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Abstract
Although chip-multiprocessors have become the industry
standard, developing parallel applications that target them
remains a daunting task. Non-determinism, inherent in
threaded applications, causes significant challenges for par-
allel programmers by hindering their ability to create parallel
applications with repeatable results. As a consequence, par-
allel applications are significantly harder to debug, test, and
maintain than sequential programs.

This paper introduces Kendo: a new software-only sys-
tem that provides deterministic multithreading of parallel
applications. Kendo enforces a deterministic interleaving of
lock acquisitions and specially declared non-protected reads
through a novel dynamically load-balanced deterministic
scheduling algorithm. The algorithm tracks the progress
of each thread using performance counters to construct a
deterministic logical time that is used to compute an inter-
leaving of shared data accesses that is both deterministic
and provides good load balancing. Kendo can run on to-
day’s commodity hardware while incurring only a modest
performance cost. Experimental results on the SPLASH-2
applications yield a geometric mean overhead of only 16%
when running on 4 processors. This low overhead makes it
possible to benefit from Kendo even after an application is
deployed. Programmers can start using Kendo today to pro-
gram parallel applications that are easier to develop, debug,
and test.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming – Parallel Program-
ming; D.2.5 [Software Engineering]: Testing and Debug-
ging – Debugging Aids; D.4.1 [Operating Systems]: Pro-
cess Management – Synchronization

General Terms Design, Reliability, Performance

Keywords Deterministic Multithreading, Determinism,
Parallel Programming, Debugging, Multicore
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1. Introduction
Application developers rely heavily on the fact that given
the same input, a program will produce the same output.
Sequential programs, by construction, typically provide this
desirable property of deterministic execution. However, in
shared memory multithreaded programs, deterministic be-
havior is not inherent. When executed, such applications can
experience one of many possible interleavings of memory
accesses to shared data. As a result, multithreaded programs
will often execute non-deterministically following different
internal states that can sometimes lead to different outputs.
For programs that are not inherently concurrent, such non-
determinism is almost never required in the program’s spec-
ification and comes directly as a consequence of paralleliz-
ing the program for improved performance on today’s ma-
chines. This added non-determinism makes parallel applica-
tions significantly harder to debug, test, and maintain than
sequential programs (Lee 2006).

In this paper, we argue that non-determinism is not a
requisite aspect of threads. Instead, thread communication
through shared memory can be interleaved in a deterministic
manner in order to restore the determinism guarantees pro-
vided by sequential programs. We define this property as de-
terministic multithreading, and classify it into the following
two categories:

• Strong determinism ensures a deterministic order of all
memory accesses to shared data for a given program
input.

• Weak determinism ensures a deterministic order of all
lock acquisitions for a given program input.

Strong determinism is guaranteed to produce the same
output for every run with a given program input. While this
is an attractive property, we conjecture that it cannot be pro-
vided efficiently without hardware support. Weak determin-
ism offers the same guarantee for exactly those inputs that
lead to race-free executions under the deterministic sched-
uler – that is, executions in which all accesses to shared data
are protected by locks. For a given input, this property can
be checked with a dynamic data race detector. For programs
without data races, strong determinism and weak determin-
ism offer equivalent guarantees. We describe additional ben-
efits of weak determinism in Section 2.



A number of existing parallel programming models also
offer an improved level of determinism for specific styles
of parallelism. In the fork/join model used by the Cilk lan-
guage (Frigo et al. 1998), Cilk can detect data races and (if
locks are not used) offer deterministic outcomes in their ab-
sence. Programs can also be collapsed to a sequential version
for testing. However, it is less clear how to extend this func-
tionality to arbitrary threaded code. While code parallelized
with OpenMP can also be reduced to a sequential and deter-
ministic version for testing, the parallel version may admit
thread interleavings with different behaviors.

Additionally, record/replay systems can be used to help
programmers reproduce bugs in programs that behave non-
deterministically. These systems can provide strong deter-
minism between a single record process and a set of re-
play processes. However, record/replay can provide neither
strong nor weak determinism between different execution
recordings. Two executions with identical inputs running
in isolation are not guaranteed to behave the same way.
Thus, multithreaded record/replay systems only selectively
enforce determinism, limiting their application.

Programmers may also try to manually ensure that all
interleavings yield the same program output, for example,
by writing a program that uses only commutative updates
to shared data and does not otherwise test or branch on
intermediate values. However, such programs require careful
construction and may be bug-prone or overly restrictive.

Figure 1 illustrates an example of a program that can-
not easily be made deterministic using common parallel
programming idioms. The program performs repeated non-
commutative updates on a globally visible shared data struc-
ture, and uses a task queue to dynamically load-balance the
work in an efficient manner. This pattern can result in non-
deterministic executions and is exhibited by a number of
well known parallel applications such as: Radiosity (Singh
et al. 1994), LocusRoute (Rose 1988), and Delaunay Trian-
gulation (Kulkarni et al. 2008).

There are two sources of non-determinism in this exam-
ple, both are caused by races on synchronization objects.
First, the task queue distributes work on a first-come first-
served basis, making the work assigned to each thread non-
deterministic. Second, the order in which each thread modi-
fies a portion of the global shared data structure depends on
the order in which each thread can acquire the lock or locks
that protect it. Since the operations performed on the data
structure are non-commutative, the resulting changes made
to the shared data structure are non-deterministic.

