upon.

Slice improves the original version of path slicing in two
ways. First, it slices toward a sequence of instructions, not just one
instruction, to capture instructions that guarantee the same event
sequence. Operationally, Slice captures a branch instruction into
the slice if the off-the-path branch of this instruction may reach
new events and thus alter the event sequence. (See our previous
work [23] for more details.) Second, S1ice uses the evmask values
returned by OnExecution (§4) to compute a more precise slice. To
illustrate, consider the code snippet below:

1: char *filename;

2: if(*)

3: filename = "A";
4: else

5: filename = "B";
6

: FILE *fp = fopen(filename, "r");

Suppose fopen is an event and we are given a path 2:true, 3, and
6. If at line 6, the returned evmask indicates that no operands of
fopen are important, then Slice does not take any instructions
between lines 1-5. However, if evmask indicates that operand
filename is also important, Slice takes 2:true and 3.
Discussion. Algorithm 1 is checker-agnostic because all checker
details are abstracted behind the checker interface. It is also
heuristic-agnostic because it prunes states only at the end of a pro-
gram path, and does not dictate how states should be added to
or removed from the queue. Thus, this algorithm enables WOOD-
PECKER to work with any checker and any heuristic. Moreover, this
algorithm is sound because it never prunes a branch that may lead
to a different event sequence, guaranteed by Slice.

6. Checkers

WOODPECKER’s checking interface enables users to write their
own checkers. To bootstrap checking, WOODPECKER also provides
a set of builtin checkers, described in this section.

The assertion checker is the simplest builtin checker. It checks
that the assert () statements never fail. Although existing sym-
bolic execution systems such as KLEE can already check as-
sertions, WOODPECKER can use them to direct checking to-
ward only the paths that may trigger the assertions, thus enjoy-
ing large speedup (§8). Implementing this checker is extremely
easy because assert is macro-expanded down to an if-statement
and a call to assert_failed(), so this checker considers only
assert_failed() calls events.

The memory leak checker checks that (1) every heap-allocated
object is freed and (2) freed memory is not freed again. It tracks
memory allocators malloc, calloc, realloc, strdup, strndup,
and getline, and deallocators free and realloc. Function
getline allocates memory if its first argument points to NULL.
Function realloc allocates memory if its pointer argument is
NULL and its size argument is greater than 0; it frees memory if its
pointer argument is not NULL and its size argument is 0; or it both
allocates and frees memory otherwise from this checker’s perspec-
tive. Tracking these nuances is made easy because WOODPECKER
does run code.*

The open-close checker checks that (1) an opened file is always
closed and (2) a closed file is not closed again. It tracks fopen,
fopen64, and £dopen for opening and fclose for closing files.

The file access checker checks that (1) file read or write op-
erations are done on opened files and (2) no file read or write
operations are done on a file with errors (after ferror() re-
turns nonzero). In addition to the open and close file operations,
it also tracks nine file access operations, such as fread, fwrite,
fgets, and fputs and two error-checking operations ferror ()
and ferror_unlocked().

The data loss checker checks for problematic sequences of
file operations that may cause data loss. Although a POSIX-
conforming rename guarantees atomic replacement of the desti-
nation link despite failures, it does not guarantee anything about
file data. Thus, the source must be flushed and synced before the
rename so that a crash would not make the destination point to in-
complete data [55, 63]. Moreover, prior to this rename, the desti-
nation should not be unlinked or renamed so that a crash would
not lose the destination link. Figure 5 illustrates these rules. The
rename checker tracks 19 file system operations, such as the ones

4 An alternative leak checker implementation is to modify KLEE because
it already tracks memory objects, but these modifications must (1) track
whether each memory object is allocated by the application or library code
because we want to report only application leaks; and (2) maintain diagnosis
information such as the call stacks. We rejected this design because these
modifications are too checker-specific.

fp = fopen("src", "w");

fwrite(fp, ...)

fflush(fp); # must flush data from Libc to OS

fd = fileno(fp);

fsync(fd); // must sync data from OS to disk

fclose(fd);

// unlink("dst"); ERROR! shouldn’t remove dst

// rename("dst", "bak"); ERROR! shouldn’t remove dst
rename("src", "dst");

Figure 5: How to atomically rename a file to avoid data loss.

shown in Figure 5. Specifically, it checks that (1) a file is properly
flushed (via £f1ush) and synced (via £sync, sync, or fdatasync)
before it is renamed (via rename) to a destination link; (2) the desti-
nation link is not unlinked (via unlink, rmdir, or rename) before
the rename; and (3) a file descriptor is not closed via close if it is
associated with a FILE object.’

Additional support for checkers. WOODPECKER provides three
additional mechanisms to help user write checkers. First, it pro-
vides an alias analysis (§7) for checkers to resolve function point-
ers in MayBeEvent. If an instruction passed to MayBeEvent is an
indirect call, MayBeEvent can use this analysis to resolve possible
call targets. This mechanism is used in all our checkers.

Second, WOODPECKER provides a default mechanism to sup-
press redundant error reports. The same error may occur along mul-
tiple program paths, leading to redundant reports. Given a sequence
of events in an error report, WOODPECKER hashes all these events
and their call stacks, and filters future reports with an identical
hash, improving diagnosis experience. This mechanism is used in
our memory leak and open-close checkers because they often emit
many reports.

Third, WOODPECKER allows a checker to concretize symbolic
data. The instruction operands passed to OnExecution may be
symbolic. For instance, the data loss checker may see symbolic
file names in rename. Although a checker can track the checker-
relevant status of symbolic data, the implementation would be
quite complex because it has to track advanced constraints. Instead,
WOODPECKER allows a checker to selectively concretize symbolic
data into a constant allowed by the constraints. A checker should
do so only on the operands it cares about. This mechanism is used
only by the data loss checker on the rename operands.

