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Abstract

The conventional notion of a program slice|the set

of all statements that might a�ect the value of a vari-

able occurrence|is totally independent of the pro-

gram input values. Program debugging, however, in-

volves analyzing the program behavior under the spe-

ci�c inputs that revealed the bug. In this paper we

address the dynamic counterpart of the static slicing

problem|�nding all statements that really a�ected

the value of a variable occurrence for the given pro-

gram inputs. Several approaches for computing dy-

namic slices are examined. The notion of a Dynamic

Dependence Graph and its use in computing dynamic

slices is discussed. We introduce the concept of a Re-

duced Dynamic Dependence Graph whose size does

not depend on the length of execution history, which

is unbounded in general, but whose size is bounded

and is proportional to the number of dynamic slices

arising during the program execution.

1 Introduction

Finding all statements in a program that directly or

indirectly a�ect the value of a variable occurrence is

referred to as Program Slicing [Wei84]. The state-

ments selected constitute a slice of the program with

respect to the variable occurrence. A slice has a sim-

ple meaning: it should evaluate the variable occur-

rence identically to the original program for all test-

cases.

�This paper appeared in the Proceedings of the ACM SIG-

PLAN'90 Conference on Programming Language Design and

Implementation, White Plains, New York, June 20{22, 1990,
and a special issue of ACM SIGPLAN Notices, vol. 25, no. 6,
June 1990, pp. 246{256.

Part of the work described here was done while the �rst au-
thor worked at Bell Communications Research, Morristown,
new Jersey, during the sumer of 1989. Other support was
provided by a grant from the Purdue University/University of

Florida Software Engineering Research Center (SERC), and by
the National Science Foundation grant 8910306-CCR.

Uses of program slicing have been suggested in

many applications, e.g., program veri�cation, test-

ing, maintenance, automatic parallelization of pro-

gram execution, automatic integration of program

versions, etc. (see, e.g., [Wei84, HPR89]). In this

paper we are primarily concerned with its use in pro-

gram debugging [Wei82]. Often during debugging the

value of a variable, var , at some program statement,

S, is observed to be incorrect. Program slicing with

respect to var and S gives that relevant subset of the

program where one should look for the possible cause

of the error. But the above notion of program slic-

ing does not make any use of the particular inputs

that revealed the error. It is concerned with �nding

all statements that could inuence the value of the

variable occurrence for any inputs, not all statements

that did a�ect its value for the current inputs. Unfor-

tunately, the size of a slice so de�ned may approach

that of the original program, and the usefulness of a

slice in debugging tends to diminish as the size of the

slice increases. Therefore, in this paper we examine

a narrower notion of \slice," consisting only of state-

ments that inuence the value of a variable occurrence

for speci�c program inputs.1 We refer to this problem

as Dynamic Program Slicing to distinguish it from the

original problem of Static Program Slicing.

Conceptually a program may be thought of as a

collection of threads, each computing a value of a pro-

gram variable. Several threads may compute values

of the same variable. Portions of these threads may

overlap one-another. The more complex the control

structure of the program, the more complex the in-

termingling of these threads. Static program slicing

isolates all possible threads computing a particular

variable. Dynamic slicing, on the other hand, iso-

lates the unique thread computing the variable for

the given inputs.

During debugging programmers generally analyze

1A slice with respect to a set of variables may be obtained

by taking the union of slices with respect to individual variables
in the set.
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the program behavior under the test-case that re-

vealed the error, not under any generic test-case.

Consider, for example, the following scenario: A

friend while using a program discovers an error. He

�nds that the value of a variable printed by a state-

ment in the program is incorrect. After spending

some time trying to �nd the cause without luck, he

comes to you for help. Probably the �rst thing you

would request from him is the test-case that revealed

the bug. If he only tells you the variable with the in-

correct value and the statement where the erroneous

value is observed, and doesn't disclose the particular

inputs that triggered the error, your debugging task

would clearly be much more di�cult. This suggests

that while debugging a program we probably try to

�nd the dynamic slice of the program in our minds.