It is not immediately clear how this example can be made
deterministic efficiently. A naı̈ve approach would force
threads to acquire locks in a round robin manner such that
each thread has to wait until all other threads have acquired a
lock between its own acquisition attempts. However, this ap-
proach sacrifices load balancing if the frequency of lock ac-

/ / G l o b a l l y v i s i b l e sh ar ed s t a t e
g l o b a l s t a t e = i n i t s t a t e ( ) ;

/ / Enqueue f i r s t t a s k i n t a s k queue
t a s k = c r e a t e i n i t i a l w o r k ( ) ;
t a s k q u e u e . push ( t a s k ) ;

f o r k t h r e a d s (NUM THREADS ) ;

/ / Loop u n t i l t h e r e i s no more work .
whi le ( ! t a s k q u e u e . comple t ed ( ) )
{

t a s k = t a s k q u e u e . pop ( ) ;

/ / Non−commuta t i ve o p e r a t i o n on g l o b a l s t a t e .
/ / May enqueue more t a s k s .
do work ( g l o b a l s t a t e , t a s k ) ;

}

j o i n t h r e a d s (NUM THREADS ) ;

Figure 1. Task queue with non-commutative updates to
global state pattern common in non-deterministic parallel
programs.

quisitions varies across tasks. Achieving determinism while
still maintaining good load balancing is significantly harder
and requires a notion of thread progress when determining
the lock acquisition schedule.

1.1 Determinism via Kendo
In this work, we present Kendo: a software framework that
can efficiently enforce weak deterministic execution of gen-
eral purpose lock-based C and C++ code targeting today’s
commodity shared memory chip-multiprocessors.

To achieve determinism, we introduce the concept of de-
terministic logical time, which is used to track the progress
of each thread in a deterministic manner. Kendo uses deter-
ministic logical time to compute a deterministic yet load-
balanced interleaving of synchronized accesses to shared
data. Because deterministic logical time can be accurately
reproduced, Kendo is able to enforce a repeatable interleav-
ing of lock acquisitions across program executions.

Kendo implements a subset of the POSIX Threads API
and provides novel mechanisms to let users safely and deter-
ministically perform unprotected, or racy, accesses to shared
data. The resulting set of synchronization operations is suffi-
cient to allow programmers to easily develop parallel appli-
cations that exhibit deterministic behavior.

Kendo runs on today’s commodity hardware and incurs
only a modest performance cost. Experimental results show
that the applications from the SPLASH-2 benchmark suite
yield a geometric mean overhead of only 16% when run-
ning on a 4-core processor. This low overhead makes Kendo
practical to run even after applications are deployed. As a re-
sult, Kendo lets programmers focus their time on finding and



exploiting parallelism within their algorithms without wor-
rying about maintaining determinism, which can be difficult
and expensive.

1.2 Contributions
This paper makes the following contributions: (i) we intro-
duce the concept of weak and strong determinism; (ii) we
introduce the notion of deterministic logical time and show
how to efficiently obtain it on today’s commodity hardware;
(iii) we present a new algorithm that uses deterministic log-
ical time to efficiently provide weak determinism on today’s
commodity multiprocessors. This technique is the first to
provide deterministic execution of parallel applications on
commodity machines without requiring a record stage; (iv)
we demonstrate the practicality of our approach by evaluat-
ing it on the SPLASH-2 benchmark suite.

2. Benefits of Deterministic Multithreading
In this section we discuss a number of benefits provided by
a deterministic multithreading execution model such as the
Kendo framework.

Repeatability: Users have come to expect a repeatability
guarantee from software. Given the same inputs, the pro-
gram should produce the same outputs. For example, cus-
tomers of FPGA CAD software require that their HDL code
is compiled in a deterministic manner so that they can reli-
ably test their own work. Unfortunately, record/replay sys-
tems are not a practical means of ensuring such determinis-
tic application behavior. At most, record/replay systems can
perform separate recording for each possible program input,
which is not feasible for most programs. Since Kendo does
not need to store record logs, it can provide a practical means
of guaranteeing repeatability. Additionally, because Kendo
is portable across micro-architectures and can execute with
low overhead, it can be feasibly left on once an application
is deployed.

Debugging: Sequential application developers depend
heavily on determinism to reproduce and debug erroneous
runtime behavior. Programmers often utilize a systematic
cyclic debugging methodology to iteratively obtain infor-
mation about a bug by repeatedly running the program to
hone in on the problem. This technique does not lend itself
well to non-deterministic applications since bugs may not
be reproducible on every run.

Record/replay systems can be used to help replicate fault-
ing program executions to help with cyclic debugging; how-
ever, they require that the initial execution that triggered the
bug was performed during a recording session. In the ab-
sence of low overhead hardware, software recording is un-
likely to be enabled during application deployment because
of overhead (Dunlap et al. 2008). Additionally, since even
the best hardware record/replay systems to date require gi-
gabytes of logs per day (Montesinos et al. 2008), they are

also unlikely to be enabled in many situations. Thus, in prac-
tice, record/replay systems offer few benefits to restore the
debugging methodologies currently applied to sequential ap-
plications.

In contrast Kendo can deterministically reproduce bugs
even if they were discovered on commodity hardware.
Kendo precisely reproduces all non-concurrency bugs as
well as deadlocks, atomicity violations, and order violations
in correctly synchronized code. Such bugs have been shown
to make up a large fraction of concurrency bugs found in
real parallel applications (Lu et al. 2008).

