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Abstract
Disfluencies occur frequently in spontaneous speech. Detec-
tion and correction of disfluencies can make automatic speech
recognition transcripts more readable for human readers, and
can aid downstream processing by machine. This work investi-
gates a number of knowledge sources for disfluency detection,
including acoustic-prosodic features, a language model (LM)
to account for repetition patterns, a part-of-speech (POS) based
LM, and rule-based knowledge. Different components are de-
signed for different purposes in the system. Results show that
detection of disfluency interruption points is best achieved by a
combination of prosodic cues, word-based cues, and POS-based
cues. The onset of a disfluency to be removed, in contrast, is
best found using knowledge-based rules. Finally, specific dis-
fluency types can be aided by the modeling of word patterns.

1. Introduction
Spontaneous speech differs from written text. One difference is
the presence of disfluencies. Accurate identification and clean-
up of disfluencies can improve readability and aid performance
of downstream language processing modules.

Disfluencies can be broken down into three regions: the
reparandum, an optional editing phase1, and the resumption.
Here we study three types of disfluencies:

� repetitions: the speaker repeats some part of the utter-
ance. For example,I * I like it .

� revisions(content replacement): the speaker modifies
some part of the utterance. For example,We * I like it.

� restarts(also called false starts): a speaker abandons an
utterance or constituent and then starts over. For exam-
ple, It’s also * I like it.

In the examples above, ‘*’ denotes the right edge of the
reparandum region and is called the interruption point (IP).

Our goal in this paper is to identify the reparandum region
of disfluencies. This represents work carried out for the DARPA
EARS project, with the goal of automatic extraction of struc-
tural information to enrich automatic transcriptions of speech.

Hindle [1] suggested that an acoustic “edit signal” serves
as a cue that fluent speech has been interrupted. Although no
evidence for a single such cue has been found, several corpus
studies have found that combinations of cues can be used to
identify disfluencies with reasonable success [2, 3, 4, 5].

1The editing phase consists of a spoken cue phrase like filled pauses
(such asuh), discourse markers (such asyou know, I mean), or explicit
editing terms (such asoops).
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Figure 1: System diagram.

Shriberg and Stolcke [6] proposed a framework for sentence
boundary and disfluency detection, which combines a prosody
model and a language model. Our study here builds upon that
framework, adding more knowledge sources. We investigate ad-
ditional acoustic-prosodic features, extend the language model
to handle repetition patterns, and add a class-based LM. Be-
cause speakers are still fluent at the beginning of the reparan-
dum of a disfluency, it is likely that there are no reliable prosodic
or language cues at this location. Our approach is thus to first
detect the interruption point, and then apply some knowledge-
based rules to identify the disfluency starting point. Figure 1
shows the system diagram.

This paper is organized as follows. In Section 2 we de-
scribe the acoustic-prosodic features we have investigated. In
Section 3, we introduce the language model component, includ-
ing a POS-based LM and the extended LM that accounts for the
repetition patterns. Section 4 shows the experimental results.
Conclusions are found in Section 5.

2. Acoustic-Prosodic Features
We extracted acoustic-prosodic features for each inter-word
boundary. Similar to prior work [6], two main types of prosodic
features, duration and pitch, are extracted from either the forced
alignments of speech to human transcriptions, or from speech
recognition output. Duration features, such as word duration,
pause duration, and phone-level duration, are normalized by
overall phone duration statistics and speaker-specific statistics.
To obtain F0 features, pitch tracks are extracted from the speech
signal and then post-processed to obtain stylized pitch contours
[7], from which F0 features are extracted. Examples of F0 fea-
tures are the distance from the average pitch in the word to the
speaker’s pitch floor and the difference of the average stylized
pitch across a word boundary. Some nonprosodic information
is included too, such as speaker gender and turn change.

We also investigated a preliminary set of voice quality mea-
surements, to assess whether they can help identify interrup-
tion points. When people stop suddenly, their voice quality can
change. Experiments have shown voice quality cues help in de-



tecting word fragments [8]. The following voice quality related
features were investigated:

� Jitter is a measure of the perturbation in the pitch period
[9]. The periodic jitter value is defined as the relative
mean absolute second-order difference of the time inter-
vals of the pitch pulse sequence, and is obtained using
the Praat tool [10].

� Spectral tilt is the overall slope of the spectrum of a
speech signal. We use a linear approximation of the
spectral envelope to measure spectral tilt.