The concrete test-case that exercises the bug helps us

focus our attention to the \cross-section" of the pro-

gram that contains the bug.2 This simple observation

also highlights the value of automatically determin-

ing dynamic program slices. The distinction between

static and dynamic slicing and the advantages of the

latter over the former are further illustrated in Sec-

tion 3.

In this paper we sketch several approaches to com-

puting dynamic program slices. A more detailed dis-

cussion with precise algorithmic de�nitions of these

approaches may be found in [AH89]. In Section 2

we briey review the program representation called

the Program Dependence Graph and the static slic-

ing algorithm. Then we present two simple extensions

to the static slicing algorithm to compute dynamic

slices in Sections 3.1 and 3.2. But these algorithms

may compute overlarge slices: they may include ex-

tra statements in the dynamic slice that shouldn't

be there. In Section 3.3 we present a data-structure

called the Dynamic Dependence Graph and an algo-

rithm that uses it to compute accurate dynamic slices.

Size of a Dynamic Dependence Graph depends on the

length of the program execution, and thus, in gen-

eral, it is unbounded. In Section 3.4, we introduce

a mechanism to construct what we call a Reduced

Dynamic Dependence Graph which requires limited

space that is proportional to the number of distinct

dynamic slices arising during the current program ex-

ecution, not to the length of the execution. The four

approaches to dynamic slicing presented here span a

range of solutions with varying space-time-accuracy

2When we say the slice contains the bug, we do not nec-
essarily mean that the bug is textually contained in the slice;
the bug could correspond to the absence of something from the
slice|a missing if statement, a statement outside the slice that
should have been inside it, etc. We can discover that something

is missing from the slice only after we have found the slice. In
this sense, the bug still \lies in the slice."

begin

S1: read(X);

S2: if (X < 0)

then

S3: Y := f1(X);

S4: Z := g1(X);

else

S5: if (X = 0)

then

S6: Y := f2(X);

S7: Z := g2(X);

else

S8: Y := f3(X);

S9: Z := g3(X);

end if;

end if;

S10: write(Y);

S11: write(Z);

end.

Figure 1: Example Program 1

trade-o�s.

2 Program Dependence Graph

and Static Slicing

The program dependence graph of a program

[FOW87, OO84, HRB88] has one node for each simple

statement (assignment, read, write etc., as opposed

to compound-statements like if-then-else, while-do

etc.) and one node for each control predicate expres-

sion (the condition expression in if-then-else, while-

do etc.). It has two types of directed edges|data-

dependence edges and control-dependence edges.3 A

data-dependence edge from vertex vi to vertex vj im-

plies that the computation performed at vertex vi di-

rectly depends on the value computed at vertex vj .
4

Or more precisely, it means that the computation at

vertex vi uses a variable, var , that is de�ned at vertex

vj , and there is an execution path from vj to vi along

which var is never rede�ned. A control-dependence

edge from vi to vj means that node vi may or may

not be executed depending on the boolean outcome

3In other applications like vectorizing compilers program

dependence graphs may include other types of edges besides
data and control dependence, e.g., anti-dependence, output-

dependence etc., but for the purposes of program slicing, the
former two su�ce.

4At other places in the literature, particularly that related
to vectorizing compilers, e.g., [KKL+81, FOW87], direction of

edges in Data Dependence Graphs is reversed, but for the pur-
poses of program slicing our de�nition is more suitable.
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Figure 2: Program Dependence Graph of the Program in Figure 1. The solid edges denote data dependencies

and the dashed edges denote control dependencies. Nodes in bold denote the Static Slice with respect to variable

Y at statement 10 in the program.

of the predicate expression at node vj .
5 Consider, for

example, the program in Figure 1. Symbols fi and

gi in the assignment statements are used to denote

some unspeci�ed side-e�ect-free functions with which

we are not presently concerned. Figure 2 shows the

Program Dependence Graph of this program. Solid

edges denote data dependencies and dashed edges de-

note control dependencies. We do not distinguish be-

tween the two types of edges from now on; both are

drawn as solid edges.

The static slice of a program with respect to a vari-

able, var , at a node, n, consists of all nodes whose

execution could possibly a�ect the value of var at n.

