Network Security: Secret Key Cryptography

Henning Schulzrinne

Columbia University, New York
schulzrinne@cs.columbia.edu

Last modified September 28, 2000

Slide 1

Secret Key Cryptography

- fixed-size block, fixed-size key \rightarrow block
- DES, IDEA
- message into blocks?

Slide 2

Generic Block Encryption

- convert block into another, one-to-one
- long enough to avoid known-plaintext attack
- 64 bit typical (nice for RISC!) $18 \cdot 10^{18}$ (peta)
- naive: 2^{64} input values, 64 bits each $\rightarrow 2^{70}$ bits
- output should look random
- plain, ciphertext: no correlation (half the same, half different)
- III bit spreading
substitution: $2^{k}, k \ll 64$ values mapped $k \cdot 2^{k}$ bits
permutation: change bit position of each bit $k \log _{2} k$ bits to specify
round: combination of substitution of chunks and permutation
do often enough so that a bit can affect every output bit - but no more

Slide 3

Block Encryption

Slide 4

Data Encryption Standard (DES)

- published in 1977 by National Bureau of Standards
- developed at IBM ("Lucifer")
- 56-bit key, with parity bits
- 64-bit blocks
- easy in hardware, slow in software
- 50 MIPS: $300 \mathrm{kB} / \mathrm{s}$
- $10.7 \mathrm{Mb} / \mathrm{s}$ on a 90 MHz Pentium in 32-bit protected mode
- grow 1 bit every 2 years

Slide 5

Breaking DES

- brute force: check all keys II* 500,000 MIPS years
- easy if you have known plaintext
- have to know something about plaintext (ASCII, GIF, ...)
- commercial DES chips not helpful: key loading time $>$ decryption time
- easy to do with FPGA, without arousing suspicion
- easily defeated with repeated encryption

DES Overview

- initial permutation
- 56-bit key $\rightarrow 16$ 48-bit per-round keys (different subset)
- 16 rounds: 64 bit input +48 -bit key $\rightarrow 64$-bit output
- final permutation (inverse of initial)
- decryption: run backwards ${ }^{\text {nim }}$ reverse key order

Slide 7

Permutation

- just slow down software
- i th byte $\rightarrow(9-i)$ th bits
- even-numbered bits into byte 1-4
- odd-numbered bits into byte 5-8
- no security value: if we can decrypt innards, we could decrypt DES

Slide 8

DES: Generating Per-Round Keys

56-bit key $\rightarrow 16$ 48-bit keys $K_{1}, \ldots K_{16}$:

- bits $8,16, \ldots, 64$ are parity
- permutation
- split into 28 -bit pieces $C_{0}, D_{0}: 57,49, \ldots$
- again, no security value
- rounds $1,2,9,16$: single-bit rotate left
- otherwise: two-bit rotate left
- permutation for left/right half of K_{i}
- discard a few bits

Slide 9

XOR Arithmetic

- $x \oplus x=0$
- $x \oplus 0=x$
- $x \oplus 1=\bar{x}$

DES Round

- mangler function can be non-reversible
- $L_{n+1}=R_{n}$
- $R_{n+1}=m\left(R_{n}, K_{n}\right) \oplus L_{n}$
- decryption
- $R_{n}=L_{n+1}$
- $L_{n}=m\left(R_{n}, K_{n}\right) \oplus R_{n+1}$
because $\left(\oplus L_{n}, R_{n+1}\right): R_{n+1} \oplus R_{n+1} \oplus L_{n}=m() \oplus L_{n} \oplus L_{n} \oplus R_{n+1}$

Slide 11

DES Mangler Function

- $R(32), K(48) \oplus L_{n} \rightarrow R_{n+1}$
- expand from 32 to 48 bits: 4-bit chunks, borrow bits from neighbors
- 6-bit chunks: expanded $R \oplus K$
- 8 different S-boxes for each 6 bits of data
- S box: 6 bit (64 entries) into 4 bit (16) table: 4 each
- four separate 4×4 S-boxes, selected by outer 2 bits of 6 -bit chunk
- afterwards, random permutation: P-box

DES: Weak Keys

- 16 keys to avoid: $C_{0}, D_{0} 0 \ldots 0,1 \ldots 1,0101 \ldots, 1010 \ldots$
- sequential key search \quad avoid low-numbered keys
- 4 weak keys $=C_{0}, D_{0}=0 \ldots 0$ or $1 \ldots 1$ own inverses: $E_{k}(m)=D_{k}(m)$
- semi-weak keys: $E_{k_{1}}(m)=D_{k_{2}}(m)$

