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Tractability is the study of computational tasks with the goal of identi-

fying which problem classes are tractable or, in other words, efficiently

solvable. The class of tractable problems is traditionally assumed to be

solvable in polynomial time by a deterministic Turing machine and is

denoted by P. The class contains many natural tasks such as sorting a

set of numbers, linear programming (the decision version), determining

if a number is prime, and finding a maximum weight matching. Many

interesting problems, however, lie in another class that generalizes P and

is known as NP: the class of languages decidable in polynomial time on a

non-deterministic Turing machine. We trivially have that P is a subset of

NP (many researchers also believe that it is a strict subset). It is believed

that many problems in the class NP are, in the worst case, intractable

and do not admit efficient inference. Problems such as maximum stable

set, the traveling salesman problem and graph coloring are known to be

NP-hard (at least as hard as the hardest problems in NP). It is, there-

fore, widely suspected that there are no polynomial-time algorithms for

NP-hard problems. Rather than stop after labeling a problem class as

NP-hard by identifying its worst-case instances, this chapter explores

the question: what instances of otherwise NP-hard problems still admit

efficient inference? The study of perfect graphs (Berge, 1963) helps shed

light on this question. It turns out that a variety of hard problems such

as graph coloring, maximum clique and maximum stable set are all solv-

able efficiently in polynomial time when the input graph is restricted to

be a perfect graph (Grötschel et al., 1988).

Can we extend this promising result to other important problems in

applied fields such as data mining and machine learning? This chap-

ter will focus on a central NP-hard problem in statistics and machine

learning known as the maximum a posteriori (MAP) problem, in other
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words, finding the most likely outcome from a set of observations under

a given probability distribution. When can such inference be performed

efficiently? Perfect graphs will be a useful tool in carving out what types

of MAP estimation problems are tractable.

In the past two decades, the fields of machine learning and statistical

inference have increasingly leveraged graph representations and graph-

based algorithms in a variety of problem settings. For instance, semi-

supervised learning, dimensionality reduction, and unsupervised clus-

tering problems are frequently solved by casting data points as nodes in

a graph and then applying graph-theoretic algorithms. Similarly, proba-

bilistic inference problems such as MAP estimation, marginal inference,

and so on are solved by casting random variables as nodes in a graph-

ical model and then applying graph algorithms such as message pass-

ing, tree approximations and other variants. In many situations, most

of the above learning problems are intractable and provably NP-hard in

the worst case (Shimony, 1994; Aloise et al., 2009). However, when the

graph structures are restricted to a subfamily (such as the family of tree-

structured graphs), a variety of learning problems may become tractable

(Pearl, 1988). Therefore, determining which graphs and graphical mod-

els admit efficient inference and which learning problems are solvable in

polynomial time is of great importance in machine learning. Following

upon previous work (Jebara, 2009), this chapter extends the tractability

benefits of perfect graphs to statistical inference in graphical models and

focuses on the MAP estimation problem as a task of particular interest.

1.1 Berge graphs and perfect graphs

A convenient starting point is the definition of perfect graphs according

to their pioneer, Claude Berge (Berge, 1963). Consider the undirected

graph G = (V , E) with n vertices V = {v1, v2, . . . , vn} and edges E :

V×V → B. To determine if a graph is perfect, it is necessary to consider

its induced subgraphs.

Definition 1.1 A subgraph H of a graph G is said to be induced if,

for any pair of vertices u and v of H, uv is an edge of H if and only if

uv is an edge of G. In other words, H is an induced subgraph of G if

it has exactly the edges that appear in G over the same vertex set. If

the vertex set of H is the subset S of the vertices of G, then H can be

written as G[S] and is said to be induced by S.
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Perfect graphs must satisfy the following property involving their in-

duced subgraphs.

Definition 1.2 (Perfect Graph) A graph G is perfect if and only

if each of its induced subgraphs has chromatic number equal to clique

number.

Thus, every induced subgraph H⊆G in any perfect graph has chro-

matic number1, χ(H), equal to its clique number, ω(H). For all graphs,

it is easy to see that the clique number serves as a lower bound on the

chromatic number, i.e. ω(G) ≤ χ(G). For a perfect graph G, this bound

is met with equality (ω(H) = χ(H)) for all its induced subgraphs H⊆G.

Examples of perfect graphs are shown in Figure 1.1.

(a) (b) (c) (d) (e)

Figure 1.1 Examples of perfect graphs; (a) is bipartite; (b) is a bi-
partite grid graph; (c) is a Rook’s graph; (d) has chromatic number
equal to 3; and (e) has chromatic number equal to 4.

Berge also provided two conjectures along with the definition of per-

fect graphs. The weak perfect graph conjecture was resolved and is now

known as the following theorem (Lovász, 1972).

Theorem 1.3 (Weak Perfect Graph Theorem) A graph is per-

fect if and only if its complement is perfect.

The complement of a graph is defined as follows.

Definition 1.4 (Graph Complement) The complement G of a graph

G is a graph with the same vertex set2 as G, where distinct vertices

u, v ∈ V(G) are adjacent in G if and only if they are not adjacent in G.

1 The chromatic number of a graph G, χ(G), is the minimum number of colors
needed to label vertices such that no adjacent vertices have the same color. The
clique number of a graph G, ω(G), is the size of a largest maximal clique (a
largest subset of nodes in the graph that are all pairwise adjacent), i.e.

ω(G) = maxc∈C |c| where C is the set of all maximal-cliques.
2 We use the notation V(G) to denote the vertex set V of a graph G = (V , E).
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So far, it seems that deciding if a graph G is perfect is a daunting

endeavor. One brute force approach is to consider each induced sub-

graph H of G and verify that its coloring number χ(H) equals its clique

number ω(H). However, Berge also conjectured that perfect graphs are

equivalent to another family of graphs defined by forbidding certain in-

duced subgraphs. This family was later named Berge graphs (Berge,

1963; Berge and Ramı́rez-Alfonśın, 2001). A Berge graph G is a graph

which has no odd holes and has no odd holes in its complement G. The

notion of a hole in a graph is defined as follows.

Definition 1.5 (Hole) A hole of a graph G is an induced subgraph

of G which is a chordless cycle of length at least 5. An odd (even) hole

is a chordless cycle with odd (even) length.

odd hole even hole odd hole

Figure 1.2 Various holes or chordless cycles of length 5 or larger.

Therefore, Berge graphs have no holes of length 5, 7, 9 and so on in the

graph and the graph’s complement. Figure 1.2 depicts a few examples

of holes. Intuitively, it is easier to verify if a graph is Berge by checking

for holes than it is to verify the chromatic number and clique number of

all its induced subgraphs. The strong perfect graph conjecture proposed

that a graph is perfect if and only if it is Berge. A formal proof of this

conjecture was established recently and it is now known as the strong

perfect graph theorem (Chudnovsky et al., 2006).

Theorem 1.6 (Strong Perfect Graph Theorem) A graph is per-

fect if and only if it is Berge.

The proof of the strong perfect graph theorem also establishes that

all perfect graphs either are elements of the following basic classes:

• bipartite graphs

• complements of bipartite graphs

• line graphs of bipartite graphs

• complements of line graphs of bipartite graphs
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• double split graphs

or admit one of the following structural decompositions:

• a 2-join

• a 2-join in the complement

• an M -join

• a balanced skew partition.