The static slice can be easily constructed by �nding

all reaching de�nitions of var at node n [ASU86], and

traversing the Program Dependence Graph beginning

at these nodes. The nodes visited during the traver-

sal constitute the desired slice [OO84, HRB88]. For

example, to �nd the static slice of the program in

Figure 1 with respect to variable Y at statement 10,

we �rst �nd all reaching de�nitions of Y at node 10.

These are nodes 3, 6, and 8. Then we �nd the set

of all reachable nodes from these three nodes in the

Program Dependence Graph of the program shown

in Figure 2. This set, f1, 2, 3, 5, 6, 8g, gives us the
desired slice. These nodes are shown in bold in the

�gure.

5This de�nition of control-dependence is for programs with
structured control ow. For such programs, the control-
dependence subgraph essentially reects the nesting structure
of statements in the program. In programs with arbitrary con-
trol ow, a control-dependence edge from vertex vi to vertex

vj implies that vj is the nearest inverse dominator of vi in the
control ow graph of the program (see [FOW87] for details).

3 Dynamic Slicing

As we saw above the static slice for the program in

Figure 1 with respect to variable Y at statement 10

contains all three assignment statements, namely, 3,

6 and 8, that assign a value to Y. We know that for

any input value of X only one of these three state-

ments may be executed. Consider the test-case when

X is �1. In this case only the assignment at state-

ment 3 is executed. So the dynamic slice, with re-

spect to variable Y at statement 10, will contain only

statements 1, 2, and 3, as opposed to the static slice

which contains statements 1, 2, 3, 5, 6, and 8. If the

value of Y at statement 10 is observed to be wrong

for the above test-case, we know that either there is

an error in f1 at statement 3 or the if predicate at

statement 2 is wrong. Clearly, the dynamic slice, f1,
2, 3g, would help localize the bug much more quickly

than the static slice, f1, 2, 3, 5, 6, 8g.

In the next few sections, we examine some ap-

proaches to computing dynamic slices. We denote

the execution history of the program under the given

test-case by the sequence <v1, v2, : : : , vn> of ver-

tices in the program dependence graph appended in

the order in which they are visited during execution.

We use superscripts 1, 2, etc. to distinguish between

multiple occurrences of the same node in the execu-

tion history. For example, the program in Figure 3

has the execution history <1, 2, 3, 4, 51, 61, 71, 81,

52, 62, 72, 82, 53, 9> when N is 2.

Given an execution history hist of a program P for

a test-case test , and a variable var , the dynamic slice

of P with respect to hist and var is the set of all state-

ments in hist whose execution had some e�ect on the

value of var as observed at the end of the execution.

Note that unlike static slicing where a slice is de�ned
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begin

S1: read(N);

S2: Z := 0;

S3: Y := 0;

S4: I := 1;

S5: while (I <= N)

do

S6: Z := f1(Z, Y);

S7: Y := f2(Y);

S8: I := I + 1;

end while;

S9: write(Z);

end.

Figure 3: Example Program 2

with respect to a given location in the program, we

de�ne dynamic slicing with respect to the end of ex-

ecution history. If a dynamic slice with respect to

some intermediate point in the execution is desired,

then we simply need to consider the partial execution

history up to that point.

3.1 Dynamic Slicing: Approach 1

We saw above that the static slice with respect to

variable Y at statement 10 for the program in Figure 1

contains all three assignment statements|3, 6, and

8; although for any given test-case, only one of these

statements is executed. If we mark the nodes in the

Program Dependence Graph that get executed for the

current test-case, and traverse only the marked nodes

in the graph, the slice obtained will contain only nodes

executed for the current test-case. So our �rst simple

approach to determining dynamic slices is informally

stated as follows:

To obtain the dynamic slice with respect to

a variable for a given execution history, �rst

take the \projection" of the ProgramDepen-

dence Graph with respect to the nodes that

occur in the execution history, and then use

the static slicing algorithm on the projected

Dependence Graph to �nd the desired dy-

namic slice.

Figure 4 shows the application of this approach for

the program in Figure 1 for test-case X = �1, which
yields the execution history <1, 2, 3, 4, 10, 11>. All

nodes in the graph are drawn dotted in the beginning.

