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ABSTRACT 
 
Human speech communication can be thought of as 
comprising two channels – the words themselves, and the 
style in which they are spoken. Each of these channels 
carries information. Today's most-advanced text-to-speech 
(TTS) systems such as [1],[2],[3],[4] fall far short of 
human speech because they offer only a single, fixed style 
of delivery, independent of the message. In this paper, we 
describe the IBM Expressive TTS Engine, which is able 
to add another channel by offering five speaking styles. 
These are: neutral declarative, conveying good news, 
conveying bad news, asking a question, and showing 
contrastive emphasis. In addition to generating speech in 
these five styles, our TTS system is also able to generate 
paralinguistic events such as sighs, breaths, and filled 
pauses which further enrich the style channel. We 
describe our methods for generating and evaluating 
expressive synthetic speech and paralinguistic effects. We 
show significant perceptual differences between 
expressive and neutral synthetic speech for each of our 
speaking styles. In addition, we describe how users have 
been empowered to easily communicate the desired 
expression to the TTS engine through our extensions [5] 
of the Speech Synthesis Markup Language (SSML) [6].  
 
 

1. INTRODUCTION 
 
Today’s most-advanced text-to-speech (TTS) systems use 
a cost function to select segments from a recorded 
database; the selected segments are then concatenated to 
form the synthetic speech signal. In such systems, the 
database of speech segments is typically collected by 
recording a speaker reading a large script. The underlying 
speaking style of the speaker from which the database is 

recorded is reliably perceived in the output synthetic 
speech [7]. Usually, when building these systems, 
researchers strive for consistency, because pieces of 
waveforms from one part of the database are expected to 
join seamlessly with pieces of waveforms from other parts 
of the database.  In addition to consistency in low-level 
parameters, such as loudness and distance from the 
microphone, the speaker is asked to maintain consistency 
in speaking style. Because a single style of speaking is 
maintained during the recordings, and that style will  be 
largely preserved in the output speech, the target 
recording style is necessarily chosen to be a compromise 
which is expected to be appropriate in most applications. 
A typical example is a style which is somewhat neutral 
but with warm, friendly tendencies, such as that of a 
weather reporter. Unfortunately, any single style, 
including that of a friendly newscaster, cannot be 
appropriate in every context.  In the case of conveying bad 
news, such as:  “ That flight is sold out,”  a subdued 
approach would be much more appropriate.   
 
A desirable quality of a TTS system is the ability to speak 
expressively, dynamically adapting the style of voice 
according to the message. Such a system would, for 
example, speak in an upbeat manner when conveying 
good news and in a more subdued tone when delivering 
bad news. Other examples of expressions that a TTS 

Expression Example 
Good news I have successfully reset your PIN. 
Bad news I am unable to verify your identity. 
Confusion I did not understand your request. 
Contrast This is a round-trip fare. 
Apology I cannot find you in my records. 
Question Do you confirm the sale of all shares? 
Confidence Your account balance is $8,432.50. 
Greeting Welcome to the IBM Help Desk. 
Farewell Thanks for calling. Goodbye. 



system might need include confusion, showing 
contrastive emphasis, apology, asking a question, exuding 
confidence, greeting, farewell, etc. Specific examples of 
each of these expressions are shown in the table above. 
Note that some expressions are overlapping, such as bad 
news and apology. We may be able to use one system to 
convey several expressions, as long as the output does not 
sound inappropriate for the message; a key feature of an 
expressive TTS system is its ability to communicate in a 
manner that is appropriate for the message being 
conveyed. Generally, an authoritative-sounding voice may 
be best for an information-provision application such as a 
travel-planning system, but in a case in which the system 
does not understand the customer's request or cannot 
comply with it, a less authoritative expression would be 
more appropriate, to complement rather than conflict with 
the words expressing either confusion about the request or 
remorse about the system's inability to comply with the 
request.  In such a case, the appropriateness of the 
expression is likely to contribute to the customer's 
satisfaction with the quality of the system. Efficiency may 
be an additional benefit here, as it may impose less 
cognitive load on the listener if the expression coordinates 
with the text of the message rather than detracts from it. 
 