7. Implementation

We have implemented WOODPECKER on top of the LLVM com-
piler [1] and the KLEE symbolic execution system [12]. We reim-
plemented a previous path slicing algorithm [23]. Our implementa-
tion consists of 10,328 lines of code, including 2,968 lines of mod-
ifications to KLEE, 5,771 lines of code for path slicing, and 1,589
lines of code for the builtin checkers. The lines of code for each
individual checker are show in Table 1.

In the remainder of this section, we discuss several implementa-
tion issues, two on modeling the environment for symbolic execu-
tion and three on improving the precision and speed of path slicing.

7.1 Modeling the File System

Most of the systems programs we check need to interact with the
file system. Although KLEE already comes with a symbolic file
system implementation that supports fake in-memory files with
symbolic data, this file system has three limitations, preventing us
from checking some rules and programs. First, KLEE does not track

3 Libc function fileno allows developers to get the file descriptor from a
FILE object as illustrated in Figure 5.

the modifications to the real files with concrete data on disk. Thus,
when it restores a program state to explore, it may see the old
on-disk file system state, inconsistent with the restored program
state. Second, KLEE supports only a small set of file operations
with its symbolic file system; operations such as 1ink, rename,
and chdir are not supported. Lastly, a relative minor issue is that
KLEE restricts the names of symbolic files to be A, B, ..., and Z, and
no other files can be symbolic.

WOODPECKER solves these issues with a new in-memory file
system layer that implements copy-on-write on a real file system,
similar to unionfs [51]. If a concrete file is never written along a
program path, WOODPECKER directs all reads to the file on disk. If
the file is ever written, WOODPECKER creates an in-memory copy
of the file private to the current program state, and directs all future
reads and writes to this private copy. This file system supports more
operations than KLEE’s, such as 1ink, rename, and chdir. It also
allows users to mark arbitrary files as symbolic if the file names
match user-given patterns. For instance, users can mark all git
internal files as symbolic with the “. git/*” pattern.

7.2 Modeling mmap

Several programs we check allocate memory or read file data by
calling mmap, which KLEE does not handle: it simply returns EPERM
on mmap. One solution is to pass mmap calls to the underlying op-
erating system, but this solution is still problematic because the
memory allocated by the operating system’s mmap is not saved and
restored with the program state. WOODPECKER solves this prob-
lem by re-implementing mmap to allocate memory using KLEE’s
malloc. Our implementation currently handles two mmap modes:
MAP_PRIVATE and MAP_ANONYMOUS because the other two modes,
MAP_SHARED and MAP_FIXED, are not used in the programs we
check. (Adding them is easy.)

7.3 Summarizing Functions

Users can improve WOODPECKER by providing two types of func-
tion summaries. First, to track data dependencies, path slicing
needs to know what memory locations an external function may
read or write. For instance, given a branch instruction that matters
to reach an event, if its outcome depends on a value written by
an external function, then the corresponding call must be included
in the slice. For speed, we also summarize several popular Libc
functions already linked in by KLEE, such as memcpy. These func-
tions are frequently called, and their execution may contain a large
number of instructions, so iterating over all these instructions for
slicing may take long. In total, we summarize 22 Libc or external
functions.

Second, to track dependencies between instructions, our slicing
algorithm frequently queries alias analysis. The particular one we
used is bddbddb [6, 58, 59]. For better alias results, bddbddb needs
to know custom memory allocators, deallocators, and copiers such
as memcpy. In total, we summarize 43 such functions.

7.4 Limiting Context Sensitivity

For precision, bddbddb’s alias analysis distinguishes alias results
for different call graph paths, or contexts. In programming language
terms, this analysis is context-sensitive. To gain context sensitivity,
bddbddb conceptually creates a unique function clone for each
possible context to the function. To efficiently store these function
clones and contexts, bddbddb uses an advanced data structure
called the binary decision diagrams [46], which often store large
data sets compactly. Despite so, this cloning may explode for large
programs with complex call graphs, such as git. Moreover, when
there are many contexts, computing the alias results also takes long.

We worked around context explosion using two techniques.
First, we modified bddbddb to limit the maximum number of

function clones. If this limit is ever reached, our modified bddbddb
stops creating function clones. Although in theory this approach
may cause some precision loss because results of some contexts
are merged together, in practice the maximum number of function
clones is already large enough to yield precise results. We used this
workaround only for git. Second, we replaced a few indirect calls
in the evaluated programs with direct calls. If a function pointer
has many call sites and may point to several functions, it may
explode the contexts because each call site and possible function
target combination leads to a function clone. In many cases, though,
the function pointer has only one target, but bddbddb cannot infer
this fact. We thus modified 23 lines in shadow, 10 in tar, and 17
in git to replace frequent indirect calls with direct calls.

7.5 Caching Analysis Results

For speed, WOODPECKER caches static analysis results exten-
sively. For instance, it caches alias results. It also caches the results
from a checker’s MayBeEvent because whether a static instruction
is an event does not change during symbolic execution.

8. Evaluation

We evaluated WOODPECKER on total 136 widely used systems
programs, including 96 programs in GNU coreutils version
8.12, a basic file, shell, and text manipulation utilities suite [20];
30 programs in shadow 4.1.5, a user and group management util-
ities suite [54]; tar 1.26, an archival program [56]; sed 4.2.1,
a text stream transformation program [31]; CVS 1.11.23, a ver-
sion control program [24]; and seven programs from git 1.7.9.4,
another version control program [30]. We chose the latest sta-
ble version of each program at the time of experiment. We ex-
cluded printf, md5sum, and date from coreutils and sulogin,
chfn, and gpasswd from shadow because they caused aborts either
in WOODPECKER, KLEE, or STP (KLEE’s underlying constraint
solver [2, 28]). For example, a floating point constraint generated
by printf likely caused STP to crash.

