
Determinism Is Overrated:
What Really Makes Multithreaded Programs Hard to Get Right

and What Can Be Done about It?
Junfeng Yang, Heming Cui, Jingyue Wu

Columbia University

Abstract
Our accelerating computational demand and the rise of
multicore hardware have made parallel programs, espe-
cially shared-memory multithreaded programs, increas-
ingly pervasive and critical. Yet, these programs remain
extremely difficult to write, test, analyze, debug, and ver-
ify. Conventional wisdom has attributed these difficulties
to nondeterminism, and researchers have recently ded-
icated much effort to bringing determinism into multi-
threading. In this paper, we argue that determinism is not
as useful as commonly perceived: it is neither sufficient
nor necessary for reliability. We present our view on why
multithreaded programs are difficult to get right, describe
a promising approach we call stable multithreading to
dramatically improve reliability, and summarize our last
four years’ research on building and applying stable mul-
tithreading systems.

1 Introduction
Multithreaded programs are notoriously difficult to
write, test, analyze, debug, and verify, much harder than
the sequential versions. These programs are the most
widespread parallel programs, yet experts consider reli-
able parallelism “something of a black art” [6] and one
of the grand challenges in computing [1, 14]. Unsurpris-
ingly, widespread parallel programs are plagued with in-
sidious concurrency bugs [12], such as data races and
deadlocks. Some of the worst of these bugs have killed
people in the Therac 25 incidents and caused the 2003
Northeast blackout. Our study also reveals that these
bugs may be exploited by attackers to violate confiden-
tiality, integrity, and availability of critical systems [19].

In recent years, two technology trends have made the
challenge of reliable multithreading more urgent. The
first is the rise of multicore hardware. The speed of a
single processor core is limited by fundamental physical
constraints, forcing processors into multicore designs.
Thus, developers must resort to parallel code for best per-
formance on multicore processors. The second is our ac-
celerating computational demand. Scientific computing,
video and image processing, financial simulation, “big
data” analytics, web search, and online social network-
ing are all massive computations and often employ mul-
tithreading for performance.

Unlike sequential programs, repeated executions of the

same multithreaded program on the same input may yield
different (e.g., correct vs. buggy) behaviors, depending
on how the threads interleave. Conventional wisdom has
long blamed this nondeterminism for the challenges in
reliable multithreading [10]: threads are nondeterminis-
tic by default, and it is the (tricky) job of developers to
account for this nondeterminism. Nondeterminism has
direct implications on reliability. For instance, it makes
testing less effective: a program may run correctly on an
input in the testing lab because the interleavings tested
happen to be correct, but executions on the same exact
input may still fail in the field when the program hits a
buggy, untested interleaving.

To eliminate this nondeterminism, several groups of
researchers including us have dedicated much effort
to building deterministic multithreading (DMT) sys-
tems [2–5, 9, 11, 15]. These systems force a multi-
threaded program to always execute the same thread in-
terleaving, or schedule, on the same input, thus always
resulting in the same behavior. By mapping each input
to only one schedule, DMT brings determinism, a key
property of sequential computing, into multithreading.

However, we believe nondeterminism is responsible
for only a small piece of the puzzle. We argue that de-
terminism, the cure to nondeterminism, is not as useful
as commonly perceived: it is neither sufficient nor neces-
sary for reliability. It is not sufficient because a perfectly
deterministic system can map each input to an arbitrary
schedule, so that small input perturbations lead to vastly
different schedules, artificially reducing the program’s
robustness and stability. It is not necessary because a
nondeterministic system with a small set of schedules for
all inputs can be made reliable by exhaustively checking
all schedules. (See §2 for more discussion.)

We believe what makes multithreading hard is rather
quantitative: multithreaded programs have too many
schedules. The number of schedules for each input is al-
ready enormous because the parallel threads may inter-
leave in many ways, depending on such factors as hard-
ware timing and operating system scheduling. Aggre-
gated over all inputs, the number is even greater. Find-
ing a few schedules that trigger concurrency errors out of
all enormously many schedules (so developers can pre-
vent them) is like finding needles in a haystack. Although
DMT reduces schedules for each input, it may map each

1



input to a different schedule, so the total set of schedules
for all inputs remains enormous.