Many automated telephone systems support conversations 
between callers and computers.  The caller speaks to a 
speech recognition system, and the computer responds 
using text-to-speech software.  One goal of the TTS 
designer is to maximize the communicating efficiency of 
the system -- both the quantity and accuracy of the 
information it can carry in a given time. Unti l recently, 
that mostly involved making the output speech more 
intell igible.  At this point the intell igibility problem has 
largely been solved, so designers now seek other ways to 
increase the quantity and quality of information that TTS 
can communicate. As an example in which an expressive 
voice is more efficient than a non-expressive voice, 
consider the following interaction from a travel-planning 
system: 
 
Customer :  I 'd like a flight from New York to Denver  
tomor row morning.  
System:  I  have a flight from New York to Denver tomor row 
evening. 
 
Without an ability to express the contrast between the 
requested morning flight and the provided evening flight, 
the customer is l ikely to attribute erroneously the 
mismatch to the system misunderstanding his request, and 
follow with a repeat request. If, instead, the system has an 
ability to specify to the synthesis component that 
“evening”  be spoken in such a way as to express contrast, 
the customer is more likely to understand that the system 
has understood him and is providing the best alternative, 

thereby sparing the diversion and avoiding a lengthier 
interaction. 
 
In this paper, we discuss enabling a concatenative text-to-
speech system to speak expressively. We focus on a 
corpus-based approach. Concurrently we are exploring 
another approach to generating expressive synthetic 
speech, which relies on an intermediate prosodic 
phonological representation such as ToBI [8],[9]. That 
approach is described in detail in [10] for the generation 
of questions and contrastive emphasis.  We are currently 
working on merging these two complementary 
approaches, to arrive at a unified expressive TTS engine. 
In Section 2 of this paper, we describe the corpora we use 
in our expressive speech system.  In Section 3 we describe 
how we build statistical models of pitch and duration from 
the expression-specific data. In Section 4 we describe how 
we make use of the expressive data and expression-
specific prosody models to generate expressive speech. In 
Section 5 we describe the addition of paralinguistic events 
such as sighs and fil led pauses to the synthetic utterance. 
In Section 6 we describe our extensions to SSML which 
enable users to communicate desired expressions and 
paralinguistic events to the synthesis engine.  Finally, in 
Section 7 we present results on the ability of our TTS 
system to speak expressively, and we discuss those results 
and future work in Section 8. 
 
 

2. DATA COLLECTION 
 
A viable method of generating expressive speech is to 
collect separate speech corpora in each desired 
expression, and synthesize using a system trained 
exclusively from the data of a given expression in order to 
produce speech in that style [7]. However, that approach 
is expensive, slow, and inflexible. In this section we 
discuss a variation of that approach which is much more 
practical to deploy.  Specifically, we collect a set of 
databases, one in each of the desired expressions. The 
expression-specific texts were read by the same 
professional speaker who generated our neutral database. 
However, for each expression we need collect only 
enough data to train prosody models; we replace the 
prosody models built from the neutral database with those 
trained on data from a given expression. 
 
The speaker read a small number of sentences for each 
desired expression. Each set of sentences was written so 
that the message of the text was consistent with the target 
expression. We collected data for the following 
expressions: conveying good news, conveying bad news, 
and asking a question. From the data for a given 



expression, we build expression-dependent prosody 
models as described in the next section. 
 

3. EXPRESSIVE PROSODY MODELS 
 

To build a prosody model for each expressive state, an 
end pitch and a delta pitch for each syllable are predicted 
from a set of features gathered from the text.  This 
method, including the features, is the same as for our 
neutral model; only the data from which the model is built 
differ.   
Features include:   

• Lexical stress of the current syllable 
• Phrase-level stress of the current word, as predicted by 

the rule-based front-end processor 
• Distance of the current word  from the beginning of the 

current phrase  
• Distance of the current word  from the end of the current 

phrase 
• Part of speech of the current word  
• Type of the current phrase (yes/no question, ends-in-

comma, ends-in-period, etc.)  
• Pitch at the end of the current syllable as predicted by 

the rule-based front-end processor 
 
In training the model to predict F0, for each syllable in a 
given training utterance, the feature vector associated with 
that syllable along with the feature vectors associated with 
the two syllables to the left and to the right are 
concatenated, and associated with an observation vector 
consisting of log(p) and  ∆p, where p is the pitch in Hertz 
at the end of the syllable nucleus.  From these feature 
vectors and observations, a decision tree is built to 
maximize the likelihood of the observations.    
 