These decompositions are ways of repeatedly breaking up the graph such

that eventually, the remaining parts are in one of the basic classes.

Definition 1.7 (Line Graph) The line graph L(G) of a graph G is a

graph which contains a vertex for each edge of G and where two vertices

of L(G) are adjacent if and only if they correspond to two edges of G
with a common end vertex.

The study of perfect graphs involves beautiful combinatorics and is

rich with theoretical results. For instance, some important rules have

been proposed for adding nodes to perfect graphs while ensuring that

perfection is preserved. One example is Lemma 1.8 which is illustrated

in Figure 1.3 (Lovász, 1972).

Lemma 1.8 (Replication) Let G be a perfect graph and let v ∈ V(G).

Define a graph G′ by adding to G a new vertex v′ and joining it to v and

all the neighbors of v. Then, G′ is perfect.

v v

v′

v

v′

Figure 1.3 Replication. Given an initial perfect graph on the left, a
new node can be introduced and attached to any other node v in the
perfect graph. If the new node is also adjacent to all the neighbors of
v, the resulting graph is also perfect.

Lemma 1.9 (Gluing on Cliques) A graph G = G1 ∪G2 is perfect if

G1 ∩ G2 is a clique and both G1 and G2 are perfect graphs.

Another useful property is Lemma 1.9 which is illustrated in Fig-

ure 1.4. This property has been generalized into the so-called skew-

partition decomposition (Berge and Chvátal, 1984; Chudnovsky et al.,
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v

v′

∪

v

v′

=

v

v′

Figure 1.4 Gluing on cliques. The two graphs on the left are perfect
graphs. The graph on the right is their union while their intersection is
a clique cut-set. Therefore, the rightmost graph must also be perfect.

2006) which is a significantly more powerful tool yet is beyond the scope

of this chapter. Perfect graphs have been the subject of much theoretical

research. However, they also have fascinating computational properties

which will be explored in the following sections.

1.2 Computational properties of perfect graphs

Perfect graphs enjoy very useful computational properties. For instance,

it has recently been shown that recognizing if a graph is perfect (or not

perfect) only requires polynomial time (Chudnovsky et al., 2005). Simi-

larly, graph coloring3, the maximum clique problem4 and the maximum

stable set5 problem are NP-hard in general yet, remarkably, are solv-

able in polynomial time for perfect graphs (Grötschel et al., 1988). This

chapter will focus on the implications perfect graphs have vis-a-vis two

key computational tools in applied machine learning and optimization:

linear programming and semidefinite programming.

1.2.1 Integral linear programs

Another valuable property is that perfect graphs can be used to con-

struct linear programs which produce solutions that are provably in-

tegral. A linear program is an optimization over a vector of variables

x ∈ R
n in n-dimensional Euclidean space. A linear program finds the

3 To color a graph G find the smallest set of assignment labels called “colors” such
that no two adjacent vertices share the same color.

4 The maximum clique of a graph G is a largest subset of nodes in G that are all
pairwise adjacent.

5 The maximum stable set of a graph G is a largest set of nodes in G no two of
which are adjacent.
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solution of the following constrained optimization problem

max
x∈Rn

f⊤x subject to Ax ≤ b (1.1)

where f ∈ R
n, A ∈ R

m×n and b ∈ R
m are inputs that are specified

by the user. It is known that solving such linear programs is in P and

algorithms are available that recover the optimal x∗ value in O(
√
mn3)

time. This recovered solution x∗ generally contains real values.

In contrast, consider the binary linear program

max
x∈Bn

f⊤x s.t.Ax ≤ b

where the solution vector is forced to be binary, in other words x ∈ B
n.

This problem is notoriously NP-hard in the worst case and no efficient

general solver is available (Karp, 1972).

Interestingly, if we require the constraints matrix A to have a special

form, specifically if it is a perfect matrix (see below), then we can further

guarantee that the solution x∗ obtained by standard linear programming

will only have binary values. Consider the following rearranged form of

Equation 1.1 known as a set-packing linear program,

max
x∈Rn,x≥0

f⊤x s.t.Ax ≤ 1

where 0 ∈ R
n is a vector of all zeros and 1 ∈ R

m is a vector of all ones.

The following theorem shows how standard linear programming can be

used to solve certain binary programs (Lovász, 1972; Chvátal, 1975).

Theorem 1.10 For every non-negative vector f ∈ R
n, the linear pro-

gram

max
x∈Rn,x≥0

f⊤x s.t.Ax ≤ 1

recovers a vector x∗ which is integral if and only if the (undominated)

rows of A form the vertex-versus-maximal cliques incidence matrix of

some perfect graph.

The constraint matrix A is obtained from a graph G according to the

following definition.

Definition 1.11 (Undominated Incidence Matrix) The undomi-

nated incidence matrix of a graph G with vertices {v1, . . . , vn} and max-

imal cliques C = {c1, . . . , cm} is matrix A ∈ B
m×n where Aij = 1 if

vi ∈ cj and Aij = 0 otherwise.
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A perfect matrix is simply the undominated incidence matrix A ob-

tained from a graph G which is perfect. In the following sections, this

property will be leveraged for MAP estimation with graphical models.

1.2.2 Lovász theta function

The Lovász theta function ϑ(G) ∈ R accepts as input a graph G and

outputs a non-negative scalar (Lovász, 1979; Knuth, 1994). For any

graph, it is computable in polynomial time. Modern solvers can recover

ϑ(G) within a multiplicative approximation factor of (1 + ǫ) in time

O(ǫ−2n5 log n) using primal-dual methods (Chan et al., 2009). The fol-

lowing straightforward semidefinite program recovers the Lovász theta

function

ϑ(G) = max
M∈Rn×n,M�0

∑

ij

Mij s.t.
∑

i

Mii = 1, Mij = 0 ∀(i, j) ∈ E .

Remarkably, the Lovász number satisfies the sandwich property:

ω(G) ≤ ϑ(G) ≤ χ(G). (1.2)

Since perfect graphs satisfy ω(G) = χ(G), it is always possible to find

the coloring number (or the maximum clique size) efficiently for a perfect

graph G simply by computing the Lovász theta function on its comple-

ment. Otherwise, in general, the coloring number can be intractable to

compute in the worst case. In the following sections, we shall illustrate

how the Lovász theta function can be useful for MAP estimation as well.

1.3 Graphical models

Great strides have been made by the combinatorics community in the

study of perfect graphs. How does this progress advance machine learn-

ing and statistical inference? These fields also use graphs to represent

problems and use graph-theoretic algorithms to solve them. In machine

learning and statistical inference, graphs are extensively used in the

study of graphical models. A graphical model represents the factoriza-

tion of a probability density function (Wainwright and Jordan, 2008).