We attacked this root cause by asking: are all the enor-
mously many schedules necessary? Our study reveals
that many real-world programs can use a small set of
schedules to efficiently process a wide range of inputs [7].
Leveraging this insight, we envision a new approach we
call stable multithreading (SMT)1 that reuses each sched-
ule on a wide range of inputs, mapping all inputs to a dra-
matically reduced set of schedules. By vastly shrinking
the haystack, it makes the needles much easier to find.
By mapping many inputs to the same schedule, it sta-
bilizes program behaviors against small input perturba-
tions. SMT and DMT are not mutually exclusive: a sys-
tem can be both deterministic and stable.

To demonstrate the feasibility of SMT, we have built
two compiler and runtime systems, TERN [7] and PERE-
GRINE [8], to address complementary challenges in im-
plementing SMT systems. To demonstrate key benefits
of SMT, we have built a program analysis framework that
leverages SMT to greatly improve the precision of static
analysis [17]. These systems are designed to be compat-
ible with existing hardware, operating systems, thread li-
braries, and programming languages to simplify adop-
tion. They are also mostly transparent to developers.

Our initial results are promising. Evaluation on a di-
verse set of widespread multithreaded programs, includ-
ing the Apache web server and the MySQL database,
show that TERN and PEREGRINE dramatically reduce
schedules. For instance, under typical setups, they reduce
the number of schedules needed by parallel compression
utility PBZip2 down to two schedules for each different
number of threads, regardless of the file contents. Their
overhead is moderate, less than 15% for most programs.
Our program analysis framework enables the construc-
tion of many program analyses with precision and cov-
erage unmatched by their counterparts. For instance, a
race detector we built found previously unknown bugs in
extensively checked code with almost no false positives.

In the rest of this paper, we present our view on why
multithreading is hard to get right (§2); describe our SMT
approach, its benefits (§3), and the three SMT systems
we built (§4 and §5); and conclude (§6).

2 Why Are Multithreaded Programs So
Hard to Get Right?

We start with preliminaries, then describe the challenges
caused by nondeterminism and by too many schedules.
We then explain why nondeterminism is a lesser cause
than too many schedules.

1Not to be confused with simultaneous multithreading.

2.1 Preliminaries: Inputs, Schedules, and Buggy
Schedules

To ease discussion, we use input to broadly refer to the
data a program reads from its execution environment, in-
cluding not only the data read from files and sockets, but
also command line arguments, return values of external
functions such as gettimeofday, and any external data
that can affect program execution. We use schedule to
broadly refer to the (partially or totally) ordered set of
communication operations in a multithreaded execution,
including synchronizations (e.g., lock and unlock op-
erations) and shared memory accesses (e.g., load and
store instructions to shared memory). Of all the sched-
ules, most run fine, but some trigger concurrency errors,
causing program crashes, incorrect computations, dead-
locked executions, and other failures. Consider the toy
program below:

// thread 1 // thread 2
lock(l); lock(l);
*p = . . .; p = NULL;
unlock(l); unlock(l);

The schedule in which thread 2 gets the lock before
thread 1 causes a dereference-of-NULL failure. Consider
another example. The toy program below has data races
on balance:

// thread 1 // thread 2
// deposit 100 // withdraw 100
t = balance + 100;

balance = balance − 100;
balance = t;

The schedule with the statements executed in the order
shown corrupts balance. We call the schedules that trig-
ger concurrency errors buggy schedules. Strictly speak-
ing, the errors are in the programs, triggered by a combi-
nation of inputs and schedules. However, typical concur-
rency errors, such as the ones appeared in previous stud-
ies [12, 19], depend much more on the schedules than the
inputs (i.e., once the schedule is fixed, the bug occurs for
all inputs allowed by the schedule). Thus, recent research
on testing multithreaded programs (e.g., [13]) is focused
on effectively testing schedules to find the buggy ones.

2.2 Challenges Caused by Nondeterminism

A multithreaded program is nondeterministic because
even with the same program and input, different sched-
ules may still lead to different behaviors. For instance,
the two toy programs in the previous subsection do not
always run into the bugs. Except for the schedules de-
scribed, the other schedules lead to correct executions.

This nondeterminism raises many challenges, espe-
cially in testing and debugging. Suppose an input can

2



Inputs Schedules

(a) Traditional.

Inputs Schedules

(b) Deterministic.

Inputs Schedules

(c) Stable (deterministic).

Inputs Schedules

(d) Stable (nondeterministic).

Figure 1: Different multithreading approaches. Red stars represent buggy schedules.

execute under n schedules. Testing n − 1 schedules is
not enough for complete reliability because the single
untested schedule may still be buggy. An execution in
the field may hit this untested schedule and fail. Debug-
ging is challenging, too. To reproduce a field failure for
diagnosis, the exact input alone is not enough. Develop-
ers must also manage to reconstruct the buggy schedule
out of n possibilities.