Additionally, Kendo can be combined with a dynamic
race detector to help identify races that are a result of incor-
rect synchronization. Under Kendo, a dynamic race detector
is guaranteed to detect the first race to occur on a given in-
put since the program will run deterministically up until that
point. Thus, when a bug is encountered for a particular input,
a programmer can systematically eliminate all races using
a race detector, and will subsequently be able to reproduce
all remaining bugs. Therefore, when combined with a race
detector, Kendo offers a systematic way to reproduce an ob-
served bug and/or a related race. As a result, Kendo can be
used to eliminate all bugs for the tested set of inputs.

Testing: Comparing a program output to previously cre-
ated “correct” output is a standard technique of verifying
correctness in regression testing. This approach does not fare
well with parallel applications that exhibit non-deterministic
output, or have non-deterministic internal state that needs
to be verified. By using Kendo programmers can eliminate
non-determinism to enable correctness testing via program
equivalence (Lee 2006). In this way, Kendo can make par-
allel applications more like sequential applications when it
comes to maintaining current testing infrastructures. In com-
parison, record/replay systems offer no effective method of
proving equivalence because a recorded run represents only
one of many possible non-deterministic executions.

Multithreaded Replicas: Many replica-based fault toler-
ance systems depend on programs being deterministic. In
such systems, each replica is provided with the same pro-
gram input and is expected to behave uniformly in the ab-
sence of program error. When all non-faulty replicas produce
the same output, a correct consensus can often be reached on
the basis of a quorum. Non-determinism makes it nearly im-
possible to differentiate between correct and incorrect out-
puts and therefore makes it harder for replicas to come to
a consensus. While a number of algorithms have been sug-
gested that can ensure that all replicas execute determinis-
tically with respect to each other, each requires significant
communication among replicas. Kendo can be used to cre-
ate deterministic replicas that do not require communication,
thus increasing fault tolerance and reliability.



f u n c t i o n d e t m u t e x l o c k ( l )
{

p a u s e l o g i c a l c l o c k ( ) ;
w a i t f o r t u r n ( ) ;
l o c k ( l ) ;
i n c l o g i c a l c l o c k ( ) ;
r e s u m e l o g i c a l c l o c k ( ) ;

}

(a) Deterministic Lock Acquire

f u n c t i o n d e t m u t e x u n l o c k ( l )
{

un lo ck ( l ) ;
}

(b) Deterministic Lock Release

Figure 2. Pseudo code for deterministic mutex lock acquire
and release routines that do not support nested locking.

3. Design
In this section we describe our deterministic locking algo-
rithms that are central to our design. The algorithms con-
struct a deterministic interleaving of synchronization opera-
tions in deterministic logical time, which we first define.

3.1 Deterministic Logical Time
We use the notion of deterministic logical time as an ab-
stract counterpart to physical time, which we use to deter-
ministically order events in a shared memory parallel ap-
plication. Deterministic logical time is constructed from P
monotonically increasing deterministic logical clocks, where
P is the number of threads in the application. Unlike Lam-
port Clocks (Lamport 1978), deterministic logical clocks are
computed independently and never updated based on the
progress of other threads. Such updates would make the
clocks non-deterministic.

An event occurring on thread 1 is said to occur at an
earlier deterministic logical time than an event on thread 2 if
thread 1 has a lower deterministic logical clock than thread 2
at the time of the events. Deterministic logical clocks can be
constructed by counting arbitrary events being performed by
each thread, so long as those events are repeatable from run
to run. It is desirable to choose events that track the progress
of a thread in physical time as closely as possible because
it makes any lock acquisition schedule computed from the
clocks more load balanced. We discuss good sources for
deterministic logical clocks in Section 4.1.

3.2 Locking Algorithm
The goal of our locking algorithm is to enforce a determinis-
tic interleaving of lock acquisitions. This is done by simulat-
ing the interleaving that would occur if threads were to exe-
cute in deterministic logical time rather than physical time.
For performance, threads are allowed to run with their deter-
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det_mutex_lock(a)

det_mutex_lock(b)

det_mutex_unlock(a)

det_mutex_unlock(b)

Thread 1 Thread 2

det_mutex_lock(a)

t=25

t=27

t=31

(i)

(ii)

Figure 3. Example scenario where the simple algorithm can
cause a deadlock. Note the cyclic dependence caused by the
dependences (i) and (ii). Dependency (i) is due to thread 1
waiting for thread 2 to increase its deterministic logical clock
to 31.

ministic logical clocks out of sync when executing code out-
side of critical sections, but they must wait for slower threads
at lock acquisition points in order to guarantee determinism.

To help introduce the reader to our deterministic locking
algorithm, we present two versions. The first, presented in
Section 3.2.1, is a simplified algorithm that does not support
nested locks. The second, presented in Section 3.2.2, fully
supports nested locks.

3.2.1 Simplified Locking Algorithm
The simplified algorithm makes threads acquire a lock in
an order defined by their deterministic logical clocks. Since
each thread’s deterministic logical clock is repeatable from
run to run, the order of acquisitions must also be determinis-
tic. The algorithm centers on the concept of a turn. It is only
one thread’s turn at a time, and the order of turns is deter-
ministic. It is a thread’s turn when both of the following are
true:

1. All threads with a smaller id1 have greater deterministic
logical clocks.

2. All threads with a larger ID have greater or equal deter-
ministic logical clocks.

Turn waiting enforces a first-come first-served ordering
of threads in deterministic logical time. All threads keep
their deterministic logical clocks in shared memory, and
thus each thread can examine all other deterministic logi-
cal clocks to independently determine the turn ordering. A
thread completes its turn by incrementing its own determin-
istic logical clock.