We compiled all programs to LLVM bitcode using LLVM gcc-
2.7 with -02 or -03. We ran all experiments on four 2.8 Ghz dual-
socket hexa-core Intel Xeon X5660 machines with 64 GB memory
and Linux 2.6.38. To fully use the available cores, we ran roughly
ten experiments concurrently on each machine. We observed lit-
tle interference between concurrent experiments because symbolic
execution is mostly CPU bound.

In addition to measuring WOODPECKER'’s verification results,
we also compared it with KLEE, a state of the art symbolic execu-
tion system. For both WOODPECKER and KLEE experiments, we
used the same settings as the ones used by the KLEE authors [12]
whenever applicable. Some settings were removed from the open
source version of KLEE, so we reimplemented them with the help
from a KLEE author [10]. We adjusted some settings because some
programs we evaluated are different, sometimes much larger.

Specifically, we used up to three two-byte symbolic command
line arguments for coreutils and shadow, and four eight-byte ar-
guments for other programs. We added a concrete username argu-
ment for most programs in shadow to match their expectations. We
used five 200-byte symbolic files for tar because it requires large
file headers, and two eight-byte files for all the other programs.
We also marked the configuration files symbolic for CVS and git
because these version control programs run different paths based
on different configurations. Since exploring all paths may take for-
ever, we bounded each experiment for one hour for coreutils
and shadow, three hours for git, and twelve hours for all other
programs. In many experiments, WOODPECKER verified all paths
within minutes; see §8.1. Since the results may depend on search
heuristics, we chose the same heuristics that yielded the best results
for KLEE [12]. (We also experimented with depth-first search but it

Checkers Lines of Code Programs Checked Programs Verified Relevant Paths Verified Redundant Paths
WOODPECKER ~ KLEE WOODPECKER KLEE WOODPECKER KLEE
Assertion 102 57 13 3 195,268 45,763 69,795 195,178
Memory leak 399 103 32 7 1,024,676 176,475 451,836 1,657,721
Open-close 211 72 19 4 528,676 82,883 203,407 512,439
File access 344 120 40 12 1,694,393 377,181 496,651 2,141,111
Data loss 533 35 7 7 132,136 89,779 22,996 117,225
Total 1,589 387 111 33 3,575,149 772,081 1,244,685 4,623,674

Table 1: Summary of verification results.

caused KLEE to cover much fewer statements. Thus, we exclude
depth-first search results from this section.)
The following subsections focus on

§8.1: Can WOODPECKER effectively verify many or all relevant
paths over bounded input? Can it outperform KLEE signifi-
cantly in this regard?

§8.2: Can WOODPECKER effectively detect rule violations? WOOD-
PECKER can also be used as an error detector in addition to a
verifier.

§8.3: Is it costly to compute what branches to prune? This cost
must be smaller than the time it takes to actually explore the
branches.

8.1 Verification Results

Table 1 summarizes the verification results. The number of pro-
grams checked by each checker is smaller than the total num-
ber of programs evaluated because we excluded trivially verifiable
programs, i.e., those with no events regarding a rule. The table
shows the number of programs verified over bounded input for both
WOODPECKER and KLEE. WOODPECKER verifies 111 out of 387
(28.7%) program and rule combinations over bounded input. KLEE
verifies only 33 (8.5%) combinations. WOODPECKER’s verifica-
tion experiments often finished quickly, within tens of minutes (not
shown in the table).

For the other 276 programs, Table 1 shows the number of rele-
vant paths verified. Overall, WOODPECKER verifies 4.6 times as
many relevant paths as KLEE. This speedup is unsurprising be-
cause 86.8% of the paths KLEE explores are redundant (see de-
tailed results below). The table also shows the number of redun-
dant paths pruned by WOODPECKER or explored by KLEE. Al-
though WOODPECKER prunes redundant paths, they are already
forked, which means that WOODPECKER has already queried the
constraint solver to determine whether the corresponding branches
are feasible. Since constraint solving is the most costly for WOOD-
PECKER (and likely any symbolic execution system), we count the
number of pruned paths as wasted work done by WOODPECKER.
The real benefit of pruning is that it prevents future forks from
the pruned paths. As shown in the table, KLEE explores 3.7 times
as many redundant paths as WOODPECKER prunes. Note that it
hugely favors KLEE to compare the amount of wasted work by
the number of redundant paths because KLEE fully explores them
whereas WOODPECKER does not.

We observed that, with a longer time limit, WOODPECKER
verified much more paths than KLEE’s. The reason is that initially

Time Programs Verified Paths Verified

Limit A K W- K w K W/
1 hour 73 7 67 2,776,499 532,222 52
2hours | 104 31 73 6,933,817 662,558 10.5
4hours | 112 39 73 | 14,437,294 847,621 17.0

Table 2: With a longer time limit, WOODPECKER verified much more paths
than KLEE. W represents WOODPECKER’s results and K KLEE’s, both
obtained from coreutils.

KLEE may hit some relevant paths by chance, but over time it gets
stuck exploring redundant paths nearby. Table 2 shows the results
with the time limit set to one, two, and four hours for coreutils.
With a one-hour limit, WOODPECKER verified 5.2 times as many
paths as KLEE. With a four-hour limit, WOODPECKER verified
17.0 times as many. This big increase is unsurprising because
WOODPECKER exponentially speeds up symbolic execution. We
observed similar results (not shown) with a larger input bound.