Figure 1a depicts the traditional multithreading ap-
proach. Conceptually, it is a many-to-many mapping,
where one input may execute under many schedules be-
cause of nondeterminism, and many inputs may execute
under one schedule because a schedule fixes the order of
the communication operations but allows the local com-
putations to operate on any input data.

2.3 Challenges Caused by Too Many Schedules

A typical multithreaded program has an enormous num-
ber of schedules. For a single input, the number of sched-
ules is asymptotically exponential in the schedule length.
For instance, given m threads each competing for a lock
k times, each order of lock acquisitions forms a sched-
ule, easily yielding (mk)!

k! ≥ (m!)k total schedules—a
number exponential in both m and k. Aggregated over
all inputs, the number of schedules is even greater.

Finding a few buggy schedules in these exponentially
many schedules raises a series of “needle-in-a-haystack”
challenges. For instance, to write correct multithreaded
programs, developers must carefully synchronize their
code to weed out the buggy schedules. As usual, humans
err when they must scrutinize many possibilities to lo-
cate corner cases. Various forms of testing tools suffer,
too. Stress testing is the common method for (indirectly)
testing schedules, but it often redundantly tests the same
schedules while missing others. Recent tools (e.g., [13])
systematically test schedules for bugs, but we seriously
lack resources to cover more than a tiny fraction of all
exponentially many schedules.

2.4 Determinism is Overrated

To address the challenges raised by nondeterminism, re-
searchers including us have dedicated much effort and
built several systems that force a multithreaded program

to always run the same schedule on the same input,
bringing determinism to multithreading. This determin-
ism does have value for reliability. For instance, one test-
ing execution now validates all future executions on the
same input. Reproducing a concurrency error now re-
quires only the input.

In contrast to this effort, little has been done to solve
the needle-in-a-haystack challenges caused by too many
schedules. We believe the community has charged non-
determinism more than its share of the guilt and over-
looked the main culprit—a rather quantitative cause that
multithreaded programs simply have too many sched-
ules. We argue that, although determinism has value for
reliability, its value is smaller than commonly perceived.
It is neither sufficient nor necessary for reliability.

Determinism 6=⇒ reliability. Determinism is a narrow
property: same input + same program = same behavior. It
has no jurisdiction if the input or program changes how-
ever slightly. Yet, we often expect a program to be robust
or stable against slight program changes or input pertur-
bations. For instance, adding a debug printf should in
principle not make the bug disappear. A single bit flip of
a file should usually not cause a compression utility to
crash. Unfortunately, determinism does not provide sta-
bility and, if naı̈vely implemented, even undermines it.

To illustrate, consider a worst-case system depicted in
Figure 1b that maps each input to an arbitrary schedule.
This mapping is perfectly deterministic, but it destabi-
lizes program behaviors on multiple inputs. A single bit
flip may force a program to discard a correct schedule
and (ad)venture into a vastly different, buggy schedule.

This instability is counterintuitive at least, and raises
new reliability challenges. For instance, testing one in-
put provides little assurance on very similar inputs, de-
spite that the differences in input do not invalidate the
tested schedule. Debugging now requires every bit of the
bug-inducing input, including not only the data a user
typed, but also environment variables, shared libraries,
etc. A different user name? Error report doesn’t include
credit card numbers? The bug may never be reproduced,
regardless of how many times developers retry, because
the schedule chosen by the deterministic system for the

3



altered input happens to be correct. Note that even a cor-
rect sequential program may show very different behav-
iors for small input changes across boundary conditions,
but these conditions are typically infrequent and the dif-
ferent behaviors are intended by developers. In contrast,
the instability introduced by the system in Figure 1b is
artificial and on all inputs.

Besides inputs, naı̈vely implemented determinism can
destabilize program behaviors on minor code changes,
so adding a debug printf causes the bug to determinis-
tically disappear. Another problem is that the number of
all possible schedules remains enormous, so the coverage
of schedule testing tools remains low.