� Open Quotient (OQ) is defined as the ratio of the time
in which the vocal folds are open to the total length of
the glottal cycle. For the spectral domain, it can be for-
mulated empirically as described in [11].

3. Language Models (LMs)
In order to detect interruption points, we use hidden-event LMs.
In a hidden-event LM, each event is represented by an additional
non-word token, for example,I <IP> I think. The event token
<IP> is explicitly represented and included in the vocabulary
of the N-gram LM.

3.1. Hidden-Event Word-based LM

The hidden-event word LM models the joint distribution of
the event sequenceE and the word stringW , P (W;E). The
word/event LM is trained from the transcriptions, hand-labeled
with the events of interest. During testing, a forward-backward
algorithm is used to compute the posterior probabilityP (EjW )
and find the most likely event sequence.

3.2. Hidden-Event POS-based LM

We also investigated the effect of a hidden-event LM based on
part-of-speech (POS). The idea is to capture syntactically gen-
eralized patterns, such as the tendency to repeat prepositions.
Heeman and Allen [12] proposed a tightly-coupled approach to
finding the best POS sequence and disfluency events together,
but experiments were conducted on the TRAINS corpus, which
differs from Switchboard conversational speech in that it is far
more template-based. As a starting point to incorporate more
syntactic information, we used a loosely-coupled model. We
trained a POS tagger using the Switchboard Treebank data [13]
and used it to tag our training and testing data. Similar to
[14], we maintained the identity of some cue words (e.g., filled
pauses and discourse markers). Given the tag sequence and the
hidden event tokens, we modeled the joint probability of the
POS sequenceP and the event sequenceE. During testing we
find the event sequence that maximizesP (EjP ) for the given
POS stringP .

3.3. Repetition Pattern LM

A word-based N-gram LM can only learn certain frequently oc-
curring disfluencies from the training data, and cannot gener-
alize to disfluencies with the same pattern but using different
words. For example, in‘I hope to have to have lots of dinner
parties’ (with ‘to have’ repeated), a regular word-based hidden-
event LM fails to detect the IP since the repetition‘to have to
have’does not occur frequently in the training data. Such a fail-
ure would also affect the speech recognition task in which the
purpose of an LM is to calculate the probability of word strings.
To address such issues, we modified the word-based LM to ac-

count for repetitions. Currently we handle only repetitions be-
cause they are the most constrained and occur frequently.

For each repetition in the training data, we preserve the
cleaned-up utterance, and map the repetition to a pattern. For
the example above, the cleaned-up text is‘I hope to have lots of
dinner parties’; the repetition is mapped as follows:

       to                 have           to                have
START          ORIG-1             IP           REP-1             END

The pattern sequence in the example above is ‘START ORIG-1
IP REP-1 END’. The number after ‘-’ in the pattern denotes the
position of that event in either the reparandum or the repeat re-
gion. The LM is still an N-gram LM, whose counts are obtained
from both the cleaned-up text and the counts of such patterns.
There is not any lexical context associated with these repetition
patterns in the N-gram LM, which is equivalent to allowing such
a pattern to occur for any word choice. Note that we model the
whole sequence of the repetition pattern (e.g., the IP as well as
the reparandum onset) as shown in the pattern example, whereas
the regular word-based LM models only one hidden event (the
IP).

During testing, for each word boundary we hypothesize
repetition events, based on the valid state transitions and
whether a word matches a previous word. Each hidden event
in a repetition pattern has some properties representing where
it occurs in the pattern, from which a possible valid next event
can be inferred. During trellis decoding, only valid state tran-
sitions are considered. Figure 2 shows the state transitions for
repetitions having up to three repeated words.

The probability is calculated in the same way as in a word-
based LM for fluent words, until the interruption point. Then,
in the repetition, the pattern N-gram probability is used instead
of the word-based probability. An advantage of this approach
is that it can detect repetitions that have the same pattern as
shown in the training data but do not necessarily use the same
words; however, an event word-LM can only detect repetitions
that have occurred frequently in the training data.

4. Experiments
4.1. Experimental Setup

Experiments were conducted using a portion of the
Switchboard-I corpus [15], which consists of 1593 con-
versations hand labeled for disfluencies [16]. We randomly
divided them into a roughly 863K training and 96K test set,
with no speaker overlap.