To evaluate how directed WOODPECKER is, we define search
efficiency as the percentage of relevant paths explored over all
paths ever forked. We use this metric only on the programs with
a subset of paths verified because WOODPECKER finished quickly
on the verified programs. From the data in Table 1, we can compute
that WOODPECKER’s average search efficiency is 64.9% whereas
KLEE’s is 29.2%, a 35.7% difference.

This difference is even larger on each individual program. Fig-
ure 6—10 show the search efficiency for each program and checker.
The top subfigure show results for WOODPECKER, and the bottom
KLEE. The solid or hatched portion of each bar shows the search
efficiency, with solid meaning all relevant paths verified. The white
portion shows roughly the amount of wasted work. The more solid
bars in a figure, the more programs are verified. The larger the solid
or hatched portion and the smaller the white portion in a bar, the
less work is wasted. We identified whether a path KLEE explored
was relevant or redundant by running WOODPECKER’s search al-
gorithm together with KLEE without actually pruning paths. Over
all programs and checkers, WOODPECKER’s median search effi-
ciency is 62.9% whereas KLEE’s is 16.7%, a 46.2% difference.

8.2 Rule Violations Detected

Table 3 shows the rule violations detected, broken down by check-
ers and programs. WOODPECKER detected many memory leaks
and unclosed file pointers in the checked programs. A common pat-
tern is that these programs allocate memory or open files, but exit
without freeing these resources if some failure occurs. This pattern
is considered bad programming practice at least. Worse, they may
also have security implications because previous work [15, 16] has
shown that leaked memory or file pointers may needlessly extend
sensitive data lifetime, posing privacy risks. Some of the detected
errors are already fixed in the latest version of the program, illus-
trating developers’ concerns over these errors. (To avoid inflating
our bug counts, we did not include these fixed errors in the table.)

Programs mem leak open-close data loss
coreutils 40 13 0
shadow 11 5 1
tar 4 0 0
sed 3 0 0
CvVs 3 1 2
git 19 4 7
Total 80 23 10

Table 3: Number of rule violations detected. The assertion and file access

checkers are not listed because they detected no violations.

WOODPECKER (%)

< 80 |
L% 60 .
| 40 1
L 5]]
| 7 : :
x 20 7 ‘ ;i
0 44 /ij—/ g
—
3]
¥
= 2 2 - 2
o —] o o
o @ [sRe]
= [7) O 9 _ o a ko] o [0} Qo he}
E = Lag8oan = - € = ® ; c j=e] T o
5_6 S.8sg5aga S Suv oE858c8 ZxtEsoo = So gt 5 58’ x 3 8
2z20 _ E£E5 28533 w0 520358 00E£ES50=C RO Seal ¥ o 2 o
CaLs5L250080500022ceEx 28 00 g ECLOS8 L= L0528 25300 LB 5250882 55
> OD0DEECSDCcDlScED o CEDDCOO=E 000l n ol sl 00nSfLo8canatES0T 80

Figure 6: Search efficiency with the assertion checker. The top subfigure show results for WOODPECKER, and the bottom KLEE. The solid or hatched portion
of each bar shows the search efficiency, with solid meaning all relevant paths verified. The white portion shows the amount of wasted work. The more solid
bars in a figure, the more programs are verified. The larger the solid or hatched portion and the smaller the white portion in a bar, the less work is wasted.
WOODPECKER’s median search efficiency of the hatched bars is 56.8%, whereas KLEE’s is only 16.2%.

|

2 100
o
u:cJ 80
8 60
o 40
a
o) 20
e o
= 100
— 80
*
~ 60
W 40
<
% At
0 775 ;
g
% §E"’ Bc §=‘5 g o
S8 885c,83 She SPE ES
O x =1 bot=
£ 5500 500 S5 CEBE S 58055 o

VIpW.
readlink

5
EEEE, 2

o » paQ EQD 2
¥ ¥ QOE SEQ =
N Borlas BSE 5
= PON SO — s s}
c=clomay ©fo G
cocccc28y ceao. =
BOBGBG GBS AR oS =)

Figure 7: Search efficiency with the memory leak checker. WOODPECKER’s median search efficiency of the hatched bars is 61.3%, whereas KLEE’s is 12.7%.

There are two more-serious open-close errors detected in git
and CVS. The git mailsplit command iterates through a list
of mbox files and splits each into individual email files. Its
split_mbox function opens a mbox file, but does not close the
file if it reaches the end of the file before a newline. Thus, file
descriptors may be exhausted with a long list of such files. The
CVS function parse_config returns without closing a configura-
tion file if there is any syntax error. This function is also called for
each authentication or Root request in CVS server mode, potentially
exhausting file descriptors.

WOODPECKER also detected ten serious data loss errors, seven
in git, two in CVS, and one in shadow. These programs often deal
with crucial files such as source code or /etc configurations, so
they are extremely careful with file writes. They do not update files
in place because a crash may leave a partially updated file. Instead,
they create temporary files, and then sync and atomically rename
them. Despite so, WOODPECKER still finds serious errors in them.

The seven git errors may all corrupt source repositories. They
share the same pattern. To commit changes, users first run a series
of “git add” to add the new or modified files to an index, and
then commit the index. This index is stored in file .git/index.
When “git add” is called, git carefully creates a temporary file
.git/index.lock to store the new index, and then renames it
to .git/index. Unfortunately, git does not call £sync on the
temporary file, so a crash can still corrupt the index, which further
corrupts the repository if committed. This error pattern has been
confirmed by the git developers. The two CVS errors are similar.