In practice, to avoid the worst case, researchers have
to augment determinism with other techniques. To sup-
port debug printf, some propose to temporarily re-
vert to nondeterministic execution [9]. DMP [9], Core-
Det [3], and Kendo [15] change schedules only if the
inputs change low-level instructions executed. Although
better than mapping each input to an arbitrary schedule,
they still allow small input perturbations to destabilize
schedules unnecessarily when the perturbations change
the low-level instructions executed, observed in our ex-
periments [7]. Our TERN and PEREGRINE systems and
the DTHREADS system built subsequently to TERN by
others [11] combine DMT with SMT (elaborated next
section) to frequently reuse schedules on a wide range of
inputs for stability.
Reliability 6=⇒ determinism. Determinism is a binary
property: if an input maps to n > 1 schedules, executions
on this input may be nondeterministic, however small n
is. Yet, a nondeterministic system with a small set of to-
tal schedules can be made reliable easily. Consider an ex-
treme case, the nondeterministic system depicted in Fig-
ure 1d which maps all inputs to at most two schedules.
In this system, the challenges caused by nondetermin-
ism (§2.2) are easy to solve. For instance, to reproduce a
field failure given an input, developers can easily afford
to search for one out of only two schedules. To offer an
analogy, a coin toss is nondeterministic, but humans have
no problem understanding and doing it because there are
only two possible outcomes.

3 Shrinking the Haystack with Stable Mul-
tithreading

Motivated by the limitations of determinism and the
needle-in-a-haystack challenges caused by exponentially
many schedules, we investigated a central research ques-
tion: are all the exponentially many schedules necessary?
A schedule is necessary if it is the only one that can (1)
process specific inputs or (2) yield good performance un-
der specific scenarios. Removing unnecessary schedules
from the haystack would make the needles easier to find.

We investigated this question on a diverse set of pop-

ular multithreaded programs, ranging from server pro-
grams such as Apache, to desktop utilities such as par-
allel compression utility PBZip2, to parallel implemen-
tations of computation-intensive algorithms such as fast
Fourier transformation. They use diverse synchroniza-
tions such as locks, semaphores, condition variables, and
barriers. Our investigation reveals two insights:

First, for many programs, a wide range of inputs share
the same equivalent class of schedules. Thus, one sched-
ule out of the class suffices to process the entire input
range. Intuitively, an input often contains two types of
data: (1) metadata that controls the communication of the
execution, such as the number of threads to spawn; and
(2) computational data that the threads locally compute
on. A schedule requires the input metadata to have cer-
tain values, but it allows the computational data to vary.
That is, it can process any input that has the same meta-
data. For instance, consider the aforementioned PBZip2

which splits an input file among multiple threads, each
compressing one file block. The communication, i.e.,
which thread gets which file block, is independent of the
thread-local compression. Under a typical setup (e.g., no
read failures or signals), for each different number of
threads set by a user, PBZip2 can use two schedules (one
if the file can be evenly divided by the number of threads
and another otherwise) to compress any file, regardless
of the file data.

This loose coupling of inputs and schedules is not
unique to PBZip2; many other programs also exhibit
this property. Table 1 shows a sample of our findings.
The programs shown include three real-world programs,
Apache, PBZip2, and aget (a parallel file download util-
ity) and five implementations of computation-intensive
algorithms from two widely used benchmark suites,
Stanford’s SPLASH2 and Princeton’s PARSEC. (We de-
scribe how to compute the constraints that a schedule
places on the inputs in §4.)

Second, the overhead of enforcing a schedule on dif-
ferent inputs is low. Presumably, the exponentially many
schedules allow the runtime system to react to various
timing factors and select an efficient schedule. However,
results from the SMT systems we built invalidated this
presumption. With carefully designed schedule represen-
tations, our systems incurred less than 15% overhead
enforcing schedules on different inputs for most evalu-
ated programs [8]. We believe this moderate overhead is
worth the gains in reliability. In general, users most likely
prefer a slightly slower program that computes correct
results than a faster program that frequently crashes.

Leveraging these insights, we have invented stable
multithreading (SMT), a new multithreading approach
that reuses each schedule on a wide range of inputs, map-
ping all inputs to a dramatically reduced set of sched-
ules. By vastly shrinking the haystack, it addresses all

4



Program Purpose Constraints on inputs sharing schedules
Apache Web server For a group of typical HTTP GET requests, same cache status
PBZip2 Compression Same number of threads
aget File download Same number of threads, similar file sizes
barnes N-body simulation Same number of threads, same values of two configuration variables
fft Fast Fourier transform Same number of threads
lu-contig Matrix decomposition Same number of threads, similar sizes of matrices and blocks
blackscholes Option pricing Same number of threads, number of options no less than number of threads
swaptions Swaption pricing Same number of threads, number of swaptions no less than number of threads

Table 1: Constraints on inputs sharing the same equivalent class of schedules. For each program listed, one schedule out of the
class suffices to process any input satisfying the constraints shown in the third column, assuming typical setups (e.g., no system call
failures or signals). We describe how to compute such constraints in §4.

the needle-in-a-haystack challenges at once. In addition,
SMT stabilizes program behaviors on inputs that map to
the same schedule and minor program changes that do
not affect the schedules, providing robustness and stabil-
ity anticipated by developers and users.

