
W4118 Operating Systems

Instructor: Junfeng Yang

Outline

� Linux process overview

� Linux process data structures

� Linux process operations

Finding process information

� ps

� top

� For each process, there is a corresponding
directory /proc/<pid> to store this process
information in the /proc pseudo file system

� Header files

� include/linux/sched.h – declarations for most process
data structures

� include/linux/wait.h – declarations for wait queues

� include/asm-i386/system.h – architecture-dependent
declarations

� Source files
� kernel/sched.c – process scheduling routines

� kernel/signal.c – signal handling routines

� kernel/fork.c – process/thread creation routines

� kernel/exit.c – process exit routines

� fs/exec.c – executing program

� arch/i386/kernel/entry.S – kernel entry points

� arch/i386/kernel/process.c – architecture-dependent
process routines

Process-related files

Kernel address space

� Kernel needs work space as well
� Store kernel code, data, heap, and stack

• E.g., process control blocks

� Must be protected from user processes

� Can give kernel its own address space

� Problem: switching address space is costly

� Solution: map kernel address space into
process address space

Linux process address space

User space

Kernel space

User-mode stack-area

Process code and data

kernel mode

user mode

Kernel space is also
mapped into user
space � from user
mode to kernel
mode, no need to
switch address
spaces

Protection?
Kernel space is only
accessible when
mode bit = 0

Shared runtime-libraries

0

3G

4G
process descriptor

and
kernel-mode stack

Linux: processes or threads?

� Linux uses a neutral term: tasks
� Tasks represent both processes and threads

� When processes trap into the kernel, they share
the Linux kernel’s address space � kernel threads

Outline

� Linux process overview

� Linux process data structures

� Linux process operations

Linux task data structures

� task_struct: process control block

� thread_info: low level task data, directly
accessed from entry.S

� kernel stack: work space for systems calls (the
kernel executes on the user process’s behalf)
or interrupt handlers

� Task queues: queues that chain tasks together

Process Control Block in Linux

� task_struct (process descriptor in ULK)
� include/linux/sched.h

� Each task has a unique task_struct

Process states

� state: what state a process is in
� TASK_RUNNING – the thread is running on the CPU or is
waiting to run

� TASK_INTERRUPTIBLE – the thread is sleeping and can be
awoken by a signal (EINTR)

� TASK_UNINTERRUPTIBLE – the thread is sleeping and cannot
be awakened by a signal

� TASK_STOPPED – the process has been stopped by a signal or
by a debugger

� TASK_TRACED – the process is being traced via the ptrace
system call

� exit_state: how a process exited
� EXIT_ZOMBIE – the process is exiting but has not yet been
waited for by its parent

� EXIT_DEAD – the process has exited and has been waited for

Hardware state

� Thread: thread_struct – hardware state, e.g.,
registers

� x86 hardware state is defined in include/asm-
i386/processor.h

Process scheduling

� prio: priority of the process

� Static_prio, run_list, array, sleep_avg,
timestamp, last_ran, time_slice, …
� More on Linux scheduling later

Process IDs

� process ID: pid

� thread group ID: tgid
� pid of first thread in process

� getpid() returns this ID, so all threads in a process
share the same process ID

� many system calls identify a process by its
PID
� Linux kernel uses pidhash to efficiently find
processes by pids

� see include/linux/pid.h, kernel/pid.c

Process Relationships

� Processes are related: children, sibling
� Parent/child (fork()), siblings
� Possible to "re-parent"

• Parent vs. original parent

� Parent can "wait" for child to terminate

� Process groups: signal_struct->pgrp
� Possible to send signals to all members

� Sessions: signal_struct->session
� Processes related to login

Other PCB data structures

� user: user_struct – per-user information (for
example, number of current processes)

� mm, active_mm: mm_struct – memory areas for
the process (address space)

� fs: fs_struct – current and root directories
associated with the process

� files: files_struct – file descriptors for the
process

� signal: signal_struct – signal structures
associated with the process

thread_info

� include/asm-i386/thread_info.h

� low level task data, directly accessed from
entry.S

� current_thread_info: get current thread_info
struct from C

kernel stack

� Each process in Linux has two stacks, a user
stack and a kernel stack (8KB by default)
� Kernel stack can only be accessed in kernel mode