This chapter will focus on the factor graph notation for graphical mod-

els and use the non-calligraphic font to distinguish these graphs from

those discussed in the previous sections. A factor graph is a bipartite
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graph G = (V,W,E) with variable vertices V = {1, . . . , k}, factor ver-

tices W = {1, . . . , l} and a set of edges E between V and W . In addition,

define the universe of discrete random variables Y = {y1, . . . , yk} each

associated with an element of V and define a set of strictly positive6

potential functions Ψ = {ψ1, . . . , ψl} each associated with an element of

W . We will often use the term factor and potential function interchange-

ably when re refer to c ∈ W , ψc ∈ Ψ or the arguments of ψc. Also, for

j ∈ V , each yj ∈ N is a discrete random variable with |yj | possible con-

figurations7, in other words yj ∈ {0, . . . , (|yj | − 1)}. The factor graph

implies that the function p(Y ) factorizes as

p(y1, . . . , yk) = 1
Z

∏

c∈W

ψc(Yc) (1.3)

where Z is the partition function8 and Yc is a subset of the random

variables that are associated with the neighbors of node c. In other words,

Yc = {yj|j ∈ Ne(c)} where Ne(c) is the set of vertices that are neighbors

of the factor c with potential function ψc. Thus, each potential ψc :

Yc → R
+ is a function over the corresponding set of random variables

Yc. Note that it is possible to divide each ψc function by an arbitrary

scalar γc > 0 without changing p(Y ) (the partition function Z has to be

adjusted accordingly, of course). An example factor graph is shown in

Figure 1.5.

y1 y2 y3 y4

y5

y6

Figure 1.5 An example of a factor graph representing the fac-
torization of a probability distribution p(y1, y2, y3, y4, y5, y6) =
1

Z
ψ1,2(y1, y2)ψ2,3(y2, y3)ψ3,4,5(y3, y4, y5)ψ4,5,6(y4, y5, y6). The round

nodes represent random variables while square nodes represent po-
tential functions.

6 This article assumes strictly positive potential functions ψc > 0,∀c. Note that it
is always possible to rewrite p(Y ) as an equivalent pairwise Markov random field
(MRF) over binary variables (Yedidia et al., 2001).

7 We will abuse notation and take the symbol | · | to mean the largest possible
value an integer can achieve as well as use | · | in the traditional sense to indicate
the cardinality or size of a set. The meaning of the operator should be clear from
the context.

8 The partition function Z is set such that
P

y1
· · ·

P

yk
p(y1, . . . , yk) = 1.
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A canonical problem that one aims to solve with graphical models

is maximum a posteriori estimation. Many tasks in image processing,

coding, protein folding and more can be cast as MAP estimation which,

given a factor graph and potential functions, recovers arg maxY p(Y ).

The MAP problem is, in the worst case, NP-hard (Shimony, 1994) and

may involve exponential work in the storage size of the input graphical

model. However, certain types of graphical models do admit exact infer-

ence efficiently. For example, MAP estimation in (junction) tree graph-

ical models is efficient (Pearl, 1988). Similarly, graphical models where

the potential functions ψ1, . . . , ψl are submodular also admit efficient

MAP estimation (Greig et al., 1989; Kolmogorov and Zabih, 2004). In

many situations, the requisite algorithms are implemented using message

passing schemes (such as max-product and variants of max-product), lin-

ear programming or network-flow solvers (Kolmogorov and Wainwright,

2005; Globerson and Jaakkola, 2007; Kolmogorov and Zabih, 2004). It

is also sometimes possible to consider linear programming relaxations

or message passing to potentially approximate the MAP solution when

exact inference is intractable (Globerson and Jaakkola, 2007). However,

how one goes about building such linear programming relaxations will af-

fect the ultimate effectiveness of linear programming solvers (Komodakis

and Paragios, 2008). This chapter will propose a method of compiling

the MAP estimation problem into a maximum weight stable set prob-

lem (MWSS) which is defined below. The MWSS is also referred to as

the maximum weight independent set problem (MWIS). These are hard

problems in the worst case but remain tractable if the input graph they

are applied to is perfect (Grötschel et al., 1981).

1.4 Nand Markov random fields

Consider compiling the graphical model G above into another represen-

tation which will be referred to as a nand Markov random field (NMRF).

A NMRF is a graph G = (V , E) with a set of binary variables X and a set

of scalar weights F . For each vertex v ∈ V , there is one binary variable

x ∈ X and one scalar weight f ∈ F associated with v. More precisely,

the set X (resp. F) contains one Boolean xc,i (resp. non-negative scalar

fc,i) for each factor c ∈ W and for each configuration i ∈ Yc whenever

ψc(Yc) > 0. We say that two configurations xc,i and xc′,i′ are incompat-

ible if the configurations i and i′ imply different settings of the shared

variables in Yc∩Yc′ . The NMRF has edges E between all pairs of config-
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urations that are incompatible. The edges imply incompatibility since at

most one node at the base of an edge can be instantiated while ensur-

ing that the graphical model is in a consistent configuration (otherwise,

the variables in Yc ∩ Yc′ have to be in two configurations simultaneously

which is impossible). Thus, each edge represents a nand relationship

which we write as δ[xc,i + xc′,i′ ≤ 1] where δ[·] = 1 if the statement

inside the brackets is true and δ[·] = 0 otherwise. Consider Algorithm 1

which compiles a graphical model into a NMRF.

Algorithm 1 CompileIntoNMRF

Input factor graph G = (V,W,E) with positive ψ1(Y1), . . . , ψl(Yl)

Initialize graph G = (V , E) as an empty graph, X = {}, and F = {}
For each factor c ∈W

Set γc to the smallest value of ψc(Yc)

For each configuration i of the set of variables Yc
Add a vertex vc,i to V
Add a Boolean xc,i ∈ B associated with vc,i to X
Add a weight fc,i ∈ R associated with vc,i to F
Set fc,i = log(ψc(Yc = i)/γc)

For each vc′,i′ ∈ V that is incompatible with vc,i
Add an edge between vc,i and vc′,i′ to E

Output nand Markov random field G = (V , E), X , and F

Let n = |V| be the total number of nodes in the NMRF output by

Algorithm 1. The (unnormalized) probability associated with the NMRF

factorizes as follows:

ρ(X ) =
∏

(c,i)∈V

exp(fc,ixc,i)
∏

((c,i),(c′,i′))∈E

(1 − xc,ixc′,i′). (1.4)

The nand constraints prevent variables xc,i and xc′,i′ from both being

set to 1 if they share an edge (this drives ρ(X ) to zero). We wish to set

some of the Boolean entries in X to 1 to maximize the value of ρ. This

is equivalent to maximizing
∑

(i,c)∈V fc,ixc,i while enforcing the nand

constraints. This is a maximum weight stable set MWSS problem which

is a weighted variant of the maximum stable set (MSS) problem.

Definition 1.12 (Maximum Stable Set) The maximum stable set

of a graph G = (V , E) is a largest subset of nodes in G such that no two

nodes in the subset are pairwise adjacent.
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The MSS problem is merely a MWSS problem where all the weights

are constant. Thus, the MWSS strictly generalizes the MSS.

Definition 1.13 (Maximum Weight Stable Set) The maximum

weight stable set of a graph G = (V , E) with non-negative weights F is

a subset of nodes in G with largest total weight such that no two nodes

in the subset are pairwise adjacent.

More precisely, to avoid problems in certain special cases, we will be

interested in solving a maximal maximum weight stable set (MMWSS)

problem on the NMRF. This not only maximizes Equation 1.4 but, in the

case of ties and in the case where some weights in F are exactly zero, the

MMWSS also selects the maximizer which sets the most possible Boolean

variables to 1. Thus, the MMWSS strictly generalizes the MWSS.