SMT and DMT are orthogonal. SMT aims to reduce
the set of schedules for all inputs, whereas DMT aims
to reduce the schedules for each input (down to one).
A SMT system may be either deterministic or nonde-
terministic. Figure 1c and Figure 1d depict two SMT
systems: the many-to-one mapping in Figure 1c is deter-
ministic, while the many-to-few mapping in Figure 1d is
nondeterministic. A many-to-few mapping improves per-
formance because the runtime system can choose an effi-
cient schedule out of a few for an input based on current
timing factors, but it increases the efforts and resources
needed for reliability. Fortunately, the choices of sched-
ules are only a few (e.g., a small constant), so the chal-
lenges caused by nondeterminism are easy to solve.

3.1 Benefits

By vastly reducing schedules, SMT brings numerous re-
liability benefits to multithreading. We describe several:
Testing. SMT automatically increases the coverage of
schedule testing tools, with coverage defined as the ra-
tio of tested schedules over all schedules. For instance,
consider PBZip2 again which needs only two schedules
for each different number of threads under typical se-
tups. Testing 32 schedules effectively covers from 1 to
16 threads. Given that (1) PBZip2 achieves peak perfor-
mance when the number of threads is identical or close to
the number of cores and (2) a typical machine has up to
16 cores, 32 tested schedules can practically cover most
schedules executed in the field.
Debugging. Reproducing a bug now does not require the
exact input, as long as the original and the altered in-
puts map to the same schedule. It does not require the
exact program either, as long as the changes to the pro-
gram do not affect the schedule. Users may remove pri-
vate information such as credit card numbers from their
bug reports. Developers may reproduce the bugs in dif-

ferent environments or add printf statements.
Analyzing and verifying programs. Static analysis can
now focus only on the set of schedules enforced in
the field, gaining precision. Dynamic analysis enjoys
the same benefits as testing. Model checking can now
check drastically fewer schedules, mitigating the so-
called “state explosion” problem. Interactive theorem
proving becomes easier, too, because verifiers need prove
theorems only on the set of schedules enforced in the
field. We will discuss these benefits in §5.
Avoiding errors at runtime. Programs can also adap-
tively learn correct schedules in the field, then reuse them
on future inputs to avoid unknown, potentially buggy
schedules. We will discuss this benefit in §4.1.

3.2 Caveats

SMT is certainly not for every multithreaded program. It
works well with programs whose schedules are loosely
coupled with inputs, but there are also other programs.
For instance, a program may decide to spawn threads or
invoke synchronizations based on complex conditions in-
volving most bits in the input. Parallel grep-like utility
pfscan is an example. It searches for a keyword in a
set of files using multiple threads, and for each match,
it grabs a lock to increment a counter. A schedule com-
puted on one set of files is unlikely to suit another.

SMT provides robustness and stability on small in-
put and program perturbations when they do not af-
fect schedules. However, there is still room to improve.
For instance, when developers change their programs by
adding synchronizations, it may be more efficient to up-
date previously computed schedules rather than to re-
compute from scratch. We leave this idea for future work.

4 Building Stable Multithreading Systems
Although the vision of stable multithreading is appeal-
ing, realizing it faces three main challenges:
• How can we compute the schedules to map inputs to?

They must be feasible so executions reusing them do
not get stuck. They should also be highly reusable.

• How can we enforce schedules deterministically and
efficiently? “Deterministically” so executions cannot

5



deviate from schedules despite data races, and “effi-
ciently” so overhead does not offset the benefits.

• How can we handle multithreaded server programs?
They often run for a long time and react to each client
request as it arrives, making their schedules very spe-
cific to a stream of requests and difficult to reuse.

Over the past four years, we have been tackling these
challenges and building SMT systems, which resulted
in two SMT prototypes, TERN [7] and PEREGRINE [8],
that frequently reuse schedules with low overhead. This
section describes our solutions to these challenges. Our
solutions are by no means the only ones; subsequent
to TERN, others have also built a system that stabilizes
schedules for general multithreaded programs [11].