During synthesis, the same features are assembled and 
dropped down the tree for each syllable in the sentence to 
be synthesized. The mean pitch and mean delta pitch at 
the resulting tree leaf are used to construct the target pitch 
contour. The estimated end pitch and delta pitch of the 
syllable are used to calculate a target pitch contour which, 
after smoothing [1], is used to evaluate the pitch target 
component of the cost function for each database segment 
under consideration for selection.   
 
Analogously to the F0 contour generation, we use a 
decision tree model to produce a duration target for each 
phone to be synthesized.  A set of features is derived from 
the text for each phone, including: 
 

• The phone identity, as well as that of the two phones to 
the left and to the right of the current phone 

• Voicing (voiced/unvoiced) of the current phone and of 
the two phones to the left and to the right of the current 
phone 

• Broad class of the current phone (vowel, semi-vowel, 
fricative, nasal, plosive)  as well as of the two phones to 
the left and to the right of the current phone 

• Total number of syllables in the current word  
• The number of syllables preceding the current phone’s 

syllable in this word  
• The number of syllables after the current phone’s 

syllable in this word 
• Lexical stress of the current syllable 
• Phrase-level stress of the current word, as predicted by 

the rule-based front-end 
• Number of words between the current word and the 

beginning of the phrase 
• Number of words between the current word and the end 

of the phrase  
• Part of speech of the current word  
• Type of the current phrase  
 

These features are then paired with the observation log(d), 
where d is the duration of the current phone.   From the 
feature vector and observation pairs, a decision tree is 
constructed to maximize the likelihood of the 
observations assuming a Gaussian distribution at each 
node of the tree. 
 
In synthesis, feature vectors are determined from the text 
to be synthesized in the same manner as was used for 
training the decision tree. The feature vectors are then 
dropped down the tree; the mean of the duration of all 
training vectors mapping to that leaf is then used as the 
target duration for the phone to be synthesized. 
 
 

4. SYNTHESIZING EXPRESSIVE SPEECH 
 
In addition to building prosody models from each 
expression, we include the small set of segments from 
each of the expressions in the search, motivated by the 
fact that prosody alone does not fully convey the desired 
expression, as shown in [11]. In order to include the 
expressive data in the search and bias the search towards 
choosing segments from the appropriate expression, we 
first tag each occurrence of each unit in the expressive 
databases with the underlying expression with which that 
database was collected. The expression-tagged units are 
then pooled with the neutral data, which have been tagged 
as “neutral.”   
 
In addition to tagging the segments with the expression 
from which they came, we currently construct an 
expression-cost matrix, which specifies the cost of 
choosing a segment from expression i in synthesizing 
expression j, for all pairs of expressions i and j. We 
construct this matrix by hand using trial-and-error to tune 
the costs. With the prosody models trained as described in 



Section 3, the databases tagged, and the cost matrix in 
place, we are ready to generate expressive speech.  
 
In synthesis, the desired expression’s prosody models are 
used.  All segments from all expressions are considered, 
with the penalties for using a segment from expression i to 
synthesize expression j comprising an additional 
component in the cost function compared to the single-
expression synthesis system.   Should we increase the size 
of the expressive databases, we would expect the cost of 
substituting one expression for another would need to be 
increased. However, in the current embodiment, the 
expressive databases are small, and the quality of the 
synthesis is improved by allowing neutral segments, as 
well as segments from other expressions, in the search.  
We trade-off the degree to which the desired expression is 
conveyed by the spectral qualities of the segments chosen 
to comprise the synthetic utterance against the 
smoothness and overall quality of the synthesis. 
  
The above discussion assumes that the desired expression 
is known; determination of which expression to use when 
is beyond the scope of this study. In our system, we have 
extended SSML to include our set of target expressions; 
here we assume the user provides the system with 
marked-up text which specifies the desired expression. 
This markup will  be described more fully in Section 6. 
 