Definition 1.14 (Maximal Maximum Weight Stable Set) The

maximal maximum weight stable set of a graph G = (V , E) with non-

negative weights F is a maximum weight stable set of G with largest

cardinality.

Assume we have recovered the MMWSS of the NMRF G = (V , E)

with weights F . This solution can be denoted by V∗ ⊆ V or by a set

of Booleans X ∗. In the Boolean representation X ∗, for each v ∈ V , its

corresponding Boolean variable x ∈ X ∗ is set to 1 if v ∈ V∗ and is set to

0 otherwise. Does the solution recovered by the MMWSS of G coincide

with the MAP estimate of p(Y )? It is clear that the Booleans in X span

a superset (a relaxation) of the set of valid configurations of Y since X
can represent inconsistent configurations of Y . In other words, there is a

surjective relation between Y and X : each setting of Y can be mapped

to a unique corresponding setting in X yet the converse is not true. This

leads to an important question: can X ∗ be used to recover a valid Y ∗

configuration which coincides with the MAP estimate, in other words

p(Y ∗) = maxY p(Y )? Theorem 1.16 shows that X ∗ indeed produces

the MAP estimate. The theorem leverages the following lemma which

shows that the MMWSS of G will always produce a unique assignment

per factor, in other words,
∑

i xc,i = 1 for each c ∈W .

Lemma 1.15 The maximal maximum weight stable set X ∗ of a NMRF

graph G satisfies
∑

i x
∗
c,i = 1 for each factor c ∈ W .

Proof Setting all the Boolean variables in X to zero produces a value

ρ = 1 in Equation 1.4. For a non-trivial NMRF, at least one of the
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weights in F is strictly positive. Set the Boolean variable that corre-

sponds to this strictly positive weight to 1 while keeping the rest of X
set to zero. This produces a ρ(X ) > 1 since

∏

((c,i),(c′,i′))∈E(1−xc,ixc′,i′)
equals 1 if only one Boolean equals 1 in X . Exponentiating a strictly

positive weight produces a value
∏

(c,i)∈V exp(fc,ixc,i) that is strictly

larger than 1. Therefore, the MMWSS X ∗ must achieve ρ(X ∗) > 1.

Clearly, there can be no incompatible configurations in the MMWSS

since
∏

((c,i),(c′,i′))∈E(1 − x∗c,ix
∗
c′,i′) would go to zero which contradicts

the fact that ρ(X ∗) > 1. Next note that, for X ∗ and for each c ∈ W ,

one of the following must hold: (i)
∑

i x
∗
c,i > 1, (ii)

∑

i x
∗
c,i = 0 or (iii)

∑

i x
∗
c,i = 1. Since Algorithm 1 places edges between disagreeing config-

urations, the term
∏

((c,i),(c′,i′))∈E(1 − xc,ixc′,i′) would go to zero when-

ever condition (i) is met since two incompatible Boolean variables would

have to be simultaneously asserted. Since the MAP estimate achieves

ρ(X ∗) > 1, condition (i) cannot hold. Consider a factor c where condi-

tion (ii) is met. Since there are no incompatibilities in the MMWSS, for

any such factor there is always a configuration j that may be selected

which agrees with neighboring factors. If the value of fc,j > 0, it is pos-

sible to preserve compatibility by setting xc,j = 1 to strictly increase

ρ(X ∗). However, the MMWSS achieves the maximal ρ(X ∗) value possi-

ble so the objective cannot be strictly increased. If the value of fc,j = 0,

the MMWSS will still always set xc,j = 1 since this increases the car-

dinality of the solution. Thus, condition (ii) cannot hold for X ∗ either.

This leaves condition (iii) as the only valid possibility. Therefore, the

MMWSS satisfies
∑

i x
∗
c,i = 1 for all factors c ∈W .

Theorem 1.16 The MMWSS of a NMRF finds the MAP estimate of

Equation 1.3 for a graphical model with strictly positive potential func-

tions.

Proof Lemma 1.15 shows that the MAP estimate of Equation 1.4 pro-

duces
∑

i x
∗
c,i = 1 for each c ∈W . So only a single setting, say xc,̂i = 1,

is asserted for each c and the variables Yc involved in factor c are in a sin-

gle configuration Yc = î. Therefore, a consistent setting of the discrete

random variables Y ∗ can be recovered from X ∗. Since ρ(X ∗) ≥ ρ(X )

for all X , since p(Y ) ∝ ρ(X) for all Y , and since X is a superset of the

configurations of Y , it must be the case that p(Y ∗) ≥ p(Y ) for all Y .

Thus, we have shown how to compile any graphical model into a

NMRF. The maximal maximum weight stable set of the NMRF can

then be found to obtain X ∗. Finally, it is straightforward to recover
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a consistent solution Y ∗ from X ∗. Algorithm 2 describes the MMWSS

procedure more precisely.

Algorithm 2 FindMMWSS

Input graph G = (V , E) with weights F
Initialize V0 = {}
For each v ∈ V

If the weight f associated to v is zero, add v to V0

Find MWSS on induced subgraph G1 = G[V \ V0] and store it in V̂1

For each v ∈ V0

If v is adjacent to any node in V̂1 remove v from V0

Find MSS on induced subgraph G0 = G[V0] and store it in V̂0

Output V̂0 ∪ V̂1

In Algorithm 2, it turns out that the maximal maximum weight stable

set problem merely requires the solution of a MWSS sub-problem and a

MSS sub-problem with some minor book-keeping. The algorithm accepts

a graph G = (V , E) with weights F and finds a maximal maximum weight

stable set. It does so by first discarding any nodes with zero weight (these

are denoted by V0). It then solves the MWSS on the induced subgraph

G1 over the remaining nodes V \ V0 (using the corresponding weights in

F). Given a MWSS solution V̂1 on G1 we can extend the solution to G
by deleting any nodes in V0 which are adjacent to V̂1. The remaining

nodes in V0 are then non-adjacent to V̂1 and another MSS solution V̂0

can be recovered from the induced subgraph G0 = G[V0] separately. The

final MMWSS solution is the union of both stable sets, V̂ = V̂0 ∪ V̂1.

By solving MWSS sub-problems separately on two induced sub-graphs

of G (namely G1 and G0), the overall MMWSS problem may potentially

remain tractable. As long as G1 and G0 are perfect graphs, Algorithm 2

is efficient even if the original graph G itself is a non-perfect graph.

Furthermore, since G1 and G0 are smaller than G, this approach is also

potentially faster even if G is perfect.

Having shown how to solve the MMWSS problem by solving two

MWSS sub-problems (a standard MWSS problem and a MWSS problem

with constant weights), we next discuss the implementation of the re-

quired MWSS solvers. Further, we ask: what graphical models have easy

solutions such that the required MWSS steps of Algorithm 2 remain ef-

ficient? Hopefully, the MWSS solvers only operate on perfect subgraphs

so that they remain efficient.
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1.5 Maximum weight stable set

The previous section has shown that MAP estimation with a graphical

model reduces to two maximum weight stable set sub-problems. The

MWSS problem, however, is NP-hard in the worst case. Fortunately, it

can be solved efficiently when the input graph is perfect. Another family

of graphs where MWSS can be efficiently solved is the family of claw-free

graphs. The MWSS problem takes as input a graph G = (V , E) with a set

of non-negative weights F and outputs a subset of nodes with maximal

total weight such that no two nodes are adjacent in G. We will show three

approaches that solve such a problem when G is a perfect graph. To solve

a maximum stable set (MSS) problem, these three implementations are

simply provided with constant weights in F .