Figure 2 displays the pseudo code for the simple deter-
ministic lock and unlock algorithms. First, the thread’s de-
terministic logical clock must be paused to prevent the clock
from changing while it waits for, and later takes, its turn.
Next, the locking algorithm calls wait for turn to enforce
the deterministic first-come first-served ordering with which
threads may attempt to acquire a lock. Here, lock calls a

1 We assign a unique thread ID to each thread when it is created.



f u n c t i o n d e t m u t e x l o c k ( l )
{

p a u s e l o g i c a l c l o c k ( ) ;
whi le ( t rue ) / / Loop u n t i l we have s u c c e s s f u l l y a c q u i r e d t h e l o c k .
{

w a i t f o r t u r n ( ) ; / / Wait f o r our d e t e r m i n i s t i c l o g i c a l c l o c k t o be u n iq ue
/ / g l o b a l minimum .

i f ( t r y l o c k ( l ) ) / / Check t h e s t a t e o f t h e lock , a c q u i r i n g i t i f i t i s f r e e .
{

i f ( l . r e l e a s e d l o g i c a l t i m e / / Lock i s f r e e i n p h y s i c a l t ime , b u t s t i l l a c q u i r e d i n
>= g e t l o g i c a l c l o c k ( ) ) / / d e t e r m i n i s t i c l o g i c a l t i m e so we can n o t a c q u i r e i t y e t .

{
un lo ck ( l ) ; / / R e l e a s e t h e l o c k .

}
e l s e
{ / / Lock i s f r e e i n bo th p h y s i c a l and i n d e t e r m i n i s t i c l o g i c a l

break ; / / t ime , so i t i s s a f e t o e x i t t h e s p i n loop .
}

}
i n c l o g i c a l c l o c k ( ) ; / / I n c r e m e n t our d e t e r m i n i s t i c l o g i c a l c l o c k and s t a r t over .

}
i n c l o g i c a l c l o c k ( ) ; / / I n c r e m e n t our d e t e r m i n i s t i c l o g i c a l c l o c k b e f o r e e x i t i n g .
r e s u m e l o g i c a l c l o c k ( ) ;

}

(a) Deterministic Lock Acquire

f u n c t i o n d e t m u t e x u n l o c k ( l )
{

p a u s e l o g i c a l c l o c k ( ) ;
l . r e l e a s e d l o g i c a l t i m e = g e t l o g i c a l c l o c k ( ) ;
un lo ck ( l ) ;
i n c l o g i c a l c l o c k ( ) ;
r e s u m e l o g i c a l c l o c k ( ) ;

}

(b) Deterministic Lock Release

Figure 4. Pseudo code for deterministic lock acquire and release. Some fairness and performance optimizations, described in
Section 3.2.3, are omitted for clarity.

standard non-deterministic lock function to acquire an un-
derlying lock object. Once a thread acquires an underlying
lock, it increments its deterministic logical clock to allow
other threads to proceed with their turns. Finally, the thread
re-enables its deterministic logical clock and starts the criti-
cal section. On the release side, each thread simply performs
a standard non-deterministic unlock.

3.2.2 Improved Locking Algorithm
The simplified algorithm described in Section 3.2.1 has a
number of problems. First, a thread waiting on an acquired
lock will prevent other threads from executing independent
critical sections since it does not give up its turn until it holds
the underlying lock. Second, the code does not properly
handle nested locks. Lock nesting introduces possible de-
pendences between threads that can cause deadlocks which
were not present in the non-deterministic code. Figure 3 il-
lustrates a scenario where such a deadlock can occur. When
attempting to acquire lock b, thread 1 must wait for thread 2

to reach the same deterministic logical time (dependence
(i)); however, thread 2 is stalled waiting for thread 1 to re-
lease lock a (dependence (ii)). The two dependencies cause
a dependence cycle preventing both threads from making
progress.

To address the two problems we change the locking al-
gorithm so that a thread increments its deterministic logical
clock as it spins on a contested lock (pseudo code presented
in Figure 4(a)). This allows dependence (i) to be satisfied
after some period of spinning (shown in Figure 5 a). Some
subtlety is required in order to increment a thread’s deter-
ministic logical clock in a deterministic way. Each lock op-
eration may be racing with a corresponding unlock opera-
tion in another thread, thus, a thread may or may not succeed
in acquiring the lock during a given turn.

To eliminate this non-determinism, we impose the invari-
ant that only one thread may hold a given lock at a given de-
terministic logical time (i.e., a thread cannot acquire a lock
previously held by another thread until its deterministic logi-
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det_mutex_lock(a)

det_mutex_lock(b)

det_mutex_unlock(a)

det_mutex_unlock(b)

Thread 1 Thread 2

det_mutex_lock(a)

t=25

t=27

t=31 t=31
(i) /* spins */

(a) Step 1

det_mutex_lock(a)

det_mutex_lock(b)

det_mutex_unlock(a)

det_mutex_unlock(b)

Thread 1 Thread 2

det_mutex_lock(a)

t=25

t=27

t=31 t=31

t=37 t=38

(ii)

/* spins */

/* spins */

/* acquires lock */

(b) Step 2

Figure 5. An illustration of how the improved algorithm solves the deadlock shown in Figure 3. When thread 2 fails to
acquire lock a, it deterministically increments its deterministic logical clock until it reaches 31. At this point, the dependence
(i) is satisfied, and thread 1 is able to make forward progress. In step 2, thread 2 continues to increment its deterministic
logical clock until in reaches a deterministic logical time greater than when thread 1 released the lock. At this point, the second
dependence (ii) is satisfied and both threads can proceed.