As statements are executed, corresponding nodes in

the graph are made solid. Then the graph is traversed

only for solid nodes, beginning at node 3, the last

de�nition of Y in the execution history. All nodes

reached during the traversal are made bold. The set

of all bold nodes, f1, 2, 3g in this case, gives the

desired slice.

Unfortunately, the above naive approach does not

always yield precise dynamic slices: It may sometimes

include extra statements in the slice that did not af-

fect the value of the variable in question for the given

execution history. To see why, consider the program

in Figure 3 and the test-case N = 1, which yields the

execution history <1, 2, 3, 4, 51, 6, 7, 8, 52, 9>. Fig-

ure 5 shows the the result of using the above approach

to obtain the dynamic slice of this program with re-

spect to the variable Z at the end of the execution.

Looking at the execution history we �nd that state-

ment 7 assigns a value to Y which is never used later,

for none of the statements that appear after 7 in the

execution history, namely, 8, 5, and 9, uses variable

Y. So statement 7 should not be in the dynamic slice.

It is included in the slice because statement 9 depends

on statement 6 which has a data dependence edge to

statement 7 in the Program Dependence Graph. In

the next section we present a re�nement to the above

approach that avoids this problem.

3.2 Dynamic Slicing: Approach 2

The problem with Approach 1 lies in the fact that

a statement may have multiple reaching de�nitions

of the same variable in the program ow-graph, and

hence it may have multiple out-going data depen-

dence edges for the same variable in the Program De-

pendence Graph. Selection of such a node in the dy-

namic slice, according to that approach, implies that

all nodes to which it has out-going data-dependence

edges also be selected if the nodes have been executed,

even though the corresponding data-de�nitions may

not have a�ected the current node. In the example

above (Figure 3), statement 6 has multiple reaching

de�nitions of the same variables: two de�nitions of

variable Y from statements 3 and 7, and two of vari-

able Z from statements 2 and 6 itself. So it has two

outgoing data dependence edges for each of variables

Y and Z: to statements 3 and 7, and 2 and 6 respec-

tively (besides a control dependence edge to node 5).

For the test-case N = 1, each of these four statements

is executed, so inclusion of statement 6 in the slice

leads to the inclusion of statements 3, 7, and 2 as

well, even though two of the data dependencies of

statement 6|on statement 7 for variable Y and on

itself for variable Z|are never activated for this test-

case.

In general, a statement may have multiple reaching

de�nitions of a variable because there could be multi-

ple execution paths leading up to that statement, and

each of these paths may have di�erent statements as-

signing a value to the same variable. For any single

4
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Figure 4: Dynamic Slice using Approach 1 for the program in Figure 1, test-case X = �1, with respect to variable
Y at the end of the execution. All nodes are drawn as dotted in the beginning. A node is made solid if it is ever

executed; and is made bold if it gets traversed while determining the slice.

985 6 7

4321

Figure 5: Dynamic slice using Approach 1 for the program in Figure 3, test-case N = 1, for variable Z, at the end

of execution. Node 7 should not belong to the slice!

path, there can be at most one reaching de�nition

of any variable at any statement; and since, in dy-

namic slicing, we are interested in examining depen-

dencies for the single execution path under the given

inputs, inclusion of a statement in the dynamic slice

should lead to inclusion of only those statements that

actually de�ned values used by it under the current

test-case. This suggests our Approach 2 to computing

dynamic slices:

Mark the edges of the Program Dependence

Graph as the corresponding dependencies

arise during the program execution; then

traverse the graph only along the marked

edges to �nd the slice.

Consider again the program in Figure 3 and the

test-case N = 1. Using Approach 2 on its execu-

tion history <1, 2, 3, 4, 51, 6, 7, 8, 52, 9> for vari-

able Z yields the dynamic slice f1, 2, 3, 4, 5, 6, 8g.
This is depicted in Figure 6. Imagine all edges to be

drawn as dotted lines in the beginning. As statements

are executed, edges corresponding to the new depen-

dencies that occur are changed to solid lines. Then

the graph is traversed only along solid edges and the

nodes reached are made bold. The set of all bold

nodes at the end gives the desired slice. Note that

statement 7 that was included by Approach 1 in the

slice is not included under this approach.