1.5.1 Linear programming

One possibility is to use linear programming to solve the MWSS sub-

problems in Algorithm 2. The linear program is used to estimate n =

|V| variables as follows. First, obtain the vertex-versus-maximal cliques

incidence matrix A ∈ B
m×n from graph G as in Definition 1.11. In

general, this requires using an algorithm to find all the cliques C =

{c1, . . . , cm} in the graph G (Bron and Kerbosch, 1973; Tomita et al.,

2006). These cliques are then used to construct A. We also rewrite the

set of weights F as a vector f ∈ R
n. Then, solve the following linear

program

max
x∈Rn,x≥0

f⊤x s.t.Ax ≤ 1 (1.5)

to obtain x∗ ∈ R
n. If the graph G is perfect, the solution vector x∗

is binary and can be immediately written as a solution over the set

of Boolean variables X ∗. These, in turn, can easily be used to recover

the discrete random variables Y ∗ in the original graphical model. The

runtime of the linear program is O(
√
mn3). The runtime of the clique-

finding algorithm is O(m) however, this component may not be necessary

to run each time if the input to the MWSS solver has the same graph

topology G and only the weights F are allowed to vary. As long as m

and n are not too large, such a MWSS solver can be fast in practice.
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1.5.2 Message passing

In situations where n is large, linear programming may be unaccept-

ably slow. Furthermore, in situations where computation needs to be

distributed across many devices, linear programming may be impracti-

cal as it requires centralized storage and computation. An alternative

approach is to use message-passing techniques (Wainwright and Jor-

dan, 2008) which iteratively send messages between nodes and factors

in a graphical model to converge to the MAP estimate. In our case,

message-passing will be used to find the MWSS solution in Algorithm 2.

The most popular message-passing method is the max-product (MP)

algorithm (Weiss and Freeman, 2001). A more convergent variant is the

max-product-linear-programming (MPLP) algorithm which solves linear

programs in the dual via coordinate descent (Globerson and Jaakkola,

2007; Jebara, 2009). The MPLP implementation for solving a MWSS

problem is depicted in Algorithm 3. Surprisingly, for the MWSS problem,

the MPLP algorithm gives the same update rule as the MP algorithm

dampened by a factor of 1−|c|
|c| .

Algorithm 3 SolveMWSSviaMPLP

Input: G = (V , E), cliques C = {c1, . . . , cm} and weights fi for i ∈ V
Initialize λ0

i,c ∈ R
+ arbitrarily for i ∈ V and c ∈ C

Until converged do

Randomly choose i ∈ V and c ∈ C
Set λi,c

(t+1) = 1−|c|
|c|

∑

c′∈C\c:i∈c′

λ
(t)
i,c′ + 1

|c|
fi

P

c∈C

[i∈c]

− 1
|c| max

[

0, max
i′∈c\i

[

fi′
P

c∈C

[i′∈c] +
∑

c′∈C\c:i′∈c′

λ
(t)
i′,c′

]]

Output: x∗i =
∑

c∈C:i∈c
λi,c

(t) for i ∈ V

The message passing steps underlying Algorithm 3 perform coordinate

descent in the dual of a linear program. It was later shown that the

MPLP algorithm is performing dual coordinate descent in a different

linear program rather than the one shown in Equation 1.5. A message

passing scheme which repairs this problem was later proposed (Foulds

et al., 2011). It works directly with the dual of the set-packing linear

program in Equation 1.5, also known as a covering linear program:

min
z∈Rm,z≥0

1⊤z s.t.A⊤z ≥ f .

Coordinate descent in this dual can be implemented as a message-passing
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scheme with better convergence properties and seems to consistently

agree with the output of the set-packing linear program (Foulds et al.,

2011). This improved message-passing solver is known as CD2MP (pair-

wise coordinate descent message passing) and is summarized in Al-

gorithm 4. Given the dual solution, it is straightforward to recover

X ∗ = {x∗1, . . . , x∗n}. Recall that, by complementary slackness of the dual

linear programs, whenever z∗j > 0 the corresponding constraint in the

primal is achieved with equality, in other words:
∑n

i=1 Aijx
∗
i = 1.

Algorithm 4 SolveMWSSviaCD2MP

Input: G = (V , E), cliques C = {c1, . . . , cm} and weights fi for i ∈ V
Initialize zj = maxi∈cj

fi
P

c∈C
[i∈c] for j ∈ {1, . . . ,m}

Until converged do

Randomly choose a 6= b ∈ {1, . . . ,m}
Compute hi = max

(

0,
(

fi −
∑

j:i∈cj ,j 6=a,b
zj

))

for i ∈ ca ∪ cb

Compute sa = maxi∈ca\cb
hi

Compute sb = maxi∈cb\ca
hi

Compute sab = maxi∈ca∩cb
hi

Update za = max
[

sa,
1
2 (sa − sb + sab)

]

Update zb = max
[

sb,
1
2 (sb − sa + sab)

]

Output: z∗ = [z1, . . . , zm]⊤

1.5.3 Semidefinite programming

In many cases, the linear programming and message passing methods

above may not be practical. This is because the number of maximal

cliques m in a graph G with n vertices can equal or exceed 2n/2. Thus,

regardless of how quickly one can enumerate the maximal cliques in a

graph, the computations underlying linear programming and message

passing may still require exponential work in the worst case (even if the

input graph is perfect). In those situations, it is best to avoid clique

enumeration altogether and instead use the Lovász theta function to

directly solve the MWSS problem (Yildirim and Fan-Orzechowski, 2006).

Such semidefinite programming methods can require as little as Õ(n5)

time and are potentially more efficient than linear programming and

message passing methods, particularly if m ≥ O(n4).

Recall that one may solve the MWSS problem on a weighted graph G
by finding the maximum weight clique in the graph G. For perfect graphs,
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the Lovász theta-function ϑ(G) computes the weight of the maximum

clique. Thus, we can recover the size of the maximal stable set via ϑ(G).

Since we are dealing with weighted graphs (with weights on nodes),

however, consider the weighted Lovász theta-function which accepts a

graph G = (V , E) with weights F = {f1, . . . , fn} where n = |V| and

computes

ϑF (G) = max
M�0

∑

ij

√

fifjMij s.t.
∑

i

Mii = 1, Mij = 0 ∀(i, j) ∈ E

via semidefinite programming. Setting all the weights to 1 gives the usual

Lovász theta-function which was introduced earlier. Solving for ϑF(G)

on a NMRF with a perfect graph outputs the total weight of the MWSS.

Let M ∈ R
n×n be the maximizer of ϑF (G) and let ϑ be the recovered

total weight of the MWSS. Under mild conditions, we can recover the

solution X ∗ from the corresponding vector solution x∗ = round(ϑM1).