The IP detection task is a two-way classification problem
(the top-left block in Figure 1). For each between-word lo-
cation, a decision of “non-IP” vs. “IP” is made. The IPs of
different disfluency types are grouped together into the class
“IP”, and all other boundaries are grouped into the class “non-
IP”. We extracted prosodic and voice quality features from both
the forced alignments and recognition output, using the SRI
LVCSR recognizer [17]. A decision tree was trained from
the data to predict event classes using acoustic-prosodic fea-
tures. Because IPs are relatively rare events, we downsampled
our training data to equate the prior probabilities for different
classes. This can avoid the problem of highly skewed class dis-
tributions and makes the decision tree sensitive to any inherent
prosodic features that distinguish the classes. A 4-gram word-
based LM and 5-gram POS-based LM were trained from the
transcriptions and the annotations of the training set. For the
combination of the prosody model and the hidden-event word
LM, we used an HMM-based integration approach [6]. When
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Figure 2: The valid state transitions for repetitions of up to
3 words. X-Y axes represent the position in the reparandum
and repeat region, with events denoted by ORIG- and REP- re-
spectively. In ORIG-n,n means the position of a word in the
reparandum; in REP-m.n,m is the total number of repeated
words andn represents the position of the event in the repeat
region. Optional filled pauses (FP) or discourse markers (DM)
are allowed after the IP in the transition.

combining the three models (the prosody model, the word-
based LM, and the POS-based LM), we interpolated the pos-
terior probabilities from all three models.

In the system diagram (Figure 1), the repetition pattern LM
detects the existing repetitions. The IPs and the onset of the
reparandum are among the outputs of this module. After de-
tecting interruption points, we use some rule-based knowledge
to identify the start point of the disfluencies. The final output
for the system is the union of the decisions from the rule-based
post-processing module and the repetition pattern identifier.

4.2. Experimental Results

4.2.1. IP Detection

We report experimental results using classification accuracy, re-
call, and precision. Because there is a tradeoff between recall
and precision, we optimize the parameters for model combi-
nation on the overall accuracy. The top rows of Table 1 show
the results on the downsampled test data using a prosody model
alone. The bottom rows are the results on non-downsampled
test data using the word-based LM, the POS-based LM, the
prosody model, and their combination. All results were ob-
tained from testing on human transcriptions in order to avoid
the effect of word errors in recognition outputs when comparing
the performance of different models. Note that in this test con-
dition, we did not use any word fragment information (which,
when present, always signals the existence of disfluencies) for a
fair comparison with testing on ASR output, since current ASR
systems do not provide word fragment information.

The results in Table 1 show that the prosody model
alone yields a much better accuracy than chance performance
on downsampled data. This suggests that there exist some
acoustic-prosodic cues at the interruption points. However,
we need to be careful when interpreting this result. Because
the non-downsampled test data is unbalanced between the two
classes, using only the posterior probability from the decision
tree on the test set will generate many false alarms. In order to
take into account the prior probability of an IP, the final deci-
sion on the non-downsampled data is a combination of the prior
probability of each class (IP vs. non-IP) and the posterior prob-
ability given by the decision tree. We found that using such an
approach, the prosody model alone yields only chance perfor-
mance on the non-downsampled data. This is because the pos-

Table 1: IP detection results using the human transcriptions.
Chance performance on the non-downsampled data is obtained
by hypothesizing each word boundary as a ‘non-IP’ event.

Overall
Recall Precision Accuracy

Chance - - 50
Downsampled Prosody 75.81 77.26 76.75

Chance 0 - 96.62
Prosody 0 - 96.62

Non- Word-LM 55.47 79.33 98.01
downsampled POS-LM 36.73 65.75 97.22

Word-LM
+Prosody 58.27 78.37 98.05
Word-LM
+ Prosody 56.76 81.25 98.10
+ POS-LM

terior probability generated by the prosody model is not very
high, implying the prosodic features are not sufficiently reliable
to overtake the low prior probability of an ‘IP’ event. Hence
the final decision is always ‘non-IP’. Experiments in [18] have
shown that useful prosodic cues exist at the interruption points,
but the performance of the prosody model was not investigated
on non-downsampled data in that research.

An analysis of the results shows that most of the interrup-
tion points correctly detected by LMs are repetitions. It is more
difficult to capture the properties of the revisions and restarts by
a simple N-gram word model. The word-based LM alone out-
performs a POS-based LM alone, indicating the importance of
specific lexical information.