If a program has no loops then the above approach

would always �nd accurate dynamic slices of the pro-

gram (see [AH89] for details). In the presence of

loops, the slice may sometimes include more state-

ments than necessary. Consider the program in Fig-

ure 7 and the test-case where N = 2 and the two val-

ues of X read are �4 and 3. Then, for the �rst time

through the loop statement 6, the then part of the if

statement, is executed and the second time through

the loop statement 7, the else part, is executed. Now

suppose the execution has reached just past state-

ment 9 second time through the loop and the second

value of Z printed is found to be wrong. The execu-

tion history thus far is <1, 2, 31, 41, 51, 6, 81, 91, 101,

32, 42, 52, 7, 82, 92>. If we used Approach 2 to �nd

the slice for variable Z for this execution history, we

5
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Figure 6: Dynamic Slice using Approach 2 for the program in Figure 3, test-case N = 1, for variable Z, at the

end of execution. All edges are drawn as dotted at the beginning. An edge is made solid if the corresponding

dependency is ever activated during execution. Only solid edges are traversed while slicing; nodes in the bold

denote the slice obtained.

begin

S1: read(N);

S2: I := 1;

S3: while (I <= N)

do

S4: read(X);

S5: if (X < 0)

then

S6: Y := f1(X);

else

S7: Y := f2(X);

end if;

S8: Z := f3(Y);

S9: WRITE(Z);

S10: I := I + 1;

end while;

end.

Figure 7: Example Program 3

would have both statements 6 and 7 included in the

slice, even though the value of Z in this case is only

dependent on statement 7. Figure 8 shows a segment

of the Program Dependence Graph (only statements

4, 6, 7, 8, and 9) along with the e�ect of using Ap-

proach 2. The data dependence edge from 8 to 6 is

marked during the �rst iteration, and that from 8 to

7 is marked during the second iteration. Since both

these edges are marked, inclusion of statement 8 leads

to inclusion of both statements 6 and 7, even though

the value of Z observed at the end of second iteration

is only a�ected by statement 7.

It may seem that the di�culty with the above ap-

proach will disappear if, before marking the data-

dependence edges for a new occurrence of a statement

in the execution history, we �rst unmarked any out-

going dependence edges that are already marked for

this statement. This scheme will work for the above

example, but unfortunately it may lead to wrong dy-

namic slices in other situations. Consider, for ex-

ample, the program in Figure 9. Consider the case

when the loop is iterated twice, �rst time through

statements 7 and 11, and second time through state-

ment 8 but skipping statement 11. If we obtain the

dynamic slice for A at the end of execution, we will

have statement 8 in the slice instead of statement 7.

This is because when statement 9 is reached second

time through the loop, the dependence edge from 9

to 7 (for variable Y) is unmarked and that from 9

to 8 is marked. Then, while �nding the slice for A at

statement 13, we will include statement 11, which last

de�ned the value of A. Since statement 11 used the

value of Z de�ned at statement 9, 9 is also included

in the slice. But inclusion of 9 leads to inclusion of 8

instead of 7, because the dependence edge to the lat-

ter was unmarked during the second iteration. Value

of Z at statement 11, however, depends on value of Y

de�ned by statement 7 during the �rst iteration, so

7 should be in the slice, not 8. Thus the scheme of

unmarking previously marked edges with every new

occurrence of a statement in the execution history

does not work.

3.3 Dynamic Slicing: Approach 3

Approach 2 discussed above sometimes leads to over-

large dynamic slices because a statement may have

multiple occurrences in an execution history, and dif-

ferent occurrences of the statement may have di�er-

ent reaching de�nitions of the same variable used by

the statement. The Program Dependence Graph does

not distinguish between these di�erent occurrences,

so inclusion of a statement in the dynamic slice by

virtue of one occurrence may lead to the inclusion

of statements on which a di�erent occurrence of that

6
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Figure 8: A subset of the dynamic slice obtained using Approach 2 for the program in Figure 7, test-case (N = 2,

X = �4, 3), for Variable Z. Node 6 should not be in the slice!

begin

S1: read(N);

S2: A := 0;

S3: I := 1;

S4: while (I <= N)

do

S5: read(X);

S6: if (X < 0)

then

S7: Y := f1(X);

else

S8: Y := f2(X);

end if;

S9: Z := f3(Y);

S10 if (Z > 0)

then

S11: A := f4(A, Z);

else

end if;

S12: I := I + 1;

end while;

S13: write(A);

end.