In other words, we round the matrix multiplied by the all ones vector

after scaling by the total weight. While slightly faster semidefinite pro-

grams have been proposed (Chan et al., 2009) that require Õ(n5), even

off-the-shelf interior-point solvers return X ∗ within O(n6). In summary,

this method is truly polynomial time for any perfect graph G even if the

graph has an exponential number of cliques. Furthermore, this method

is fully polynomial in the input size of the original graphical model G

as long Algorithm 2 only computes MWSS and MSS sub-problems on

perfect graphs. Thus, the semidefinite programming methods underly-

ing the Lovász theta function avoid the clique enumeration problems

that plague linear programming and message passing. In this sense, per-

fect graphs can still provide computational efficiency when the linear

programming approaches (despite achieving integral solutions) are inef-

ficient. This is a clear advantage of perfect graphs over traditional linear

program integrality and total unimodularity approaches.

The next section enumerates several graphical models that compile

into NMRFs that only require solving MWSS problems on perfect graphs.

Therefore, the above solution methods (linear programming, message

passing and semidefinite programming) are guaranteed to return the

necessary MWSS efficiently.
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1.6 Tractable graphical models

Certain families of graphical models are known to admit efficient MAP

estimates. This leads to the natural question: do these graphical models

readily compile into NMRFs with perfect graphs? For instance, junc-

tion trees and graphical models without cycles can be solved via ef-

ficient message passing techniques such as the max-product algorithm

(Pearl, 1988; Wainwright and Jordan, 2008). Similarly, graphical mod-

els that solve matching and generalized matching problems admit exact

inference in cubic time (or better) via the max-product algorithm (Bay-

ati et al., 2005; Huang and Jebara, 2007; Sanghavi et al., 2008; Bayati

et al., 2008). Graphical models with arbitrary topologies yet associative

(submodular) potentials9 also admit efficient algorithms via graph-cuts

or min-cost network flow methods (Greig et al., 1989; Kolmogorov and

Zabih, 2004). We next consider the NMRF representation of these spe-

cific MAP problems.

1.6.1 Acyclic graphical models

Tree-structured and acyclic graphical models are known to admit both

efficient MAP estimation and efficient marginal inference. Recall that

we are given as input a graphical model G with discrete random vari-

ables y1, . . . , yk with |y1|, . . . , |yk| possible configurations each. A simple

acyclic graphical model is a tree with the following factorization

p(Y ) = 1
Z

k
∏

i=2

ψi(yi, pa(yi))

where pa(yi) is a single node which is a parent of yi in a directed acyclic

graph (DAG) and where y1 is the root of the tree and has no parent node

in the DAG. Consider compiling this graphical model into a NMRF using

Algorithm 1 as depicted in Figure 1.6.

Theorem 1.17 A graphical model with a tree graph G produces a

NMRF with a perfect graph G.

Proof First consider the simplest case where the input tree graphical

model is merely a star. Consider a star graphical model Ga with an

internal random variable y and leaf random variables {y1, . . . , yp} with

c = 1, . . . , p factors over the pairs of variables Yc = {y, yc}. Compile

9 In physics, models with associative potentials are also called ferromagnetic.
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(a) Graphical model G (b) Equivalent NMRF G

Figure 1.6 Compiling a tree structured graphical model G with bi-
nary random variables into its NMRF representation G (therein, sub-
scripts denote the factor the NMRF node corresponds to and super-
scripts denote the configuration of its corresponding random vari-
ables).

the graphical model Ga into an NMRF Ga as follows. Initialize Ga = {}
and introduce a NMRF node vc,0+j for each factor Yc for each of the

j = 0, . . . , |y|−1 configurations of y while fixing the setting yc = 0. Join

all these NMRF nodes pairwise if they correspond to different configu-

rations of y. The resulting graph is a complete |y|-partite graph which

is known to be perfect (Berge and Chvátal, 1984). To obtain Ga from

the current complete |y|-partite graph, sequentially introduce additional

nodes vc,i|y|+j for each Yc for each of the j = 0, . . . , |y|−1 configurations

of y as well as for each of the remaining i = 1, . . . , |yc| − 1 settings of yc.

Each sequentially introduced node is joined to the corresponding node

vc,0+j that is already in Ga as well as all the neighbors of vc,0+j. By

the replication procedure in Lemma 1.8, this sequential introduction of

additional nodes and edges maintains graph perfection. Once all nodes

are added, the resulting graph is precisely the final graph Ga obtained

by compiling a star Ga into NMRF form. Therefore, Ga is perfect by

construction. Next, consider merging two such star-structured graphi-

cal models. The first star, Ga, contains the internal random variable y

and leaf random variables {y1, . . . , yp}. The second star, Gb, contains

the internal random variable ỹ and leaf random variables {ỹ1, . . . , ỹq}.
Consider merging these two stars by merging random variable y1 into

node ỹ, merging random variable ỹ1 into node y and merging the factor

ψy,y1 and factor ψỹ,ỹ1 into a single factor ψy,ỹ. The resulting union of
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two star-shaped graphical models, denoted Ga+b, is no longer a star but

rather a simple tree-shaped graphical model. The stars Ga and Gb sepa-

rately give rise to NMRFs Ga and Gb which have already been shown to

be perfect. The tree Ga+b gives rise to a NMRF denoted Ga+b. The star

shaped graphical models intersect over the factor ψy,ỹ. It is clear, then,

that the NMRFs Ga and Gb overlap only over the configurations of the

factor ψy,ỹ. Thus, Ga∩Gb form a clique cut-set. Furthermore, since Ga is

perfect and Gb is perfect, Lemma 1.9 ensures that the graph Ga+b is per-

fect. By induction, incrementally merging star-shaped graphical models

with the current tree Ga+b can be used to eventually create any arbi-

trary tree structure in the graph G. Since merging each star preserves

the perfection of the compiled NMRF, the final NMRF G obtained from

any tree-structured graphical model G is perfect.

Theorem 1.17 can easily be generalized to handle the case where the

input graphical model G is not a simple tree as illustrated above but,

more generally, any junction tree as defined below (Wainwright and Jor-

dan, 2008).

Definition 1.18 (Junction Tree) A graphical model G over the

universe of random variables Y = {y1, . . . , yk} with factors 1, . . . , l with

corresponding potential functions ψ1, . . . , ψl over subsets of random vari-

ables Y1, . . . , Yl is called a junction tree if and only if the factors can be

made adjacent to each other as nodes in an acyclic graph such that, for

any two factors i and j, all factors on the unique path joining i and j

contain the variables in the intersection Yi ∩ Yj .
Thus, graph perfection can be used to re-establish that MAP estima-

tion in graphical models without loops is efficient (Pearl, 1988).

1.6.2 Associative graphical models

In the previous sub-section, the topology of a graphical model was re-

stricted (to tree-structures) in order to guarantee that inference remains

efficient for any set of potential functions ψ1, . . . , ψl. Instead of restrict-

ing topology while allowing arbitrary choices for potential functions, we

may explore restrictions on the potential functions themselves and al-

low arbitrary topology. If all potential functions in the graphical model

are associative (or, more generally, submodular), then MAP estimation

is known to remain efficient (Greig et al., 1989; Kolmogorov and Zabih,

2004). Such problems frequently arise in computer vision and image pro-

cessing. Can graph perfection be used to reproduce this efficiency result?



22 Perfect graphs and graphical modeling

Consider a graphical model over V = {1, . . . , k} nodes with binary

variables Y = {y1, . . . , yk} where yi ∈ B (the extension beyond binary

variables is possible yet outside the scope of this chapter) with pairwise

potential functions between all pairs10 of variables as implied by

p(Y ) = 1
Z

∏

i∈V

ψi(yi)
∏

i6=j

ψij(yi, yj).