cal clock is greater than the deterministic logical clock of the
other thread when it released the lock). This is enforced by
having the last thread to hold the lock store its deterministic
logical clock at the time of release, and preventing threads
from acquiring the lock if they have yet to pass that deter-
ministic logical time. Thus, threads can fail to acquire a lock
in one of two ways: if the lock is held by another thread (in
which case the trylock fails), or if it is released but still
“acquired” in deterministic logical time (in which case the
trylock succeeds but the deterministic logical time check
fails). In the latter case, the deterministic logical time check
is performed after the lock is acquired to eliminate a possible
race with the thread releasing the lock. If the check fails, the
lock must be released. If the lock is free in both real and de-
terministic logical time, the thread holds on to the acquired
lock, exits the spin loop and increments its deterministic log-
ical clock. Every time a thread fails to acquire the lock, it in-
crements its deterministic logical clock and waits for a new
turn.

Figure 4(b) shows the improved deterministic lock re-
lease code. In addition to the change that makes each thread
record its deterministic logical clock before it releases the
lock, the modified code also includes an increment to the
thread’s deterministic logical clock. This enables any spin-
ning threads to quickly reach a deterministic logical time that
will allow them to acquire the lock.

3.2.3 Locking Algorithm Optimizations
Queuing for fairness. One remaining problem with our al-
gorithm as presented above is that it does not preserve fair-
ness. Rather than preferring the thread with the lowest de-
terministic logical clock at the time it calls the lock func-
tion, the thread with smallest ID will always “win” a heav-
ily contested lock because of the turn ordering. We address
this by introducing a queue structure in each lock. When a
lock is already held, threads add themselves to this queue
when they first attempt but fail to acquire the lock. Sub-

sequently, a thread will only attempt to acquire the lock if
it is at the front of the queue; all other threads simply call
inc logical clock. This strategy guarantees that threads
always acquire contested locks according to a first-come
first-served ordering, in deterministic logical time. The state
of the queue is deterministic because it is only modified dur-
ing a thread’s turn.

Deterministic logical clock fast-forwarding. When a
thread is waiting for its deterministic logical clock to surpass
l.released logical time, it can potentially increase its
deterministic logical clock by more than one to catch up
to the released logical time faster. This avoids the need for
many threads to take turns incrementing their deterministic
logical clocks. Without queuing, waiting threads can fast
forward their logical clock to l.released logical time.
With queuing, the thread at the head of the queue, if possi-
ble, can take the lock and set its deterministic logical clock
to one greater than l.released logical time.

Lock priority boosting. If the next thread to acquire a
specific lock can be accurately predicted then performance
can be improved by prioritizing the thread for that lock.
Each lock may be assigned a high priority thread that is
allowed to attempt to acquire the lock without waiting for
other threads to catch up to the same point in deterministic
logical time. This is achieved by allowing the prioritized
thread to privately subtract a constant from its deterministic
logical clock when waiting for its turn while attempting to
acquire the lock. To maintain correctness, the same constant
must be added by all other threads to their own deterministic
logical clocks when attempting to acquire the same lock.
This approach can significantly improve the performance
of correctly predicted lock acquisitions, though it comes at
the cost of slower incorrectly predicted acquisitions. Thus,
priority boosting is only desirable when lock acquisition
patterns can be accurately predicted and is therefore disabled
by default.



4. Kendo
In this section we provide a description of Kendo, our pro-
totype implementation. Kendo implements a deterministic
subset of the POSIX Threads (pthreads) API, and offers an
additional deterministic lazy read API to accommodate pro-
gramming styles that make use of non-protected accesses
to shared data. Kendo includes small modifications to the
Linux operating system to enable the use of performance
counter events to construct deterministic logical clocks.

4.1 Deterministic Logical Clocks
Kendo uses performance counters to build deterministic log-
ical clocks that can efficiently track the progress of each
thread. We use a slightly modified version of the perfmon2
kernel patch to enable access to the counters.

We experimented with a number of possible events to
construct a deterministic logical clock that is cheap to main-
tain but that can still track the progress of each thread
closely. We limited our search to options that were portable
across micro-architectures and exhibited low overhead. This
led us to examine a number of performance counter events
commonly available on modern x86 chip-multiprocessors.
Unfortunately, many of the performance counter events we
tested did not offer deterministic results. For example, both
the retired instructions and retired loads events
are non-deterministic because, for unknown reasons, they
appear to include interrupt occurrences in their counts. For-
tunately, the retired stores event does not exhibit this
peculiarity and is therefore suitable for generating a deter-
ministic logical clock.

While performance counter events are effective for track-
ing a thread’s position in deterministic logical time, they
are not accessible to other threads, which is necessary for
our locking algorithm. Therefore, each thread maintains its
deterministic logical clock in shared memory, computing it
indirectly from the performance counters. This is accom-
plished by registering an interrupt handler that increments
each thread’s deterministic logical clock whenever the per-
formance counter overflows.