Slide 13

IDEA

- International Data Encryption Algorithm
- ETH Zurich, 1991
- similar to DES: 64 bit blocks
- but 128-bit keys

Primitive Operations

2 16-bit $\rightarrow 1$ 16-bit:

- \oplus
- $+\bmod 2^{16}$
- $\otimes \bmod 2^{16}+1$:
- reversible \exists inverse y of $x, \forall x \in\left[1,2^{16}\right] a \otimes x \otimes y=a$
- or $x \otimes y=1$
- example: $x=2, y=32769$ Euclid's algorithm
- reason: $2^{16}+1$ is prime
- treat 0 as encoding for 2^{16}

Slide 15

IDEA Key Expansion

- 128-bit key $\rightarrow 52$ 16-bit keys K_{1}, \ldots, K_{52}
- encryption, decryption: different keys
- key generation:
- first chop off 16 bit chunks from 128 bit key eight 16-bit keys
- start at bit 25 , chop again eight 16 -bit keys
- shift 25 bits and repeat

IDEA: One Round

- 17 rounds, even and odd
- 64 bit input $\rightarrow 4$ 16-bit inputs: $X_{a}, X_{b}, X_{c}, X_{d}$
- operations \rightarrow output $X_{a}^{\prime}, X_{b}^{\prime}, X_{c}^{\prime}, X_{d}^{\prime}$
- odd rounds use $4 K_{i}: K_{a}, K_{b}, K_{c}, K_{d}$
- even rounds use $2 K_{i}: K_{e}, K_{f}$

Slide 17

IDEA: Odd Round

- $X_{a}^{\prime}=X_{a} \otimes K_{a}$
- $X_{d}^{\prime}=X_{d} \otimes K_{d}$
- $X_{c}^{\prime}=X_{b}+K_{b}$
- $X_{b}^{\prime}=X_{c}+K_{c}$
reverse with inverses of K_{i} :
$X_{a}^{\prime} \otimes K_{a}^{\prime}=X_{a} \otimes K_{a} \otimes K_{a}^{\prime}$

Slide 18

IDEA: Even Round

mangler: $Y_{\text {out }}, Z_{\text {out }}=f\left(Y_{\text {in }}, Z_{\text {in }}, K_{e}, K_{f}\right)$
1.

$$
\begin{aligned}
& Y_{\mathrm{in}}=X_{a} \oplus X_{b} \\
& Z_{\mathrm{in}}=X_{c} \oplus X_{d}
\end{aligned}
$$

2.

$$
\begin{aligned}
Y_{\text {out }} & =\left(\left(K_{e} \otimes Y_{\text {in }}+Z_{\text {in }}\right) \otimes K_{f}\right. \\
Z_{\text {out }} & =K_{e} \otimes Y_{\text {in }}+Y_{\text {out }}
\end{aligned}
$$

3.

$$
\begin{aligned}
X_{a}^{\prime} & =X_{a} \oplus Y_{\mathrm{out}} \\
X_{b}^{\prime} & =X_{b} \oplus Y_{\mathrm{out}} \\
X_{c}^{\prime} & =X_{c} \oplus Z_{\mathrm{out}} \\
X_{d}^{\prime} & =X_{d} \oplus Z_{\mathrm{out}}
\end{aligned}
$$

Slide 19

IDEA Even Round: Inverse

$$
X_{a}^{\prime}=X_{a} \oplus Y_{\mathrm{out}}
$$

Feed X_{a}^{\prime} to input:

$$
\begin{aligned}
& =X_{a}^{\prime} \oplus Y_{\mathrm{out}} \\
& =\left(X_{a} \oplus Y_{\mathrm{out}}\right) \oplus Y_{\mathrm{out}} \\
& =X_{a}
\end{aligned}
$$

Encrypting a Large Message

- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- k-bit Cipher Feedback Mode (CFB)
- k-bit Output Feedback Mode (OFB)

Slide 21

Electronic Code Book (ECB)

- break into 64-bit blocks
- encrypt each block independently
- some plaintext ${ }^{\text {In+ }}$ same ciphertext
- easy to change message by copying blocks
- bit errors do not propagate
rarely used

Slide 22

Cipher Block Chaining (CBC)

simple fix: \oplus blocks with 64-bit random number

- must keep random number secret
- repeats in plaintext $\nrightarrow=$ ciphertext
- can still remove selected blocks

Slide 23

Cipher Block Chaining (CBC)

- random number $r_{i+1}=c_{i}$: previous block of ciphertext
- random (but public) initialization vector (IV): avoid equal initial text
- Trudy can't detect changes in plaintext
- can't feed chosen plaintext to encryption
- but: can twiddle some bits (while modifying others):
modify c_{n} to change desired $m_{n+1}\left(\right.$ and $\left.m_{n}\right)$
- |n- combine with MICs