The shadow data loss error WOODPECKER detected may
cause new user accounts to have wrong settings such as wrong
home directory locations, account expiration dates, and maxi-
mum numbers of inactive days. The defaults of these settings are
stored in /etc/default/useradd, which useradd in shadow
updates. However, when updating this file, useradd first renames
/etc/default/useradd to a backup file, before renaming the

A

W7

T

Jos
e
s)se
ppeiesn
SAO
1P

h
ppe-1l

Muid

pmssed

Bopse)

np

yomd

Hos:
J|dsjrew-}

ysyo
wns9Gzeys
wnsy8ceys
wnsg | Geys
no

abeyo
puedxaun
wnsyzzeys

noauin
u

uiof

paiys

biun

awiidn
slasnmau
auojo-}I6
yodib

po
swawdnoib
puedxa
uids

do

189
Jopdnolb
|opiasn
wns
mdia
pmssedbyo
ajeouns}
pinobo|
p9ose
Biyuoo-y
o8}
$10|004Ip
diBmau
nys
ngpis

o Ue
nvm_mw_u

80
60
40
20
STolo e ——
80
60
40
20
0 b=

Figure 8: Search efficiency with the open-close checker. WOODPECKER’s median search efficiency of the hatched bars is 59.2%, whereas KLEE’s is 15.3%.
100 v

(%) 43%103dA00OM

)
91-01[0f E»w‘:m
oo el

0
g
Uw::
B

UEMW@Q

$10|02JI]
R

jas
powdsn

usio

e

bmau

TR
siasn
SI1asNMau

1ni
ofipjw
POl

Figure 9: Search efficiency with the file access checker. WOODPECKER’s median search efficiency of the hatched bars is 65.4%, whereas KLEE’s is 20.9%.

~Sly— 1~ O <t
RN =z ©
—“[cowno <
v

=

=

<

~l 0 N O
SRS N-R]
—o =< O <
on

=

o=

=]

=

=

=W

v |3

Eln

c|L B
=3 O
o o

ClH @8 84T W
0o d 0>
AjlO P 0O

Ny

11.71

8.99
potentially causing security issues. This error

5

git

N
5
=
2
-2
=
3
Q
b
~
v
-
=
S
S
2
~
v
-
S
=
S
2
~
v
=
S
-2
3
=<
3
=
<<
<f
Q
)
<
T

use wrong defaults

o Q 9 9 9
S ©® © ¥

(%) Hanoadaoom

requires much precision. For

Detecting these data loss errors
instance, one of the git errors involves file operations spanning

five levels of call stack with hundreds of function calls between
them. Static analysis would likely get lost facing this complexity.

has been confirmed and fixed by the shadow developers.

pmssedydo
pmssed
pmssedbyo
mdia

e}
ppednoif
pouwasn
ppesasn
SAD
powdnoib
abeyo
Yomd
swawdnoib
Bopse|
Bojirey

ns
siasnmau
odib

pas

ysyo
dibmau
wdsjrew-y6

Jo1-0ll0quiAs-116

auo|o-1i6
ppe-16

p!
pinoboj
uibo|
sdnoib
|epiasn
|1opdnoif
Andxa

it needs to slice out irrele-
it also needs to compute

vant instructions from a path. In addition

>

>

alias results needed by path slicing. Both pruning and alias analysis

8.3 Overhead of Pruning
When WOODPECKER prunes branches

tween the two rename operations, the /etc/default/useradd

Figure 10: Search efficiency with the data loss checker. WOODPECKER’S
temporary file to /etc/default/useradd. If a crash occurs be-
link would be lost. When new users are created, useradd would

median search efficiency of the hatched bars is 89.4%; KLEE’s is 71.1%.

may take time. If the combined overhead is larger than the time it
takes to actually explore the pruned paths, pruning would not be
worthwhile. Table 4 shows the relative overhead of pruning and
analysis analysis. Both analyses have low overhead for simple pro-
grams, and moderately increased overhead for complex programs
such as git. Note that bddbddb saves alias results on disk, so we
can run it only once for a program and reuse the results over all
checking sessions. We plan to implement this optimization in fu-
ture work.

9. Related Work

This section compares WOODPECKER to automated checking or
verification techniques.

Static analysis. Several static analysis systems can also check
rules. Meta Compilation [26, 27, 36, 61] provides a simple state
machine language with pattern matching support for describing
rules. It checks the rules on (potentially infeasible) program paths.
It aggressively traded off soundness for low false positive rates, so
while it can effectively detect thousands of errors [14], it cannot
be used for verification. ESP is a static verifier [25] that also
abstracts rules into state machines and verifies them on program
paths. Although it has been applied to verify that the gcc from
SPEC95 benchmark does not print to unopened files, this version of
gcc uses only simple boolean flags to control whether to open files,
and opens only up to a statically determined number (15) of files in
a compilation pass [25]. Without inferring precise runtime effects
of code, ESP is likely to emit false positives on many programs
such as the simple one in Figure 1.

Symbolic execution. Symbolic execution, or more precisely the
recent development of this technique characterized by the mixture
of concrete and symbolic executions [11, 12,33, 42, 45, 48, 49, 53],
has gained much traction. Researchers have used this technique to
detect serious errors [12, 13, 64], generate high-coverage tests [12],
reuse thread schedules on different inputs [22, 23], (re)produce a
buggy execution [4, 44, 66], verify paths or programs over bounded
input [52], etc. WOODPECKER is complementary to much of the
previous work. Its rule-directed approach may benefit many of
these systems and, as discussed earlier, its carefully designed search
algorithm can leverage the powerful search heuristics in existing
systems. Below we discuss five related systems.