Figure 9: Example Program 4

statement is dependent. In other words, di�erent oc-

currences of the same statement may have di�erent

dependencies, and it is possible that one occurrence

contributes to the slice and another does not. In-

clusion of one occurrence in the slice should lead to

inclusion of only those statements on which this oc-

currence is dependent, not those on which some other

occurrences are dependent. This suggests our third

approach to dynamic slicing:

Create a separate node for each occurrence

of a statement in the execution history, with

outgoing dependence edges to only those

statements (their speci�c occurrences) on

which this statement occurrence is depen-

dent.

Every node in the new dependence graph will have at

most one out-going edge for each variable used at the

statement. We call this graph the Dynamic Depen-

dence Graph. A program will have di�erent dynamic

dependence graphs for di�erent execution histories.

Miller and Choi also de�ne a similar dynamic depen-

dence graph in [MC88]; however, their approach dif-

fers from ours in the way the graph gets constructed

(see Section 4).

Consider, for example, the program in Figure 7,

and the test-case (N = 3, X = �4, 3, �2), which
yields the execution history <1, 2, 31, 41, 51, 61, 81,

91, 101, 32, 42, 52, 71, 82, 92, 102, 33, 43, 53, 62, 83,

93, 103, 34>. Figure 10 shows the Dynamic Depen-

dence Graph for this execution history. The middle

three rows of nodes in the �gure correspond to the

three iterations of the loop. Notice the occurrences of

node 8 in these rows. During the �rst and third iter-

ations, node 8 depends on node 6 which corresponds

to the dependence of statement 8 for the value of Y

assigned by node 6, whereas during the second itera-

tion, it depends on node 7 which corresponds to the

dependence of statement 8 for the value of Y assigned

by node 7.

Once we have constructed the Dynamic Depen-

dence Graph for the given execution history, we can

easily obtain the dynamic slice for a variable, var , by

�rst �nding the node corresponding to the last de�ni-

tion of var in the execution history, and then �nding

all nodes in the graph reachable from that node. Fig-

ure 10 shows the e�ect of using this approach on the

Dynamic Dependence Graph of the program in Fig-

ure 7 for the test-case (N = 3, X = �4, 3, �2), for
variable Z at the end of the execution. Nodes in bold

belong to the slice. Note that statement 6 belongs to

the slice whereas statement 7 does not. Approach 2,

on the other hand, would have included statement 7

as well.

3.4 Dynamic Slicing: Approach 4

The size of a Dynamic Dependence Graph (total num-

ber of nodes and edges) is, in general, unbounded.

7
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Figure 10: Dynamic Dependence Graph for the Program in Figure 7 for the test-case (N = 3, X = �4, 3, �2).
Nodes in bold give the Dynamic Slice for this test-case with respect to variable Z at the end of execution.

This is because the number of nodes in the graph is

equal to the number of statements in the execution

history, which, in general, may depend on values of

run-time inputs. For example, for the program in Fig-

ure 3 the number of statements in its execution his-

tory, and hence the size of its Dynamic Dependence

Graph, depends on the value read by variable N at

statement 1. On the other hand, we know that every

program can have only a �nite number of possible dy-

namic slices | each slice being a subset of the (�nite)

program. This suggests that we ought to be able to

restrict the number of nodes in a Dynamic Depen-

dence Graph so its size is not a function of the length

of the corresponding execution history. Our fourth

approach exploits the above observation:

Instead of creating a new node for every oc-

currence of a statement in the execution his-

tory, create a new node only if another node

with the same transitive dependencies does

not already exist.