 

5. PARALINGUISTIC EVENTS 
 
When humans converse, in addition to speech they 
produce non-speech sounds which can be cues that impart 
additional information beyond that which is carried by the 
words alone.  Breaths, coughs, sighs, chuckles, and hums 
all modify the message being conveyed and subtly add 
information. For example, a sigh is a sign of distress or 
unhappiness, whereas a chuckle indicates light-
heartedness.  In a TTS system, such paralinguistic events 
efficiently provide cues as to the state of a transaction, 
such as a sigh succinctly signaling that no flight at the 
requested price could be found, or that a compromise may 
be necessary. Such paralinguistic events also make the 
synthetic speech sound more natural. 
 
In order to augment the synthetic speech signal with these 
paralinguistic events, we first listed all of the events we 
were interested in being able to generate. We then 
composed a script which would be easy for the speaker to 
understand, such as “mmm, that bread smells wonderful,”  
and, “Excuse me, throat clear, I have something to say.”  
We recorded each event in its carrier sentence and then 
excised these events by hand. The excised events form the 
portfolio of events we are able to generate. 

 
In synthesis, we insert these events, when desired, into the 
synthetic speech stream. Having multiple tokens of many 
of these events enables us to choose randomly among 
several examples. Doing so improves the naturalness of 
the speech when more than one occurrence of a given 
event is required, because repeating the same recording of 
a phenomenon such as a breath several times is easily 
recognized by a listener as being artificial.  
 
A user of the TTS system is able to include a 
paralinguistic event in the audio stream by marking up the 
text through using an extension of SSML, as explained in 
the next section.   
 
 

6. EXPRESSIVE M ARKUP 
 
In our TTS system, we rely on markup as the means for a 
user to specify the desired expression for each utterance. 
The markup is interpreted by the TTS engine and dictates 
the choice of prosody models, as well as the cost of each 
segment in the search, as was described in Section 4.    
 
In order to facilitate this interface between the user of the 
TTS system and the expressive TTS engine, we extended 
SSML according to the guidelines we proposed in [5]. 
 
The use of markup as an interface between the user and 
the engine enables our expressive TTS engine to be easily 
integrated into a dialog system. In that case, knowledge of 
the internal natural-language-generation state implies an 
appropriate expression, whose specification is then passed 
to the TTS system by augmenting the automatically-
generated text prompt with markup specifying an 
appropriate expression for the text. 
 
Independent of the approach taken by a synthesizer to 
generate expressive speech, conveying the desired 
expression to the synthesizer is necessary for efficient and 
appropriate speech-based interactions between human and 
machine.  In a unit-selection-based synthesizer, one could 
collect databases spoken in different expressive states in 
order to generate synthetic speech with an expressive 
content, as in this paper, or one could use signal 
processing to adapt neutral speech to achieve a desired 
expression.  Either way, though, the desired expression 
needs to be specified to the synthesis system through 
markup.  Ideally, that markup should be hierarchical, so 
that users with different areas of expertise can interface 
with the engine at different levels of abstraction, in the 
manner which is most natural and convenient for them. 
For example, film directors can specify emotions, while 



speech scientists can interface with the system by 
specifying pitch and duration contours.  
As an example of the benefits of the hierarchical view of 
the extended SSML language, consider the case of 
contrastive emphasis. In our prosodic phonological 
approach to expressive speech described in [10], we use 
our hierarchical extensions of SSML to specify emphasis. 
The emphasis tag is translated into a series of ToBI 
symbols which typically correspond to emphasized 
speech. Those symbols, which sit in a lower level of the 
hierarchy than does “emphasis,”  are then passed to the 
TTS engine.  
 
The multilayered framework for specifying expressiveness 
creates a rich, annotated text to be used by the synthesizer.  
The expressive speech synthesizer deals with tags or tag 
layers using one of the following three alternatives: 
 

1. Use the tags directly in the speech synthesis 
process. 

2. Translate tags from one layer to tags in a lower-
level layer using tag translators, which are the set 
of rules or systems that map tags in one layer to 
corresponding tags in another. 

3. Ignore tags not supported. 
 
Option 1 allows the synthesizer to use various layers of 
tags to provide better quality speech output.  In the case of 
a concatenative synthesizer having a set of expressive 
databases available, say, one for each of a set of desired 
expressions to be synthesizable, the high-level tag is 
passed directly to the synthesizer. 
 
Option 2 enables the design of new tag-layers along with 
their interfaces and using them with legacy synthesizers 
by developing appropriate translators to translate new tags 
to tags belonging to layers understood by the synthesizer. 
In the case where expressive speech is achieved via signal 
processing on a neutral database, abstract specifications 
would be transformed into physical ones. Option 3 allows 
extension to the repertoire of styles possible by a TTS 
engine while preserving backward compatibility with a 
legacy synthesizer.  
 