4.1 Computing Schedules

TERN, our first SMT system, computes schedules by
recording them from past executions; the recorded sched-
ules can then be reused on future inputs to stabilize pro-
gram behaviors. It works as follows. At runtime, it main-
tains a persistent cache of schedules recorded from past
executions. When an input arrives, TERN searches the
cache for a schedule compatible with the input. If it
finds one, it simply runs the program while enforcing
the schedule. Otherwise, it runs the program as is while
recording a new schedule from the execution, and saves
the schedule into the cache for future reuse.

When recording a schedule, TERN tracks how the syn-
chronizations in the schedule depend on the input. It cap-
tures these dependencies into a relaxed, quickly check-
able set of constraints called the precondition of the
schedule. It then reuses the schedule on all inputs sat-
isfying the precondition.

A naı̈ve way to compute the precondition is to collect
constraints from all input-dependent branches in an exe-
cution. For instance, if a branch instruction inspects input
variable X and goes down the true branch, we add a con-
straint that X must be nonzero to the precondition. A pre-
condition computed this way is sufficient, but it contains
many unnecessary constraints concerning only thread-
local computations. Since an over-constraining precondi-
tion decreases schedule-reuse rates, TERN removes these
unnecessary constraints from the precondition.

The TERN approach to computing schedules has sev-
eral benefits. First, by reusing schedules shown to work,
TERN may avoid potential errors in unknown schedules,
improving reliability. A real-world analogy is the natu-
ral tendencies in humans and animals to follow familiar
routes to avoid possible hazards along unknown routes.
(The name TERN comes from the Arctic Tern, a bird
species that migrates the farthest among all animals.)

Second, TERN explicitly stores schedules, so devel-
opers and users can flexibly choose what schedules to
record and when. For instance, developers can populate

the cache during testing and deploy the cache together
with their program, improving testing effectiveness and
avoiding the overhead to record schedules on user ma-
chines. Moreover, they can run their favorite checking
tools and keep only the correct schedules in the cache.

Lastly, TERN is efficient because it can amortize the
cost of computing schedules. Specifically, recording and
checking a schedule is more expensive than reusing a
schedule, but, fortunately, TERN does it only once for
each schedule and then reuses the schedule on many in-
puts, amortizing the cost.

4.2 Efficiently Enforcing Schedules

Prior work enforces schedules at two different granular-
ities: shared memory accesses or synchronizations, forc-
ing users to trade off efficiency and determinism. Specif-
ically, memory access schedules make data races deter-
ministic but are prohibitively inefficient (e.g., 1.2X-6X
as slow as traditional multithreading [3]); synchroniza-
tion schedules are much more efficient (e.g., average
16% slowdown [15]) because they are coarse grained, but
they cannot make programs with data races determinis-
tic, such as our second toy program in §2 and many real-
world multithreaded programs [12, 18]. This determin-
ism vs. performance challenge has been open for decades
in the areas of deterministic execution and replay. Be-
cause of this challenge, TERN, our first SMT system, en-
forces only synchronization schedules.

To address this challenge, we have built PEREGRINE,
our second SMT system [8]. The insight in PEREGRINE
is that although many programs have races, the races tend
to occur only within small portions of an execution, and
the majority of the execution is still race-free. Intuitively,
if a program is full of data races, most of them would
have been caught during testing. Empirically, we ana-
lyzed the executions of seven real programs with races,
and found that, despite millions of memory accesses,
only up to 10 data races were detected per execution.
Since races occur rarely, we can schedule synchroniza-
tions for the race-free portions of an execution, and resort
to memory accesses only for the “racy” portions, com-
bining both the efficiency of synchronization schedules
and the determinism of memory access schedules.

4.3 Handling Server Programs

Server programs present three challenges for SMT. First,
they may run continuously, making their schedules ef-
fectively infinite and too specific to reuse. Second, they
often process inputs, i.e., client requests, as soon as the
requests arrive. Each request may arrive at a random mo-
ment, causing a different schedule. Third, since requests
do not arrive at the same time, PEREGRINE cannot check
them against the precondition of a schedule upfront.