The singleton potential functions are specified via two arbitrary scalar

values ψi(0), ψi(1) ∈ R
+ for all i ∈ V . Meanwhile, the pairwise potential

functions (i.e. factors) over a pair of binary variables are specified by four

scalar values ψij(0, 0), ψij(0, 1), ψij(1, 0), ψij(1, 1) ∈ R
+ for all i 6= j.

We say that the pairwise potential functions are associative (or, more

generally, submodular) if their values are restricted to obey the following

relation

ψij(0, 0)ψij(1, 1) ≥ ψij(0, 1)ψij(1, 0).

If such a property is satisfied for all pairwise potential functions, then

the graphical model is associative. Consider compiling such a graphical

model into NMRF form. However, before doing so, it will be helpful to

rewrite the potential functions as follows

ψij(yi, yj) = ψ̂ij(yi, yj)φij(yi)ηij(yj)

where φij(0) = ψij(0, 1), φij(1) = ψij(1, 1), ηij(0) = ψij(1, 0)/ψij(1, 1)

and ηij(1) = 1. Next, consider the following modified pairwise potentials

functions

ψ̂ij(yi, yj) =

{

ψij(0,0)ψij(1,1)
ψij(0,1)ψij(1,0)

if yi = yj = 0

1 otherwise.
(1.6)

Rewrite the distribution as follows

p(Y ) = 1
Z

∏

i∈V

ψi(yi)
∏

j 6=i

ψ̂ij(yi, yj)φij(yi)ηij(yj).

Next, consider the following modified singleton potential functions

ψ̂i(yi) = ψi(yi)
∏

j 6=i

φij(yi)ηji(yi).

10 To consider an associative graphical model that has sparse connectivity, one may
simply assume that the pairwise potentials between some pairs of random
variables are chosen to be constant.
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These modified functions allow us to write the distribution for any as-

sociative graphical model as follows

p(Y ) = 1
Z

∏

i∈V

ψ̂i(yi)
∏

i6=j

ψ̂ij(yi, yj)

where the pairwise potential functions are restricted to have the form

in Equation 1.6. Apply Algorithm 1 to each potential function. Then

apply Algorithm 2 which obtains a graph G1 after removing nodes that

correspond to ψ̂ij(0, 1), ψ̂ij(1, 0) and ψ̂ij(1, 1) since they all have zero

weight (after the logarithm). This leaves a graph where there are two

NMRF nodes for each singleton potential ψ̂i for i ∈ V and a single node

for each pairwise potential ψ̂ij for i 6= j. The resulting NMRF has a

perfect graph G1 as shown in the following theorem and as depicted in

Figure 1.7.
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(a) Graphical model G (b) Equivalent NMRF G1

Figure 1.7 Compiling an associative graphical model G with binary
random variables into its NMRF representation G1 (therein, sub-
scripts denote the factor the NMRF node corresponds to and su-
perscripts denote the configuration of its corresponding random vari-
ables).

Theorem 1.19 A graphical model over binary variables with single-

ton and associative pairwise potential functions compiles into a MWSS

problem on a perfect graph.

Proof The NMRF graph G1 from Algorithm 2 contains edges between

all disagreeing nodes. Therefore, each pair of NMRF nodes v0
i and v1

i

corresponding to the singleton potentials ψ̂i for i ∈ V are pairwise ad-

jacent. Each pairwise potential ψ̂ij produces a single NMRF node v00
ij

which is only adjacent to v1
i and v1

j . Since this set of edges forms a

bipartite graph, G1 is perfect.

Due to the perfection of the MWSS sub-problem, Algorithm 2 remains



24 Perfect graphs and graphical modeling

efficient. In fact, the required MWSS sub-problem can easily be handled

via linear programming which produces an integral solution. The sub-

sequent MSS sub-problem in Algorithm 2 is trivial. Finally, given the

solution of Algorithm 2, say X ∗, it is straightforward to deduce the MAP

estimate of the random variables Y ∗.

It may be the case that a perfect NMRF also emerges if higher-order

potentials are used rather than merely associative (pairwise submodular)

functions. These potentials give rise to so-called Pn Potts models which

are widely used in computer vision (Kohli et al., 2009). It is sometimes

possible that Algorithms 1 and 2 remain efficient for such graphical

models and only require solving MWSS sub-problems on perfect graphs.

1.6.3 Matching graphical models

It was recently shown that certain graphical models known as matching

(or generalized matching) graphical models also admit efficient MAP es-

timation (Bayati et al., 2005; Huang and Jebara, 2007; Sanghavi et al.,

2008; Bayati et al., 2008). These graphical models are not associative

and contain many cycles (i.e. are not trees). A matching problem arises,

for instance, in a marriage problem, where q males and q females are to

be paired together. There is a non-negative scalar score fij ≥ 0 between

each male i and each female j representing how compatible they are.

Our goal is to find the matching where the total score is maximized for

the whole population. This problem is known to admit efficient MAP

estimation in O(q3) via the classic Hungarian marriage algorithm. This

maximum weight bipartite matching problem can be written as a graph-

ical model (Bayati et al., 2005; Huang and Jebara, 2007) over a set of

discrete variables Y = {y1, . . . , yq, ỹ1, . . . , ỹq} as follows:

p(Y ) = 1
Z

q
∏

i=1

q
∏

j=1

ψij(yi, ỹj) (1.7)

where each potential function is defined as

ψij(yi, ỹj) =















ε yi = j and ỹj 6= i

ε yi 6= j and ỹj = i

exp(fij) yi = j and ỹj = i

1 otherwise.

Here, 1 >> ε > 0 is an arbitrarily small positive quantity. Also, take

yi ∈ {1, . . . , q} to be the partner choice the i’th male makes (where

i = 1, . . . , q). Also, take ỹj ∈ {1, . . . , q} to be the partner choice the
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j’th female makes (where j = 1, . . . , q). Each ψij potential function

captures the additional value gained from the marriage of a couple via

the entry exp(fij). The functions also make marriage choices reciprocal

(an individual cannot chose someone who has chosen someone else) by

returning ε in such situations (for a small enough ε, it is easy to see that

reciprocity will be strictly enforced). Clearly, the potential functions

are not associative (they are also not submodular). Furthermore, the

graphical model has many cycles. Thus, the tractability of this problem

falls outside the scope of the two previous sub-sections.

As in the previous section, we shall replace each ψij function by fac-

torizing it into a product of another modified pairwise potential ψ̂ij and

two singleton potentials φij and ηij . The intuition lies in finding a mod-

ified pairwise potential ψ̂ij ≥ 1 with as many elements as possible equal

to one (in other words, ψij is log-sparse). Pseudo-code for finding such

factorizations automatically is provided in Section 1.9. The result sug-

gests the following factorization which is used to rewrite each potential

function in p(Y ) as

ψij(yi, ỹj) = ψ̂ij(yi, ỹj)φij(yi)ηij(ỹj)

where

ψ̂ij(yi, ỹj) =

{

exp(fij)/ε
2 yi = j and ỹj = i

1 otherwise,

with

φij(yi) =

{

ε yi = j

1 otherwise,

and

ηij(ỹj) =

{

ε ỹj = i

1 otherwise.