The S2E system [13] symbolically executes binary programs
by dynamically translating x86 assembly to LLVM bitcode us-
ing QEMU [50]. It allows users to specify what code to symbol-
ically explore paths for, and treats other code as the “environment”
that runs concretely. It categorizes a set of heuristics with variable
soundness and performance to handle the transitions between sym-
bolic and concrete executions. It can also use a cluster to provide
linear speedup of symbolic execution [9]. Recently, a state merging
technique [43] has been proposed within S2E. This technique re-
duces the number of paths to explore by merging several into one.
Doing so may actually slow down symbolic execution, so this tech-
nique employs heuristics to estimate the cost and benefit of state
merging. S2E’s goals are very different from WOODPECKER'S.
S2E is not designed to check rules. Nor does it automatically direct
symbolic execution given a rule implemented using its interface.
Its heuristics may remove paths unsoundly, inappropriate for ver-
ification. Its state merging technique is purely dynamic, whereas
WOODPECKER leverages static analysis to prune paths before they
are executed. Nonetheless, many ideas in WOODPECKER are or-
thogonal to those in S2E. For instance, WOODPECKER may use
S2E to merge paths and provide linear speedup of symbolic execu-
tion on a cluster; S2E may use WOODPECKER to guide symbolic
execution toward the rules users want to check and soundly prune
irrelevant paths.

To reproduce a buggy execution, two systems attempt to com-
pute a feasible program path reaching a given line of code using
symbolic execution [44, 66]. They do so using a combination of
symbolic execution and static analysis. DyTa [29] appears to share
the same goal except it starts from statically detected errors. DyTa
was briefly described in a 3-page paper [29] in the demonstration
track of ICSE ’11, and we could not find a full paper describ-
ing its implementation. Another system focuses symbolic execu-
tion on the patch between two versions of a program [47]. Again,
these systems do not check rules. Nor do they attempt to explore
all paths relevant to the rules for verification. At a technical level,
these systems separate their static analysis and symbolic execution:
they statically analyze a program’s data- and control-dependencies
to compute a potentially feasible path, then use symbolic execu-
tion to validate whether the path is feasible. This clear separation
is different from how WOODPECKER combines static analysis and
symbolic execution: WOODPECKER uses symbolic execution to ex-
plore paths and, for each explored path, it applies static analysis
on the off-the-path branches to compute whether they are relevant.
Previous work has shown that the information provided by a path
significantly improves static analysis precision [40], a key advan-
tage of path slicing over program slicing.

Bouncer [21] computes filters to block malicious input by com-
bining static analysis and symbolic execution. Bouncer can be
viewed as an application of path slicing [40], with precision im-
provements to the original path slicing algorithm in [40]. WOOD-
PECKER applies path slicing for a different goal: speeding up
symbolic exploration of paths. One path slicing improvement in
WOODPECKER is that WOODPECKER slices toward an event se-
quence, instead of a single event.

Program Slicing. Program slicing [57] can remove irrelevant static
statements from a program. It can aid debugging and optimization.
Dynamic program slicing [3, 67] produces more accurate slicing
results than static program slicing, but may unsoundly remove
relevant branches. Path slicing [40] soundly removes irrelevant
statements from a program path, and is more precise than program
slicing. WOODPECKER greatly benefits from path slicing and can
be viewed as an application of path slicing to speeding up symbolic
execution.

Other techniques. Testing is lightweight and can address some
limitations of static analysis, but previous work shows that man-
ual or random testing tends to have low coverage [12]. As
Jhala and Majumdar [40] pointed out in their path slicing paper,
counterexample-guided program analyses [7, 37? ?] can leverage
path slicing to compute shorter counterexamples and better refine
their abstractions. These analyses are purely static, unlike the sym-
bolic execution WOODPECKER targets. Recent work on explicit-
state software model checking [32, 34, 41, 60, 62, 63, 65] has
yielded many serious errors in real systems. This technique excels
at exploring nondeterministic choices in the environment such as
whether a disk read fails, thus it is complementary to symbolic
execution that explores feasible program paths over unconstrained
input, such as the input data read reads. Some of these systems can
also soundly reduce the number of executions to explore. However,
their reduction is purely dynamic and they do not leverage static
analysis to guide the exploration.

10. Conclusion

We have presented WOODPECKER, a symbolic execution system
designed to verify systems rules over bounded input. Leveraging
the insight that only a small portion of paths are relevant to a
checked rule, WOODPECKER soundly removes redundant paths
and drives symbolic execution to effectively verify rules. It comes
with a set of builtin checkers for common rules, and an interface

for users to check custom rules. Given a rule, WOODPECKER uses
a sound, checker- and heuristic-agnostic search algorithm to direct
symbolic execution toward the paths relevant to the rule. Evaluation
on 136 widely used programs totaling 545K lines of code shows
that WOODPECKER can effectively verify rules on programs and
paths over bounded input and detect serious errors.

Acknowledgments

Roxana Geambasu, Ying Xu, and the anonymous reviewers pro-
vided many helpful comments, which have substantially improved
the content and presentation of this paper. This work was sup-
ported in part by AFRL FA8650-11-C-7190, FA8650-10-C-7024,
and FA8750-10-2-0253; ONR N00014-12-1-0166; NSF CCF-
1162021, CNS-1117805, CNS-1054906 (CAREER award), and
CNS-0905246; an AFOSR YIP award; and a Sloan Research Fel-
lowship.

References

[1] The LLVM compiler framework. http://1llvm.org.

[2] STP Constraint Solver. https://sites.google.com/site/
stpfastprover/.

[3] H. Agrawal and J. R. Horgan. Dynamic program slicing. In Proceed-
ings of the ACM SIGPLAN ’90 Conference on Programming Language
Design and Implementation (PLDI "90), pages 246-256, 1990.