Our observation is that server programs tend to re-

6



turn to the same quiescent states, so PEREGRINE can use
these states to split a continuous request stream down to
windows of requests. Specifically, PEREGRINE buffers
requests as they arrive until it gathers enough requests
to keep all worker threads busy. It then runs the worker
threads to process the requests, while buffering newly ar-
rived requests to avoid interference between windows.
If PEREGRINE cannot gather enough requests before a
predefined timeout, it proceeds with the partial window
to reduce response time. By breaking a request stream
into windows, PEREGRINE can record and reuse sched-
ules across windows, stabilizing server programs. Server
quiescent states may evolve. For instance, a web server
may cache requests in memory. Developers can annotate
the functions that query cache, and PEREGRINE treats
the return values as inputs and selects proper schedules.
Windowing reduces concurrency, but the cost is moder-
ate based on our experiments.

5 Applying Stable Multithreading For Bet-
ter Program Analysis

As discussed in §3, stable multithreading can be applied
in many ways to improve reliability. In this section, we
describe a program analysis framework we have built
atop PEREGRINE to effectively analyze multithreaded
programs, an open challenge in program analysis.

At the core of this open challenge lies the tradeoff be-
tween precision and coverage. Of the two common types
of program analysis, static analysis covers all schedules
but with poor precision (e.g., many false positives). The
reason is that it must over-approximate the enormous
number of schedules, and thus it may analyze a much
larger set of schedules, including those impossible to
occur at runtime. Not surprisingly, it may detect many
“bugs” in the impossible schedules. Dynamic analysis
precisely identifies bugs because it sees the code’s pre-
cise runtime effects. However, it has poor coverage be-
cause of the exponentially many schedules.

Fortunately, SMT shrinks the set of possible schedules,
enabling a new program analysis approach that gets the
best of both static analysis and dynamic analysis. Specif-
ically, our framework statically analyzes a parallel pro-
gram over only a small set of schedules at compile time,
then dynamically enforces these schedules at runtime. By
focusing on only a small set of schedules, we vastly im-
prove the precision of static analysis and reduce false
positives; by enforcing the analyzed schedules dynam-
ically, we guarantee high coverage. Dynamic analysis
benefits, too, because it enjoys automatically increased
coverage defined as the ratio of checked schedules.

Our framework enables the construction of many high
coverage and highly precise analyses. For instance, the
static race detector we built found seven previously un-
known, harmful races in programs extensively checked

by previous tools. It emits extremely few false positives,
none for 10 out of 18 programs, a huge reduction com-
pared to other static race detectors.

6 Conclusion and Future Work

Through conceiving, building, applying, and evaluating
SMT systems, we have demonstrated that SMT is fea-
sible; it can stabilize program behaviors for better reli-
ability, work both efficiently and deterministically, and
greatly improve precision of static analysis. We believe
SMT offers new promises to solve the grand parallel pro-
gramming challenge. However, TERN and PEREGRINE
are still research prototypes, not yet ready for wide adop-
tion. Moreover, the ideas explored are just the first few in
this direction of SMT; the bulk of work lies ahead:

• At the system level, can we build efficient,
lightweight SMT systems that work automatically
with all multithreaded programs? TERN and PERE-
GRINE require recording executions and analyzing
source code, which can be heavyweight. As the num-
ber of cores increases, can we build SMT systems
that scale to hundreds of cores?

• At the application level, we have only scratched the
surface: improving program analysis is just one cool
application. There are many others, such as improv-
ing testing coverage, verifying a program with re-
spect to a small set of dynamically enforced sched-
ules, and optimizing thread scheduling and place-
ment based on a schedule because it effectively pre-
dicts the future. Moreover, the idea of stabilizing
schedules may apply to other parallel programming
methods such as MPI, OpenMP, and Cilk-like tasks.

• At the conceptual level, can we reinvent parallel pro-
gramming to greatly reduce the set of schedules?
For instance, a multithreading system may disallow
schedules by default, and only allow those that devel-
opers explicitly write code to enable. Since develop-
ers are already of different calibers, we may let only
the best programmers decide what schedules to use,
reducing the likelihood of programming errors.

We invite readers to join us in exploring this exciting di-
rection of stable multithreading and reliable parallelism.

Acknowledgments
We thank Al Aho, Tom Bergan, Emery Berger, Luis
Ceze, Jim Larus, Ying Xu, and the anonymous reviewers
for their many helpful comments. This work was sup-
ported in part by AFRL FA8650-11-C-7190, FA8650-
10-C-7024, and FA8750-10-2-0253; ONR N00014-
12-1-0166; NSF CCF-1162021, CNS-1117805, CNS-
1054906 (CAREER award), and CNS-0905246; an
AFOSR YIP Award; and a Sloan Research Fellowship.