We call this new graph the Reduced Dynamic Depen-

dence Graph. To build it without having to save the

entire execution history we need to maintain two ta-

bles called DefnNode and PredNode. DefnNode maps

a variable name to the node in the graph that last

assigned a value to that variable. PredNode maps a

control predicate statement to the node that corre-

sponds to the last occurrence of this predicate in the

execution history thus far. Also, we associate a set,

ReachableStmts, with each node in the graph. This

set consists of all statements one or more of whose oc-

currences can be reached from the given node. Every

time a statement, Si, gets executed, we determine the

set of nodes, D, that last assigned values to the vari-

ables used by Si, and the last occurrence, C, of the

control predicate node of the statement. If a node,

n, associated with Si already exists whose immediate

descendents are the same as D[C, we associate the

new occurrence of Si with n. Otherwise we create a

new node with outgoing edges to all nodes in D[C.
The DefnNode table entry for the variable assigned

at Si, if any, is also updated to point to this node.

Similarly, if the current statement is a control predi-

cate, the corresponding entry in PredNode is updated

to point to this node.

If there were no circular dependencies in the de-

pendence graph then the above scheme of looking

for a node with the same set of immediate descen-

dents would work �ne. But in presence of circular de-

pendencies (i.e., in presence of loops in the program

dependence graph), the graph reduction described

above won't occur: for every iteration of a loop in-

volving circular dependencies we will have to create

new node occurrences. We can avoid this problem, if

whenever we need to create a new node, say for state-

ment Si, we �rst determine if any of its immediate
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descendents, say node v, already has a dependency

on a previous occurrence of Si and if the other imme-

diate descendents of the new occurrence of Si are also

reachable from v. This is easily done by checking if

the ReachableStmts set to be associated with the new

occurrence is a subset of the ReachableStmts set asso-

ciated with v. If so, we can merge the new occurrence

of Si with v. After this merge, during subsequent it-

erations of the loop the search for a node for Si with

same immediate descendents will always succeed.

Consider again the program in Figure 7, and test-

case (N = 3, X = �4, 3, �2), which yields the exe-

cution history <1, 2, 31, 41, 51, 61, 81, 91, 101, 32,

42, 52, 71, 82, 92, 102, 33, 43, 53, 62, 83, 93, 103, 34>.

Figure 11 shows the Reduced Dynamic Dependence

Graph for this execution history. Every node in the

graph is annotated with the set of all reachable state-

ments from that node. Note that there is only one

occurrence of node 10 in this graph, as opposed to

three occurrences in the Dynamic Dependence Graph

for the same program and the same test-case. Also

note that the second occurrence of node 3 is merged

with its immediate descendent node 10 because the

ReachableStmts set, f1, 2, 3, 10g, of the former was

a subset of that of the latter. The third occurrence

of node 3 in the execution history has node 1 and

node 10 as immediate descendents. Since these imme-

diate dependencies are also contained in the merged

node (10,3), the third occurrence of node 3 is also

associated with this node.

Once we have the Reduced Dynamic Dependence

Graph for the given execution history, to obtain the

dynamic slice for any variable var we �rst �nd the

entry for var in the DefnNode table. The Reach-

ableStmts set associated with that entry gives the de-

sired dynamic slice. So we don't even have to traverse

the Reduced Dynamic Dependence Graph to �nd the

slice. For example, the dynamic slice for variable Z in

case of the Reduced Dynamic Dependence Graph in

Figure 7 is given by the ReachableStmts set, f1, 2, 3,
4, 5, 6, 8, 10g, associated with node 8 in the last row,

as that was the last node to de�ne value of Z.

4 Related Work

The concept of program slicing was �rst proposed by

Weiser [Wei84, Wei82]. His solution for computing

static program slices was based on iteratively solving

data-ow equations representing inter-statement in-

uences. Ottenstein and Ottenstein later presented

a much neater solution for static slicing in terms of

graph reachability in the Program Dependence Graph

[OO84], but they only considered the intra-procedural

case. Horwitz, Reps, and Binkley have proposed ex-

tending the Program Dependence Graph represen-

tation to what they call System Dependence Graph

to �nd inter-procedural static slices under the same

graph-reachability framework [HRB88]. Dependence

Graph representation of programs was �rst proposed

by Kuck et al. [KKL+81]; several variations of this

concept have since been used in optimizing and par-

allelizing compilers [FOW87] besides their use in pro-

gram slicing.