[4] G. Altekar and I. Stoica. ODR: output-deterministic replay for mul-
ticore debugging. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP '09), pages 193-206, Oct. 2009.

[5]1 A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov. Evaluating the
“small scope hypothesis”. Technical report, MIT CSAIL, 2002.

[6] D. Avots, M. Dalton, V. B. Livshits, and M. S. Lam. Improving
software security with a C pointer analysis. In Proceedings of the
27th International Conference on Software Engineering (ICSE '05),
pages 332-341, May 2005.

[7] T. Ball and S. K. Rajamani. Automatically validating temporal safety
properties of interfaces. In Proceedings of the Eighth International
SPIN Workshop on Model Checking of Software (SPIN ’01), pages
103-122, May 2001.

[8] BBC. The life of birds documentary.

[9] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In Proceedings of
the 6th ACM European Conference on Computer Systems (EUROSYS
’11), pages 183-198, 2011.

[10] C. Cadar. Private email communication, Mar. 2012.

[11] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: automatically generating inputs of death. In Proceedings of
the 13th ACM conference on Computer and communications security
(CCS ’06), pages 322-335, Oct.—Nov. 2006.

[12] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the Eighth Symposium on Operating Systems Design
and Implementation (OSDI "08), pages 209-224, Dec. 2008.

[13] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: a platform for
in-vivo multi-path analysis of software systems. In Sixteenth Inter-
national Conference on Architecture Support for Programming Lan-
guages and Operating Systems (ASPLOS ’11), pages 265-278, 2011.

[14] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical

study of operating systems errors. In Proceedings of the 18th ACM

Symposium on Operating Systems Principles (SOSP '01), pages 73—

88, Nov. 2001.

J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum.

Understanding Data Lifetime via Whole System Simulation. In Pro-

ceedings of the 13th USENIX Security Symposium, 2004.

[16] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding Your
Garbage: Reducing Data Lifetime Through Secure Deallocation. In
Proceedings of the 14th USENIX Security Symposium, 2005.

[15

[17] E. Clarke and D. Kroening. Hardware verification using ANSI-C
programs as a reference. In Proceedings of ASP-DAC 2003, pages
308-311, January 2003.

[18] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezzé. Using sym-
bolic execution for verifying safety-critical systems. In Proceedings
of the Eighth European Software Engineering Conference held jointly
with the Ninth ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/FSE-9), pages 142-151, 2001.

[19] P. Collingbourne, C. Cadar, and P. H. Kelly. Symbolic crosschecking
of floating-point and SIMD code. In Proceedings of the 6th ACM
European Conference on Computer Systems (EUROSYS ’11), pages
315-328, Apr. 2011.

[20] Coreutils - GNU core utilities.
software/coreutils.

[21] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado. Bouncer:
securing software by blocking bad input. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles (SOSP ’07), pages
117-130, Oct. 2007.

[22] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable deterministic multi-
threading through schedule memoization. In Proceedings of the Ninth
Symposium on Operating Systems Design and Implementation (OSDI
’10), Oct. 2010.

[23] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient determinis-
tic multithreading through schedule relaxation. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles (SOSP ’11),
Oct. 2011.

[24] CVS. http://www.cvshome.org.

http://www.gnu.org/

[25] M. Das, S. Lerner, and M. Seigle. Esp: path-sensitive program ver-
ification in polynomial time. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implemen-
tation (PLDI ’02), pages 57—68, June 2002.

[26] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In
Proceedings of the Fourth Symposium on Operating Systems Design
and Implementation (OSDI "00), Sept. 2000.

[27] D. Engler, D. Yu Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems
code. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01), 2001.

[28] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors
and arrays. In Proceedings of the 19th International Conference On
Computer Aided Verification (CAV’ 07), pages 519-531, 2007.

[29] X. Ge, K. Taneja, T. Xie, and N. Tillmann. Dyta: dynamic symbolic
execution guided with static verification results. In Proceedings of the
33rd International Conference on Software Engineering, ICSE 11,
pages 992-994, 2011.

[30] Git. http://git-scm.com/.
[31] GNU sed. http://www.gnu.org/software/sed.

[32] P. Godefroid. Model Checking for Programming Languages using
VeriSoft. In Proceedings of the 24th Annual Symposium on Principles
of Programming Languages (POPL ’97), pages 174—186, Jan. 1997.

[33] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated ran-
dom testing. In Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementation (PLDI ’05),
pages 213-223, June 2005.

[34] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang. Practical soft-
ware model checking via dynamic interface reduction. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles (SOSP
’11), Oct. 2011.

[35] B. Hackett and A. Aiken. How is aliasing used in systems software? In
Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (SIGSOFT ’06/FSE-14), pages
69-80, Nov. 2006.

[36] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for
building system-specific, static analyses. In Proceedings of the ACM

http://llvm.org
https://sites.google.com/site/stpfastprover/
https://sites.google.com/site/stpfastprover/
http://www.gnu.org/software/coreutils
http://www.gnu.org/software/coreutils
http://www.cvshome.org
http://git-scm.com/
http://www.gnu.org/software/sed

SIGPLAN 2002 Conference on Programming Language Design and
Implementation (PLDI "02), 2002.

[37] T. A. Henzinger, R. Jhala, R. Majumdar, , and G. Sutre. Lazy abstrac-
tion. In Proceedings of the 29th Annual Symposium on Principles of
Programming Languages, pages pp. 58-70, 2002.

[38

D. Jackson and C. A. Damon. Elements of style: Analyzing a software
design feature with a counterexample detector. IEEE Trans. Softw.
Eng., 22(7):484-495, July 1996.