Since performance counter overflow interrupts are non-
precise on today’s x86 micro-architectures, performing an
accurate deterministic logical clock reading at an arbitrary
point in the dynamic execution can present a challenge. Be-
fore a thread can read its deterministic logical clock value
it must ensure that no interrupts are pending. To check for
a pending interrupt from within the Kendo library, we en-
able the Read Performance-Monitoring Counters (rdpmc)
instruction for user space access. A positive value in the per-
formance counter indicates that the counter has overflowed
and the interrupt handler has not yet executed. Therefore,
each thread has to wait for the contents of the performance
counter to become negative before reading its deterministic
logical clock. We use the same technique whenever we need

to pause a thread’s deterministic logical clock to ensure that
no overflows are missed before the counter is disabled.

There are two deterministic logical clock related param-
eters that can be tuned to improve the performance of the
deterministic locking algorithm: chunk size and increment
amount. Chunk size represents the number of stores needed
to trigger a performance counter interrupt that will increment
a thread’s deterministic logical clock. A smaller chunk size
will improve the quality of a thread’s deterministic logical
clock, thus decreasing wait time, but incur more overhead
from the interrupt handlers. We discuss this trade off some
more in Section 5.3. Increment amount is the amount by
which a thread’s deterministic logical clock is increased in
each interrupt handler. We use this to modify the ratio be-
tween deterministic logical clock increments done as a result
of application stores and those done by our locking algo-
rithm as a result of lock acquisitions and releases. Putting a
greater emphasis on the interrupt increments improves per-
formance when there is low contention, while putting em-
phasis on the lock-based increments improves performance
when there is high lock contention. The optimal value for
both of these settings is application dependent.

4.2 Thread Creation
Kendo provides a det create routine that extends the
POSIX pthread create routine to ensure that our lock al-
gorithm remains deterministic in the face of thread creation.
To ensure determinism, the order of thread creation requests
must be deterministic because thread IDs affect how ties
are broken when acquiring locks. Additionally, the initial
deterministic logical clock of created threads must be deter-
ministic. Finally, threads must be created in such a way that
existing threads begin waiting on them deterministically.

To deterministically spawn a new thread, det create
first calls wait for turn to wait for the thread’s determin-
istic logical clock to become the global minimum. This en-
sures that all other threads will either be executing private
work or waiting on the spawning thread. Then det create
sets up the global structures for the new thread and sets
the new thread’s deterministic logical clock to be one larger
than the thread performing the spawn. Finally, det create
spawns the new thread and ends the spawning thread’s turn.

4.3 Lazy Reads
Many programmers use unprotected or racy reads to spin
on flags, or to track the progress of monotonically increas-
ing/decreasing values. The typical example of the latter is
an application that stores a global “best” value that many
threads repeatedly check. If the thread finds a new best value
it acquires the lock and updates the global best. Acquiring
the lock to check against the global best is needlessly expen-
sive and therefore undesirable if the application can tolerate
reading a value that is out of date. This type of access causes
a data race and introduces non-determinism.



To accommodate this programming style we have cre-
ated an API for deterministically reading unprotected data in
a lazy manner. Semantically, a lazy read instruction can be
executed without acquiring a lock, but a lazy write instruc-
tion must be executed from within a lock. The value returned
from a lazy read is deterministic. To maintain performance,
each lazy read has a user-defined tolerance window. A larger
tolerance will make the lazy read faster, at the expense of
returning an older value.

We implement deterministic lazy read support using a
combination of two techniques: global write history caching,
and local read caching. For write caching we maintain a
history table of past written values along with the deter-
ministic logical times at which the writes occurred. When
a thread performs a read, it subtracts the user-specified tol-
erance from its deterministic logical clock to obtain a read
deterministic logical time and waits until all other threads
have progressed beyond this time. At this point, the thread is
guaranteed that no new values can be written with determin-
istic logical times less than or equal to the read deterministic
logical time. As a result, the thread can safely lookup the
table to find the most recent write that occurred before the
read deterministic logical time. To further improve read per-
formance each thread caches its previous reads for a certain
amount of deterministic logical time, which reduces commu-
nication and contention on the history table. Local caching
makes the semantics of our lazy read API subtly different
from a normal racy memory access. In practice, we found
that this difference was easy to reason about and of no con-
sequence, for the racy reads we converted in our benchmark
applications.

4.4 Application Programming Interface
To make transitioning to Kendo as simple as possible, we
have developed Kendo to support a deterministic subset of
the POSIX Threads API. We additionally provide the func-
tions det enable and det disable to allow the user to
pause a thread’s deterministic logical clock during code that
they wish to run without Kendo’s deterministic guarantee.

Functions are given names beginning with “det ” rather
than “pthread ” to allow both Kendo and pthreads to co-
exist within the same program. We provide a header file
that makes the necessary #define statements for existing
pthreads code to use Kendo without modification.

The lazy read API consists of the following three func-
tions:

• det lazy init: initializes a given lazy variable using
a given initial value, acceptable delay (in deterministic
logical time), and a protecting mutex. The acceptable de-
lay indicates the user’s tolerance for det lazy read re-
turning stale values. A higher acceptable delay will cause
reads to run faster (because of less synchronization), but
they may return older values from the history. The pro-

tecting lock is the lock that the user must acquire before
calling det lazy write.

• det lazy read: reads from a given lazy variable. Uses
the lazy variable’s history to return a deterministic value
with minimal synchronization. Can be called without
holding the protecting lock.

• det lazy write: writes to a given lazy variable. Must
be called while holding the protecting lock. Properly
updates the history to allow deterministic lazy reads.