Korel and Laski extended Weiser's static slicing

algorithms based on data-ow equations for the dy-

namic case [KL88]. Their de�nition of a dynamic slice

may yield unnecessarily large dynamic slices. They

require that if any one occurrence of a statement in

the execution history is included in the slice then all

other occurrences of that statement be automatically

included in the slice, even when the value of the vari-

able in question at the given location is una�ected

by other occurrences. The dynamic slice so obtained

is executable and produces the same value(s) of the

variable in question at the given location as the orig-

inal program. For our purposes, the usefulness of a

dynamic slice lies not in the fact that one can execute

it, but in the fact that it isolates only those state-

ments that a�ected a particular value observed at a

particular location. For example, in the program of

Figure 7 each loop iteration computes a value of Z,

and each such computation is totally independent of

computation performed during any other iteration. If

the value of variable Z at the end of a particular iter-

ation is found be incorrect and we desire the dynamic

slice for Z at the end of that iteration, we would like

only those statements to be included in the slice that

a�ected the value of Z observed at the end of that

iteration, not during all previous iterations, as the

previous iterations have no e�ect on the current iter-

ation. It is interesting to note that our Approach 2

(which may yield an overlarge dynamic slice) would

obtain the same dynamic slice as obtained under their

de�nition. So our algorithm for dynamic slicing based

on the graph-reachability framework may be used to

obtain dynamic slices under their de�nition, instead

of using the more expensive algorithm based on iter-

ative solutions of the data-ow equations.

Miller and Choi also use a dynamic dependence

graph, similar to the one discussed in Section 3.3,

to perform ow-back analysis [Bal69] in their Paral-

lel Program Debugger PPD [MC88]. Our approach,

however, di�ers from theirs in the way the graph is

constructed. Under their approach, separate data-

dependence graphs of individual basic blocks are con-

structed. The dynamic dependence graph is build

by combining, in order, the data-dependence graphs

of all basic blocks reached during execution and in-
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{1,2,3,4,5,6,8,9,10}

{1,2,3,4,5,6,8,10}

{1,2,3,4,5,6,10}

{1,2,3,4,5,7,8,9,10}

{1,2,3,4,5,7,8,10}{1,2,3,4,5,7,10}

{1,2,3,4,5,10}

{1,2,3,4,10}

{1,2,3,4,5,6,8,9}

{1,2,3,10}{1,2,3,4,5,6,8}

{1,2,3,4,5,6}

{1,2,3,4,5}

{1,2,3,4}

{1,2,3}

986

987

21

986543

4 5

{1} {2}

10,3

Figure 11: The Reduced Dynamic Dependence Graph for the Program in Figure 7 for the test-case (N = 3,

X = �4, 3, �2), obtained using Approach 4. Each node is annotated with ReachableStmts, the set of all

statements reachable from that node.

serting appropriate control dependence edges among

them. They use a notion of incremental tracing where

portions of the program state are checkpointed at the

start and the end of segments of program-code called

emulation-blocks. Later these emulation blocks may

be reexecuted to build the corresponding segments of

the dynamic dependence graph. The size of their dy-

namic dependence graph may not be bounded for the

same reason as that discussed in Section 3.4.

5 Summary

In this paper we have examined four approaches for

computing dynamic program slices. The �rst two are

extensions of static program slicing using Program

Dependence Graph. They are simple and e�cient;

however, they may yield bigger slices than necessary.

The third approach uses Dynamic Dependence Graph

to compute accurate dynamic slices but the size of

these graphs may be unbounded, as it depends on

the length of execution history. Knowing that every

program execution can have only a �nite number of

dynamic slices it seems unnecessary having to create

a separate node in the Dynamic Dependence Graph

for each occurrence of a statement in the execution

history. We then proposed the notion of a Reduced

Dynamic Dependence Graph where a new node is cre-

ated only if it can cause a new dynamic slice to be

introduced. The size of the resulting graph is pro-

portional to the actual number of dynamic slices that

arose during the execution and not to the length of

the execution.
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