These potentials are collected to form the following equivalent graphical

model involving both singleton and pairwise potential functions

p(Y ) =
1

Z





q
∏

i=1

q
∏

j=1

ψ̂ij(yi, ỹj)





q
∏

i=1

φ̂i(yi)

q
∏

j=1

η̂j(ỹj).

where φ̂i(yi) =
∏q
j=1 φij(yi) and η̂j(ỹj) =

∏q
i=1 ηij(ỹj). Remarkably,

these final singleton potentials are all constant. Therefore, they can be
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absorbed into a new normalizer Ẑ and the graphical model can be rewrit-

ten more succinctly as

p(Y ) =
1

Ẑ

q
∏

i=1

q
∏

j=1

ψ̂ij(yi, ỹj).

Consider compiling the above graphical model into a NMRF graph G
via Algorithm 1. For each of the q2 potential functions ψ̂ij , G contains

q2 nodes. Denote the total set of q4 NMRF nodes in G by vklij where

i, j, k, l ∈ {1, . . . , q}. Here, subscripts indicate which potential function

the NMRF node comes from and superscripts identify the specific entry

of that potential function. More precisely, a left subscript i and a right

superscript l means that the i’th male chooses the l’th female. Similarly,

a right subscript j and a left superscript k means that the j’th female

chooses the k’th male. Whenever k = i and l = j, the marriage choices

are reciprocal and the nodes vijij have weight fij − 2 log(ε). Denote by

S = {v11
11 , . . . , v

1q
1q , . . . , v

qq
qq} this subset of q2 nodes with reciprocated

marriages. The remaining nodes in G have weight zero. We then form G1

via Algorithm 2 by removing nodes with zero weight from G. The graph

G1 thus only contains the q2 nodes in S and the following theorem shows

that it is perfect.

y1 y2 y3

ỹ1 ỹ2 ỹ3 v31

31
v32

32
v33

33

v21

21
v22

22
v23

23

v11

11
v12

12
v13

13

(a) Graphical model G (b) Equivalent NMRF G1

Figure 1.8 Compiling a bipartite matching graphical model G with
binary random variables into its NMRF representation G1.

Theorem 1.20 The maximum weight bipartite matching problem com-

piles into a MWSS problem on a perfect graph.

Proof Graph G1 obtained from the bipartite matching problem contains

q2 nodes vijij where i, j ∈ {1, . . . , q}. Pairwise edges exist between vijij
and vikik when k 6= j and between vijij and vkjkj when k 6= i since these

correspond to incompatible settings of the random variables. It is easy
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to see that G1 is a Rook’s graph which is the line graph of a (complete)

bipartite graph. Since these are basic Berge graphs, G1 is perfect.

Since G1 is perfect, the MWSS sub-problem in Algorithm 2 remains

efficient. Furthermore, the subsequent MSS sub-problem is trivial. Fig-

ure 1.8 depicts the induced subgraph G1.

Thus, Algorithm 2 finds the MAP estimate for graphical models rep-

resenting bipartite matching problems in polynomial time. In fact, un-

der mild assumptions, certain variants of message passing converge in

just O(q2) time when applied to the (dense) bipartite matching problem

(Salez and Shah, 2009). Perfection can also be used to show when unipar-

tite matching problems achieve integral linear programming relaxations

(Sanghavi et al., 2008; Jebara, 2009). Informally, this is done by exam-

ining the line graph of the unipartite matching graphical model (much

like the Rook’s graph is the line graph of the bipartite graph in Fig-

ure 1.8(a)). If the line graph of the unipartite matching graphical model

is a perfect graph, Algorithm 2 may potentially involve a MWSS prob-

lem over a perfect graph G1. Thus, the linear programming integrality

of matching problems can be explained using graph perfection and the

efficiency of MAP estimation for such graphical models is re-confirmed

using the tools introduced in this chapter.

1.7 Discussion

Perfect graphs are a useful class of inputs that help outline when oth-

erwise intractable problems admit efficient algorithms. This family of

graphs is rich with theoretical and computational properties. Combina-

torial problems such as graph coloring, maximum stable set and maxi-

mum clique can be efficiently solved when the input is a perfect graph.

Off-the-shelf solvers such as linear programming and semidefinite pro-

gramming are known to provide exact solutions. Similarly, certain canon-

ical problems in machine learning and statistical inference can exploit

perfect graph theory and algorithms. This chapter focused on the max-

imum a posteriori (MAP) estimation problem and showed how it can

be compiled into a maximal maximum weight stable set problem on

a nand Markov random field. MWSS solution methods such as linear

programming, message passing and semidefinite programming can then

be brought to bear and remain efficient if the input is a weighted per-

fect graph. Thus, the tractability benefits of perfect graphs extend into
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the realm of MAP estimation which otherwise, in the worst case, can

be intractable. Furthermore, in cases where MAP estimation was previ-

ously known to admit efficient algorithms, it was possible to compile the

graphical models into NMRFs with perfect graph topologies that admit

efficient MWSS solution. Thus, the perfect graph formalism helps re-

confirm previously known efficiency results in graphical modeling. With

further work, perfect graphs can potentially help the machine learning

and statistics communities discover new families of graphical models that

admit efficient MAP estimation.
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1.9 Appendix

The following Matlab code rewrites a higher-order potential function

(over a pair of variables or more) as a product of a log-sparse higher-

order potential function (with all elements greater than 1) and singleton

potentials. This is accomplished by linear programming to minimize an

ℓ1 norm on the output higher-order potential function. This helps reveal

the representation of the graphical model that may lead to a MWSS

problem on a perfect graph.

function [opsi,singletons] = factorizeClique(psi)

lpsi = log(psi./min(reshape(psi,prod(size(psi)),1)));

spsi = size(lpsi);

N = prod(spsi);

n = sum(spsi);

f = zeros(N+n+1,1);

f(1:(N+n))=1;

lb = -250*ones(N+n+1,1);

lb(1:(N+n))=0;
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b = [reshape(lpsi,prod(spsi),1)];

A = zeros(N,N+n+1);

A(1:N,1:N)=eye(N,N);

for i=1:N

q=ind2subT(spsi,i);

for j=1:length(spsi)

A(i,N+sum(spsi(1:(j-1)))+q(j))=1;

end

end

A(:,end)=1;

ub = 250*ones(N+n,1);

X = linprog(f,[],[],A,b,lb,ub);

opsi = exp(reshape(X(1:N),spsi));

ind = N+1;

for i=1:length(spsi)

singletons{i} = exp(X(ind:((ind+spsi(i))-1)));

ind=ind+spsi(i);

end

siz = sz;

nout = length(siz);

siz = double(siz);

The above function also uses the following sub-function that simply

returns multiple subscripts from a linear index.

function [outs] = ind2subT(sz,ndx)

if length(siz)<=nout,

siz = [siz ones(1,nout-length(siz))];

else

siz = [siz(1:nout-1) prod(siz(nout:end))];

end

n = length(siz);

k = [1 cumprod(siz(1:end-1))];

outs = zeros(1,nout);

for i = n:-1:1,

vi = rem(ndx-1, k(i)) + 1;

vj = (ndx - vi)/k(i) + 1;

outs(i) = vj;

ndx = vi;

end
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