Calls to thread safe library functions, such as malloc,
must be handled specially to avoid introducing non-deter-
minism. When called concurrently, such functions may exe-
cute with a non-deterministically amount of stores affecting
the determinism of the logical clocks. Kendo provides a cus-
tom wrapper around malloc that disables the deterministic
logical clocks during the function call. We provide similar
wrappers around a small number of other libc functions
with non-deterministic store counts. Additionally, we pro-
vide a custom pseudo random number generator that uses
thread local data to make the values returned in each thread
deterministic for a given seed.

5. Evaluation
In this section we evaluate Kendo on a number of parallel
applications to show the practicality of our approach. Ad-
ditionally, we show the effect of varying the performance
counter sampling frequency and compare the performance
of our lazy read API to using deterministic locks.

5.1 Experimental Framework
Tests were conducted on a 2.66GHz Intel Core 2 Quad-core
CPU running Debian “sid” GNU/Linux with kernel version
2.6.23. The kernel was modified to enable the use of hard-
ware performance counters to construct the deterministic
logical clocks. In all tests four threads were executed uti-
lizing all available cores.

5.2 Methodology
We converted all programs to use Kendo’s API using a con-
version process that was simple in our experience. Locks
were converted automatically by renaming the calls to the
lock library. Racy reads were identified by looking for sim-
ple patterns such as volatile declarations, and modified to
use our API. Racy reads that executed frequently were con-
verted to use the Kendo lazy read API, while infrequent racy
reads were protected with locks. All racy writes were pro-
tected with locks. This process took approximately one day
for the whole SPLASH-2 benchmark suite.

All applications have been experimentally verified to run
deterministically under Kendo, both in output (which was
otherwise non-deterministic in some benchmarks) and num-
ber of stores (which was otherwise non-deterministic in all
benchmarks). The results were particularly remarkable for
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Figure 6. Performance of applications running deterministically under Kendo relative to their non-deterministic performance.

Benchmark name Chunk size Locks/s Barriers/s Lazy reads/s Stores/s
tsp 6,000 10.0 0 4,982,115.1 931.4 M
quicksort 6,200 320,915.2 0 0 6,680.7 M
ocean 4,000 279.3 1,220.7 0 391.6 M
barnes 20,000 96,745.0 11.8 0 5,565.4 M
radiosity 2,500 939,771.1 47.4 0 9,268.8 M
raytrace 800 216,979.5 9.1 0 772.6 M
fmm 1,000 208,880.8 450.3 3,700,407.3 1,093.0 M
volrend 2,000 79,612.8 204.3 0 560.2 M
water-nsqrd 7,000 143,202.6 1,843.1 0 7,002.7 M

Table 1. Chosen chunk size for each application along with synchronization events and stores per second.

Radiosity, which produced wildly non-deterministic output.
We checked the correctness of our approach by manually
verifying the outputs of each of the benchmarks.

All timing tests were run 10 times and the mean value
is shown. Times are presented as a percentage of non-
deterministic (pthreads) execution time. We break each tim-
ing bar into three pieces:

• Application time is the baseline time to execute the user
application. It consists of all deterministic execution time
not spent in interrupt or deterministic wait overhead.

• Interrupt overhead is cost incurred by performance
counter interrupts used to construct the deterministic log-
ical clocks. This varies both by the frequency of stores in
the user application and by the Kendo chunk size for that
application.

• Deterministic wait overhead is the additional overhead,
compared to non-deterministic locks, incurred in lock-
ing code, caused by enforcing a deterministic order on
the user application. It is dominated by time spent in

wait for turn, but also includes other overhead such
as the time spent in system calls pausing and resuming
the deterministic logical clocks.

5.3 Experimental Results
Figure 6 presents the performance of Kendo running vari-
ous applications deterministically. Ocean, barnes, radiosity,
raytrace, fmm, volrend, and water-nsqrd are taken from the
SPLASH-2 (Woo et al. 1995) benchmark suite. Addition-
ally, we implemented a parallel traveling salesman (TSP)
micro-benchmark, based on a sequential version by Lionnel
Maugis, and a parallel quicksort that was based on sequen-
tial code from the SGI Standard Template Library. On these
benchmarks, Kendo incurs a geometric mean of only 16%
overhead when running the applications deterministically.

Kendo’s performance on each application can be most
easily explained by the frequency of synchronization shown
in Table 1. Applications requiring more synchronization in-
cur higher overheads than those requiring less synchroniza-
tion. Radiosity is a highly lock-intensive application, per-
forming close to one million lock acquisitions per second.
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Figure 8. Performance of Kendo’s lazy read API compared
to locks for TSP and FMM.

As a consequence, it incurs the largest overhead for any
benchmark, approaching 53%. On the other hand, Barnes,
our best performing application, exhibits a 5% increase in
performance. Barnes operates primarily in two phases, one
that uses locks and a second where threads operate inde-
pendently. Profiling reveals that the first phase takes longer
when run under Kendo, while the second phase operates
faster. We suspect that this is due to improved locality that
results from a different interleaving of lock acquires.

Figure 7 illustrates the trade-off between interrupt over-
head and deterministic wait overhead as chunk size is varied.
It is shown using Radiosity, our slowest benchmark. All ap-
plications have a similar trade-off, though there is some vari-
ation in the optimal chunk size between applications. Table 1
shows the chunk size used for each application.

Figure 8 shows the performance of Kendo’s lazy reads
compared to locks for the two benchmarks that utilize lazy
reads. The lazy reads perform significantly better than deter-
ministic locks, especially for TSP. This performance comes
at the cost of returning less up to date values. Because of this,
using lazy reads is most effective when applications poll a
value at a high frequency to check if an event has occurred.
This is the case with TSP, where each thread frequently polls
a global “best” value that changes infrequently.