Interestingly, even though when combined with a word-
based LM, neither the prosody model nor the POS-based LM
yield significant improvement over the single word LM2, the
combination of the three models achieves the best performance,
virtually a 4.5% relative reduction of total classification error
rate compared to using a word-based LM (significance bino-
mial test shows at the level of 0.02). This suggests that ev-
ery knowledge source provides some information and that their
combination yields improvement overall.

Table 2: Comparisons of IP detection on human transcriptions
(Ref) and ASR output.

Chance Accuracy
Downsampled Ref 50 76.75

Prosody ASR 50 72.61

Non-downsampled Ref 96.62 98.01
Word-LM ASR 96.70 97.05

Table 2 shows results when testing on recognition output
compared to human transcriptions. Note that in Table 2 we do
not show all model combinations; results are similar to the pat-
terns obtained using human transcriptions. When testing on
recognition output, we observe degradations in performance.
Word errors affect the robustness of both language models and
the prosody model, with more effect on LMs. As shown in Ta-
ble 2, there is less degradation to the prosody model on down-
sampled data than to the LM on non-downsampled data3. This

2We have conducted experiments and found that the prosody model
contributes differently for different types of disfluencies. For example,
combining with the prosody model can reduce the classification error
(statistically significant) in the task of repetition interruption point de-
tection. However, our task here groups all IPs into one class.

3Because the prosody model alone performs at chance, we cannot
observe the effect of recognition output on the prosody model using



suggests that LMs are more dependent on word identity and thus
are more affected in face of incorrect words than is the prosody
model.

4.2.2. Repetition Pattern Detection

We tested the repetition pattern LM on the human transcrip-
tions for repetition detection. We also used this LM to calculate
the perplexity of the test set. The results are shown in Table 3.
Although this LM can detect the IP and onset of the reparan-
dum together, we report only IP detection results in order to
compare results with those for the word-based LM. We found
that more repetitions are identified using this pattern LM than
when using the word-based LM. Spot-checking of the reference
annotation shows some errors in the reference, suggesting that
the results of using the repetition pattern LM may be underes-
timated. Note that a repetition detection model that takes into
account the word fragment information would further improve
the accuracy of results shown in the table. This repetition pat-
tern LM requires strict word matching, therefore, it also suffers
from ASR errors.

The perplexity generated by the pattern LM is reduced com-
pared to that of the word-only LM. In repetitions, the word-only
LM uses the word-based probability, whereas the pattern LM
calculates only the pattern event probability (which usually has
a higher probability than the word sequence). Whether we can
use such a LM for rescoring lattices or N-best lists is currently
under investigation.

Table 3: Repetition IP detection accuracy and perplexity on the
test set using a repetition pattern LM and a word-based LM. The
hidden-event in the word-based LM is ‘<IP>’.

Recall Precision Perplexity
Repetition Pattern LM 80.67 70.09 110.95

Word-based LM 67.77 77.29 125.96

4.2.3. Finding the Onset of Disfluencies

After IPs are detected, as described earlier, we use rule-based
knowledge to find the onset of the reparandum. For example, a
repeated word across an IP helps delimit the reparandum (e.g.,
in “ I want to leave on Monday * on Sunday”, the reparandum
starts from the first “on”). We use a boundary based classifi-
cation accuracy as our performance measure for the disfluency
starting point. We obtained a recall rate of 61.45% and preci-
sion of 68.64%, compared to a recall of 46.41% and precision
of 75.86% using a hidden-event LM alone to find the start of
disfluencies. Better results would be obtained using more accu-
rate IP hypotheses. Ultimately our goal is to jointly model these
different knowledge sources.

5. Conclusions
We have described a disfluency detection system based on
acoustic-prosodic features, as well as word-based, POS-based,
and repetition pattern based LMs. For IP detection, results show
that a prosody model alone performs much better than chance
on downsampled test data, but only performs at chance on the
non-downsampled data. A word-based hidden-event LM alone
outperforms both the prosody model and the POS-based LM
alone. When combined with a word-based LM, neither the
prosody model nor POS-based LM yields significant improve-
ment over the single word-based LM. Interestingly however,

non-downsampled data.

the combination of the three models achieves the best perfor-
mance. This suggests that each knowledge source contributes
differently to the combined performance. We also find that tak-
ing repetition patterns into account in the LM can help detect
repetitions and reduce perplexity. Finally, recognition errors
degrade classification performance. The incorrect recognized
words have a more negative effect on LMs than on the prosody
model, because of the stronger dependence of LMs on correct
word identity.
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