7



References
[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,

K. Keutzer, J. Kubiatowicz, N. Morgan, D. Pat-
terson, K. Sen, J. Wawrzynek, D. Wessel, and
K. Yelick. A view of the parallel computing land-
scape. Commun. ACM, 52(10):56–67, 2009.

[2] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Ef-
ficient system-enforced deterministic parallelism.
Commun. ACM, 55(5):111–119, May 2012.

[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and
D. Grossman. CoreDet: a compiler and runtime
system for deterministic multithreaded execution.
In Fifteenth International Conference on Architec-
ture Support for Programming Languages and Op-
erating Systems (ASPLOS ’10), pages 53–64, Mar.
2010.

[4] E. Berger, T. Yang, T. Liu, D. Krishnan, and A. No-
vark. Grace: safe and efficient concurrent program-
ming. In Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOP-
SLA ’09), pages 81–96, Oct. 2009.

[5] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Sim-
mons, H. Sung, and M. Vakilian. A type and ef-
fect system for deterministic parallel java. In Con-
ference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA ’09), pages
97–116, 2009.

[6] B. Cantrill and J. Bonwick. Real-world concur-
rency. Commun. ACM, 51(11):34–39, Nov. 2008.

[7] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable de-
terministic multithreading through schedule mem-
oization. In Proceedings of the Ninth Symposium
on Operating Systems Design and Implementation
(OSDI ’10), Oct. 2010.

[8] H. Cui, J. Wu, J. Gallagher, H. Guo, and
J. Yang. Efficient deterministic multithreading
through schedule relaxation. In Proceedings of the
23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP ’11), pages 337–351, Oct. 2011.

[9] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:
deterministic shared memory multiprocessing. In
Fourteenth International Conference on Architec-
ture Support for Programming Languages and Op-
erating Systems (ASPLOS ’09), pages 85–96, Mar.
2009.

[10] E. A. Lee. The problem with threads. Computer,
39(5):33–42, 2006.

[11] T. Liu, C. Curtsinger, and E. D. Berger.
DTHREADS: efficient deterministic multithread-
ing. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP ’11),
pages 327–336, Oct. 2011.

[12] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world con-
currency bug characteristics. In Thirteenth Interna-
tional Conference on Architecture Support for Pro-
gramming Languages and Operating Systems (AS-
PLOS ’08), pages 329–339, Mar. 2008.

[13] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In Proceedings
of the Eighth Symposium on Operating Systems De-
sign and Implementation (OSDI ’08), pages 267–
280, Dec. 2008.

[14] C. O’Hanlon. A conversation with john hennessy
and david patterson. Queue, 4(10):14–22, 2007.

[15] M. Olszewski, J. Ansel, and S. Amarasinghe.
Kendo: efficient deterministic multithreading in
software. In Fourteenth International Confer-
ence on Architecture Support for Programming
Languages and Operating Systems (ASPLOS ’09),
pages 97–108, Mar. 2009.

[16] J. Wu, H. Cui, and J. Yang. Bypassing races in live
applications with execution filters. In Proceedings
of the Ninth Symposium on Operating Systems De-
sign and Implementation (OSDI ’10), Oct. 2010.

[17] J. Wu, Y. Tang, G. Hu, H. Cui, and J. Yang. Sound
and precise analysis of parallel programs through
schedule specialization. In Proceedings of the
ACM SIGPLAN 2012 Conference on Programming
Language Design and Implementation (PLDI ’12),
pages 205–216, June 2012.

[18] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma.
Ad hoc synchronization considered harmful. In
Proceedings of the Ninth Symposium on Operating
Systems Design and Implementation (OSDI ’10),
Oct. 2010.

[19] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan.
Concurrency attacks. In the Fourth USENIX Work-
shop on Hot Topics in Parallelism (HOTPAR ’12),
June 2012.

8


	1 Introduction
	2 Why Are Multithreaded Programs So Hard to Get Right?
	2.1 Preliminaries: Inputs, Schedules, and Buggy Schedules
	2.2 Challenges Caused by Nondeterminism
	2.3 Challenges Caused by Too Many Schedules
	2.4 Determinism is Overrated

	3 Shrinking the Haystack with Stable Multithreading
	3.1 Benefits
	3.2 Caveats

	4 Building Stable Multithreading Systems
	4.1 Computing Schedules
	4.2 Efficiently Enforcing Schedules
	4.3 Handling Server Programs

	5 Applying Stable Multithreading For Better Program Analysis
	6 Conclusion and Future Work