[39] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa. Tracer: A
symbolic execution tool for verification. In Proceedings of the 24th
international conference on Computer aided verification, CAV’12,
July 2012.

R. Jhala and R. Majumdar. Path slicing. In Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and
Implementation (PLDI "05), pages 38—47, 2005.

[41] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, death,
and the critical transition: Finding liveness bugs in systems code. In
Proceedings of the Fourth Symposium on Networked Systems Design
and Implementation (NSDI ’07), pages 243-256, April 2007.

[42] J. C. King. A new approach to program testing. In Proceedings of the
international conference on Reliable software, pages 228-233, 1975.

[43] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state merg-
ing in symbolic execution. In Proceedings of the ACM SIGPLAN 2012
Conference on Programming Language Design and Implementation
(PLDI ’12), pages 193-204, 2012.

[44] K.-K. Ma, Y. P. Khoo, J. S. Foster, and M. Hicks. Directed symbolic
execution. In The 18th International Static Analysis Symposium, SAS
’11, Sept. 2011.

[45] R. Majumdar and R.-G. Xu. Directed test generation using symbolic
grammars. In Proceedings of the Seventh European Software En-
gineering Conference held jointly with the Seventh ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(ESEC/FSE-7), pages 553-556, 2007.

[46] J.S. Metos and J. V. Oldfield. Binary decision diagrams: From abstract
representations to physical implementations. In DAC ’83: Proceedings
of the 20th conference on Design automation, pages 567-570, 1983.

[47] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental
symbolic execution. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation,
PLDI ’11, pages 504-515, 2011.

[48] C.S. Pasireanu and N. Rungta. Symbolic pathfinder: symbolic execu-
tion of java bytecode. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, ASE *10, pages 179—
180, 2010.

[49] C. S. Pasdreanu, N. Rungta, and W. Visser. Symbolic execution
with mixed concrete-symbolic solving. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, ISSTA
11, pages 34—44, 2011.

[50] QEMU. http://www.gemu.org.

[51] D. P. Quigley, J. Sipek, C. P. Wright, and E. Zadok. UnionFS: User-
and Community-oriented Development of a Unification Filesystem. In
Proceedings of the 2006 Linux Symposium, volume 2, pages 349-362,
Ottawa, Canada, July 2006.

[40

[52] D. A. Ramos and D. R. Engler. Practical, low-effort equivalence
verification of real code. In Proceedings of the 23rd international
conference on Computer aided verification, CAV’11, pages 669—-685,
2011.

[53] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing en-
gine for C. In Proceedings of the 10th European Software Engineering
Conference held jointly with the 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE-13),
pages 263-272, Sept. 2005.

[54] shadow. http://pkg-shadow.alioth.debian.org/.

[55] S. Smith. Eat my data: How everybody gets file io wrong. In OSCON
2008, July 2008.

[56] tar. http://www.gnu.org/software/tar/.
[57] M. Weiser. Program slicing. In Fifth International Conference on
Software Engineering, pages 439-449, 1981.

[58] J. Whaley. bddbddb Project. http://bddbddb.sourceforge.
net.

[59] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation (PLDI *04), pages 131-144, June 2004.

[60] M. Yabandeh, N. Knezevic, D. Kostic, and V. Kuncak. CrystalBall:
Predicting and preventing inconsistencies in deployed distributed sys-
tems. In Proceedings of the Sixth Symposium on Networked Systems
Design and Implementation (NSDI *09), Apr. 2009.

[61] J. Yang, T. Kremenek, Y. Xie, and D. Engler. MECA: an extensible,
expressive system and language for statically checking security prop-
erties. In Proceedings of the 10th ACM conference on Computer and
communications security (CCS "03), pages 321-334, Oct. 2003.

[62] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model
checking to find serious file system errors. In Proceedings of the Sixth
Symposium on Operating Systems Design and Implementation (OSDI
’04), pages 273-288, Dec. 2004.

[63] J. Yang, C. Sar, and D. Engler. Explode: a lightweight, general
system for finding serious storage system errors. In Proceedings of the
Seventh Symposium on Operating Systems Design and Implementation
(OSDI "06), pages 131-146, Nov. 2006.

[64] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Automatically
generating malicious disks using symbolic execution. In Proceedings
of the 2006 IEEE Symposium on Security and Privacy (SP "06), pages
243-257, May 2006.

[65] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou. MODIST: Transparent model checking of un-
modified distributed systems. In Proceedings of the Sixth Symposium
on Networked Systems Design and Implementation (NSDI ’09), pages
213-228, Apr. 20009.

[66] C. Zamfir and G. Candea. Execution synthesis: a technique for auto-
mated software debugging. In Proceedings of the 5th ACM European
Conference on Computer Systems (EUROSYS ’10), pages 321-334,
Apr. 2010.

[67] X. Zhang and R. Gupta. Cost effective dynamic program slicing. In
Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation (PLDI *04), pages 94-106,
2004.

http://www.qemu.org
http://pkg-shadow.alioth.debian.org/
http://www.gnu.org/software/tar/
http://bddbddb.sourceforge.net
http://bddbddb.sourceforge.net

	1 Introduction
	2 An Example
	2.1 Difficulties in Existing Approaches
	2.2 Bounded Verification with Woodpecker

	3 Woodpecker Overview
	4 Checker Interface
	5 Search Algorithm
	6 Checkers
	7 Implementation
	7.1 Modeling the File System
	7.2 Modeling mmap
	7.3 Summarizing Functions
	7.4 Limiting Context Sensitivity
	7.5 Caching Analysis Results

	8 Evaluation
	8.1 Verification Results
	8.2 Rule Violations Detected
	8.3 Overhead of Pruning

	9 Related Work
	10 Conclusion