� Kernel code runs on kernel stack

� Why not reuse user-space stack?
� homework

Finding kernel stack (on x86)

CPU0

tr

Global Descriptor Table

8-KB

Task’s kernel-stack

CPU0 kern stack topesp

Upon intr, h/w retrieves kernel
stack top and load it into %esp,
also pushes previous %esp &%eip
on kernel stack

Changes on each context
switch (__switch_to in
arch/i386/kernel/process.c)

initialized in startup_32 in
arch/i386/boot/compressed
/head.S

Connections between task_struct and
kernel stack

� Linux uses part of a task’s kernel-stack to store a
structure thread_info

� thread_info and task_struct contain pointers to each
other

Task’s kernel-stack

Task’s thread-info
Task’s

process-descriptor

struct task_struct 8-KB

8KB aligned 0xe800e000

0xe8010000

How to find thread_info from kernel stack?

movl $0xFFFFE000, %eax

andl %esp, %eax (mask out last

13 bits)

Task’s kernel-stack

Task’s thread-info
Task’s

process-descriptor

struct task_struct 8-KB

8KB aligned 0xe800e000

esp
0xe8010000

How Linux manages processes

� Linux uses multiple queues to manage
processes
� Queue for all tasks

� Queue for “running” tasks
� Queues for tasks that temporarily are “blocked”
while waiting for a particular event to occur

� These queues are implemented using doubly-
linked list (struct list_head in include/linux/list.h)

Some tasks are ‘ready-to-run’

Those tasks that are ready-to-run comprise a sub-list of all the tasks,
and they are arranged on a queue known as the ‘run-queue’
(struct runqueue in kernel/sched.c)

Those tasks that are blocked while awaiting a specific event to occur
are put on alternative sub-lists, called ‘wait queues’, associated with
the particular event(s) that will allow a blocked task to be unblocked
(wait_queue_t in include/linux/wait.h and kernel/wait.c)

run_queue

init_task list

Kernel Wait Queues

waitqueue

waitqueue

waitqueue

waitqueue

wait_queue_head_t
can have 0 or more
wait_queue_t chained
onto them

However, usually just
one element

Each wait_queue_t
contains a list_head
of tasks

All processes waiting
for specific "event“

Used for timing,
synch, device i/o, etc.

wait_queue_head_t
wait_queue_t

Outline

� Linux process overview

� Linux process data structures

� Linux process operations

fork() call chain

� libc fork()

� system_call (arch/i386/kernel/entry.S)

� sys_clone() (arch/i386/kernel/process.c)

� do_fork() (kernel/fork.c)

� copy_process() (kernel/fork.c)

� p = dup_task_struct(current) // shallow copy

� copy_* // copy point-to structures

� copy_thread () // copy stack, regs, and eip

� wake_up_new_task() // set child runnable

exit() call chain

� libc exit(code)

� system_call (arch/i386/kernel/entry.S)

� sys_exit() (kernel/exit.c)

� do_exit() (kernel/exit.c)

� exit_*() // free data structures

� exit_notify() // tell other processes we exit

// reparent children to init

// EXIT_ZOMBIE

// EXIT_DEAD

Context switch call chain

� schedule() (kernel/sched.c) (talk about scheduling later)

� context_switch()

� swtich_mm (include/asm-i386/mmu_context.h)

// switch address space

� switch_to (include/asm-i386/system.h)

� __swtich_to (arch/i386/kernel/process.c)

// switch stack to switch CPU context

__swtich_to: context switch by stack switch
(the idea)

� Kernel stack captures process states
� All registers

� task_struct through thread_info

� Changing the stack pointer %esp changes the
process

Task’s kernel-stack

Task’s thread-info

Task’s
process-descriptor

Context switch by stack switch (the
simplified implementation)

esp

eax

CPU

…

P0 stack
swtich_to(p0,p1)
save registers on stack
p0->esp = %esp
p0->eip = ret_addr;
%esp = p1->esp;
push p1->eip;
ret

ret_addr:
pop registers from stack

eax

esp eip

eip

…

thread_info

P1 stack

esp

thread_info

eip

…eax

ret_addr

p0->eip = ret_addr