Output Feedback Mode (OFB)

64-bit OFB:

- IV: $b_{0} \xrightarrow{\text { encrypt }} b_{1} \xrightarrow{\text { encrypt }} b_{2} \ldots$
- $c_{i}=m_{i} \oplus b_{i}$, transmit with IV
- ciphertext damage ${ }^{\mathrm{n} \|}$ limited plaintext damage
- can be transmitted byte-by-byte
- but: known plaintext ${ }^{11+}$ modify plaintext into anything
- extra/missing characters garble whole rest
variation: k-bit OFB

Slide 25

Cipher Feedback Mode (CFB)

- similar to OFB: generate k bits, \oplus with plaintext
- use k bits of ciphertext instead of IV-generated
- IIt can't generate ahead of time
- 8-bit $C F B$ will resynchronize after byte loss/insertion
- requires encryption for each k bits

Slide 26

Generating MICs

- only send last block of CBC
- any modification in plaintext modifies CBC residue
- replicating last CBC block doesn't work
- P+I: use separate (but maybe related) secret keys for encryption and MIC encryption passes
- CBC(message | hash)

Slide 27

Multiple Encryption DES

- applicable to any encryption, important for DES
- encrypt-decrypt-encrypt (EDE): just reversible functions
- two keys K_{1}, K_{2}

$$
\begin{array}{cccccc}
& K_{1} & & K_{2} & & K_{1} \\
& & \\
& \downarrow & & \downarrow & & \downarrow \\
m & & E & \rightarrow & D & \rightarrow \\
& E & \rightarrow c
\end{array}
$$

- decryption ${ }^{\text {nel }}$ just reverse:

$$
\begin{array}{lclllll}
& & K_{1} & & K_{2} & & K_{1} \\
& & & \\
& & & \downarrow & & \downarrow \\
c & & D & \rightarrow & E & \rightarrow & D
\end{array}
$$

- standard CBC

Slide 28

Triple DES: Why 3?

- security \leftrightarrow efficiency
- $K_{1}=K_{2}$: twice the work for encryption, cryptanalyst
- plaintext $m_{i} \xrightarrow{A: E\left(K_{1}\right)} r \xrightarrow{B: E\left(K_{2}\right)} c_{i}$ (ciphertext)
- not quite equivalent to 112 bit key:
- assume given $\left(m_{1}, c_{1}\right),\left(m_{2}, c_{2}\right),\left(m_{3}, c_{3}\right)$
- Table A: $2^{56}\left(10^{4} \mathrm{~TB}\right)$ entries: $r=K\left\{m_{1}\right\} \forall K$, sort by r
- Table B: 2^{56} entries: $r=c_{1}$ decrypted with K, sorted
- find matching r me K_{A}, K_{B}
- if multiple K_{A}, K_{B} pairs, test against m_{2}, c_{2}, etc.
-2^{64} values, 2^{56} entries $1 / 256$ chance to appear in table 2^{48} matches

Slide 29

Triple DES: Why 3?

Table A:

$$
\begin{array}{rr}
r=E\left(m_{1}, K\right)(64 \text { bits }) & K(56 \text { bits }) \\
\ldots & \\
\text { 1234567890abcd00 } & \text { ab485095845922 } \\
\text { 1234567890abcd03 } & 12834893573257 \\
\text { 1234567890abcd04 } & 43892 \mathrm{ab} 8348 \mathrm{a} 85 \\
\text { 1234567890abcd08 } & 185 \mathrm{ab} 80184092 \mathrm{c}
\end{array}
$$

Table B:

$$
\begin{aligned}
& r=D\left(c_{1}, K\right)(64 \text { bits }) \quad K(56 \text { bits }) \\
& 1234567890 \text { abcd00 } 38 \text { acd043858ac0 } \\
& 1234567890 \text { abcd03 } 91870 a b 8 a 8 d 8 a 0 \\
& 1234567890 \text { abcd07 058a0fa858abcd } \\
& 1234567890 \text { abcd09 fd884a90407821 }
\end{aligned}
$$

computation: $2 \cdot 2^{56}+2^{48}$

Slide 31

Triple DES

- EDE: can run as single DES with $K_{1}=K_{2}$
- can be used with any chaining method
- CBC on the outside ${ }^{\text {nn+ }}$ no change in properties
- CBC on the inside
- but want self-synchronizing: wrong bit x in block $n-1$ Int $n-1$ garbled, n_{x} changed, others unaffected
- CBC inside: parallelization

Slide 32