In order to reinforce the expression being conveyed by a 
given text, a developer or client application may desire a 
particular paralinguistic event to occur at a particular 
point in the audio stream.  This ability is enabled through 
the use of markup, in a manner very similar to the 
specification of the desired expression itself. For example, 
a developer could specify: 
  
<prosody style="bad news"> Well <sigh/> the cheapest 
flight is more than your allowed maximum. </prosody>   

 
which would indicate to the TTS engine that a sigh 
appropriate in a bad news context should be placed 
between the words “well”  and “the”  in the audio.  Markup 
specifying these events is a convenient way for a 
developer to achieve these types of events in the audio 
coming from the TTS engine. 
 
 

7. RESULTS 
 
In order to verify that the method of generating expressive 
speech described in this section was effective, we 
performed a separate listening test for each expression. 
Each test was administered to 32 native English speakers, 
16 male and 16 female. Each l istener heard 30 pairs of 
sentences, where one member of the pair was synthesized 
from our single-expression system, and the second 
member of the pair was the same text synthesized from 
the expressive TTS engine. The order of the systems 
heard by the listener was randomized, so that half of the 
time the listener heard the default system followed by the 
expressive system, and half of the time the listener heard 
the expressive system followed by the default system.  
 
In order to test the ability of the expressive TTS engine to 
speak good news, we composed a test set of 30 utterances 
which were conveying good news, such as 
“Congratulations, you have the winning ticket.”  Each of 
these sentences was synthesized by the default and by the 
good-news system.  Listeners were asked to specify which 
member of the pair of stimuli for each sentence sounded 
more like good news. 
 
Similarly, in order to test the ability of the expressive TTS 
engine to speak bad news, we composed a test set of 30 
utterances which were conveying bad news, such as “ I’m 
sorry, I cannot locate your order.”  Each of these sentences 
was synthesized by the default and by the bad-news 
system.  Listeners were asked to specify which member of 
the pair of stimuli for each sentence sounded more like 
bad news. 
 
Finally, to test the ability of the TTS system to generate 
questions, we composed a set of 30 yes/no questions, such 
as “Do we have time to go to the park?”  Listeners heard 
each of these questions as synthesized by the default and 
expressive TTS engines, and were asked which of the two 
stimuli for each question sounded more like a question. 
 
Results for each of the three expressive states tested are 
shown in the table below. All of the results are statistically 
significantly better than the chance result of 50%. 
 



 
Expression Percent Correct 
Bad news 70.2 
Good news 80.3 
Yes/no questions 84.6 

 
As indicated in the table, we were able to effectively 
synthesize all of the expressions under consideration 
effectively, with the greatest success in Y/N questions.  
Good news was somewhat more successfully synthesized 
than bad news, although both of those expressions 
performed significantly better than chance. Neither pitch 
nor duration modification was performed to achieve the 
prosodic targets in the output speech in generating any of 
the above expressive states. 
 
 

8. DISCUSSION 
 
We have described the IBM Expressive TTS System, 
which, in addition to the default, neutral style, is capable 
of conveying good news, conveying bad news, and asking 
a question appropriately.  
 
In our current system, markup is generated by the user or 
cl ient application and is used as the vehicle for conveying 
the desired expression to the TTS engine. As no markup 
language is sufficiently rich to facilitate the specification 
of a desired expression, we extended SSML 
hierarchically, to enable convenient specification of 
expressive speech. In a more advanced system, rather than 
relying entirely on the user or cl ient application to supply 
the markup, an appropriate expression could be detected 
automatically from the semantic content of the text; the 
synthetic output could then be generated to reflect that 
expressive state.  
 
Similarly, given the user-specified or automatically-
inferred expression desired, paralinguistic events could be 
automatically inserted into the synthetic audio to reinforce 
the desired expression.  
 
We plan to merge the corpus-based approach to 
generating synthetic speech described in this paper with 
our alternate, prosodic phonological approach soon. We 
expect that the marriage of these two approaches will  
yield even more resounding differences between the 
default and expressive systems. We also intend to add 
more expressions to our system. 
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