6. Scalability
Although the focus of this work is not a study of the scala-
bility of our algorithm, the reader may have some concerns
about the communication requirements of our turn order-
ing approach as well as the serialization it causes. Here we
present a number of solutions that we are currently explor-
ing.

First, we expect to hide a significant amount of wait over-
head by executing applications with more threads than pro-

cessors and time multiplexing between threads. Under such
an approach, threads can yield their time slice at synchro-
nization points if they have progressed faster in deterministic
logical time than other threads. This enables a processor to
perform work when it would otherwise be waiting for other
threads to catch up in deterministic logical time. Addition-
ally, to reduce the communication cost needed to determine a
thread’s turn, turn ordering can be performed using software
combining trees that are similar in vein to the trees used by
scalable software barriers.

In addition, future thread-level speculation or best effort
transactional memory hardware support could be employed
to improve parallelism by optimistically executing the serial
portion of the locking algorithm and the critical section that
follows. Further hardware support could also eliminate the
performance counter sampling overhead currently required
by our framework. For example, memory mapped and re-
motely accessible performance counters could be used di-
rectly as each thread’s deterministic logical clock.

7. Related Work
Concurrent to our work, Devietti et al. have also made a case
for deterministic execution of shared memory parallel pro-
cessor (Devietti et al. 2008). The work defines a determin-
istic execution model that matches our definition of strong
determinism. The authors present a number of hardware de-
signs that can enforce this level of determinism. A first de-
sign serializes all memory operations by passing a token in a
round robin manner between processors. A processor is re-
quired to hold this token to perform a memory access. This
algorithm is extended by increasing the number of opera-
tions performed by each processor while holding the token,
collectively calling each group of operations a quantum, and
by allowing quanta to execute in parallel whenever they ac-



cess private memory. A dynamic and deterministically up-
dated sharing table is used to determine what data is pri-
vate and shared. Finally, a third design leverages thread-level
speculative to further improve performance. While this work
offers a number of solutions for hardware implementations
of strong determinism, such systems are not available today.
To the best of our knowledge, our system is the only one that
provides weak determinism in current commodity systems.

Also related, preliminary work by Bocchino et al. argues
that object oriented languages such as Java and C# should
be augmented to provide a deterministic execution model by
default (Bocchino et al. 2008). The work proposes adding ef-
fect system annotations to Java to enable static and dynamic
analysis that can detect conflicting accesses before they oc-
cur, so that they can be serialized in a deterministic man-
ner. When such annotations or analysis become impractica-
ble, the authors suggests leveraging thread-level speculation
hardware.

Record/replay systems for parallel applications can be
used to help programmers reproduce non-deterministic ap-
plication behavior (Wittie 1989; Dhamija and Perrig 2000;
Xu et al. 2003; Dunlap et al. 2008; LeBlanc and Mellor-
Crummey 1987; Russinovich and Cogswell 1996; Mon-
tesinos et al. 2008; Hower and Hill 2008). A notable related
example is the pico-log version of the DeLorean record/re-
play system (Montesinos et al. 2008). DeLorean uses thread-
level speculation hardware to efficiently enforce a round-
robin interleaving of fixed-size chunks of instructions. Un-
fortunately, thread-level speculation cannot guarantee that
the speculative working sets of each chuck can fit into the
L1 data cache. As a result, DeLorean uses a record run that
logs the locations and size of prematurely truncated chunks.

Multithreaded replica systems add fault tolerance by
executing many replicas of a program so that nodes may
fail without interruption in service (Basile et al. 2002; Do-
maschka et al. 2006, 2007; Saha and Dutta 1993; Karl et al.
1998; Reiser et al. 2006). This type of technique relies on
determinism so that replicas remain synchronized. These
systems offer a variety of techniques to enforce this syn-
chronization.

Some programming language designs have explicitly pro-
vided a deterministic programming model. For example, lan-
guages such as StreamIt (Thies et al. 2002) eliminate non-
determinism by using a streaming model for thread commu-
nication. Unfortunately, StreamIt’s design choice limits it to
a specific class of applications that can use streaming seman-
tics. Programming languages such as Cilk (Frigo et al. 1998)
offer deterministic guarantees for a subset of legal programs.
For lock free programs or for programs that only perform
commutative operations in lock protected critical sections,
Cilk’s Nondeterminator race detector tool offers a determin-
ism guarantee for any inputs tested (Cheng et al. 1998).

Finally, a large body of research has focused on making
parallel applications easier to debug (Lu et al. 2007b; Tucek
et al. 2007; Lu et al. 2007a, 2006). These techniques focus
directly on finding non-deterministic bugs without removing
the non-determinism itself.

8. Conclusions
In this paper we have presented Kendo, the first efficient and
practical system to provide weak determinism for parallel
applications. When combined with a race detector, Kendo
can provide a systematic way of reproducing many non-
deterministic bugs in shared memory multithreaded appli-
cations. Like software transactional memory, Kendo will al-
low researchers and developers to gain early hands-on expe-
rience with deterministic multithreading programming mod-
els, and to develop a body of code that will support future re-
search. We have evaluated Kendo on the SPLASH-2 bench-
mark suite and shown performance results that incur a ge-
ometric mean slowdown of only 16%. Such low overheads
make the testing and debugging benefits of weak determin-
ism accessible to developers today.
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